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Abstract Transient dynamics is pervasive in the human brain and poses challeng-
ing problems both in mathematical tractability and clinical observability. We investi-
gate statistical properties of transient cortical wave patterns with characteristic forms
(shape, size, duration) in a canonical reaction-diffusion model with mean field inhi-
bition. The patterns are formed by ghost behavior near a saddle-node bifurcation in
which a stable traveling wave (node) collides with its critical nucleation mass (sad-
dle). Similar patterns have been observed with fMRI in migraine. Our results support
the controversial idea that waves of cortical spreading depression (SD) have a causal
relationship with the headache phase in migraine and, therefore, occur not only in
migraine with aura (MA), but also in migraine without aura (MO), i.e., in the two
major migraine subtypes. We suggest a congruence between the prevalence of MO
and MA with the statistical properties of the traveling waves’ forms according to
which two predictions follow: (i) the activation of nociceptive mechanisms relevant
for headache is dependent upon a sufficiently large instantaneous affected cortical
area; and (ii) the incidence of MA is reflected in the distance to the saddle-node bi-
furcation. We also observed that the maximal instantaneous affected cortical area is
anticorrelated to both SD duration and total affected cortical area, which can explain
why the headache is less severe in MA than in MO. Furthermore, the contested notion
of MO attacks with silent aura is resolved. We briefly discuss model-based control
and means by which neuromodulation techniques may affect pathways of pain for-
mation.

Electronic supplementary material The online version of this article (doi:10.1186/2190-8567-3-7)
contains supplementary material.

M.A. Dahlem (�)
Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
e-mail: dahlem@physik.tu-berlin.de

T.M. Isele
Institute of Theoretical Physics, Technische Universität Berlin, Berlin, Germany

http://dx.doi.org/10.1186/2190-8567-3-7
http://creativecommons.org/licenses/by/2.0
http://dx.doi.org/10.1186/2190-8567-3-7
mailto:dahlem@physik.tu-berlin.de


Page 2 of 28 M.A. Dahlem, T.M. Isele

1 Introduction

The undoubtedly most fundamental example of transient dynamics is the phe-
nomenon of excitability, that is, all-or-none behavior. Shortly after transient response
properties of excitable membranes were classified into two classes [1], it was also
explained in a detailed mathematical model how excitability emerges from electro-
physiological properties of such membranes in the ground-breaking work by Hodgkin
and Huxley [2]. Two features are central and are by no means exclusive to biologi-
cal membranes but shared by all excitable elements. Firstly, the inevitable threshold
in any all-or-none behavior requires nonlinear dynamics. Secondly, the transient re-
sponse of the system to a super-threshold stimulation eventually has to lead back to
a globally stable steady state after some large phase space excursion. This indicates
global dynamics, that is, dynamics involving not only fixed points and their local bi-
furcations but more complex invariant sets, for instance periodic orbits that collide
with fixed points. An excitable element is in some sense the washed-up brother of the
relaxation oscillator: When the threshold vanishes, a single excitable element usu-
ally becomes a simpler behaved—and much longer known—relaxation oscillator [3].
Vice versa, when a saddle-node disrupts a limit cycle and introduces a threshold, the
sustained oscillations are reduced to long transient responses after perturbations, that
is, the dynamics becomes excitable. In this study, we utilize a similar scenario to dis-
rupt sustained traveling wave solutions in a spatially extended medium such that only
transient waves occur. We investigated statistical properties of these transient waves
to gain a dynamical understanding of spontaneous episodes in migraine.

We will briefly introduce concepts of excitable elements and excitable media in
two-variable reaction-diffusion systems. While we also introduce migraine, the view
of migraine as a dynamical disease is more elaborated in the discussion in Sect. 5.
A particular focus is set on the idea to introduce an global inhibitory feedback that
is also studied in various other systems outside the neurosciences and also in neural
field models. Section 2 sets the stage for our canonical model introduced in Sect. 3
from were we proceed to our results on the statistical properties of transient waves in
Sect. 4.

2 Motivation of a Macroscopic Model for Migraine Aura

2.1 Spatiotemporal Behavior of Excitable Systems

An excitable system can either be only time-dependent, which will be called in this
study an “excitable element,” or excitable systems can be time- and space-dependent,
which we call “excitable medium.” These systems are described by ordinary differen-
tial and by partial (integro)differential equations, respectively. The episodic migraine
attacks, which we model in this study as transient responses of the cortex described
by an excitable medium, remind us more of the transient behavior of excitable el-
ements than of the persistent excited state obtained in excitable media. Therefore,
we review the general spatiotemporal behavior of excitable elements and spatially
extended excitable media in this section.
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Excitability was first described for neurons in the original conductance-based
membrane model by Hodgkin and Huxley [2]. This and many more refined versions
of neural excitability to date contain four or more dynamic variables, but fortunately
this is not essential for excitable systems. In fact, it turned out for excitable elements
that the main two classes of excitability are actually amenable to direct analysis in
a two-dimensional phase plane by identifying in the conductance-based model fast
and slow processes and grouping these into dynamics of just two lump variables [4,
5]. Using such a geometrical approach and partly analytical theory, the original em-
pirical classification of excitability was further pursued with bifurcation analysis [6],
explaining class I by identifying its threshold as a stable manifold of a saddle point
on an invariant cycle and the threshold of class II as a trajectory from which nearby
trajectories diverge sharply (called canard trajectory). Extensions to these principal
mechanisms involve codimension 2 bifurcations and lead also to bursting in three-
variable models, which have been investigated in great detail [7]. However, the two-
variable models of a fast activator and slow inhibitor and their phase portraits of class
I and II became qualitative prototypes for excitable elements in various biological
[8], chemical [9], and physical contexts [10].

Distinct from excitable elements and their classification are spatially extended ex-
citable media. Already the original work by Hodgkin and Huxley [2] described spa-
tially extended, tube-like membranes (axons) and introduced the cable equation as
a parabolic partial differential equation, which is in the same class as the diffusion
equation. In this reaction-diffusion framework, an excitable medium is the continuum
limit of a locally coupled chain of excitable elements. Even in reaction-diffusion
media with infinite-dimensional phase space, we can again apply geometrical ap-
proaches, simply because excitable media are not defined by—in contrast to excitable
elements—transient dynamics but traveling wave solutions. The quiescent state is the
nonexcited homogeneous steady state. And like the quiescent state, excited states of
a medium are usually stationary states in some appropriate comoving frame, for ex-
ample, along the x-direction with ξ = x − ct . Furthermore, the threshold is related
to an unstable stationary state, the critical nucleation solution, usually in another co-
moving frame including c = 0. The existence of the nucleation solution is a simple
consequence of multistability; see Fig. 1a, but note that even monostable excitable
elements have similar unstable stationary states in class I.

In this study, we propose a spatially extended model for wave-like patterns with a
characteristic shape, size, and duration. These patterns are (spatially confined) tran-
sient responses to confined, spatially structured perturbations of the globally sta-
ble homogeneous steady state. These transient responses—after propagating for a
while—will always eventually approach the homogeneous state. This leads to a new
type of local excitability in a spatially extended medium involving transient travel-
ing wave solutions as invariant sets. Both the model and the initial conditions are
motivated by the pathophysiology of migraine and clinical observations [11–13].

2.2 Cortical Activity Pattern and Neurovascular Coupling During Migraine

Migraine is characterized by recurrent episodes of head pain, often throbbing and
unilateral. In migraine without aura (MO), headache attacks are usually only associ-



Page 4 of 28 M.A. Dahlem, T.M. Isele

Fig. 1 Schematic sketch of the orbit structure in phase space. a Excitable media with activator–inhibitor
kinetics; the activator diffuses and the inhibitor is immobilized. These systems are multistable, the quies-
cent state is the homogeneous steady state (green dot), and at least one traveling wave solution must exit
as the excited state (red dot). The basins of attraction between these states are separated by the stable man-
ifold (blue) of a critical nucleation solution (white dot). Such solutions have only one unstable direction;
the corresponding unstable manifold consists of two heteroclinic connections to the stable solutions (green
and red dots). b Excitable media with one activator and two inhibitors, one of which is immobilized, the
other fast diffusing or realized by mean field inhibition. The orbit structure in phase space is similar to
a but the traveling wave solution is now localized similar to the critical nucleation solution to which it
is connected. c Medium that lost spatial excitability, that is, traveling wave solutions do not exist. Note
that the traveling wave solution disappears by a collision of the traveling wave solution with its nucleation
solution, that is, in a saddle-node bifurcation. Such systems show ghost behavior, which influences the
dynamics in form of local excitability (see text)

ated with nausea, vomiting, and sensitivity to light, sound, and even movement [14].
Migraine with aura (MA) involve in addition, but also rarely exclusively, neurologic
symptoms (aura) that are caused by waves of cortical spreading depression [12, 15–
17].

Spreading depression (SD) is a massive but temporary perturbation of ion home-
ostasis due to seizure-like discharges of neurons. The ion concentrations are usu-
ally kept with a narrow range of acceptable limits, while during SD ion concentra-
tions can change by over one order of magnitude to a nearly complete depletion of
transmembrane chemical gradients. The ignition of this perturbed ionic balance can
spread by diffusion of ions in the extracellular space. Essentially, SD is a slow (about
3 mm/min= 50 μm/sec) reaction-diffusion wave in the approximate 2D cortical sheet
of gray matter.

The cortical tissue SD traverses is functionally impaired causing the neurological
migraine aura symptoms, like visual hallucinations [11]. Whether SD is also a key to
the subsequent headache phase is an open question, in particular, in cases of migraine
without aura (MO). If SD occurs in MO, the massive ionic imbalance must remain
clinically silent [18, 19] or—by definition of diagnostic criteria—neurological symp-
toms must last less than 5 min.

The aura is usually, though not always [20], before the headache phase and last
usually less than one hour [21]. The transient nature of SD (and thus the migraine
aura) poses challenging problems in clinical observability. Objective measures by
means of noninvasive imaging are in particular difficult to access when clinical symp-
toms do not indicate the aura phase, i.e., if SD stays silent. Attacks observed with
noninvasive imaging are usually triggered, which also could cause a trigger-specific
bias. Only one well-documented case of a spontaneous migraine headache supports
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the still contested notion of “silent aura” [22]: Blood-flow changes where observed
that were most likely the result of SD.

SD in the cortex is accompanied by a pronounced increased regional cerebral
blood flow for about 2 min and a long lasting (∼2 h) decrease [23]. This naturally
raises the question of the physiological relevance of these blood-flow changes. Are
they just an epiphenomenon that can be used to indirectly measure SD or do these
changes participate in the pattern forming mechanism of SD? We suggest that the
initial increase in cerebral blood flow for about 2 min is effectively an inhibitory
feedback mechanism for SD. The hyperemic phase (increased blood flow) engulfs
large regions of the human cortex [16], while, as we further investigate in this study,
the massive ionic imbalance directly due to SD is much more limited in extent [12,
13]. This suggests that the inhibitory feedback by neurovascular coupling is a global
control mechanism of the neural reaction-diffusion system.

The pattern forming interactions are described in the next section from a mathe-
matical perspective. We end this section by providing some background of the phys-
iological bases of the spatial mismatch between the more globally increased blood
flow (hypermia) and more spatially confined ionic imbalance during SD.

The neural activity and subsequent changes in blood flow are closely coupled
called neurovascular coupling. Not only the magnitude but also the spatial loca-
tion of blood flow changes reflect neural activity, a fact that is used in noninvasive
brain imaging techniques such as functional magnetic resonance imaging (fMRI).
SD, however, is a pathological state in which this coupling is to some degree im-
paired, in particular evoking long lasting decreases phase (oligemia). To measure
the spatial confinement of SD in human cortex during a migraine attack with fMRI,
not merely hypermia, but also several other characteristic neurovascular events were
used that resemble SD, among others [12]: the initial hyperemia with a character-
istic duration followed by oligemia with recovery to baseline, the characteristic ve-
locity of these events, and a concurrent recovery of stimulus driven activation (see
Fig. 2).

While the pathological activity of neurons during SD is mainly characterized by a
depressed state with literally no activity—hence the name, in the tissue ahead of SD,
high-frequency activity and increased synaptic noise has been recorded [24]. The tis-
sue surrounding the current location of SD is functionally connected through lateral
neural networks with neurons that undergo seizure-like discharging at the rising front
of SD. This provides an electrical signal transmission pathway several orders faster
than SD, that is, in a first approximation an instantaneous connection. As firstly sug-
gested by Wilkinson [25], the feed-forward and feedback cortical circuitry can also
explain a more global hypermia by neural and synaptic activation in adjacent cortical
areas, which might be mistaken as the area SD traverses, when only hypermia is used
to estimate the spatial extend of SD in human cortex during a migraine attack with
noninvasive imaging.

Increased neural activity and the resulting hypermia in an extended area surround-
ing SD can make the tissue that is yet to be recruited into the depressed SD state less
susceptible to it and possible completely protect it from SD. Therefore, this mech-
anism could provide a neuroprotective mechanism that we mimic by the inhibitory
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Fig. 2 Source localization of the magnetic resonance (MR) data signal of SD (from [12]). Color code:
time from onset, locations showing the first MR signals of SD are coded in red, later times are coded by
green and blue (see color scale to the right). Signals from the first 975 seconds were not recorded because
the migraine attack was triggered outside the MR imaging facility. a The data on folded right posterior
pole hemispheric cortex; b the same data on inflated cortical surface; c and d the same data shown on the
entire hemisphere from posterior-medial view (oblique forward facing), folded and inflated, respectively.
As described in the original study [12], MR data were not acquired from the extreme posterior tip of the
occipital pole (rearmost portion). e A fully flattened view of the cortical surface. The aura-related changes
are localized wave segments. Note that in the flattened cortex was cut along the steep sulcus calcarine to
avoid large area distortions induced by the flattening process. The colored border to the left is the cut edge
that should be considered being connected such that the color match up as seen in b and d. Copyright
(2001) National Academy of Sciences, USA [12]

mean field feedback. It is reasonable to assume that the larger SD spreads out, the
large the increase in neural activity in the surrounding tissue and subsequent hyper-
mia with neuroprotective effect. The coupling between increased neural activity and
subsequent changes in cerebral blood flow has a significant time delay in the order of
seconds, which we ignore for the sake of simplicity in our model.

3 Design of a Macroscopic Model for Migraine Aura

In this study, we are interested not only in the pattern forming mechanism of tran-
sient localized traveling waves, but also in the generic spatio-temporal properties of
such waves. To this end, we design a canonical reaction-diffusion model (Sect. 3.1)
augmented by an inhibitory mean-field feedback control (Sect. 3.2). The use of this
model is motivated as described in the previous section. The phenomena our attention
will be focused on in the next section are nucleaction, growth, and subsequent shrink-
ing of the transient wave segments. To study statistical properties of these events,
we must consider the set on initial conditions (see Sect. 3.3) over which statisti-
cal analysis are performed (Sect. 4), because these are features of transient dynam-
ics.
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3.1 Model Equations

The canonical model for excitable media are the well-known FitzHugh–Nagumo
equations [26] with diffusion in the activator variable:

ε
∂u

∂t
= u − 1

3
u3 − v + ∇2u,

∂v

∂t
= u + β.

(1)

The parameter ε separates the timescales of the dynamics of the activator u and the
inhibitor v, and ε is taken to be small. In the present work, we use a value of ε = 0.04.
The parameter β is a threshold value which determines from which activator level
on the inhibitor concentration is rising. The local dynamics of Eq. (1) (i.e., without
the diffusion term) is oscillatory for |β| < 1 and excitable for |β| > 1. At |β| = 1,
the local dynamics undergo a supercritical Hopf-bifurcation. We choose a value of
β = 1.1 throughout this work. To integrate Eq. (1), we used a simulation based on
spectral methods [27] and adaptive timestepping.

We define the (instantaneous) wave size as the area with activator level u over a
certain threshold u0:

S(t) :=
∫ ∫

H
(
u(x, y, t) − u0

)
dx dy, (2)

where H is the Heaviside function and we chose u0 = 0.
Equations (1) are a paradigmatic model of an excitable medium even beyond neu-

roscience [28]. They possess a stable homogeneous solution as well as stable excited
states (pulses, spirals, or double spirals) cf. [29, 30]. The boundary separating the
basins of attraction of these types of solution is given by the stable manifold of the
so-called “nucleation-solutions” (NS) whose stability is of saddle-type with one un-
stable direction; see Fig. 1. These nucleation-solutions are localized areas of excita-
tion, which are traveling at uniform speed without changing shape. The size of these
solutions, in the sense of Eq. (2), depends on the parameters β and ε. In Fig. 3, the
size S of these nucleation solutions is plotted against β . This solution branch is also
called ∂R and the parameter value for which it diverges is called ∂R∞ or the “ro-
tor boundary” (see next section). Of course, one could also use a measure different
from S for visualizing the branch ∂R, e.g., the propagation speed of the nucleation
solution.

To obtain solutions lying on ∂R, we used a pseudo-continuation procedure, which
is described below.

Making the parameter β dependent on the wave size S adds a mean field control
to the system.

β = β(t) = β0 + K · S(t), (3)

where K and β0 are control parameters.
This equation defines a straight line in (β − S)-space, we call the control-line. If

the control line intersects ∂R (in (β −S)-space), the point of intersection with higher
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Fig. 3 Left: The S − β plane with nucleation solution NS, propagation boundary ∂P , rotor boundary
∂R∞ , and control lines for the used values of β0. Right: The S − β0 plane with the same quantities

S is stabilized, cf. [31]. This is visualized in a movie; see Supplementary Material
Video 1. This can be understood intuitively, as the stable manifold of a point on ∂R

separates the attraction basin of the homogeneous solution for which S shrinks until
S = 0 and the attraction basin of rotating spirals with growing S → ∞. Imagine the
system to be on ∂R, that is, showing a nucleation solution as discussed above. If the
current state is perturbed to have slightly smaller S, in the uncontrolled system we
would have entered the attraction basin of the homogeneous solution (cf. Fig. 3). The
control however forces the system to stay on the line defined by Eq. (3). If this line
intersects ∂R, a slightly smaller S makes the control adjust the value of β to smaller
values, taking the system into the attraction basin of the spiral waves, where S will
grow. The same process happens with different signs if the current state is perturbed
to have slightly smaller S thus in effect stabilizing the (one unstable direction of) the
nucleation solution.

The aim of the present work is to shed light on the transient behavior, occurring
when the control line, Eq. (3) is close to ∂R but does not intersect it as the ones
depicted in Fig. 3.

To account for the imprecision in ∂R of the simulation and the exact ∂R, we mea-
sured the ∂R in our simulation using a pseudo-continuation procedure. For this, we
set the control such that it intersects ∂R, and thus stabilize an otherwise unstable solu-
tion on it. Letting the simulation run until the system has stopped fluctuating, saving
the (β,S)-pair, changing the control slightly and doing things over yields points of
∂R in our system. From this measured ∂R and the propagation boundary ∂P , in-
ferred from continuation in 1D, we chose 3 suitable control lines which were used
for simulations in this work:

K = 0.003,

β0 ∈ {1.32,1.33,1.34}. (4)

With this procedure, it is not possible to obtain (β − S)-pairs below a certain
value of S. The reason is that the system (with mean-field control) is undergoing
a saddle-node bifurcation as visualized in the right of Fig. 3. For the purpose of
visualization for this saddle-node bifurcation, we fitted the locus of the measured
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branch of nucleation solutions (in β − S space) to a function of the form β = a +
b

cS+S2 (where a, b, and c are the fit parameters). We have not only used this function
for visualizing the saddle-node bifurcation, but we also deduced an approximate β

value for the rotor boundary ∂R∞ by letting S → ∞.

3.2 Effect of Mean Field Inhibitory Feedback Control

The diversity of the behavior of traveling waves in two spatial dimensions was stud-
ied in canonical models depending on the two generic parameters β and ε in Eq. (1),
which determine the parameter plane of excitability without mean field inhibitory
feedback [32]. In those media, patterns of discontinuous (open ends) and spiral-
shaped waves are used to probe excitability. These spiral patterns are closely related
to the discontinuous, localized transient waves we propose in our model. In fact, the
effect of mean field inhibitory feedback control can best be understood, if we com-
pare these patterns in models with and without this control.

In the design of our model, we make use of the fact that in a model without mean
field inhibitory feedback control spiral waves do not curl-in anymore, but become
half plane waves at a low critical excitability, called the rotor boundary ∂R∞ [33,
34]. Beyond the rotor boundary lies the subexcitable regime in which discontinuous
waves start to retract at their open ends and any discontinuous wave is transient and
will eventually disappear (see Videos 2 and 3). In other words, spirals do not exist
beyond ∂R∞. The boundary ∂R∞ marks a saddle-node bifurcation at which discon-
tinuous spiral waves collide with their corresponding nucleation solution. This leads
to the key idea of our model, namely to introduce mean field inhibitory feedback con-
trol. A linear mean field feedback control moves this saddle-node bifurcation toward
distinct localized wave segments with a characteristic form (shape, size) and behind
this bifurcation these waves become transient objects; see Fig. 1, Fig. 3, and Video 4.

Before we further consider the effect of mean field inhibitory feedback control,
we have to describe the behavior of continuous waves (closed wave fronts with-
out open ends) when excitability is decreased, e.g., by increasing β , without mean
field inhibitory feedback control. This will be important if we want to understand
the fate of any solution, discontinuous or not, under mean field feedback control.
Unbroken plane waves propagate persistently even if the parameters are chosen in
the subexcitable regime until β reaches a value called the propagation boundary ∂P .
At this boundary, the medium’s excitability becomes too weak for continuous plane
waves to propagate persistently. The boundary ∂P in parameter space marks also a
saddle-node bifurcation at which a planar traveling wave solution collides with its
corresponding nucleation solution. Note, that the planar wave is essentially a pulse
solution in 1D and the nucleation solution in 1D is called the slow wave [35].

In Fig. 3(left), both the rotor boundary ∂R∞ and the propagation boundary ∂P are
shown in a bifurcation diagram for the excitable medium described by Eqs. (1). We
chose β as the bifurcation parameter and follow (see previous section) the branch ∂R

of the unstable nucleation solution (NS) whose stable manifold separates the basins
of attraction of the homogeneous state and a spiral wave (with two counter-rotating
open ends). The unstable manifold of NS consists of the two heteroclinic connections,
one to the stable homogeneous state and the other to the traveling wave solution (see
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Fig. 1). The order parameter on the ordinate in Fig. 3 is the surface area S inside the
isoclines at u = u0 = 0 of the traveling wave solutions; see Eq. (2).

The mean field control that we introduce by Eqs. (2)–(3) establishes a linear feed-
back signal of the wave size S to the threshold β . With this linear relation, we intro-
duce two new parameters, the coupling constant K and β0, the threshold parameter
for the medium without an excited state (S = 0). Note that the parameter β0 can be
also seen as the sum of two threshold values, the former β in Eq. (1) and an offset
coming from the new control scheme. While the introduction of the control intro-
duces two new parameters β0 and K , at the same time β becomes dependent upon
the control, so that we have a total of three free parameters.

We chose β0 as the new bifurcation parameter in the bifurcation diagram for the
completed reaction-diffusion model with mean field coupling described by Eqs. (1)–
(3); see Fig. 3(right). This diagram is a sheared version of the one without mean field
coupling in Fig. 3(left). While it is a trivial fact that the linear relation in Eq. (3)
describes an affine shear of the axes (β,S) of the bifurcation diagram in a to the
new axes (β0, S) in b, the fact that the branch ∂R of the nucleation solutions can
be mapped this way is not. Firstly, this relies on the way we introduce the feedback
term. It just adds a constant value to the old bifurcation parameter β , if the solution
under consideration is stationary. Therefore, any stationary solution must exist in
both diagrams being just sheared branches. The same still holds true for traveling
wave solutions that are stationary in some appropriate comoving frame, for instance,
ξ = x − ct with speed c. However, not much can be said about the stability of such
solutions, when we introduce the mean field feedback term.

The branch ∂R of the formerly unstable nucleation solutions NS (Fig. 3(left)) folds
in Fig. 3(right) such that two solutions coincide for a given value of β0 until they col-
lide and annihilate each other at a finite value of S ≈ 5.5 for K = 0.003. For the fixed
value of K = 0.003, the upper branch consists of stable traveling wave solutions in
the shape of a wave segment, while the lower branch belongs to the corresponding nu-
cleation solutions of these wave segments, as schematically shown in Fig. 1b. The fact
that the upper branch is stable was confirmed by numerical simulations (cf. Sect. 3.1
and Video 1). Larger K , that is, a less steep control line in Fig. 3(left) can be seen as
a “harder” control, because a small given change in S leads to larger variations in the
effective parameter β . As a consequence, it is difficult to stabilize lower part of the
branch corresponding to small traveling wave segments in numerical simulations by
means of this control.

The choice of the parameter regime given by Eq. (4), which shows only transient
localized waves for this model and leads to a globally stable homogeneous state as the
only attractor, is straightforward given the branch ∂R. In this sense, we designed the
model to exhibit transient localized waves due to a bottleneck—or ghost behavior—
after the saddle-node bifurcation.

3.3 Initial Conditions

We need an appropriate sampling of initial conditions for Eqs. (1)–(3), ideally being
equidistantly sampled in some distribution. The set of all initial conditions for this
system does not—to our knowledge—carry a helpful mathematical structure which
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Fig. 4 To construct initial conditions from artificially generated pinwheel maps, we first took such a
pinwheel map with a certain scaling (upper left), then we chose a selection of excited orientations by
means of a Gaussian. The width of the Gaussian gives the selection depth (upper right). After that, we
masked the result spatially with another Gaussian distribution that is radially symmetric (lower right). The
width of this Gaussian gives the third parameter, the size of the pattern. Finally the result is scaled, giving
rise to the fourth parameter, we called the excess and added to the activator variable in the homogeneous
state (lower left). The inhibitor variable is put into the homogeneous state

allows us to achieve this aim easily. In order to attack this problem, we turned to the
physiological motivation of the chosen model explained in Sect. 2.

A set of initial conditions should naturally reflect plausible spatial perturbations of
the homogeneous steady state of the cortex. This can be achieved by defining local-
ized but spatially structured activity states on large scales of the order of millimeters.
Such pattern are obtained from cortical feature maps (see Fig. 4) by sampling three
parameters (scaling, depth, and size) that define patches of lateral coupling in theses
maps. A fourth parameter (excess) determines the amplitude of the perturbation. In
the following, we first describe the rational behind using a cortical feature map and
then the sampling.

3.3.1 Rational to Use Cortical Feature Map

We focus on a cortical feature map in the primary visual cortex (V1) called the pin-
wheel map. V1 is located at the occipital pole of the cerebral cortex and is the first
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region to process visual information from the eyes. Migraine aura symptoms often
start there or nearby where similar feature maps exist.

In V1, neurons within vertical columns (through the cortical layers) represent by
their activity patterns edges, elongated contours, and whole textures “seen” in the vi-
sual field. This representation has a distinct periodically microstructured pattern: the
pinwheel map. Neurons preferentially fire for edges with a given orientation and the
preference changes continuously as a function of cortical location, except at singu-
larities, the pinwheel centers, where the all the different orientations meet [36, 37].

Iso-orientation domains form continuous bands or patches around pinwheels and,
on average, a region of about 1 mm2 (hypercolumn) will contain all possible orienta-
tion preferences. This topographical arrangement allows one hypercolumn to analyze
all orientations coming from a small area in the visual field, but as a consequence,
the cortical representation of continuous contours in the visual field is depicted in a
patchy, discontinuous fashion [38]. In general, spatially separated elements are bound
together by short- and long-range lateral connections. While the strength of the local
short-range connection within one hypercolum is a graded function of cortical dis-
tance, mostly independent of relative orientation [39], long-range connections over
several hypercolumns connect only iso-orientation domains of similar orientation
preference [40, 41]. Even nearby regions, which are directly excitatory connected,
have an inhibitory component through local inhibitory interneurons and this is likely
be used to analyze angular visual features such as corners or T junctions [39].

Given the arguments above, we can now obtain localized yet spatially structured
activity states on the scale we aim for as initial conditions by using iso-orientation
domains that form continuous patches around pinwheels and extend in a discontinu-
ous fashion over larger areas. In these patches, neural activity can get into a critical
mode, like neural avalanches [42] that would locally perturb the ionic homeostasis as
exemplary shown in Fig. 5 (lower left).

3.3.2 Sampling of Patterns in Cortical Feature Maps

In [43], the authors analyzed the design principles that lie behind the columnar or-
ganization of the visual cortex. The precise design principles of this cortical organi-
zation is governed by an annulus-like spectral structure in Fourier domain [36, 43],
which is determined by mainly one parameter (scaling), that is, the annulus width.
The parameter depth reflects the tuning properties of orientation preference or we
can also interpret this as the range of orientation angles that we consider within the
iso-orientation domain. The third parameter reflects the distance long-range coupling
ranges before it significantly attenuates.

These design principles can be exploited and a procedure can be designed to con-
struct maps with the same properties. The constructed maps come very close to the
maps found in brains of macaque monkeys (see [43] and references therein).

To construct initial conditions from these maps we used a procedure that uses four
control parameters and is visualized in Fig. 4. The details are as follows: A pinwheel
map is a function that maps our two-dimensional plane to the interval (−π/2,π/2].
We construct such a map using the procedure in [43]. During construction, we can
choose the scaling of the map. This is our first parameter. After constructing this map,
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Fig. 5 An example of a transient solution. Initial conditions, i.e., activator concentration u at 0 sec (upper
left), snapshot of activator-concentration u after 30 sec (upper right), after 180 sec (lower right). Time of
passing through threshold value u0 = 0 from below the first time, i.e., passing of the wave front (lower
left)

by means of a Gaussian, we choose a range of orientations that is excited. Math-
ematically speaking, this is the concatenation of the Gaussian distribution with the
pinwheel map. This gives the next parameter, namely the width of the Gaussian that
selects the angles, we call that parameter the depth. The next step is to constrain the
generated pattern spatially by multiplication with another Gaussian, which is defined
on the plane P and chosen to be rotationally symmetric. The width of this Gaussian
gives rise to the third parameter, the size of the pattern. Finally, we multiply the pat-
tern by a certain amplitude, which is chosen such that the integral of the pattern over
the plane gives a chosen number, which constitutes the fourth parameter, we called
the excess.

Finally, initial conditions are generated by setting the plane to the (stable) ho-
mogeneous state and then adding the generated pattern, which represents increased
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activity like in neural avalanche, to the activator variable u, which represents the ionic
imbalance most notably the extracellular potassium concentration.

In a first run, we scanned the space spanned by the four parameters coarsely. We
used the marginal distributions of the number of solutions with an excitation dura-
tion (ED) > 0 with respect to the parameters to decide how densely to sample the
parameter space in the final run.

4 Statistical Properties of Transient Localized Waves

To explore the typical transient patterns that the system described by Eqs. (1)–(3)
generates, we want to know how the system responds to the initial conditions as de-
scribed before. In characterizing the transient solutions, the same problem we had to
obtain equally space initial conditions arises when appropriate characteristic param-
eters for the solutions have to be defined.

To explain the three parameters, we have chosen to characterize the solutions and
why they suit this problem, it is helpful to have a look at the lower left part of Fig. 5, in
which an example solution is displayed. The first parameter we chose is the maximal
area in which such a solution has activator concentration over a certain threshold
level at one instant of time, termed maximal instantaneous area (MIA). The threshold
level is taken to be u = 0, although this is the same threshold as used for u0 to define
S, this is rather convenience than necessity. The second parameter is the total area
that has experienced an activator concentration above this level at some time during
the course of the solution, termed total affected area (TAA). The third parameter is
the time, during which the area of activator concentration above threshold is nonzero,
termed the excitation duration (ED). Of course, the exact value of all these parameters
for one single solution depends on the choice of threshold. For once, the threshold
value has to be chosen such that after the activator concentration has fallen below it;
no secondary excitation will be generated.

The example solution depicted in Fig. 5 is a comparatively long lived solution
(Video 4). It starts out very symmetrically (circular) shaped, at one instant of time it
breaks open into a discontinuous wave and a shape of the front develops, which is
similar to that of a particle-like wave but because of the chosen control parameters, it
shrinks in time and vanishes in the end. Because at the point when the circular front
breaks open, a comparatively large area is affected, it takes some time until it vanishes
and the resulting TAA is relatively large. So this example solution has large ED, large
MIA, and large TAA. If the circular front had not broken open at all, the control would
have made the threshold value very large and the solution would have collapsed very
quickly because of the propagation boundary ∂P , such that the ED and the TAA
would have been short, whereas the MIA would have been large. Other prototypical
courses of solutions take place for instance when the initial conditions affect the
activator over a larger area, but only in the middle of the area; the value is high enough
to start a solution. In the surrounding area, the activator level is not high enough for
that but the increased activator concentration leads to a rise in inhibitor concentration
until the time the front reaches those parts and as a consequence, the solution vanishes
early, having small ED, small TAA, and small MIA as a consequence.



Journal of Mathematical Neuroscience (2013) 3:7 Page 15 of 28

Fig. 6 Distribution of solutions for the control close to ∂R

We did the simulation for three different adjustments of the control force, suc-
cessively going farther and farther away from the bifurcation point. Each of these
simulations were started using 8,000 initial conditions generated in a manner that is
described in Sect. 3. Each of these initial conditions resulted in a solution that was
classified according to the three parameters mentioned above. The solutions that did
not result in any excitation at all (ED = MIA = TAA = 0) were discarded. The
density plots according to the classification parameters are shown in Figs. 6, 7, 8.
First of all, though the distribution of the solutions varies significantly, the number
of solutions that represent an excitation hardly varies at all (4171 for small, 4183
for intermediate, 4182 for large distance from the bifurcation point), the symmetric
difference between the sets of initial conditions that lead to an excitation contains
between 5 and 19 solutions. (The symmetric difference of two sets A and B is de-
fined as A � B := (A ∪ B)\(A ∩ B). It is the set of all elements that are contained
in one and only one of A or B .) From this, we can also deduce that the set of initial
conditions that lead to an excitation does not significantly depend on the choice of
control parameters.
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Fig. 7 Distribution of solutions for the control line at an intermediate distance to ∂R

When looking at Fig. 6, one notices a clustering of the solutions in certain regions
of the classification parameters. In the section that depicts the TAA against the MIA,
we notice three coarse clusters. Cluster I, the largest with high MIA and compara-
tively low TAA; cluster II, one that is less populated with low MIA and low TAA;
and cluster III, one that is very sparsely populated with intermediate MIA and high
TAA. The boundaries between these clusters are not very sharp. One could think that
a solution that affects an overall large area (high TAA) will also affect a large area
at one instant of time (high MIA). From looking at the mentioned clusters, one sees
that this is not the case, the solutions with the highest MIA have all comparatively
low TAA (clusters I and II) and the ones that have a high TAA only achieve an inter-
mediate MIA (cluster III).

A partial explanation for this can be read off from the depiction of TAA against
ED. All solutions that have a large TAA are also solutions that have a large ED,
i.e., cluster III is distinct also in this plane. More than that, the dependence seems to
be almost linearly. This is reminiscent of the localized particle-like wave solutions.
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Fig. 8 Distribution of solutions for the control far away from ∂R

For these, the area that is affected grows linearly in time because the area that these
solutions occupy at one instant of time is constant.

The two clusters I and II that we observed merge to one in this plane of projection
because they differ only very little in ED. This can also be noted when comparing
the planes MIA vs. TAA and MIA vs. ED; also here, the cluster III with high TAA
translates to a cluster with high ED and the cluster I with highMIA and comparatively
low TAA moves closer to cluster II with both low ED and MIA.

When varying the β0 parameter of the control force, the distribution of solutions
in MIA–TAA–ED-space changes drastically. Upon raising the β0 parameter from
β0 = 1.32 over β0 = 1.33 to β0 = 1.34, the system is put more and more into the
subexcitable regime and the solutions are less and less affected by the ghost behavior
(saddle-node bifurcation); see Fig. 3. This is noticeable by observing that the cluster
with high TAA/high ED becomes less pronounced and vanishes almost completely
for β0 = 1.34. This can be understood as an interplay between the mean value of
MIA in cluster III at about 25 and S at the propagation boundary (at ∂P , S ≈ 24,
S ≈ 20.75, and S ≈ 17.5 for β0 = 1.32, β0 = 1.33, and β0 = 1.34, respectively). For
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Fig. 9 Cumulative distribution functions for the different classification parameters

the control line farthest away from the saddle-node bifurcation (β0 = 1.34), ∂P is
below even the smallest values of MIA in cluster III. Note that the value of S at the
ghost is about 6, well below the propagation boundary. Also, the other two clusters
merge though there still exist solutions with high and with lowMIA, but the transition
is much more fuzzy than it was before.

In Figs. 6, 7, and 8, we have included a little “bestiary” to illustrate the typical
courses of solutions in the respective clusters and their change upon varying the pa-
rameter β0, the initial conditions for solutions 1–4 in these figures are always the
same. From this arbitrarily chosen selection, we see that the MIA of each solution
hardly changes between the β0 values, whereas the change of TAA and ED always
go hand in hand and—depending on the cluster—can be up to four-fold for the chosen
range of β0.

One could argue that the formation of clusters is an artefact of the choice of initial
conditions. There is no simple answer to this. As mentioned, it is not possible to
examine the complete set of initial conditions. Neither does this set carry a helpful
structure which would allow a sensible “equidistant” sampling. This is the reason
why we made the mentioned choice of initial conditions. For testing purposes, we
also tried different schemes for the generation of initial conditions and found the
same distribution of clusters qualitatively.

In Fig. 9, we have plotted the cumulative distribution functions for the three clas-
sification parameters and the three choices of mean field control. From this picture,
we see that the distribution of the MIA is hardly influenced by the choice of control.
This is very different for TAA and ED. For the TAA, for example, there are values
(around 75), where for one choice of control the majority of solutions is below and
for another choice the majority is above. For example, the fraction of values below
TAA = 80 is 0.995 for β0 = 1.34 and 0.216 for β0 = 1.32. Also, we see that the cu-
mulative distribution function for the TAA converges to 1 much slower, the closer the
control is to the saddle-node bifurcation. This means that more solutions with high
TAA exist for these choices of control.

5 Discussion

In this section, we discuss three subjects related to the intended application to mi-
graine pathophysiology. Firstly, we start with the discussion about the applicability
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of this canonical model. Secondly, the possible congruence between the prevalence
of migraine subforms with the statistical properties of the wave patterns we observed
is discussed. Thirdly, we end with a brief outlook on novel therapeutic approaches in
episodic migraine based on the here suggested pattern forming processes.

5.1 Canonical Model and Free Parameters for Weakly Excitable Media

Central to our approach is the localization resp. spatial confinement of the transient
traveling waves. Reaction-diffusion waves would engulf all of the medium, if formed
in a two-variable system with only one activator and one inhibitor with the system’s
parameters in the appropriate regime. In contrast, localized traveling waves indicate
a demand-controlled excitability. Similar ideas to obtain localized traveling, though
not transient, waves have been introduced in various contexts, for instance, an integral
negative feedback or a third, fast diffusing inhibitory component for moving spots in
semiconductor materials, gas discharge phenomena, and chemical systems [31, 44–
46]. Furthermore, in neural field models [47], localized two-dimensional bumps are
studied [48–50] in integrodifferential equations (without diffusion) in the context, for
example, of memory formation [51]. Localized structures have also been discussed
in the context of cortical spreading depression (SD) in migraine before, in particular
a model with narrowly tuned parameters that shows transient waves [13, 52, 53] and
a model with mean field feedback control that allows for localized waves [30]. But
it is for the first time now that a model is presented in which wave phenomena oc-
cur that are both localized and transient, so that a variety of new questions that are
controversially discussed in migraine research [18, 54–56] can be addressed. A cen-
tral question is of course, which level of detail a model of SD needs to investigate
localization of SD and the transient response properties.

Physiological detailed models of SD are given by conductance-ion-based mod-
els with 9 to 29 dynamical variables in various (∼200) electrically coupled neural
compartments [57–59]. They usually do not include lateral space—the compartments
extend in the vertical direction to model the apical dendritic tree, that is, these mod-
els are not spatially extended to describe an excitable medium. In fact, this lateral
extension is far from straightforward. Naively adding diffusion to the extracellular
dynamical ion concentrations is possible but does not reflect the necessary detail
that needs to be considered to take the spatial continuum limit. Neural field models,
for example, describe this limit [47]. The first part of the global inhibitory feedback
by neurovascular coupling, i.e., the fast spread of neural hyperactivity that initiates
hypermia—as we suggested in this study—can be modeled by neural fields. The sec-
ond part of this neurovascular coupling, the actual feedback signal needs also some
physiological detail. This cannot easily be incorporated because neural field models
are rate-based or activity-based while the detailed SD models [57–59] start with a
conductance-based Hodgkin–Huxley approach and include ion-based dynamics but
do not describe the dynamics on a rate-based foundation.

Even if a SD detailed tissue-model, that is, an excitable medium with the same
physiological detail as in the single cell models of SD [57–59], were available, it
would require enormous computer capabilities to calculate from the activity of single
cells on the scale of milliseconds the macroscopic patterns on the spatial scale of
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several centimeters and on a temporal scale of up to one hour. Quite apart from the
fact that five orders of magnitude in both the spatial and temporal scales suggest that
the macroscopic phenomena require their own level of description in some form of
effective medium theory.

We suggested that the primary objective in research relating SD to migraine should
be to obtain a measure of the noxious signatures that are transmitted into the meninges
during SD [60, 61]. Canonical reaction-diffusion models seem to be at least one way
to approach this objective. A further advantage of such canonical models lies in the
fact that they allow insight in the phase space structure of the whole class of models
they represent, as schematically shown in Fig. 1. Therefore, in the following, we will
argue in which sense our model is canonical for the problem we attack.

Generally speaking, an excitable medium is a spatially extended system with a
stable homogeneous steady state being the quiescent state and one or many excited
states that develop after a sufficient perturbation from the quiescent state (Fig. 1a).
The excited states are traveling wave solutions that propagate with a stable profile of
permanent shape (possibly with some temporal modulation, such as breathing or me-
andering). To study generic features of an excitable medium, the simulations are often
carried out in the reaction-diffusion system given by Eqs. (1), the popular FitzHugh–
Nagumo kinetics. Originally, the FitzHugh–Nagumo kinetics were a caricature of the
electrophysiological properties of excitable membranes [62, 63], but these equations
with D = 0 became a canonical model of local excitability of type II (based on Hopf
bifurcation, either supercritical with subsequent extremely fast transition to a large
amplitude limit cycle, named canard explosion [64], or subcritical [65]). For D �= 0,
the FitzHugh–Nagumo kinetics became also a canonical model for spatial excitability
[32]. Sometimes diffusion in the second inhibitory species is included, which we do
not consider here. Because we investigate transient behavior originating from a high
threshold regime (toward weak excitability), the classification of local excitability in
types I and II (based on the transition at vanishing threshold, i.e., into the oscillatory
regime) is not relevant. Furthermore, it is not clear whether this classification carries
over in a meaningful way to the dynamics of spatially extended systems.

We consider the set of Eqs. (1) as canonical for two reasons. First, because the u

(activator) equation of Eq. (1) has the simplest polynomial form of bistability. Note
that for this reason this activator equation was originally suggested by Hodgkin and
Huxley as the first mathematical model of the potassium dynamics in SD. It was pub-
lished by Grafstein, who also provided experimental data supporting such a simple
reaction-diffusion scheme for the front dynamics in SD [66]. Second, the inhibitor
equation of Eq. (1) has a linear rate function, in fact, the rate function is only a func-
tion of the activator u. This is the simplest inhibitor dynamics needed for pulse prop-
agation. By neglecting an additional linear term −γ v in the inhibitor rate function,
we limit the origin of excitability to the case of a supercritical Hopf bifurcation with
subsequent canard explosion and avoid the bistable regime that exits in the subcrit-
ical case. The subcritical Hopf bifurcation occurs only in a narrow regime when γ

is close to 1 and β close to 0. We have tested some simulations with γ = 0.5 with
similar results.

As a consequence of our assumptions about the model being in this canonical
form, only two free parameters exist, β which is associated with the threshold and the
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ε, the time scale separation of activator and inhibitor dynamics. Of course, the choice
of parameters can be quite different, a common choice is α in the cubic rate function
f (u) = u(u − α)(u − α) but there are only two free parameters or two equivalent
groups of parameters. So, there are the same bifurcations in the parameter planes
(ε,β) or (ε,α), but to map the dynamics between equivalent groups of parameters
might involve changes in time, space, and concentrations scales.

In particular, the question of how the incidence of MA is reflected in the distance
to the saddle-node bifurcation, involves a measure on the parameter space whether
is (ε,β), (ε,α), or any other parameter plane. We have previously suggested to get
such measures from pharmacokinetic-pharmacodynamic models [53].

5.2 Application to Migraine Pathophysiology

We suggest a qualitative congruence between the prevalence of MO and MA with
the statistical properties we found in the transient response properties. We do not
suggest that all migraine attacks are related to SD nor that pain formation in MA is
exclusively caused by SD. Rather that SD is one pathway of pain formation in both
symptom-based subtypes MO and MA. We refer to this pathway as the “spreading
depression”-theory of migraine [17]. The “migraine generator”-theory (MG) is for
various reasons not less plausible [54]. It assumes a dysfunction in a central pattern
generator in the brainstem that modulates the perception of pain. Some of the seem-
ingly conflicting and controversially discussed evidence is probably resolved when
one considered the basis of the classification of migraine subforms. We currently have
a symptom-based classification for migraine with possibly overlapping etiologies for
individual subforms. In the light of an etiology-based classification with possibly
overlapping symptoms the conflicts seem less puzzling to us. To further resolve this,
we investigated the interplay of SD and MG and suggested to unify these approaches
within a network theory [61].

In the remainder of this section, we focus first on migraine pain and then on the
migraine aura.

5.2.1 Migraine Pain

The cortex is not pain sensitive. Therefore, SD in the cortex cannot explain the
headache phase in migraine. There are detailed investigations how SD in the cortex
can cause pain via pain sensitive intracranial tissues and subsequent activation in the
trigeminal nucleus caudalis in the brainstem [67, 68], but cf. [69, 70]. The qualitative
congruence between the prevalence of MO and MA with the statistical properties we
found in the transient response properties is based on the following assumption on
the geometrical layout of the cortex and the pain sensitive cranial tissues (Fig. 10):
In the initial phase of cortical SD, with increased blood flow (hyperemic phase), a
local release of noxious substances (ATP, glutamate, K+, H+) are thought to diffuse
outward in the direction perpendicular to the cortex into “the leptomeninges resulting
in activation of pial nociceptors, local neurogenic inflammation, and the persistent
activation of dural nociceptors, which triggers the migraine headache” [71], but for
issues concerning the blood brain barrier system cf. [72].
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Fig. 10 Schematic representation of cross section of cortex, meninges, and skull. The leptomeninges
refer to the pia mater and arachnoid membrane. SD releases noxious substances with increased blood flow
thought to diffuse outward. Activation of pain pathways can depend on MIA

If diffusion vertical to the affected cortical area is critical, size and shape of this
area should play a critical role; see Fig. 10. This suggests that SD waves activate
nociceptive mechanisms dependent upon a sufficiently large instantaneously affected
cortical area, i.e., large MIA and, as stated before, the primary objective should be
to obtain a measure of the noxious signatures that are transmitted into the meninges
during SD.

5.2.2 Migraine Aura

The aura phase, on the other hand, must clearly correlate with long duration of SD
and a large enough cortical surface area being affected during the course of SD to no-
tice neurological deficits. In particular, because the very noticeable visual symptoms
often start where the cortical magnification factor is large, so that only if they move
into regions of lower magnification they get significantly magnified by the reversed
topographic mapping [52]. The seemingly contested notion of MO (migraine without
aura) with silent aura can also be resolved when the spatiotemporal development of
SD is taken into account.
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Fig. 11 Statistical analysis of output data. For all four pictures, we took all data points with MIA in the
interval [MIAlow,MIAlow + 10] (“sliding window”) and analyzed the connection with TAA (left column)
and ED (right column). In the upper row, the average value is plotted with solid lines; the area of one
standard deviation around this value is shaded. In the lower row, the correlation coefficient between MIA
and the respective quantity is plotted. In all plots, the dotted lines indicates the number of events for the
respective interval with MIAlow

The connection between MIA and TAA as well as MIA and ED in our model
is shown in Fig. 11. It shows that in the range of high MIA the average values for
TAA and ED are becoming smaller. From Fig. 11, we can also read off that the range
with the most events is in the regime of relatively high MIA (around 30) and signifi-
cantly after the peak of ED resp. TAA. Moreover, in the range with most events, the
correlation coefficient r(MIA,ED) is always negative and the correlation coefficient
r(MIA,TAA) is mostly negative. All these effects are stronger, the closer the control
line is located to the saddle-node bifurcation.

From these statistical correlations between MIA and TAA resp. ED and the distri-
bution of the number of events, one could speculate that cases of MA are more rare
and the quality of the headache in these cases might be less severe. This is exactly
what has been reported in the medical literature [73].

While the number of events with high ED and high TAA is influenced by the dis-
tance of the control line to the saddle node bifurcation, the number of events with
high MIA is much lesser affected. So, in a way, the distance to the saddle node bi-
furcation controls the prevalence of MA in our model, while the prevalence of MO is
not much affected.
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Fig. 12 Development of SD and model-based control. SD based on a two-variable reaction-diffusion
mechanism engulfs all the densely packed excitable neurons in the cortex (top row). The activator con-
centration is in red, the inhibitor in yellow in this schematic illustration. Long-range inhibitory feedback
(green) is a well-established pattern formation mechanism to confine the spread (bottom row). The pre-
dicted emerging transient patterns offer a model-based analysis of phase-depended stimulation protocols.
In the classical paradigm, applying noninvasive neuromodulation devices, which may succeed to block
SD locally (c), would result in a reentrant pattern (d). In the new paradigm of localized SD waves that
we suggest, a phase-dependent stimulation protocol might target intelligently with noise the bottle-neck
passage (g) (see main text), while a different protocol might be considered during the initial nucleation
phase (e)

5.3 Model-Based Control by Neuromodulation

We briefly discuss model-based control and means by which neuromodulation tech-
niques may affect pathways of pain formation and the aura phase.

The emerging transient patterns and their classification according to size and dura-
tion offer a model-based analysis of phase-dependent stimulation protocols for non-
invasive neuromodulation devices, e.g., utilizing transcranial magnetic stimulation
(TMS) [74], to intelligently target migraine. For instance, noise is a very effective
method to drive the system back into the homogeneous steady state more quickly;
see Fig. 12. In general, responses of nonlinear systems to noise applied when the
system is just before or past a saddle-node bifurcation are well studied. Before the
saddle-node on limit cycle bifurcation, the phenomenon of coherence resonance (CR)
describes that a certain amount of noise makes responses most coherent [75]. Behind
the saddle-node bifurcation on a limit cycle, the time the flows spend in the bottleneck
region of the ghost is shortened [76]. However, noise would, according to our model,
mainly positively affect ED and TAA, that is, the aura, while it could even worsen the
headache, if applied early during the nucleation and growth process. Therefore, TMS
with noise stimulation protocols, which are currently investigated, should be applied
only some time after first noticing aura symptoms.

Headaches are not generally considered appropriate for invasive neurosurgical
therapy, but when all else fails—preventives, abortives, and pain management—
invasive brain stimulation techniques are also considered, e.g., occipital nerve stim-
ulation (ONS) [77, 78]. So model-based control will become increasingly important.
Also, the importance of modeling related epileptic seizure dynamics as spatiotempo-
ral transient patterns has been suggested in a recent paper [79]. Model-based control
of Parkinson’s disease, is already considered, yet Schiff remarks quite correctly [80]:
“It seems incredible that the tremendous body of skill and knowledge of model-based
control engineering has had so little impact on modern medicine. The timing is now
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propitious to propose fusing control theory with neural stimulation for the treatment
of dynamical brain disease.”

We suggest to consider migraine as a dynamical disease that could benefit from
model-based control therapies.
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