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Abstract Neural field models describe the coarse-grained activity of populations of
interacting neurons. Because of the laminar structure of real cortical tissue they are
often studied in two spatial dimensions, where they are well known to generate rich
patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of
contexts ranging from the understanding of visual hallucinations to the generation of
electroencephalographic signals. Typical patterns include localized solutions in the
form of traveling spots, as well as intricate labyrinthine structures. These patterns are
naturally defined by the interface between low and high states of neural activity. Here
we derive the equations of motion for such interfaces and show, for a Heaviside firing
rate, that the normal velocity of an interface is given in terms of a non-local Biot-
Savart type interaction over the boundaries of the high activity regions. This exact,
but dimensionally reduced, system of equations is solved numerically and shown to
be in excellent agreement with the full nonlinear integral equation defining the neural
field. We develop a linear stability analysis for the interface dynamics that allows us to
understand the mechanisms of pattern formation that arise from instabilities of spots,
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rings, stripes and fronts. We further show how to analyze neural field models with
linear adaptation currents, and determine the conditions for the dynamic instability
of spots that can give rise to breathers and traveling waves.

1 Introduction

The functional organization of cortex appears to be roughly columnar, with the lam-
inar sub-structure of each column organizing its micro-circuitry. These columns tes-
sellate the two-dimensional cortical sheet with high density, e.g., 2,000 cm? of human
cortex contain 10° to 10® macrocolumns, comprising about 103 neurons each. Neu-
ral field models describe the mean activity of such columns by approximating the
cortical sheet as a continuous excitable medium. They can generate rich patterns of
emergent spatiotemporal activity and have been used to understand visual hallucina-
tions, mechanisms for short term working memory, motion perception, the generation
of electroencephalographic signals and many other neural phenomena. We refer the
reader to [1, 2] for recent discussions of neural field models and their uses, and in par-
ticular to the work of Bressloff and colleagues [3-5] and Owen et al. [6] for results
on planar systems. A minimal two-dimensional neural field model can be written as
an integro-differential equation of the form

u;(x, 1) = —u(x,t) +/2 w(x—x’)H(u(x/’t) — h) dx/, (1)

R

where x € R? and r € R*. Here the variable u represents synaptic activity and the
kernel w represents anatomical connectivity. The nonlinear function H represents
the firing rate of the tissue and will be taken to be a Heaviside so that the parameter
h is interpreted as a firing threshold. For the case of a symmetric synaptic kernel
w(x) = w(|x]|), the model also has a Liapunov function [6, 7] given by

ELiap.[u] = —%/dx/dx/w(lx—x/|)H(u(x,t) —h)H (u(x', 1) — h)
@
+h/dxH(u(x,t)—h),

which can be useful in determining the stability of equilibrium solutions.

Neural field models support traveling waves that underlie EEG signals; but also
spots of localized high firing activity, which have been linked to models of working
memory. These spots can become unstable and can pattern cortex with intricate struc-
tures. In Figure 1A we show results of a direct numerical simulation with a classic
Mexican-hat choice for w. For further details see the discussion around Equation (20)
and Section A.1 in the Appendix (for the numerical scheme). Here Equation (1) de-
scribes a single population model with short-range excitation and long-range inhibi-
tion. This minimal example nicely illustrates the ability of neural field models to gen-
erate intricate spreading labyrinthine patterns. We do not expect to find labyrinthine
patterns as such in real brain activity. However, they provide a convenient (and vi-
sually striking) proxy for the generation of complex patterns of activity, that emerge
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Fig. 1 Labyrinthine structure emerging from (1) and (20) with parameters g = 0.5, y =4 and Heaviside
threshold # = 0.115. The initial spot of radius R = 12 has a mode four instability, cf. Figure 4. This is
primed by perturbing R with 0.5cos(46). Rows A show u and the colorbar below indicates its values.
Rows B illustrate the evolution of the interface (« = h, golden outline) due to the normal velocity of the
boundary (green arrows, to scale but enlarged by a factor 50). The Liapunov function Ey jsp, of (2) is noted
at all eight time steps. See also the video in Additional file 1.

spontaneously and/or can be evoked, for example in visual cortex [8]. Labyrinthine
patterns are also seen when the Heaviside firing rate function is replaced by a steep
sigmoid, as will be discussed later. Visual inspection suggests that much of the be-
havior of such patterns can be described simply by tracking the boundary between
high and low states of activity. Indeed this appears to resonate with neuroscientific
practice, where changes of brain activity are often of greater interest than the current
brain state per se [9]. Hence it is of interest whether the dynamics of (1) can be re-
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placed by a lower dimensional description that evolves the boundary between high
and low states of activity. This programme has already been developed by Amari in
his seminal article on one-dimensional models [10], where this interface reduces nat-
urally to a point (or a set of points). However, in two spatial dimensions the interface
is more naturally a closed curve (or a set of closed curves).

The main topic of this article is the development of an equivalent interface de-
scription for neural field models of the type exemplified by (1). We show that activity
patterns can be described by dynamical equations of reduced dimension, and that
these depend only on the shape of the interface (requiring no knowledge of activ-
ity away from the interface). Not only is this description amenable to fast numerical
simulation strategies, it allows for the construction of localized states and an anal-
ysis of their linear stability. Given the computational overheads in simulating the
full neural field model this enhances our ability to study pattern formation and sug-
gests more generally that modeling the interfaces of patterns, rather than the patterns
themselves, may lead to novel, efficient descriptions of brain activity. Indeed the use
of interface dynamics to analyze patterns that arise in partial differential equation
models of chemical and physical systems has a strong history [11], and it is natural
to translate some of the ideas and technologies from these studies to non-local neural
field models. The work by Goldstein [12, 13] and Muratov [14] on pattern formation
in two-dimensional excitable reaction-diffusion systems is especially relevant in this
context, as both authors have developed effective descriptions of interface dynamics
in terms of non-local interactions. See also the book by Desai and Kapral [15] for a
recent overview.

It is worth pointing out that whether computing interface dynamics can compete
with other numerical schemes will depend on the problem at hand. In general, bound-
aries that remain relatively short and do not pinch guarantee a speed advantage. In
practice, we expect this approach to be especially relevant for (semi-) analytical work
aiming at qualitative understanding, as illustrated by some of the examples presented
in this article.

In Section 2 we present some of the key ideas behind an interface dynamics in
the setting of a one-dimensional neural field model. This is particularly useful for
introducing the definition of normal velocity from a level-set condition, as well as
establishing what it means for an interface to be linearly stable. The extension of
these ideas to two-dimensional systems is presented in Section 3. By writing the
synaptic connectivity in terms of a linear combination of Bessel functions, we show
that dynamics for the interface can be constructed in terms of line-integrals along
the interface, and that the normal velocity of the interface is driven by Biot-Savart-
style interactions. Thus we obtain a reduced description for the evolution of a pattern
boundary solely in terms of quantities on the boundary itself. Numerical simulations
of the interface dynamics are shown to be in direct correspondence with those of
the full neural field model. The notion of linear stability of stationary solutions in the
interface framework is fleshed out in a series of examples (for spots, rings, stripes and
fronts) in Sections 4 and 5, and allows us to understand some of the mechanisms for
pattern formation. In Section 6 we add linear adaptation to (1) and extend our analysis
to cover this important neural phenomenon. This can introduce dynamic instabilities
of stationary structures, and we calculate where breathing and drift instabilities for
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localized spots occur. Moreover, we use a perturbation argument to determine the
shape of traveling spots that emerge beyond a drift instability and show that spots
contract in the direction of propagation and widen in the orthogonal direction. Finally,
in Section 7 we discuss extensions of the work in this article.

2 A one-dimensional primer

Before we develop the machinery for describing the evolution of interfaces in two-
dimensional neural field models, it is informative to begin with a discussion in one
dimension. In this case a minimal model can be written in the form

ur=—u+1y, 1/f(x,t)=/Rw(x—y)H(u(y,t)—h)dy, 3

where u = u(x,t) and x € R, t € R*. For a symmetric choice of synaptic kernel
w(x) = w(]x]), which decays exponentially, the one-dimensional model (3) is known
to support a traveling front solution [16, 17] that connects a high activity state to a
low activity state. In this case it is natural to define a pattern boundary as the interface
between these two states. Thus we can define a moving interface (level set) according
to

u(xo(r), 1) = const. “4)

Here we are assuming that there is only one point on the interface, though in principle
we could consider a set of points. The function xg = xo(¢) gives the evolution of the
interface. Since the high and low activity states in the neural field model are naturally
distinguished by determining whether u is above or below the firing threshold, we
shall take the constant on the right hand side of (4) to be / (though other choices are
also possible). Differentiation of (4) gives an exact expression for the velocity of the
interface in the form

Ug

Xg=——
Ux

&)

x=xo(t)

We can now describe the properties of a front solution solely in terms of the behav-
ior at the front edge which separates high activity from low. To see this, let us assume
that the front is such that u(x,t) > h for x < xo(¢) and u(x,t) < h for x > xo(t).
Then (3) reduces to

o0
ur(x,t) =—u(x,1) +/ w(y)dy. (6)
x—=x0(t)
Introducing z = u, and differentiating (6) with respect to x gives
2 (x, 1) =—z(x, 1) —w(x —x0(1)). )

Integrating (7) from —oo to ¢ (and dropping transients) yields

t
2(x,t) =—e' / ew(x — xo(s)) ds. 8)

—0o0
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We may now use the interface dynamics defined by (5) to study the speed ¢ > 0 of a
front, defined by xo = c. In this case x((¢) = ct, where without loss of generality we
set x0(0) =0, and from (6) and (8) we have that

ut|x=xo(t) =—h+ 17)I(O): uxlx:xo(t) = —w(l/C)/C, ©)]
where
o
W) =/ e M w(s)ds. (10)
0
Hence from (5) the speed of the front is given implicitly by the equation
h=w(0)—w(l/c). (11)

To determine stability of the traveling wave we consider a perturbation of the
interface and an associated perturbation of u. Introducing the notation = to denote
perturbed quantities, to a first approximation we will set Uy |x=5,() = Ux|x=ct, and
write Xo(t) = ct + 8xo(t). The perturbation in u can be related to the perturbation
in the interface by noting that both the perturbed and unperturbed boundaries are
defined by the level set condition, so that u(xg, t) = h = u(xo, t). Introducing du(t) =
Ulx=ct — Ulx=5y(r)» We thus have the condition that du(z) = 0 for all ¢. Integrating (6)
and dropping transients gives

t o0
u(x,r) =eft/ dses/ dyw(y), (12)
—00 x—xq(s)

and u is obtained from (12) by simply replacing xo by Xo. Using the above we find
that du is given (to first order in §xg) by

Su(t) = % /OO dse_s/cw(s)[éxo(t) — Sxo(t — s/c)] =0. (13)
0

This has solutions of the form 8x((¢) = e, where A is defined by £(1) = 0, with

W +W)/e)

EMn) =1 T1/0)

(14)

A front is stable if Re A < 0.
As an example consider the choice w(x) = exp(—|x|/o)/(20), for which w (1) =
(L +1/0)~1/(20). In this case the speed of the wave is given from (11) as

1—-2h

= 15
c=0—: (15)
and
A
R S— 16
£G) l4+c/o+ 2 (16)

The equation £(1) = 0 only has the solution A = 0. We also have that £'(1) > 0,
showing that A = 0 is a simple eigenvalue. Hence, the traveling wave front for this
example is neutrally stable.
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Fig. 2 Interface parametrization and Mexican-hat shape for synaptic kernel. A: Compact area B and
boundary d13. Two points on the boundary r, parametrized by s and s/, are shown with their normal n and
tangent t vectors. B: Mexican hat (20) with parameters § = 0.3 and y = 3. White contours indicate values
< 0, black ones > 0, for a step size of 0.005.

Given this preliminary exposition of interface dynamics we are now ready to de-
scribe the extension to two dimensions and to address the additional challenges that
working in the plane gives rise to.

3 Interface dynamics in two dimensions

As in the one-dimensional case we will define pattern boundaries as the interface
between low and high states of neural activity. To be more precise we introduce the
notation B(z) to denote the (compact) area of activity where u > h. The boundary,
or interface, d3(t) is defined by the threshold crossing condition u(x, ) = h. In this
case the model defined by (1) takes the form

ur(X, 1) = —u(X, 1) + ¥(x,1), v(x, t)=/l; w(x—-x1)ax', (A7)
(1)

and the Liapunov function can be written simply as

1
ELiap.[M]=——/ dx/ dx’w(|x—x’|)+h/ dx. (18)
2JBey  JBo B

Note that B(r) does not have to be simply connected and can describe a union of
many disjoint active regions. However, for clarity of exposition we shall focus on
describing the evolution of an interface that is a single closed curve, as depicted in
Figure 2A. The extension to multiple closed curves is straight-forward.

It is well known that the two-dimensional model (17) can support localized states
such as spots and rings [18, 19] for a Mexican-hat synaptic connectivity. Recent
work in [6] has shown how to determine the stability of such solutions to angular
perturbations using an Evans function approach [20]. An analogous numerical study
for smooth sigmoidal firing rates can be found in [21]. These studies have high-
lighted, as compared to the one-dimensional model, that an extra spatial dimension
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can lead to azimuthal instabilities, whereby localized states can deform (or even split)
into patterns with a reduced symmetry predicted by the shape of the most unstable
eigenmode. Direct numerical simulations beyond such instability points have further
shown the emergence of intricate spreading labyrinthine patterns like those in Fig-
ure 1, that leave behind a stable patterned state in their wake. It is our intention here
to recover the Evans function results for stability, albeit using a purely interface de-
scription of dynamics, as well as to determine the nonlinear equations of motion that
govern the evolution of labyrinthine (and other) structures. Moreover, by employ-
ing a representation of the synaptic connectivity in terms of a linear combination of
Bessel functions, we can obtain an exact, though spatially reduced, dynamical system
to describe the interface that depends solely on the shape of the interface itself. In the
following, we consider kernels of the form [3]

N
w(r) =Y AiKo(eir), A;jeR,a;>0, (19)
i=1

where K is the zeroth order modified Bessel function of the second kind. In partic-
ular we will employ the Mexican-hat shape obtained from

2 1
w(r) = E (Ko(r) — Ko(2r) — ;(Ko(ﬂr) - Ko(ZﬂF))), B.y=>0, (20
which is shown for 8 = 0.3 and y =3 in Figure 2B.

In an identical fashion to the way we derived an interface dynamics in one dimen-
sion in Section 2, we differentiate u(x, ) = h along the contour 33(¢) to obtain

v dr " ou 0 21
u-——+ —=0,

odr o o

where r is a point on the domain boundary 95 and u; and Vxu are evaluated on the
boundary. Introducing the normal vector along the contour 98 as n = —Vxu /| Vyu|
allows us to obtain the normal velocity along the contour:

dr Uy
n-—=—, (22)
dr 7]
where z = Vxu(X, t)|x=r. Using (17) we see that u and z satisfy
u; =—h —i—/ dx'w(|r — x'[), (23)
B
7= —Z+VX/ dx'w(]x — x'[) (24)
B X=r

From the form of (22), (23), and (24), we see that the evolution of the interface does
not require any knowledge of the neural field away from the contour, and rather just
depends on the shape of the sets where the field is above threshold. We now exploit
the choice of K as basis function for constructing the synaptic kernel to show how
the double integrals in (23) and (24) can be reduced to line integrals. This yields an
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elegant description of the interface dynamics that emphasizes how the geometry of
dB drives the evolution of spatiotemporal patterns. The key step in this reformulation
is the use of Green’s identity. For a two-dimensional vector field F this identity is the
two-dimensional version of the divergence theorem, which we write symbolically as
/; gV F= fa g F - n. Using this first identity we may generate a second for a scalar
field W as [, VW = §f, .nW.
To evaluate the right hand side of (23) and (24) it is enough to calculate
/; pdX'Ko(a|x — x'|) and its gradient. In fact, this latter term can easily be rewrit-
ten as a line integral, using the second Green’s identity, for any choice of synaptic
kernel
/ dx’wa(}x - x”) = —f dx’Vx/w(’x - x”)
B B 25)
= —f dsn(s)w(|x —x'(s)).
B

Using the fact that K¢ (ax) satisfies the identity Ko(ax) = a2V Ko (ax) + 278 (ax),
as well as Vxw(|x]) = w’(]x])x/|x| and K = —K|, an application of Green’s first
identity shows that

dx' Ko (a|x — x’
| 4 Kolalx—x)

1 / / / /
:a—zjl;de,%Ko(ab(—x|)+2n/6dx5(a|x—x|) (26)
__l . X —r(s) _ 2w
= ajégdm(s) 7|x—r(s)|K1(a‘X r(s)|)+C—a2.

Here C =1 if x is within B and C = 0 if x is outside B. If x is on the boundary of B
then C = 1/2. Hence, for points on the boundary parametrized by s one finds

¢

N
ut(s) = _h+2Ai{£BdS/n(S/) -Ri(S,S/)‘I‘ lz}, (27)
i=1 i

2(s) = —2(s) 7§B as'n(s')w(|r(s) - r(s')). (28)

where
1 ris) = r(s’)
a; |r(s) —r(s)|

Note that the choice of K as a basis for w is merely a convenience to allow explicit
calculations. As long as we can write the connectivity function w as the divergence
of a vector field then we can exploit Green’s first identity to turn the right hand side
of (23) into a line integral.

From the Biot-Savart form of (29) we see that for every part i of the synaptic
kernel there is an effective repulsion between two arc length positions with anti-
parallel tangent vectors, although the combined effect when including all N terms

Ri(s.s) = Ki(ai|r(s) —r(s")]). (29)
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Fig. 3 Time dependence of the u = h interface and Liapunov function. Red curves are for the Heavi-
side model of Figure 1, green and blue ones use a sigmoid instead. Circular labels indicate the times of
the snapshots. Dashed and dotted curves scale the Heaviside one by adjusting «. See also the video in
Additional file 2.

will depend on the choice of the amplitudes A;. Now with (22), (27), and (28) the
normal velocity on the interface can be written solely in terms of certain line-integrals
around the interface. From a computational perspective this leads to a substantial
advantage in that one no longer needs to solve the full non-local neural field model
(17) across the entire plane, and can instead simply evolve the interface in time by
discretizing the boundary and translating the points with the normal velocity from
(22) in the direction of n. One possible practical disadvantage of this is the need to
monitor for possible self-intersections of the evolving boundary, splitting, where a
connected region pinches off into two or more disconnected regions, or indeed the
creation of new boundaries where none existed before. However, numerical schemes
for coping with similar situations in fluid models are well developed in the literature
and it is natural to turn to these for more refined numerical schemes and ones that
can automate the process of contour surgery [22, 23]. In Figure 1B we illustrate the
simple numerical implementation of the interface dynamics described in Section A.2
in the Appendix, showing the effectiveness of the dimensionally reduced system at
capturing the spatiotemporal pattern formation of the full model shown in Figure 1A.

Furthermore, in our calculations we have found that the key assumption of a
Heaviside firing rate H(u — h) can be relaxed to a degree without fundamentally
changing the results. This is illustrated in Figure 3, where we show the evolution
in time of the u = h interface and the corresponding Liapunov function. The evo-
lution with a Heaviside firing rate H(u — h) is shown in red, and compared with
simulations of the full neural field model using more biologically realistic sigmoids
1/{1 + exp[—(u — h)/o]}, with 0 = 0.01 in green and o = 0.02 in blue. Here o
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reflects the expected width of the distribution of firing thresholds around a mean A
in the neural population, with the Heaviside case corresponding to ¢ = 0. Figure 3
demonstrates that for these steep sigmoids very similar labyrinthine shapes arise, and
closer inspection reveals that the main differences occur at the rapidly developing
rim of the structure, whereas the settled interior is nearly identical. Thus a simple
adjustment of the time constant « will in this case provide a near perfect match of the
emerging structures. In Figure 3 we demonstrate this with the dashed and dotted red
lines, which represent the Heaviside Liapunov function computed over longer time
scales (upto« -t = 569.9 and 626.8, respectively) and then scaled down to « -t < 550
by adjusting «. A very close match to the sigmoidal Liapunov curves (green and blue
lines) is then obtained. However, for broader sigmoids we find labyrinths still re-
sembling the Heaviside one, but with more obvious spatial changes. The video in
Additional file 3 shows the o = 0.03 case as an example. It would seem that mild
deviations in the shape of the firing rate from Heaviside (to a steep sigmoidal form)
are reflected more in temporal speed than in spatial shape changes.

The Liapunov function can also be written in terms of line integrals: Epi,p =

172N | A;F; + hT, with
Fi = if dsf ds’t(s) ~t(s/)K0(a,- |r(s) — r(s/)|) — 2—nI‘, 30)
of Jog Jos of

where I' = f  dx is the area of the domain above threshold and t(s) = dr(s)/ds is the
tangent vector, which can also be constructed from n by an anti-clockwise rotation of

/2 so that
0 1
n= [_1 O:| t. 3D

To obtain (30) we have used the fact that

/dx/dxl(o x—x|) 27;1"
o

= de /de KO( |x—x’)

:——/deX f ds'n(s") Ko(er|x — r(s")|)
= fgzgds ?gB ds'n(s) - n(s") Ko(a|r(s) — r(s’)

and the observation that n(s) - n(s’) = t(s) - t(s’).

As well as providing a computationally useful framework for studying pattern
formation, the interface dynamics including its Liapunov function is also amenable
to a direct linear stability analysis. This is especially useful for understanding how
the instability of localized stationary states can seed interesting structures, like the
labyrinths of Figures 1 and 3. Stationarity of a solution means that the normal velocity
is zero all along the boundary of the active area. This is equivalent to demanding

(32)

),
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u; = 0 on the boundary. In this case (22) reduces to

/ / A T
h:/Bdewir—x Z {}{ dsn(s)~Ri(s,s)+a—i2}, (33)

where r is on the boundary parametrized by s. We use the notation By to denote
a stationary active region. Given the stationary interface, we can also calculate the
stationary field u everywhere (away from the interface) using (17) as

u(x):/ dx’w(‘x—x’}), (34)
By

which can also be evaluated as a line integral. In order to analyze the stability of
stationary solutions in the original neural field formalism defined by (1) one would
perturb the field variable u and linearize to derive an eigenvalue equation or Evans
function [20]. Here we determine stability using the interface dynamics, generalizing
the approach described in Section 2.

Using the notation™ again to denote perturbed quantities, we consider small per-
turbations to the contour shape and denote the new interface by 3B. The relationship
between the perturbed interface and the perturbed field is, as in one dimension, de-
termined by the condition §u(f) = 0, where

Su(t) = Wlye — thseaty: (35)

The dynamics for  is given by (23) with B replaced by B. The perturbation affects
the normal vector n(s) as well as the displacement vector r(s) — r(s’) that occurs
in (27). Thus to evaluate (35) it is necessary to linearize K| about the unperturbed
contour. In the case of interfaces without curvature the linear contribution to K is
zero. In contrast for curved interfaces an addition theorem for Bessel functions shows
that there is a non-zero contribution. To clarify this statement and show how the
above machinery is used in practice, we now give some explicit examples of localized
solutions and their stability.

4 Localized states: spots

We consider spots to be circular stationary solutions. They are the equivalent of the
bumps known in one spatial dimension [10]. For radially symmetric kernels we ex-
pect stationary circular solutions. Yet in two spatial dimensions they can undergo
azimuthal instabilities, as already found in [6]. In order to obtain circular solutions
we use the standard parametrization of a circle for the contour and write

r(@):R[ljine ] n(@):[_sm@ } 6 €0, 27). (36)

cosf cosf

Hence the right hand side of (33) can be calculated using

2 X
f;B ds'n(s") - Ri(s.s") = aii/(; d@%ﬁ;gﬂﬁ(l —cos6), 37
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Fig. 4 Stationary radial 10
solutions for the Mexican hat

kernel (20) with 8 = 0.5 and R
various values of y. The dotted 8

branches are circular solutions
unstable to uniform changes of
size. Solid branches are stable. 6r
Dashed branches indicate
azimuthal instabilities of
different modes m which
deform the circular solution.

0 0.05 0.1 0.15 h 0.2

where R(0) = R/2(1 — cos ). Using Graf’s formula [24] to perform the integration
in (37) we obtain an implicit equation for the spot radius R in the form

h=2n ZA { Kl(ole)Io(ole)} (38)

i=1

where I, (x) is the modified Bessel function of the first kind of order v. A plot of the
spot radius R as a function of threshold % is shown in Figure 4.

To determine the relationship between a perturbed and unperturbed spot we need
to examine the condition du(¢) = 0. The general solution for # (dropping transients)
can be written as

t
u(x, t):e_’f dse* ¥ (x, 5). (39)

—00

For a circular solution of radius R ¢ is conveniently written as

2 R
V(r) =/ / w(jr=r|)r'dr'ds, r=(0). (40)
0 0

Here 4 may be constructed explicitly (off the boundary), using similar line integral
calculations to those for existence (above), and is given by

N
Y(r)=27RY_ ALi(r), (41)
i=1
where
l.h(otiR)Ko(Olir), r =R,
Lin=1% 42)

1
—— — —Iy(ajr)K1(;R), r <R.
T @K @R)

i
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For perturbations in the radius of the form R=R + 8R(0, t) one finds

0 27 R©'.t—s)
(Su(t):/ dse—ff d@’{f w(|r—r’|)|r:(§(9’t),9)r’dr’
0 0 0
R

- fo w(!r—r’|)lr=<R,e>r’dr’} 43)

00 2
=/ dse—S/ do"{8R(0' — 6,1 — s)Rw(R(0")) + ¥'(R)SR(6,1)}.
0 0

Using the above we see that Su(r) = 0 has solutions of the form SR(8,t) =
cosmBe*n’ where

Am=—14+ Wy, (44)

and

2 N . . .
W,,,:L/ 40 cos(md)w (R®)) = Zi;lA,Km(a,R)Im(a,R). 45)
Y (R)I Jo Yoim1 AiKi (o R) 1 (a; R)

Note that since W, is real A, € R. A mode-m instability will occur if 1, > 0,
which recovers the result in [6] obtained using an Evans function approach. The pos-
sibility of such azimuthal instabilities is indicated on the solution branches shown in
Figure 4 (and we would expect the emergence of solution branches with D, symme-
try from the points marked by m). Interestingly we can see from (44) and (45) that
the mode with m = 1 is neutrally stable. For a perturbation to a circular boundary of
the form SR (0, 1) = €, (¢) cos(mB), €, = ee*’ and € « 1, the perturbation of the
normal velocity v, is

v, = €y cos(mB)(—1 + Wy,). (46)

To calculate the Liapunov function for an unperturbed spot we evaluate (30) using

1 2w 2w
—2/ dQ/ do'R*cos(0 — 0')Ko(ciR(6 — 6"))
o Jo 0

47
472
2
= —2R Ki(aiR)I1(¢; R) = G;.
o
Hence
- 2
Etiap. = 5 > A (Gi — —an2> + hm R?. (48)
o
i=1 i

The zeros of the first derivative of Ep;,p. with respect to R give the stationary circular
solutions, including the trivial case R = 0, as expected.

@ Springer



Journal of Mathematical Neuroscience (2012) 2:9 Page 15 of 27

5 Rings, fronts and stripes

In this section we show how to treat other simple interface shapes, namely rings,
fronts and stripes, and determine their stability. We recover previous results in [6]
for rings (obtained with an Evans function method), whilst calculations for the other
structures are shown to be straight-forward using the interface dynamics approach.

5.1 Rings

Rings can be considered as the difference of two spots, one with radius R; and
the other with radius R, > R;. Introducing ¢ (r, R) =27 R ) ; A;L;(r, R), where
L;(r, R) is given by the right hand side of (41), we have that u(r) = ¥ (r, R2) —
¥ (r, R1). Enforcing the threshold conditions u#(R>) = h = u(R1) gives a pair of equa-
tions that determine (Rj, R»). To establish stability the outer contour is perturbed
exactly as in the previous section: Ry(0) = Ry + ae* cosm#, for some small ampli-
tude a. For the inner contour we similarly write R1(9) = Ry + be*' cosm6. We now
generate §u(t) on each of the two boundaries and equate these to zero to generate
two equations for the pair of unknown amplitudes (a, »). Demanding that this pair of
equations has a non-trivial solution generates an equation for A in the form &, (1) =0
where &, (A) =|(1 + A1), — A, (1)] and

Rv 2
[A’"()”)]uv = TR /0 de cos(m@)w<\/Rﬁ + R2 — 2R, R, cos 9)

R,
lu’'(Ry)I

N
> Ai[Km(@i Ru) In (i R H (R, — R,) (49)
i=1

+ K (i Ry) I (@i Ry)H (Ry — R,0)),

for u,v=1,2.

At a bifurcation point defined by Re A,, = 0 we expect a ring to split into m spots.
In Figure 5 we plot solution branches for ring solutions as a function of & for the
Mexican-hat model defined by (20), and flag the types of instability that can occur.
Of the two solution branches the lower one is unstable with respect to radial perturba-
tions, whereas the upper branch is subject to azimuthal destabilizations. In Figure 6
we show a two-dimensional plot of an unstable ring solution, and the emergent struc-
ture of five bumps seen beyond instability, consistent with the predictions of our linear
stability analysis.

5.2 Fronts

Calculating stationary planar fronts is straightforward, since the normal vector n(s)
is orthogonal to the displacement vector r(s) — r(s’) and the line integral on the right
hand side of (33) is zero. Hence we have the existence condition & = Zi A,'Jr/ozi2
and we note that 4 lies exactly halfway between the two possible steady states of u.
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Fig. 5 Existence and stability 10
of ring solutions with inner
radius R, with the indicated y 1
and B = 0.5 in (20). The lower 8
branch is always unstable

(dotted lines). On the upper
branch the stable ring (solid 6r
lines) can lose stability with
dominant mode = 2 (solid . : : !
circles), 3 (triangles), 4 [ B : ]
(squares), etc. for decreasing h. 7= 3 1= 3'555 1= 4;’ V= 5‘;’

G- -R--- =

@ m - - O

0.12 h 0.16

0:t=0.00, E, =0.41 at=8.25 E,,=0.04 at=15.25, E,,, =-0.64

0.246
0.205
0.164

0.123

0.082

@t=20.75, €, =-1.23 @'t=300.00, £, =-1.54 @t=400.00, £, =-2.01 1 oo
0.

-0.041
-0.082

-0.123

-20 -10 o] 10 20 -20 -10 0 10 20 -20 -10 0 10 20

Fig. 6 Direct numerical simulation of u for a ring solution (R| =7, Ry = 8.629) perturbed with a linear
combination of modes 0, 1,2, ..., 8. For the given parameters § = 0.5, y = 3 and Heaviside threshold
h =0.0549, mode m = 5 is most unstable, cf. Figure 5. See also the video in Additional file 4.

To investigate the properties of a planar traveling front of speed c it is informative to
treat the simple case w(x) = Ko(x)/(27). We then have that u; = —h 4+ 1/2 and

o© > 1 11
— - /2 2) — —
IZI—/O dse s/ dy2 Ko( ¥4+ (cs) )—21 e c>0. (50)

—0o0
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Fig. 7 Spectra for the A
Mexican-hat function (20) with 01t
p=1/2and y =4:fora

stationary front (blue line,

2h=1-1/(yp?)), and 0
varicose (green line) and
sinuous (red line) stripes of
width D =7, respectively.

0.1 k sinuous \\ -

varicose

N

-0.2 - - - -
0 02 04 0.6 08 k 1

Hence using (22), the normal velocity is given by

1—-2h 51)
c=——.
2h

To determine stability we consider a front along y = 0 and write the perturbed front

asy=7y(x,1).
For simplicity we shall focus on a stationary front with ¢ = 0. In this case we may
construct Su(t) as

Su(t)zfoodse_‘Y/ dx'[3(x, 1) = 3(x" —x, 1 —5) Jw(x). (52)
0 —00

The equation u(t) = 0 (for all x) has solutions of the form ¥ = € cos(kx)e’’, where

wk) o
A=—14+—=, w(k)= / dxw(x) cos(kx). (53)
w(0) —00

For a modified Bessel function one has

/oo dxKo(ax) cos(kx) = ﬁ (54)
—o0 a

Hence for the simple example above, the stationary planar front is stable due to
w(k) < w(0). However, for a Mexican-hat function it is possible that w(k) > w(0)
for some band of wave numbers, and we would expect instabilities in this case. Fig-
ure 7 shows A = A(k) for a stationary front with the Mexican-hat function (20), from
which the critical band of wave numbers can easily be read off.

5.3 Stripes

A stripe may be considered as the active area in between two interacting stationary
fronts. For two interfaces that define a stripe to be along y = y; and y = y», then

2y 2 /2
u(x,y>=/ / dy'w( ) +(v)7)- (55)
- yi—
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Fig. 8 Stripe widths D for
different values of y with a
Mexican hat interaction given by
(20) and B =0.5.

sinuous &
varicose

0.20

For a stripe of constant width D, such that y, — y; = D for all x, the existence
condition u(x, y1) = h =u(x, y; + D) takes the simple form

00 D Ai7T o
h:/_oodx/() dyw(y/x2+y2) =>" 2 [1—eP]. (56)

i 1

An example of D = D(h) is shown in Figure 8§ for a Mexican-hat function.
To determine stability we consider perturbations on each of the two stripe bound-
aries and construct du; on each as

00 00 Y1 (x'—x,t—5)=; (x,1) D 3 5
3ui(t)=/ dseﬂ/ dx’{/ —/ }dy’w( )"+ (1)),
0 —00 Vo (x'—x,t—5)=; (x,1) 0

(57)
for i = 1,2. When considering small perturbations there is some ambiguity in ex-
panding (57) depending on the relative size of the perturbations on each boundary.
However, this at most amounts to a sign difference, which means that we may expand
(57) to obtain

8ui(t)=/ dse” / dx’w )+D2)[y2(x —Xx,t— ) ’y\,-(x,t)]
0

:I:/ dse™ S/ dx w( )[yl(x —x,t—s)—j)}(x,t)].
0 —00

(58)

The equations du; = 0 admit solutions of the form y; = y; + ¢; cos(kx)e . For
equal amplitude perturbations, |€1| = |€2| = €, there are two branches of eigenvalues
given by A = Ay, where

Fy(k, D)

xi=—1+m. (59)

Here Fi(k, D) = w(k,0) = w(k, D) and
—D,/oti2+k2

Wk, D) = /OO dxw(vx2 + D?) cos(kx) = ZAi c -
. i ,/ociz + k2

(60)
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@t=0, E,,, =-19.55,-19.33, at=25, E;,, =-26.78,,-19.93; at=50, E;,, =-49.72,,-39.52,
-——
20
A
0
0.283
-20 0.236
20 0.189
0 0.141
B 0.094
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0.047
at=87, E,, =-75.16,,-65.58, at=125, E,, =-102.26,,-93.06,  «t=175, E,,, =137.81,,128.72,

-0.047

-0.097

-0.141

20

-20

(=~ @ —
0 [ T ) @ —
20 [ 2 T ) § —
:%::%:- -0'189
-40 -20 0 20 40

-40 -20 0 20 40 -40 -20 0 20 40

Fig.9 Direct numerical simulation of u for varicose (rows A) and sinuous (rows B) instabilities = cos(ky)
with k = 0.44272 of a stripe of width D = 6.08 for parameters § = 0.5, y = 4.0 and Heaviside threshold
h =0.03. See also the video in Additional file 5.

The branch with A = A corresponds to sinuous perturbations with (€1, €2) = €(1, 1)
and the branch with A = A_ corresponds to varicose perturbations with (€1, €3) =
€(1, —1). Since A4 > A_ then sinuous instabilities dominate over varicose. Note that
as D — oo we recover the existence and stability results for a stationary front as
expected. Examples of sinuous and varicose instabilities (as predicted from our anal-
ysis) are shown in Figure 9.

6 Neural field models with linear adaptation

In real cortical tissues there are an abundance of metabolic processes whose com-
bined effect is to modulate neuronal response. It is convenient to think of these pro-
cesses in terms of local feedback mechanisms that modulate synaptic currents. For
example, it is known that a model of synaptic depression can destabilize a spot in
favor of a traveling pulse [25]. Here we consider a simple linear model of adapta-
tion that is known to lead to instabilities of localized structures [26]. In this case the
original neural field model is modified according to

1
—utz—u+1p—ga, ar=u—a, (61)
o

with g > 0. Here  is the second term on the right hand side of (3) and (1) in one and
two dimensions, respectively. The linearity of the equations of motion means that we
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may obtain the trajectory for (u, a) in closed form as

t t
u(~,t)=/ dsn(t — )Y (-, s), a(-,t):/ dse Ou(.,s), (62)

where

N =~ {A=2ape™ =1 =2r)e™ ). (63)

s

Here

Clt+at/0+a)?—da(l+g)
= 5 .
As an example let us compute the speed (¢ > 0) and stability of a front in the one-

dimensional model discussed in Section 2 with the inclusion of a linear adaptation
current. In this case we have that

pu (64)

ut|x=x0(t) =ch/o, (65)

1 o
ux|x:x0(t) = _; / dsn(s/c)w(s)
° (66)
=——[( = 2)w —(1=2)w(r_ .
G [ = A9T6 /0 = (=TG- 0]
Note that to calculate u; we have used the result that 7 = u(ct,t) = fooo dsn(s) x
/ Cio dyw(y). Hence, from (5), the speed is determined implicitly by
o c/o+1

h=— , 67)
2 (c/o + Ap)(c/o + )

which may be rearranged to give

A POV o “241+ ! (68)
o 2| TYT 7 2 \NTET)

The eigenvalue equation for stability can also be calculated, generalizing the anal-
ysis of Section 2, as £(A) =1 — H(A)/H(0), where

HO) = ﬁ [A=ADB(+2r1)/c) — A= A)B(A+2)/c)). (69)

On the branch with ¢ = 0 where 2A(1 + g) = 1, defining a stationary front, we find
that

O Ay + A —ApAl)
Ot A+ A0)

which has zeros when A =0 and A =k k_ — (ky + k_) = ag — 1. Hence, the sta-
tionary front changes from stable to unstable as « is increased through o, = 1/g.

EX)=x

, (70)
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In two-dimensions it is straight forward to construct a stationary spot of radius R.
This radius is determined by (38) under the replacement &7 — A (1 + g), so that

N
h(l+g)=2nRZAiKo(a,~R)Il(a,~R)/ai = F(R). (71)

i=1

Here v may be constructed explicitly off the boundary, and is given by Equation (41),
so that u(r) = ¥ (r)/(1 + g). A saddle-node bifurcation of stationary spots occurs
at R = R, where F'(R.) = 0. Hence, in the (h, g) plane stationary solutions only
exist for h < F(R.)/(1 + g). Under variation in o we expect the emergence of a
drifting spot. Beyond a drift instability, we expect to be able to find traveling spots
that move in some direction ¢ with constant speed ¢ = |c|. These can be constructed
as stationary solutions in a co-moving frame £ = x + ¢¢, and satisfy

1
—¢-Veu=—u+1vy —ga, ¢-Vea=u—a. (72)
o

We may write the velocity in terms of local co-ordinates on the moving interface
as ¢ = ¢;n + c;t, where ¢, (s) = ¢ - n(s) is the normal velocity and ¢;(s) = ¢ - t(s)
the tangential velocity at a point on the interface. Taking the cross product of ¢ and
t (and using n x t = 1) shows that ¢, = ¢ x t. Hence, the condition for stationary
propagation, with ¢ =T, is

dr(s)
ds

d
n(s) - r(s) =c¢ x I(;(SS) , u(€)lg=r = h. (73)

In general this is a hard equation to solve in closed form. However, to obtain an
estimate of the speed and shape of a spot beyond a point of instability it is enough
to consider a weak distortion of a traveling circular wave [27]. Choosing ¢ = ¢(1, 0)
and writing £ = (&1, &), and assuming that i is rotationally symmetric means that
we may construct a solution in the form

1 ré
wrer = [ aml@ -/ (s +8). (74)

We note that the threshold condition u = & for a circular spot (& 12 + 522 = R?) can
only strictly be met for the case ¢ = 0, since the right hand side of (74) depends on the
plane polar angle through & = R cos 6. For this case we may construct the equation
Su(t) = 0 to determine the eigenvalues X, that occur in perturbations of the form
SR8, 1) = ee™’ cos(mh) as solutions to &, (1) = 0, where

1
Emd)==———( Wi, 75
) T (I+g (75)

where W), is given by (44) and the Laplace transform of 7 is easily calculated as

B a(l+2)
et Ap AL

7(x) (76)
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Fig. 10 Breathing instability from direct numerical simulation with parameters o« =5,  =0.5, y =4,
coupling strength g = 0.5 and Heaviside threshold 7 = 0.12/(1 + g). Initial data was constructed from
a stationary spot solution by modifying the adaptation variable to a top-hat shape. Top and bottom rows:
snapshots of activation u and adaptation a, respectively, at times indicated by orange lines in the middle
row. Middle row: above threshold radii as function of time. See also the video in Additional file 6.

The eigenvalues for m = 1 are determined by 77(1) = 1/(1 + g), which has two solu-
tions: A = 0 and A = @g — 1. Hence this mode becomes unstable as g increase through
1/w. It is also possible that a breathing instability may arise for the mode with m = 0.
Note that another way to generate breathing solutions is to include localized inputs
[3, 4], breaking the homogeneous structure of the network. Substitution of A = iw
into (75) gives the condition for this instability as:

1+
0=—7 """ 82

Ca(l+g)’ ’ 70

Q|+~

with emergent frequency w = /ag — 1. For m > 2 splitting instabilities can be de-
termined by setting A = 0 in (75) to give the conditions W,, = 1. An example of a
breather arising as an instability of a spot is shown in Figure 10 (and numerical simu-
lations confirm the predicted value of the emergent frequency around the bifurcation
point).

Anticipating a small ¢ discussion we Laplace transform (74) in the &; variable to
obtain

T, &) = . —|1-g (1 + o 1+ o [(g — Der — a(er)? + (ch)* + - .])J(x, &),
(78)
which we then inverse transform to obtain
1 1 d
u@u&)=1+g{b+aa+gJ}wg—D55
(79)

—ac28—2+c3£+-~-]}1ﬁ(|§|)
& 08 .
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At the point where g = 1/, the shape of the spot deviates from circular with
an amplitude that depends on quadratic and higher powers of c¢. Thus not only is
there a breathing bifurcation at g = 1/«, but also a drifting instability to a traveling
spot whose shape, determined from (79) by u(r) = h, can be written in the form
r(0) = R(6)(cos b, sinf) with

RO)=R+ > c"aycosmb. (80)

m>2

Here R is determined by (71). A further weakly nonlinear analysis to understand the
competition between drifting and breathing at g = 1/« is beyond the scope of this
article.

For g > 1/ and dropping terms of O(c?) in (79) we see that there are solutions
to u(r) = h of the form R(0) = R +ajccosd, where a; = (1 —ag)/(a(1 +g)%) <O.
The amplitudes of higher order modes may be constructed in a similar fashion, i.e.,
by balancing terms at each order in ¢ in u(r) = h using (79) and (80). However, it
is not our intention to pursue these lengthy calculations here. Rather to give a feel
of the shape of a traveling spot we plot the level set where u (&1, &) = h using (79)
in Figure 11D including terms up to ¢3. This nicely illustrates that spots contract
in the direction of propagation and widen in the orthogonal direction, and provides
a theoretical explanation for the shape of traveling spots recently reported in [28].
With the aid of direct numerical simulations we have also explored the scattering
properties of traveling spots. In common with previous numerical studies of planar
neural fields with some form of adaptation, we find that such structures can behave
as quasi-particles in the sense that they can scatter like dissipative solitons [29]. An
example of such scattering is shown in Figure 11. Here we see a repulsive interaction
which repels the spots away from each other if they approach too closely.

7 Discussion

In this article we have formulated an interface dynamics for planar neural fields with
a Heaviside firing rate. This has allowed us to (i) develop an economical computa-
tional framework for the evolution of spatiotemporal patterns, and (ii) perform linear
stability analyses of localized structures. For simplicity we have focused on single
population models. However, the extension to population models that treat the dy-
namics of both excitatory and inhibitory populations is straightforward. Perhaps a
more interesting extension is to consider neural field models that incorporate feature
selectivity such as that observed in visual cortex for orientation [30], spatial frequency
[31] and texture [32]. Denoting this feature label by x then all of these models are
expressed in terms of some non-local integro-differential equation for u(r, x,t). We
note that the notion of an interface is still well defined and that the level set condition
u(r, x,t) = h gives a constraint between local geometrical data and features. As an
alternative to simulating the neural field models an interface approach (incorporating
feature space) may be more useful for understanding how local data can be integrated
into global geometrical structures, as advocated in the neurogeometry framework of
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A activity (u) B interface (u) C adaptation (a)
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' t=0
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-15

Fig. 11 Collision of two pulses from direct numerical simulation with parameters as in Figure 10.
Columns A and C show u and a, respectively. Column B shows the u = & interfaces, velocities (arrows
to scale but enlarged by a factor of four), and dotted centerlines as visual guides. See also the video in
Additional file 7. Column D predicts to 0(c?) the shape of a traveling pulse for different c.

Petitot [33] (say for understanding models of contour completion in models of pri-
mary visual cortex where the feature space is orientation). The extension of this work
to treat sigmoidal firing rates remains an open challenge. However, recent techniques
for dealing with a certain class of firing rate functions in one spatial dimension, which
includes smooth firing rate functions connecting zero to one, are likely to be useful in
this regard [34]. We have included an adaptive current in the standard Amari model
here, but it would be informative to develop interface treatments for other forms of
modulation, e.g., arising from threshold accommodation [35] or synaptic depression
[5], as well as the inclusion of axonal delays [36]. These models can readily sup-
port spiral wave activity, and it would be interesting to see if an interface description,
possibly adapting techniques by Hagberg and Meron [37], could shed light on their
properties. Another possible extension of the work in this article, motivated by our nu-
merical results for scattering spots, is to develop an interface theory of quasi-particle
interactions along the lines for reaction-diffusion models described in [38, 39], using
ideas developed by Bressloff [40] and Venkov [41] for weakly interacting systems in
one spatial dimension. All of the above are topics of ongoing research and will be
reported upon elsewhere.
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Appendix: Numerical schemes
A.1 Fourier technique for neural field evolution

Because of its non-local character, the model described by (1), or its extension
(61), is challenging to solve with conventional numerical methods. However, ex-
ploiting the convolution structure of (1) allows one to write the Fourier transform
of fR2 dx'w(|x — x'|) f (X, r) as a product. Here f(x,7) = H(u(x, ) — h) and can be
taken either as a Heaviside or a more general sigmoidal form. Introducing a spec-
tral wave-vector k then this product is simply w(|k|) f(k), where functions with
arguments k denote two-dimensional spatial Fourier transforms. We may evaluate
w(lk]|) f (k) directly, at every time step, using fast Fourier transforms (FFTs). Note
that w(|k|) can be pre-computed, by FFT or here even analytically, so that the proce-
dure iterated over time amounts to computing f (k) by FFT, followed by a (complex)
multiplication with w(|k|), and finally an inverse FFT to obtain the result of the inte-
gral. We wish to employ a parallel compute cluster for rapid computation over large
grids, and hence use the free software package FFTW 3.3 [42], which includes a
parallel MPI-C version. Note that the use of Fourier methods implies that the dis-
cretization grid has periodic boundaries, or in other words, the solution is effectively
computed on a torus. We use a grid spacing of about 0.03 or better in our computa-
tions here.

In order to compute the time evolution, we use DOPRIS [43], a well-known imple-
mentation of an explicit Dormand-Prince (Runge-Kutta) method of order 5(4) with
step size control and dense output of the order 4. A version in C due to J. Colinge is
available on the web thanks to E. Hairer. However, in our case we perform parallel
computations, so we have adapted this code accordingly using MPI-C. In particu-
lar, we now consider the maximum error across all compute nodes and all variables,
rather than the mean error over local variables, and communicate the resulting time
step adaptation over the cluster to achieve a unified evolution of the entire distributed
grid. Numerical tolerances are set to 10~ (|y;| + 1) where y; represents all variables,
i.e., u and potentially a at all grid points.

This numerical method is robust against effects of the underlying grid. This is
due to the employed Fourier method, which performs the spatial convolution as a
multiplication in Fourier space. The discrete Fourier transform used to transfer this
calculation to Fourier space calculates a trigonometric interpolation polynomial, and
the influence of the grid is effectively smoothed by implicit interpolation.

Computing an evolution as shown in Additional File 1 takes several hours on the
32 to 64 Infiniband-connected compute nodes we have typically employed, and yields
many gigabytes of data. We note that computation with a sigmoidal firing rate instead
of the Heaviside one is over an order of magnitude faster, reflecting the numerical
difficulty of dealing with sharp edges.

A.2 Interface dynamics

Equations (22) and (28) can be used to develop a numerical scheme. The contour
a8 is discretized into a set of points, and the normal vectors and the displacement
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vectors are found by computing the orientation and distance between points. Hence
the computation of the contour integrals in (28) is straight-forward and yields the
normal velocity, cf. (22), which is used to displace the points of the contour in the
normal direction at every time step. We employed a simple Euler method to calculate
the dynamics of the contour. As the contour grows/shrinks, additional points have to
be created/eliminated along the contour.

This method does not provide any means to deal with the splitting or emergence
of contours. It is faster than the Fourier technique (see Section A.1 in the Appendix)
for small contours, yet the time to compute the normal velocity is proportional to N2
(N being the number of points discretizing the contour), as opposed to M+/M for the
Fourier technique (where M is the number of grid points). Hence it becomes slower
for larger contours due to the absence of suitable spectral methods to compute the
line integrals. The main advantage of this method is the fact that no underlying grid
has to be deployed across the specified domain.
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