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Abstract Stochastic differential equations (SDEs) have multiple applications in
mathematical neuroscience and are notoriously difficult. Here, we give a self-
contained pedagogical review of perturbative field theoretic and path integral methods
to calculate moments of the probability density function of SDEs. The methods can
be extended to high dimensional systems such as networks of coupled neurons and
even deterministic systems with quenched disorder.

1 Introduction

In mathematical neuroscience, stochastic differential equations (SDE) have been uti-
lized to model stochastic phenomena that range in scale from molecular transport in
neurons, to neuronal firing, to networks of coupled neurons, to cognitive phenom-
ena such as decision making [1]. Generally these SDEs are impossible to solve in
closed form and must be tackled approximately using methods that include eigen-
function decompositions, WKB expansions, and variational methods in the Langevin
or Fokker–Planck formalisms [2–4]. Often knowing what method to use is not obvi-
ous and their application can be unwieldy, especially in higher dimensions. Here we
demonstrate how methods adapted from statistical field theory can provide a unifying
framework to produce perturbative approximations to the moments of SDEs [5–13].
Any stochastic and even deterministic system can be expressed in terms of a path
integral for which asymptotic methods can be systematically applied. Often of inter-
est are the moments of x(t) or the probability density function p(x, t). Path integral
methods provide a convenient tool to compute quantities such as moments and tran-
sition probabilities perturbatively. They also make renormalization group methods
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available when perturbation theory breaks down. These methods have been recently
applied at the level of networks and to more general stochastic processes [14–25].

Although Wiener introduced path integrals to study stochastic processes, these
methods are not commonly used nor familiar to much of the neuroscience or applied
mathematics community. There are many textbooks on path integrals but most are
geared towards quantum field theory or statistical mechanics [26–28]. Here we give
a pedagogical review of these methods specifically applied to SDEs. In particular,
we show how to apply the response function method [29, 30], which is particularly
convenient to compute desired quantities such as moments.

The main goal of this review is to present methods to compute actual quantities.
Thus, mathematical rigor will be dispensed for convenience. This review will be el-
ementary and self-contained. In Sect. 2, we cover moment generating functionals,
which expand the definition of generating functions to cover distributions of func-
tions, such as the trajectory of a stochastic process. We continue in Sect. 3 by con-
structing functional integrals appropriate for the study of SDEs, using the Ornstein–
Uhlenbeck process as an example. Section 4 introduces the concept of Feynman di-
agrams as a tool for carrying out perturbative expansions and introduces the “loop
expansion,” a tool for constructing semiclassical approximations. We carry out a per-
turbative calculation explicitly for the stochastically forced FitzHugh–Nagumo equa-
tion in Sect. 5. Finally, Sect. 6 provides the connection between SDEs and equations
for the density p(x, t) such as Fokker–Planck equations.

2 Moment Generating Functionals

The strategy of path integral methods is to derive a generating function or functional
for the moments and response functions for SDEs. The generating functional will
be an infinite dimensional generalization for the familiar generating function for a
single random variable. In this section we review moment generating functions and
show how they can be generalized to functional distributions.

Consider a probability density function (PDF) P(x) for a single real variable x.
The moments of the PDF are given by

〈
xn
〉=
∫

xnP (x)dx

and can be obtained directly by taking derivatives of the generating function

Z(J ) = 〈eJx
〉=
∫

eJxP (x)dx,

where J is a complex parameter, with

〈
xn
〉= 1

Z(0)

dn

dJ n
Z(J )

∣∣∣∣
J=0

.

Note that in explicitly including Z(0) we are allowing for the possibility that P(x)

is not normalized. This freedom will be convenient especially when we apply pertur-
bation theory. The generating function is a Laplace transform of the PDF and is well
defined if the PDF is locally integrable.
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For example, the generating function for a Gaussian PDF, P(x) ∝ e−(x−a)2/(2G),
with mean a and variance G, is

Z(J ) =
∫ ∞

−∞
e−(1/(2G))(x−a)2+Jx dx. (1)

The integral can be computed by completing the square so that the exponent of the
integrand can be written as a perfect square

− 1

2G
(x − a)2 + Jx = −A(x − xc)

2 + B.

Expanding both sides and equating coefficients yields xc = JG + a, A = 1/2G and
B = J 2G/2 + Ja. The integral in (1) can then be computed to obtain

Z(J ) =
∫ ∞

−∞
e−(1/2)G−1(x−JG−a)2+Ja+J 2G/2 dx = Z(0)eJa+J 2G/2,

where

Z(0) =
∫ ∞

−∞
e−x2/(2G) dx = √

2πG

is a normalization factor. The mean of x is then given by

〈x〉 = d

dJ
eJa+J 2G/2

∣∣∣∣
J=0

= a.

The cumulant generating function is defined as

W(J) = lnZ(J ),

so that the cumulants are
〈
xn
〉
C

= dn

dJ n
W(J )

∣∣∣∣
J=0

.

In the Gaussian case

W(J) = Ja + 1

2
J 2G + lnZ(0)

yielding 〈x〉C = 〈x〉 = a and 〈x2〉C ≡ var(x) = 〈x2〉 − 〈x〉2 = G, and 〈xn〉C = 0,
n > 2.

The generating function can be generalized to an n-dimensional vector x =
{x1, x2, . . . , xn} to become a generating functional that maps the n-dimensional vec-
tor J = {J1, J2, . . . , Jn} to a real number with the form

Z[J ] =
∫ n∏

l=1

dxle
−∑j,k(1/2)xj G−1

jk xk+∑j Jj xj ,

where G−1
jk ≡ (G−1)jk and we use square brackets to denote a functional. This in-

tegral can be solved by transforming to orthonormal coordinates, which is always
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possible if G−1
jk is symmetric, as it is for a well-defined probability density. Hence,

let ωα and vα be the αth eigenvalue and orthonormal eigenvector of G−1, respec-
tively, i.e.

∑

j

G−1
jk vα

k = ωαvα
j

and
∑

j

vα
j v

β
j = δαβ.

Now, expand x and J in terms of the eigenvectors with

xk =
∑

α

cαvα
k ,

Jk =
∑

α

dαvα
k .

Hence
∑

j,k

xjG
−1
jk xk =

∑

j

∑

α,β

cαωβcβvα
j v

β
j =

∑

α,β

cαωβcβδαβ =
∑

α

ωαc2
α.

Since the Jacobian is 1 for an orthonormal transformation the transformed generating
functional in terms of the transformed parameter d is

Z[d] =
∫ ∏

α

dcαe
∑

α(−(1/2)ωαc2
α+dαcα)

=
∏

α

∫ ∞

−∞
dcαe−(1/2)ωαc2

α+dαcα

= Z[0]
∏

α

e(1/2)ω−1
α d2

α .

Transforming back yields

Z[J ] = Z[0]e
∑

jk 1/2Jj GjkJk ,

where Z[0] = (2π)n/2
√

detG.
The moments are given by

〈
s∏

j=1

xj

〉

= 1

Z[0]
s∏

j=1

∂

∂Jj

Z[J ]
∣∣∣∣
Jj =0

.

However, since the exponent is quadratic in the components Jl , only even powered
moments are nonzero. From this we can deduce that

〈
2s∏

j=1

xj

〉

=
∑

all possible pairings

Gj1,j2 · · ·Gj2s−1j2s
,
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which is known as Wick’s theorem. Any Gaussian moment about the mean can be
obtained by taking the sum of all the possible ways of “contracting” two of the vari-
ables. For example,

〈xaxbxcxd〉 = GabGcd + GadGbc + GacGbd .

In the continuum limit, a generating functional for a function x(t) on the real
domain t ∈ [0, T ] is obtained by taking a limit of the generating functional for the
vector xj . Let the interval [0, T ] be divided into n segments of length h so that T =
nh and x(jh) = xj , j ∈ {0,1, . . . , n}. We then take the limit of n → ∞ and h → 0
preserving T = nh. We similarly identify Jj → J (t) and Gjk → G(s, t) and obtain

Z[J ] =
∫

Dx(t)e−(1/2)
∫

x(s)G−1(s,t)x(t) ds dt+∫ J (t)x(t) dt

= Z[0]e(1/2)
∫

J (s)G(s,t)J (t) ds dt , (2)

where the measure for integration

Dx(t) ≡ lim
n→∞

n∏

j=0

dxj

is over functions. Although Z[0] = limn→∞(2π)n/2(detG)1/2 is formally infinite,
the moments of the distributional are well defined. The integral is called a path inte-
gral or a functional integral. Note that Z[J ] refers to a functional that maps different
“forms” of the function J (t) over the time domain to a real number. Defining the
functional derivative to obey all the rules of the ordinary derivative with

δJ (s)

δJ (t)
= δ(s − t),

the moments again obey
〈∏

j

x(tj )

〉
= 1

Z[0]
∏

j

δ

δJ (tj )
Z[J ] =

∑

all possible pairings

G(tj1, tj2) · · ·G(tj2s−1 , ttj2s
).

For example,

〈
x(t1)x(t2)

〉= 1

Z[0]
δ

δJ (t1)

δ

δJ (t2)
Z[J ] = G(t1, t2).

We can further generalize the generating functional to describe the probability dis-
tribution of a function ϕ(
x) of a real vector 
x ∈ Rn, instead of a single variable t

with

Z[J ] =
∫

Dϕe− ∫ (1/2)ϕ(
y)G−1(
y,
x)ϕ(
x)dny dnx+∫ J (
x)ϕ(
x)dnx

= Z[0]e
∫
(1/2)J (
y)G(
y,
x)J (
x)dny dnx.

Historically, computing moments and averages of a probability density functional of
a function of more than one variable is called field theory. In general, the probability



Page 6 of 35 C.C. Chow, M.A. Buice

density functional is usually written in exponential form

P [ϕ] = e−S[ϕ(
x)],

where S[ϕ] is called the action and the generating functional is often written as

Z[J ] =
∫

Dϕe−S[ϕ]+J ·ϕ,

where

J · ϕ =
∫

J (
x)ϕ(
x)dnx.

For example, the action given by

S[ϕ] =
∫

ϕ(
x)G−1(
x, 
x′)ϕ
( 
x′)dnx dnx′ + g

∫
ϕ4(
x)dnx

is called ϕ4 (“ϕ-4”) theory.
The analogy between stochastic systems and quantum theory, where path integrals

are commonly used, is seen by transforming the time coordinates in the path integrals
via t → √−1t . When the field ϕ is a function of a single variable t , then this would
be analogous to single particle quantum mechanics where the quantum amplitude can
be expressed in terms of a path integral over a configuration variable φ(t). When the
field is a function of two or more variables ϕ(
r, t), then this is analogous to quantum
field theory, where the quantum amplitude is expressed as a path integral over the
quantum field ϕ(
r, t).

3 Application to SDE

Building on the previous section, here we derive a generating functional for SDEs.
Consider a Langevin equation,

dx

dt
= f (x, t) + g(x, t)η(t), (3)

on the domain t ∈ [0, T ] with initial condition x(t0) = y. The stochastic forcing term
η(t) obeys 〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 = δ(t − t ′). Equation (3) is to be interpreted as
the Ito stochastic differential equation

dx = f (xt , t) dt + g(xt , t) dWt , (4)

where Wt is a Wiener process (i.e. Gaussian white noise), and xt is the value of x

at time t . We show how to generalize to other stochastic processes later. Functions
f and g are assumed to obey all the properties required for an Ito SDE to be well
posed [31]. In particular, the stochastic increment dWt does not depend on f (xt , t)

or g(xt , t) (i.e. xt is adapted to the filtration generated by the noise). The choice
between Ito and Stratonovich conventions amounts to a choice of the measure for
the path integrals, which will be manifested in a condition on the linear response or
“propagator” that we introduce below.
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The goal is to derive a probability density functional (PDF) and moment gener-
ating functional for the stochastic variable x(t). For the path integral formulation, it
is more convenient to take x(t0) = 0 in (3) and enforce the initial condition with a
source term so that

dx = f (xt , t) dt + g(xt , t) dWt + y1t0(t), (5)

where 1t0(t) = 1 when t = t0 (i.e. indicator function). The discretized form of (5)
with the Ito interpretation for small time step h is given by

xj+1 − xj = fjh + gjwj

√
h + yδj,o, (6)

where j ∈ {0,1, . . . ,N}, xj = x(jh + t0), T = Nh, fj = f (xj , jh + t0), gj =
g(xj , jh + t0), δj,k is the Kronecker delta, x0 = 0, and wj is a normally distributed
discrete random variable with 〈wj 〉 = 0 and 〈wjwk〉 = δj,k . We use x and w without
indices to denote the vectors x = (x1, . . . , xN) and w = (w0,w1, . . . ,wN−1). For-
mally, the PDF for the vector x conditioned on w and y can be written as

P [x|w;y] =
N∏

j=0

δ
(
xj+1 − xj − fjh − gjwj

√
h − yδj,0

)
,

i.e. the probability density function is given by the Dirac delta function constrained
to the solution of the SDE.

Inserting the Fourier representation of the Dirac delta function,

δ(zj ) = 1

2π

∫
e−ikj zj dkj ,

gives

P [x|w;y] =
∫ N∏

j=0

dkj

2π
e
−i
∑

j kj (xj+1−xj −fj h−gj wj

√
h−yδj,0).

The PDF is now expressed in exponential form.
For zero-mean unit-variance Gaussian white noise, the PDF of wi is given by

P(wj ) = 1√
2π

e
−(1/2)w2

j .

Hence

P [x|y] =
∫

P [x|w;y]
N∏

j=0

P(wj )dwj

=
∫ N∏

j=0

dkj

2π
e
−i
∑

j kj (xj+1−xj −fj h−yδj,0)

×
∫ N∏

j=0

dwj√
2π

eikj gj wj

√
he

−(1/2)w2
j
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can be integrated by completing the square as demonstrated in the previous section
to obtain

P [x|y] =
∫ N∏

j=0

dkj

2π
e
−∑j (ikj )((xj+1−xj )/h−fj −yδj,0/h)h+∑j (1/2)g2

j (ikj )2h
.

In the limit h → 0, N → ∞ such that T = Nh, we can formally use the notation

P
[
x(t)|y, t0

]=
∫

Dx̃(t)e− ∫ [x̃(t)(ẋ(t)−f (x(t),t)−yδ(t−t0))−(1/2)x̃2(t)g2(x(t),t)]dt (7)

with a newly defined complex variable ikj → x̃(t). Although we use a continuum
notation for convenience, x(t) need not be differentiable and we interpret the action
in terms of the discrete definition. However, all derivatives will be well defined in the
perturbative expansions. P [x(t)|y, t0] is a functional of the function x(t) conditioned
on two scalars y and t0. The moment generating functional for x(t) and x̃(t) is then
given by

Z[J, J̃ ] =
∫

Dx(t)Dx̃(t)e−S[x,x̃]+∫ J̃ (t)x(t) dt+∫ J (t)x̃(t) dt

with action

S[x, x̃] =
∫ [

x̃(t)
(
ẋ(t) − f

(
x(t), t

)− yδ(t − t0)
)− 1

2
x̃2(t)g2(x(t), t

)]
dt. (8)

The probability density functional can be derived directly from the SDE (3) by
taking the path integral over the infinite dimensional Dirac delta functional:

P
[
x(t)|y, t0

] =
∫

Dη(t)δ
[
ẋ(t) − f (x, t) − g(x, t)η(t) − yδ(t − t0)

]
e− ∫ η2(t) dt

=
∫

Dη(t)Dx̃(t)e− ∫ x̃(t)(ẋ(t)−f (x,t)−yδ(t−t0))+x̃(t)g(x,t)η(t)−η2(t) dt

=
∫

Dx̃(t)e− ∫ x̃(t)(ẋ(t)−f (x,t)−yδ(t−t0))+ 1
2 x̃2(t)g2(x,t) dt ,

yielding the action (8).1 Owing to the definition ikj → x̃(t) the integrals over x̃(t)

are along the imaginary axis, which is why no explicit i appears in the action above.
If we perform the x̃ integration in (7) we obtain

P
[
x(t)|y, t0

]= J e− ∫ (1/(2g2(x,t)))[ẋ(t)−f (x,t)−yδ(t−t0)]2 dt ,

where the Jacobian factor J depends upon the Ito or Stratonovich convention. For Ito,
the Jacobian is 1. This is the Onsager–Machlup formula, which is a useful form for
many stochastic applications [2, 13, 28]. For example, there is an intimate connection

1This derivation is, strictly speaking, incorrect because the delta functional fixes the value of ẋ(t), not
x(t). It works because the Jacobian under a change of variables from ẋ(t) to x(t) is 1.
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between the action and the rate function of large deviation theory [13, 32]. However,
as we show in the following sections, it is more convenient to not integrate over x̃ for
diagrammatic perturbation theory.

In a similar manner, we can define the path integral for more general noise pro-
cesses than the Wiener process. Let η(t) instead be a process with cumulant generat-
ing functional W [J (t)] so that the cumulants of η(t) (which may depend upon x(t))
are given by functional derivatives with respect to J (t). This process will have its
own action Sη[η(t)] and the path integral can be written as

P
[
x(t)|y, t0

] =
∫

Dη(t)δ
[
ẋ(t) − f (x, t) − η(t) − yδ(t − t0)

]
e−Sη[η(t)]

=
∫

Dη(t)Dx̃(t)e− ∫ x̃(t)(ẋ(t)−f (x,t)−yδ(t−t0))+x̃(t)η(t) dt−Sη[η(t)].

Noting that
∫

Dη(t)e
∫

x̃(t)η(t) dt−Sη[η(t)] = eW [x̃(t)]

is the definition of the cumulant generating functional for η(t), we find that the path
integral can be written as

P
[
x(t)|y, t0

]=
∫

Dη(t)Dx̃(t)e− ∫ x̃(t)(ẋ(t)−f (x,t)−yδ(t−t0)) dt+W [x̃(t)].

In the cases where the input η(t) is delta-correlated in time, we obtain

W
[
x̃(t)

]=
∞∑

n=1

∫
gn

(
x(t)

)
x̃(t)n dt =

∞∑

n=1,m=0

vnm

n!
∫

x̃n(t)xm(t) dt,

where we have Taylor expanded the moments of the noise distribution gn(x). For
example, for the Wiener process

W
[
x̃(t)

]= D

2

∫
x̃(t)2 dt,

i.e. v20 = D and all other vnm = 0.

3.1 Ornstein–Uhlenbeck Process

We first demonstrate the path integral approach to computing moments in SDEs for
the Ornstein–Uhlenbeck process

ẋ(t) + ax(t) − √
Dη(t) = 0

with initial condition x(0) = y. The action is

S[x, x̃] =
∫ [

x̃(t)
(
ẋ(t) + ax(t) − yδ(t − t0)

)− D

2
x̃2(t)

]
dt.
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Defining an inverse propagator

G−1(t − t ′
)=
(

d

dt
+ a

)
δ
(
t − t ′

)

the action can be written as

S[x, x̃] =
∫

x̃(t)G−1(t − t ′
)
x
(
t ′
)
dt dt ′ −

∫
yx̃(t)δ(t − t0) dt −

∫
D

2
x̃(t)2 dt,

and the generating functional is

Z[J, J̃ ] =
∫

Dx(t)Dx̃(t)e−S[x,x̃]+∫ J̃ (t)x(t) dt+∫ J (t)x̃(t) dt .

This path integral can be evaluated directly as a Gaussian integral since the action
is quadratic. However, the generating functional can also be evaluated by expand-
ing the exponent around the “free” action given by SF[x(t), x̃(t)] = ∫ x̃(t)G−1(t −
t ′)x(t ′) dt dt ′. We will demonstrate this method since it forms the basis for perturba-
tion theory for non-quadratic actions. Expand the integrand of the generating func-
tional as

Z[J, J̃ ] =
∫

Dx(t)Dx̃(t)e− ∫ dt dt ′x̃(t)G−1(t−t ′)x(t ′)

×
(

1 + μ + 1

2!μ
2 + 1

3!μ
3 + · · ·

)
, (9)

where

μ = y

∫
x̃(t)δ(t − t0) dt +

∫
D

2
x̃2(t) dt +

∫
J̃ (t)x(t) dt +

∫
J (t)x̃(t) dt.

The generating functional is now expressed as a sum of moments of the free action,
which are calculated from the free generating functional

ZF[J, J̃ ] =
∫

Dx(t)Dx̃(t)e− ∫ dt dt ′x̃(t)G−1(t−t ′)x(t ′)+∫ J (t)x̃(t) dt+∫ J̃ (t)x(t) dt . (10)

Although this integral is similar to (2), there are sufficient differences to warrant
an explicit computation. We note again that x̃ is an imaginary variable so this in-
tegral corresponds to computing a functional complex Gaussian in two fields. As
in Sect. 2, we discretize the time domain with t → tk , (x(tk), x̃(tk)) → (xk, iyk),
(J (tk), J̃ (tk)) → (Jk,Kk),

G−1
kl =

⎛

⎜
⎝

−1 + a dt ′ 1 0 · · ·
0 −1 + a dt ′ 1 · · ·
...

...
. . .

⎞

⎟
⎠
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and
∫

dt →∑
. The generating functional is then transformed to

ZF =
∫ ∏

m

dxm

∏

k

dyk

2π
e−i

∑
k yk(

∑
l G

−1
kl xl−Jk)+∑k Kkxk

=
∫ ∏

m

dxm

∏

k

δ

(∑

l

G−1
kl xl − Jk

)
eKkxk

= 1

|detG−1
kl |e

∑
kl KkGklJl .

In the continuum limit, dt → 0 and |detG−1
kl | → 1, giving

ZF[J, J̃ ] = e
∫

J̃ (t)G(t,t ′)J (t ′) dt dt ′ , (11)

where G(t, t ′) is the operator inverse of G−1(t, t ′), i.e.

∫
dt ′′G−1(t, t ′′

)
G
(
t ′′, t ′

)=
(

d

dt
+ a

)
G
(
t, t ′
)= δ

(
t − t ′

)
.

This Green’s function equation can be solved to obtain

G
(
t, t ′
)= H

(
t − t ′

)
e−a(t−t ′),

where H(t) is the left continuous Heaviside step function (i.e. H(0) = 0,
limt→0+ H(t) = 1 and thus limt→s+ G(t, s) = 1, G(s, s) = 0). The choice of
H(0) = 0 is consistent with the Ito condition for the SDE and ensures that the config-
uration variable x(t) is uncorrelated with future values of the stochastic driving term.
Other choices for H(0) represent other forms of stochastic calculus (e.g. H(0) = 1/2
is the choice consistent with Stratonovich calculus).2 Although the generating func-
tional (11) differs from those introduced in Sect. 2 because it is complex and has two
source functions J and J̃ , it still obeys Wick’s theorem.

The free moments are given by
〈∏

ij

x(ti)x̃(tj )

〉

F
=
∏

ij

δ

δJ̃ (ti)

δ

δJ (tj )
e
∫

J̃ (t)G(t,t ′)J (t ′) dt dt ′
∣∣∣∣
J=J̃=0

since ZF[0,0] = 1. We use a subscript F to denote expectation values with respect
to the free action. From the action of (11), it is clear the nonzero free moments must
have equal numbers of x(t) and x̃(t) due to Wick’s theorem, which applies here
for contractions between x(t) and x̃(t). For example, one of the fourth moments is
given by

〈
x(t1)x(t2)x̃(t3)x̃(t4)

〉
F = G(t1, t3)G(t2, t4) + G(t1, t4)G(t2, t3).

2This is also a manifestation of the normal-ordering convention chosen for the theory. Zinn-Justin [26]
refers to this as the “ε(0) problem.”
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Now the generating functional for the OU process (9) can be evaluated. The only
surviving terms in the expansion will have equal numbers of x(t) and x̃(t). Thus
only terms with factors of

∫
x̃(t0)J̃ (t1)x(t1) dt1, (D/2)

∫
x̃2(t1)J̃

2(t2)x
2(t2) dt1 dt2,

and
∫

J̃ (t1)x(t1)J (t2)x̃(t2) dt1 dt2 (and combinations of the three) will survive.
For the OU process, the entire series is summable. First consider the case where
D = 0. Because there must be equal numbers of x̃(t) and x(t) factors in any
nonzero moment due to Wick’s theorem, in this case the generating functional has
the form

Z = 1 +
∑

m=1

1

m!m!

×
∫ m∏

j,k=1

dtj dtk

〈
m∏

j,k=1

J̃ (tj )x(tj )x̃(tk)
[
yδ(tk − t0) + J (tk)

]
〉

F

. (12)

From Wick’s theorem, the free expectation value in (12) will be a sum over all
possible contractions between x(t) and x̃(t) leading to m! combinations. Thus (12)
is

Z =
∑

m=1

1

m!
(

y

∫
J̃ (t1)G(t1, t0) dt1 +

∫
J̃
(
t ′
)
J
(
t ′′
)
G
(
t ′, t ′′

)
dt ′ dt ′′

)m

,

which means the series is an exponential function. The other terms in the exponent
when D �= 0 can be similarly calculated resulting in

Z
[
J (t), J̃ (t)

] = exp

(
y

∫
J̃ (t1)G(t1, t0) dt1 +

∫
J̃ (t1)J (t2)G(t1, t2) dt1 dt2

+ D

2

∫
J̃ (t1)J̃ (t2)G

(
t1, t

′′)G
(
t2, t

′′)dt ′′ dt1 dt2

)
. (13)

The cumulant generating functional is

W
[
J (t), J̃ (t)

] = y

∫
J̃ (t)G(t, t0) dt +

∫
J̃
(
t ′
)
J
(
t ′′
)
G
(
t ′, t ′′

)
dt ′ dt ′′

+ D

2

∫
J̃
(
t ′
)
J̃
(
t ′′
)
G
(
t ′, t
)
G
(
t ′′, t

)
dt dt ′ dt ′′. (14)

The only nonzero cumulants are the mean

〈
x(t)

〉= yG(t, t0),

the response function

〈
x(t1)x̃(t2)

〉
C

= δ

δJ̃ (t1)

δ

δJ (t2)
W [J, J̃ ]

J=J̃=0 = G(t1, t2),
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and the covariance
〈
x(t1)x(t2)

〉
C

≡ 〈x(t1)x(t2)
〉− 〈x(t1)

〉〈
x(t2)

〉

= δ

δJ̃ (t1)

δ

δJ̃ (t2)
W [J, J̃ ]

J=J̃=0

= D

∫
G(t1, t)G(t2, t) dt.

Closed-form expressions for the cumulants are obtained by using the solution for
the propagator G. Hence, the mean is

〈
x(t)

〉= ye−a(t−t0)H(t − t0), (15)

the response function is
〈
x(t1)x̃(t2)

〉= e−a(t1−t2)H(t1 − t2),

and the covariance is

〈
x(t1)x(t2)

〉
C

= D

∫ t2

t0

e−a(t1−t ′)e−a(t2−t ′)H
(
t1 − t ′

)
H
(
t2 − t ′

)
dt ′.

For t2 ≥ t1 ≥ t0

〈
x(t1)x(t2)

〉
C

= D
e2a(t1−t2) − e−a(t1+t2−2t0)

2a
.

For t1 = t2 = t

〈
x(t)2〉

C
= D

2a

(
1 − e−2a(t−t0)

)
. (16)

The generating functional for the OU process could be computed exactly because the
SDE could be solved exactly. The advantage of the path integral formulation is that
perturbation theory can be applied systematically in the cases where the path integral
cannot be completed exactly.

4 Perturbative Methods and Feynman Diagrams

If the SDE is nonlinear then the generating functional cannot be computed exactly
as in the linear case. However, propagators and moments can be computed pertur-
batively. The method we use is an infinite dimensional generalization of Laplace’s
method for finite dimensional integrals [33]. In fact, the method was used to compute
the generating functional for the Ornstein–Uhlenbeck process. The only difference is
that for nonlinear SDEs the resulting asymptotic series is not generally summable.

The strategy is again to split the action S[x, x̃] = SF + SI, where SF is called the
“free” action and SI is called the “interacting” action. The generating functional is

Z[J, J̃ ] =
∫

DxDx̃e−S[x,x̃]+∫ J̃ x dt+∫ J x̃ dt . (17)
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The moments satisfy
〈

m∏

j

n∏

k

x(tj )x̃(tk)

〉

= 1

Z[0,0]
m∏

j

n∏

k

δ

δJ̃ (tj )

δ

δJ (tk)
Z

∣∣∣∣
J=J̃=0

, (18)

and the cumulants satisfy
〈

m∏

j

n∏

k

x(tj )x̃(tk)

〉

C

=
m∏

j

n∏

k

δ

δJ̃ (tj )

δ

δJ (tk)
lnZ

∣∣∣∣
J=J̃=0

. (19)

The generating functional is computed perturbatively by expanding the integrand of
(17) around the free action

Z[J, J̃ ] =
∫

DxDx̃e−SF[x,x̃]
(

1 + SI +
∫

J̃ x dt +
∫

J x̃ dt

+ 1

2!
(

SI +
∫

J̃ x dt +
∫

J x̃ dt

)2

+ 1

3!S
3
I + · · ·

)
.

Hence, the generating functional can be expressed in terms of a series of free mo-
ments.

There are two types of expansions depending on whether the nonlinearity is small
or the noise source is small. The small nonlinearity expansion is called a weak cou-
pling expansion and the small noise expansion is called a semiclassical, WKB, or
loop expansion.

4.1 Weak Coupling Expansion

Consider the example nonlinear SDE

ẋ = −ax + bx2 + yδ(t − t0) + √
Dxp/2η(t),

where a > 0, p ≥ 0, and b can be of any sign. For example, p = 0 corresponds to
standard additive noise (as in the OU process), while p = 1 gives multiplicative noise
with variance proportional to x. The action for this equation is

S[x, x̃] =
∫

dtx̃
(
ẋ + ax − bx2 − yδ(t − t0)

)− x̃2xp D

2

≡ SF[x, x̃] − yx̃(t0) − b

∫
dtx̃(t)x2(t) −

∫
dtx̃2xp D

2
, (20)

where we have defined the free action as SF[x, x̃] = ∫ dtx̃(ẋ + ax). We first perform
the weak coupling expansion explicitly and then show how the computation can be
simplified using diagrammatic methods.

The generating functional for this action is

Z[J, J̃ ] =
∫

DxDx̃e−SF[x,x̃]+∫ x̃bx2 dt+∫ x̃yδ(t−t0) dt+∫ x̃2xn(D/2) dt+∫ J̃ x dt+∫ J x̃ dt .
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The Taylor expansion of the exponential around the free action gives

Z[J, J̃ ] =
∫

DxDx̃e−SF[x,x̃]
(

1 + b

∫
x̃x2 dt + x̃(t0)y

+ D

2

∫
x̃2xn dt +

∫
J̃ x dt +

∫
J x̃ dt

+ 1

2!
(

b

∫
x̃x2 dt + x̃(t0)y + D

2

∫
x̃2xn dt

+
∫

J̃ x dt +
∫

J x̃ dt

)2

+ · · ·
)

.

Because the free action SF is bilinear in x̃, x, the only surviving terms in the
expansion are those with equal numbers of x and x̃ factors. Also, because of the
Ito condition, 〈x(t)x̃(t)〉 = 0, these pairings must come from different terms in the
expansion, e.g. the only term surviving from the first line is the very first term, re-
gardless of the value of p. All other terms come from the quadratic and higher terms
in the expansion. For simplicity in the remainder of this example we limit ourselves
to p = 0. Hence, the expansion includes terms of the form

Z[J, J̃ ] =
∫

DxDx̃e−SF[x,x̃]
(

1

+ 1

2!2
(

b

∫
x̃x2x̃(t0)y dt + b

∫
x̃x2 dt

∫
J x̃ dt

+
∫

J̃ xx̃(t0)y dt +
∫

J̃ x dt

∫
J x̃ dt

)

+ 1

3!
3!
2!b

2 D

2

∫
x̃x2 dt

∫
x̃x2 dt

∫
x̃2 dt

+ 1

3!
3!
2!

D

2

∫
x̃2 dt

∫
J̃ x dt

∫
J̃ x dt

+ 1

3!3!bD

2

∫
x̃x2 dt

∫
x̃2 dt

∫
J̃ x dt

+ 1

4!
4!
2!b
∫

x̃x2 dt
(
x̃(t0)y

)2
∫

J̃ x dt

+ 1

4!
4!

2!2!
(
x̃(t0)y

)2
∫

J̃ x dt

∫
J̃ x dt

+ 1

5!5!bD

2

∫
x̃x2 dt

∫
x̃2 dtx̃(t0)y

∫
J̃ x dt

∫
J̃ x dt + · · ·

)
.

Note that this not an exhaustive list of terms up to fifth order. Many of these terms will
vanish because of the Ito condition. The combinatorial factors arise from the multiple
ways of combining terms in the expansion. There are n! ways of combining terms at
order n and terms with m repeats are divided by a factor of m!.
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Completing the Gaussian integrals using Wick’s theorem then yields

Z[J, J̃ ] = ZF[0,0]
(

1

+ y

∫
G(t1, t0)J̃ (t1) dt1 +

∫
J̃ (t1)G(t1, t2)J (t2) dt1 dt2

+ D

∫
G(t2, t1)G(t3, t1)J̃ (t2)J̃ (t3) dt1 dt2 dt3

+ bD

∫
G(t1, t2)

2G(t3, t1)J̃ (t3) dt1 dt2 dt3

+ by2
∫

G(t1, t0)
2G(t2, t1)J̃ (t2) dt1 dt2

+ y2
∫

G(t1, t0)J̃ (t1) dt1

∫
G(t2, t0)J̃ (t2) dt2

+ 2bDy

∫
G(t1, t2)G(t1, t0)G(t3, t1)G(t4, t2)J̃ (t3)J̃ (t4) dt1 dt2 dt3 dt4

+ · · ·
)

, (21)

where the propagator is given by the free action and obeys
(

d

dt
+ a

)
G
(
t, t ′
)= δ

(
t − t ′

)
,

which is solved by

G
(
t, t ′
)= H

(
t − t ′

)
e−a(t−t ′), (22)

with H(0) = 0 as before. We also have ZF[0,0] = 1.
The moments and cumulants are obtained from (18) and (19) respectively. For

example, the mean is given by

〈
x(t)

〉 = 1

Z[0,0]
δ

δJ̃ (t)
Z
[
J (t), J̃ (t)

]
J=0,J̃=0

= yG(t, t0) + bD

∫
G(t, t1)G(t1, t2)

2 dt1 dt2

+ by2
∫

G(t, t1)G(t1, t0)
2 dt1 + · · · . (23)

The covariance is

〈
x(s)x(t)

〉 = δ

δJ̃ (s)

δ

δJ̃ (t)
Z
[
J (t), J̃ (t)

]
J=0,J̃=0

= D

∫
G(s, t1)G(t, t1) dt1 + y2G(s, t0)G(t, t0)
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+ 2bDy

∫
G(t1, t2)G(t1, t0)G(s, t1)G(t, t2) dt1 dt2

+ 2bDy

∫
G(t1, t2)G(t1, t0)G(t, t1)G(s, t2) dt1 dt2 · · · .

The first cumulant is the same as the mean but the second cumulant or covariance is

〈
x(s)x(t)

〉
C

= δ

δJ̃ (s)

δ

δJ̃ (t)
lnZ
[
J (t), J̃ (t)

]
J=0,J̃=0

= 1

Z

δ

δJ̃ (s)

δ

δJ̃ (t)
Z

∣∣∣∣
J=0,J̃=0

− δ

δJ̃ (s)
Z

δ

δJ̃ (t)
Z

∣∣∣∣
J=0,J̃=0

= D

∫
G(s, t1)G(t, t1) dt1

+ 2bDy

∫
G(t1, t2)G(t1, t0)G(s, t1)G(t, t2) dt1 dt2

+ 2bDy

∫
G(t1, t2)G(t1, t0)G(t, t1)G(s, t2) dt1 dt2 · · · . (24)

4.2 Diagrammatic Expansion

As can be seen in this example, the terms in the perturbation series become rapidly
unwieldy. However, a convenient means to keep track of the terms is to use Feynman
diagrams, which are graphs with edges connected by vertices that represents each
term in the expansion of a moment. The edges and vertices represent terms (i.e. inter-
actions) in the action and hence SDE, which are combined according to a set of rules
that reproduces the perturbation expansion shown above. These are directed graphs
(unlike the Feynman diagrams usually used for equilibrium statistical mechanics or
particle physics). The flow of each graph, which represents the flow of time, is di-
rected from right to left, points to the left being considered to be at times after points
to the right. The vertices represent points in time and separate into two groups: end-
point vertices and interior vertices. The moment 〈∏N

j=1 x(tj )
∏M

k=1 x̃(tk)〉 is repre-
sented by diagrams with N final endpoint vertices which represent the times tj and M

initial endpoint vertices which represent the times tk . Interior vertices are determined
from terms in the action.

Consider the interacting action expressed as the power series

SI =
∑

n≥2,m≥0

Vnm =
∑

n≥2,m≥0

vnm

n!
∫ ∞

t0

dtx̃nxm, (25)

where n and m cannot both be ≤ 1 (those terms are part of the free action).
(Nonpolynomial functions in the action are expanded in a Taylor series to ob-
tain this form.) There is a vertex type associated with each Vnm. The moment
〈∏N

j=1 x(tj )
∏M

k=1 x̃(tk)〉 is given by a perturbative expansion of free action moments

that are proportional to 〈∏N
j=1 x(tj )

∏M
k=1 x̃(tk)V (Nv)〉F where V (Nv) represents a
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Fig. 1 Feynman diagram
components for (a) an edge, the
propagator G(t, t ′), and vertices
(b)
∫

bx̃x2 dt ,
(c)
∫

yx̃δ(t − t0) dt , and

(d)
∫

D
2 x̃2 dt

product of Nv vertices. Each term in this expansion corresponds to a graph with Nv

interior vertices. We label the kth vertex with time tk . As indicated in equation (25),
there is an integration over each such interior time point, over the interval (t0,∞).
The interaction Vnm produces vertices with n edges to the left of the vertex (towards
increasing time) and m edges to the right of the vertex (towards decreasing times).
Edges between vertices represent propagators that arise from an application of Wick’s
theorem and thus every x̃(t ′) must be joined by a factor of x(t) in the future, i.e. t > t ′,
because G(t, t ′) ∝ H(t − t ′). Also, since H(0) = 0 by the Ito condition, each edge
must connect two different vertices. All edges must be connected, a vertex for the
interaction Vnm must connect to n edges on the left and m edges on the right.

Hence, terms at the Nv th order of the expansion for the moment 〈∏N
j=1 x(tj ) ×

∏M
k=1 x̃(tk)〉 are given by directed Feynman graphs with N final endpoint vertices,

M initial endpoint vertices, and Nv interior vertices with edges joining all vertices in
all possible ways. The sum of the terms associated with these graphs is the value of
the moment to Nv th order. Figure 1 shows the vertices applicable to action (20) with
p = 0. Arrows indicate the flow of time, from right to left. These components are
combined into diagrams for the respective moments. Figure 2 shows three diagrams
in the sum for the mean and second moment of x(t). The entire expansion for any
given moment can be expressed by constructing the Feynman diagrams for each term.
Each Feynman diagram represents an integral involving the coefficients of a vertex
and propagators. The construction of these integrals from the diagram is encapsulated
in the Feynman rules:

(A) For each vertex interaction Vnm in the diagram, include a factor of − vnm

n! . The
minus sign enters because the action appears in the path integral with a minus sign.

(B) If the vertex type, Vnm appears k times in the diagram, include a factor of 1
k! .

(C) For each edge between times t and t ′, there is a factor of G(t, t ′).
(D) For n distinct ways of connecting edges to vertices that yield the same dia-

gram, i.e. the same topology, there is an overall factor of n. This is the combinatoric
factor from the number of different Wick contractions that yield the same diagram.

(E) Integrate over the times t of each interior vertex over the domain (t0,∞).
The diagrammatic expansion is particularly useful if the series can be truncated

so that only a few diagrams need to be computed. The weak coupling expansion
is straightforward. Suppose one or more of the vertices is associated with a small
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Fig. 2 Feynman diagrams for (a) the mean and (b) second moment for action (20) with p = 0

parameter α. Each appearance of that particular vertex diagram contributes a factor
of α and the expansion can be continued to any order in α. The expansion is also
generally valid over all time if G(t, t ′) decays exponentially for large t − t ′ but can
break down if we are near a critical point and G(t, t ′) obeys a power law. We consider
the semiclassical expansion in the next section where the small parameter is the noise
strength.

Comparing these rules with the diagrams in Fig. 2, one can see the terms in the
expansions in equations (23) and (24), with the exception of the middle diagram in
Fig. 2b. An examination of Fig. 2a shows that this middle diagram consists of two
copies of the first diagram of the mean. Topologically, the diagrams have two forms.
There are connected graphs and disconnected graphs. The disconnected graphs repre-
sent terms that can be completely factored into a product of moments of lower order
(cf. the middle diagram in Fig. 2b). Cumulants consist only of connected graphs since
the products of lower ordered moments are subtracted by definition. The connected
diagrams in Fig. 2 lead to the expressions (23) and (24). In the expansion (21), the
terms that do not include the source factors J and J̃ only contribute to the normal-
ization Z[0,0] and do not affect moments because of (18). In quantum field theory,
these terms are called vacuum graphs and consist of closed graphs, i.e. they have no
initial or trailing edges. In the cases we consider, all of these terms are 0 if we set
Z[0,0] = 1.

4.3 Semiclassical Expansion

Recall that the action for the general SDE (3) is

S[x, x̃] =
∫

x̃
(
ẋ − f

(
x(t), t

))− D

2
x̃2g2(x(t), t

)
dt,
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where we make explicit a small noise parameter D, while f and g are of order one.
Now, rescale the action with the transformation x̃ → x̃/D to obtain

S[x, x̃] = 1

D

∫
x̃
(
ẋ − f

(
x(t), t

))− 1

2
x̃2g2(x(t), t

)
dt.

The generating functional then has the form

Z[J, J̃ ] =
∫

Dx(t)Dx̃(t)e−(1/D)(S[x(t),x̃(t)]−∫ J̃ (t)x(t) dt−∫ J (t)x̃(t) dt). (26)

In the limit as D → 0, the integral will be dominated by the critical points of the
exponent of the integrand. In quantum theory, these critical points correspond to the
“classical” equations of motion (mean field theory in statistical mechanics). Hence,
an asymptotic expansion in small D corresponds to a semiclassical approximation.
In both quantum mechanics and stochastic analysis this is also known as a WKB
expansion. According to the Feynman rules for such an action, each diagram gains a
factor of D for each edge (internal or external) and a factor of 1/D for each vertex.
Let E be the number of external edges, I the number of internal edges, and V the
number of vertices. Then each connected graph now has a factor DI+E−V . It can be
shown via induction that the number of closed loops L in a given connected graph
must satisfy L = I −V +1 [26]. To see this, note that for diagrams without loops any
two vertices must be connected by at most one internal edge since more than one edge
would form a closed loop. Since the diagrams are connected we must have V = I +1
when L = 0. Adding an internal edge between any two vertices increases the number
of loops by precisely one. Thus we see that the total factor for each diagram may be
written DE+L−1. Since the number of external edges is fixed for a given cumulant,
the order of the expansion scales with the number of loops.

We can organize the diagrammatic expansion in terms of the number of loops in
the graphs. Not surprisingly, the semiclassical expansion is also called the loop ex-
pansion. For example, as seen in Fig. 2a the graph for the mean has one external edge
and thus to lowest order (graph with no loop), there are no factors of D, while one
loop corresponds to the order D term. The second cumulant or variance has two ex-
ternal edges and thus the lowest order tree level term is order D as seen in Fig. 2b.
Loop diagrams arise because of nonlinearities in the SDE that couple to moments of
the driving noise source. The middle graph in Fig. 2a describes the coupling of the
variance to the mean through the nonlinear x2 term. This produces a single-loop dia-
gram which is of order D, compared to the order 1 “tree” level mean graph. Compare
this factor of D to that from the tree level diagram for the variance, which is order D.
This same construction holds for higher nonlinearities and higher moments for gen-
eral theories. The loop expansion is thus a series organized around the magnitude of
the coupling of higher moments to lower moments.

The loop expansion implies that for each order of D in the expansion, all diagrams
with the same number of loops must be included. In some cases, this could be an
infinite number of diagrams. However, one can still write down an expression for the
expansion because it is possible to write down the sum of all of these graphs as a
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Fig. 3 Bold edges represent the sum of all tree level diagrams contributing to that moment. (Top) The
mean 〈x(t)〉tree. (Bottom) Linear response Gtree(t, t

′)

set of self-consistent equations. For example, consider the expansion of the mean for
action (20) for the case where D = 0 (i.e. no noise term). The expansion will consist
of the sum of all tree level diagrams. From Eq. (23), we see that it begins with

〈
x(t)

〉= yG(t, t0) + by2
∫

G(t, t1)G(t1, t0)
2 dt1 + · · · .

In fact, this expansion will be the perturbative expansion for the solution of the ordi-
nary differential equation obtained by discarding the stochastic driving term. Hence,
the sum of all tree level diagrams for the mean must satisfy

d

dt

〈
x(t)

〉
tree = −a

〈
x(t)

〉
tree + b

〈
x(t)

〉2
tree + yδ(t − t0). (27)

Similarly, the sum of the tree level diagrams for the linear response, 〈x(t)x̃(t ′)〉tree =
Gtree(t, t

′), is the solution of the linearization of (27) around the mean solution with
a unit initial condition at t = t ′, i.e. the propagator equation

d

dt
Gtree

(
t, t ′
)= −aGtree

(
t, t ′
)+ 2b

〈
x(t)

〉
treeGtree

(
t, t ′
)+ δ

(
t − t ′

)
. (28)

The semiclassical approximation amounts to a small noise perturbation around the
solution to this equation. We can represent the sum of the tree level diagrams graphi-
cally by using bold edges, which we call “classical” edges, as in Fig. 3. We can then
use the classical edges within the loop expansion to compute semiclassical approxi-
mations to the moments of the solution to the SDE.

Consider the case of p = 0 in action (20). The one-loop semiclassical approxi-
mation of the mean is given by the sum of the first two graphs in Fig. 2a with the
thin edges replaced by bold edges. For the covariance, the first graph in Fig. 2b suf-
fices, again with thin edges replaced by bold edges. These graphs are equivalent to
the equations:

〈
x(t)

〉= 〈x(t)
〉
tree + bD

∫ t

t0

dt1

∫ t1

t0

dt2Gtree(t, t2)Gtree(t2, t1)
2 (29)
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Fig. 4 Vertex for multiplicative
noise with p = 1 in the action
(20). This vertex replaces the
one in Fig. 1d

Fig. 5 Feynman diagrams for
the linear response, 〈x(t)x̃(t ′)〉,
to one-loop order

and

〈
x(t)x

(
t ′
)〉

C
= D

∫ min(t,t ′)

t0

dt1Gtree(t, t1)Gtree
(
t ′, t1

)
. (30)

Using (30) in (29) gives

〈
x(t)

〉= 〈x(t)
〉
tree + bD

∫ t

t0

dt1Gtree(t, t2)
〈
x(t2)x(t2)

〉
C
.

This approximation is first order in D for the mean (one loop) and covariance (tree
level).

Now consider the one-loop corrections when p = 1 in action (20). First consider
the linear response, 〈x(t)x̃(t ′)〉. For simplicity, we will assume the initial condition
y = 0. In this case, the vertex in Fig. 1d now appears as in Fig. 4. The linear response
〈x(t)x̃(t ′)〉 will be given by the sum of all diagrams with one entering edge and
one exiting edge. At tree level, there is only one such graph, equal to G(t, t ′), given
in (22). At one-loop order, we can combine the vertices in Figs. 1b and 1d to get the
second graph shown in Fig. 5 to obtain

〈
x(t)x̃

(
t ′
)〉 = G

(
t, t ′
)+ bD

∫
dt1 dt2G(t, t2)G(t2, t1)

2G
(
t2, t

′)

= e−a(t−t ′)H
(
t − t ′

)[
1 + bD

(
t − t ′

a
+ 1

a2

(
e−a(t−t ′) − 1

))]
.

This loop correction arises because of two types of vertices. There are vertices that we
call “branching” (as in Fig. 4), which have more exiting edges then entering edges.
The opposite case occurs for those vertices which we call “aggregating.” Noise terms
in the SDE produce branching vertices. As can be seen from the structure of the
Feynman diagrams, all moments can be computed exactly when the deterministic
part of the SDE is linear because it only involves convolving the propagator (i.e.
Green’s function) of the deterministic part of the SDE with the driving noise term,
as in the case of the OU process above. On the other hand, nonlinearities give rise to
aggregating vertices.
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Combining the diagrams in Figs. 1 and 4, the analog to Eqs. (29) and (30) for
p = 1 are

〈
x(t)

〉= 〈x(t)
〉
tree + bD

∫ t

t0

dt1

∫ t1

t0

dt2Gtree(t, t2)Gtree(t2, t1)
2〈x(t)

〉
tree (31)

and

〈
x(t)x

(
t ′
)〉

C
= D

∫ min(t,t ′)

t0

dt1Gtree(t, t1)Gtree
(
t ′, t1

)〈
x(t)

〉
tree. (32)

Using the definition of Gtree(t, t
′), the self-consistent semiclassical approximation

for 〈x(t)〉 to one-loop order is

d

dt

〈
x(t)

〉+ a
〈
x(t)

〉− b
〈
x(t)

〉2 = bD

∫ t

t0

dt1Gtree(t, t1)
2〈x(t)

〉

or

d

dt

〈
x(t)

〉+ a
〈
x(t)

〉− b
〈
x(t)

〉2 = b

∫ t

t0

dt1
〈
x(t1)x(t1)

〉
C
.

The semiclassical approximation known as the “linear noise” approximation takes
the tree level computation for the mean and covariance. The formal way of deriving
these self-consistent equations is via the effective action, which is beyond the scope
of this review. We refer the interested reader to [26].

An alternative way of deriving the loop expansion equations is to examine devia-
tions away from the mean directly by transforming to a new variable z = x − x̄ where

x̄
def= 〈x(t)〉tree satisfies the SDE with zero noise (27). The action then becomes

S[x, x̃] =
∫

dtx̃
(
ż + az − 2x̄z − bz2)− x̃2(z + x̄)p

D

2
. (33)

The propagator for this action is now given immediately by (28). At tree level,
〈z〉tree = 0 by definition. At order D, the mean is given by the second diagram in
Fig. 2a, which immediately gives (29) and (31). Likewise, the variance will be given
by the diagram in Fig. 1d leading to (30) and (32).

5 FitzHugh–Nagumo Model

These methods can also be applied to higher dimensions. As an example, consider
the noise-driven FitzHugh–Nagumo neuron model:

v̇ = v − 1

3
v3 − w + I + v0δ(t − t0) + √

Dη(t), (34)

ẇ = c(v + a − bw) + w0δ(t − t0), (35)

where v is the neuron potential, w is a recovery variable, a, b, and c are positive pa-
rameters, D is the noise amplitude, and initial conditions are v0, w0. We will consider
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a semiclassical or WKB expansion in terms of D. We wish to compute the means,
variances, and covariance for v and w as a loop expansion in D.

We first must formally construct a joint PDF for variables v and w. As both equa-
tions in the system must be satisfied simultaneously, we write

P
[
x(t)|y, t0

] =
∫

Dη(t)δ

[
v̇ − v + 1

3
v3 + w − I − √

Dη(t) − v0δ(t − t0)

]

× δ
[
ẇ − c(v + a − bw) − w0δ(t − t0)

]
e−Sη[η(t)],

which leads to the action

S =
∫ [

ṽ

(
v̇ − v + 1

3
v3 + w − I − √

Dη(t) − v0δ(t − t0)

)
− D

2
ṽ2

+ w̃
(
ẇ − c(v + a − bw) − w0δ(t − t0)

)]
dt.

We now transform to deviations around the mean with ν = v − V and ω = w − W ,

with V
def= 〈v〉tree and W

def= 〈w〉tree, where

V̇ = V − 1

3
V 3 − W + I, (36)

Ẇ = c(V + a − bW). (37)

The transformed action is

S =
∫ [

ṽ

(
ν̇ − ν + V 2ν + V ν2 + 1

3
ν3 + ω

)
− D

2
ṽ2 + w̃

(
ω̇ − c(ν − bω)

)]
dt

which we can rewrite as

S =
∫ [∫

ψ̃T (t) · G−1(t, t ′
) · ψ(t ′)dt ′ + ṽV ν2 + 1

3
ṽν3 − D

2
ṽ2
]

dt, (38)

where

ψ =
(

ν

ω

)
, ψ̃ =

(
ṽ

w̃

)
,

G−1(t, t ′
) =

(
( d
dt

+ V 2 − 1)δ(t − t ′) δ(t − t ′)
−cδ(t − t ′) ( d

dt
+ cb)δ(t − t ′)

)
.

The propagator

G
(
t, t ′
)=
(

Gv
ν(t, t

′) Gw
ν (t, t ′)

Gv
ω(t, t ′) Gw

ω(t, t ′)

)

satisfies
∫

G−1(t, t ′′
)
G
(
t ′′, t ′

)
dt ′′ =

(
δ(t − t ′) 0

0 δ(t − t ′)

)
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Fig. 6 Vertices and propagators
for Feynman diagrams in the
Fitzhugh–Nagumo model.
(a) Propagators Gv

ν
(solid–solid), Gνw

(solid–dashed), Gv
ω

(dashed–solid), Gw
ω

(dashed–dashed), (b) vertex∫
ṽV ν2 dt , (c) vertex

∫
D
2 ṽ2 dt ,

(d) vertex
∫ 1

3 ṽν2 dt

Fig. 7 (a) Diagrammatic expansion for the mean of v(t), showing the one-loop and an example two-loop
graph. (b) Diagrams for w(t) are topologically identical with the replacement of the leftmost line by the
Gv

ω(t, t ′) propagator

or
(

d

dt
+ V 2 − 1

)
Gv

ν + Gv
ω = δ

(
t − t ′

)
, (39)

(
d

dt
+ cb

)
Gv

ω − cGv
ν = 0, (40)

(
d

dt
+ V 2 − 1

)
Gw

ν + Gw
ω = 0, (41)

(
d

dt
+ cb

)
Gw

ω − cGw
ν = δ

(
t − t ′

)
. (42)

The Feynman diagrams for the four propagators (39)–(42) and the two vertices in
the action (38) are shown in Fig. 6.

The mean of v is 〈v〉 = V +〈ν〉 and the mean of w is 〈w〉 = W +〈ω〉. The diagrams
for 〈ν〉, and 〈ω〉 are shown in Fig. 7. 〈ν〉 is given by joining the two vertex diagrams
in Figs. 6b and 6c to obtain Fig. 7a, which is topologically equivalent to the middle



Page 26 of 35 C.C. Chow, M.A. Buice

Fig. 8 (a) Diagrammatic expansion for the two-point correlation 〈v(t)v(t ′)〉, showing the tree level and
an example one-loop graph. Diagrams for (b) 〈w(t)w(t ′)〉 and (c) 〈v(t)w(t ′)〉 are topologically identical
with the replacement of the appropriate external lines by the Gv

ω(t, t ′) propagator

diagram in Fig. 2a:

〈
ν(t)
〉
t0

= −D

∫ t

t0

dt1

∫ t

t0

dt2V (t)Gv
ν(t, t2)G

v
ν(t2, t1)G

v
ν(t2, t1), (43)

where the subscript indicates that this is an ensemble average of ν(t) in the domain
[t0, t]. 〈ω〉 is given by the same diagram as 〈ν〉 except that propagator Gv

ω(t, t2) re-
places Gv

ν(t, t2):

〈
ω(t)

〉
t0

= −D

∫ t

t0

dt1

∫ t

t0

dt2V (t)Gv
ω(t, t2)G

v
ν(t2, t1)G

v
ν(t2, t1). (44)

The diagrams for the variances and covariances (two-point cumulants) are shown
in Fig. 8 The variance of v is 〈ν(t)ν(t ′)〉C in Fig. 8a is found by using Fig. 6c adjoined
to two Gv

ν propagators:

Cνν

(
t, t ′; t0

) def= 〈ν(t)ν
(
t ′
)〉

C
= D

∫ min(t,t ′)

t0

dt1G
v
ν(t, t1)G

v
ν

(
t ′, t1

)
. (45)
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The variance of w is 〈ω(t)ω(t ′)〉C in Fig. 8b is also given by Fig. 6c but adjoined to
two Gv

ω propagators:

Cωω

(
t, t ′; t0

) def= 〈ω(t)ω
(
t ′
)〉

C
= D

∫ min(t,t ′)

t0

dt1G
v
ω(t, t1)G

v
ω

(
t ′, t1

)
. (46)

Finally, the covariance of v and w is 〈ν(t)ω(t ′)〉C in Fig. 8c is given by Fig. 6c
adjoined to the Gv

ν and Gv
ω propagators:

Cνω

(
t, t ′; t0

) def= 〈ν(t)ω
(
t ′
)〉

C
= D

∫ min(t,t ′)

t0

dt1G
v
ν(t, t1)G

v
ω

(
t ′, t1

)
. (47)

To evaluate these expressions we first solve the deterministic equations (37) to ob-
tain V (t) and W(t). We then use V (t) in (39)–(42) and solve for the four propagators,
which go into the expressions for the moments. When the solutions of (37) are fixed
points, then we can find closed-form solutions for all the equations. Otherwise, we
may need to solve some of the equations numerically. However, instead of having to
average over many samples of the noise distribution, we only need to solve a small
set of equations once to obtain the moments.

Here we give the example solution for the fixed point given by the solution of

0 = V − 1

3
V 3 − W + I, (48)

0 = c(V + a − bW). (49)

The propagator equations are pairwise coupled and thus can easily be solved by
Laplace transforms or any other means to obtain

Gv
ν

(
t, t ′
) = e−r(t−t ′)

(
cos
(
Ω
(
t − t ′

))− r − bc

Ω
sin
(
Ω
(
t − t ′

)))
H
(
t − t ′

)
, (50)

Gv
ω

(
t, t ′
) = c

Ω
e−r(t−t ′) sin

(
Ω
(
t − t ′

))
H
(
t − t ′

)
, (51)

Gw
ν

(
t, t ′
) = 1

Ω
e−r(t−t ′) sin

(
Ω
(
t − t ′

))
H
(
t − t ′

)
, (52)

Gw
ω

(
t, t ′
) = −e−r(t−t ′)

(
cos
(
Ω
(
t − t ′

))+ r − bc

Ω
sin
(
Ω
(
t − t ′

)))
H
(
t − t ′

)
, (53)

where r = (1/2)(V 2 − 1 + bc),

Ω = (1/2)
√

−V 4 + 2(1 + bc)V 2 − b2c2 − 2(b − 2)c − 1.

We can now insert these propagators into the variance and covariance equations:

〈
ν(t)
〉
t0

= −DV

∫ t

t0

dt2e
−r(t−t2)

(
cos
(
Ω(t − t2)

)− r − 2bc

2Ω
sin
(
Ω(t − t2)

))

×
∫ t2

t0

dt1e
−2r(t2−t1)
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×
(

cos
(
Ω(t2 − t1)

)− r − bc

Ω
sin
(
Ω(t2 − t1)

))2

, (54)

〈
ω(t)

〉
t0

= −DV
c

Ω

∫ t

t0

dt2e
−r(t−t2) sin

(
Ω(t − t2)

)

×
∫ t2

t0

dt1e
−2r(t2−t1)

×
(

cos
(
Ω(t2 − t1)

)− r − bc

Ω
sin
(
Ω(t2 − t1)

))2

, (55)

Cνν

(
t, t ′; t0

)=D

∫ min(t,t ′)

t0

dt1e
−r(t−t1)

×
(

cos
(
Ω(t − t1)

)− r − 2bc

2Ω
sin
(
Ω(t − t1)

))
(56)

× e−r(t−t1)

(
cos
(
Ω
(
t ′ − t1

))− r − 2bc

2Ω
sin
(
Ω
(
t ′ − t1

)))
, (57)

Cωω

(
t, t ′; t0

) = D
c2

Ω2

∫ min(t,t ′)

t0

dt1e
−r(t−t1)

× sin
(
Ω(t − t1)

)
e−r(t ′−t1) sin

(
Ω
(
t ′ − t1

))
, (58)

Cνω

(
t, t ′; t0

)=D
c

Ω

∫ min(t,t ′)

t0

dt1e
−r(t−t1)

×
(

cos
(
Ω(t − t1)

)− r − 2bc

2Ω
sin
(
Ω(t − t1)

))
(59)

× e−r(t−t1) sin
(
Ω(t − t1)

)
. (60)

These expressions not only capture the stationary values but also transient effects.
The integrals can all be performed in closed form and result in long expressions
of exponential and trigonometric functions, which we do not include here. Figure 9
shows the comparison between these perturbative estimates and numerical simula-
tions for three different noise values, D = 0.001,0.01,0.015. We used the parame-
ters a = 0.7, b = 0.8, c = 0.1, I = 0, which give rise to fixed points V = −1.1994
and W = −0.62426 and propagator parameters r = 0.25928 and Ω = 0.26050. Nu-
merical simulations are averages over one million samples. The estimates fit the data
extremely well for D = 0.001 but start to break down for D = 0.01. The reason is
that the perturbation expansion is only valid in the vicinity of the fixed point but as
the noise strength increases the probability to escape from the fixed point and enter
an excitable orbit becomes significant. Phase plane portraits in Fig. 10 show that for
D = 0.001 the orbit stays near the stable fixed point but for the larger noise values,
there are large excursions away from the fixed point when the orbit crosses an “es-
cape” threshold. The probability to escape can also be estimated using path integrals
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Fig. 9 Comparison of ensemble average simulations vs. analytic expansions for the Fitzhugh–Nagumo
model. For each moment, we show the one-loop (for the mean) or tree (for the two-point cumulants) level
approximation (solid line) along with simulations for D = 0.001 (dashed line), D = 0.01 (dot–dashed
line), and D = 0.015 (dotted line). Means have been scaled by DV and two-point cumulants have been
scaled by D so they can be compared directly

and WKB theory as detailed in [13, 25]. Software for performing simulations and
integrals is available upon request.

6 Connection to Fokker–Planck Equation

In stochastic systems, one is often interested in the PDF p(x, t), which gives the
probability density of position x at time t . This is in contrast with the probability
density functional P [x(t)] which is the probability density of all possible functions
or paths x(t). Previous sections have been devoted to computing the moments of
P [x(t)], which provide the moments of p(x, t) as well. In this section we leverage
knowledge of the moments of p(x, t) to determine an equation it must satisfy. In
simple cases, this equation is a Fokker–Planck equation for p(x, t).

The PDF p(x, t) can be formally obtained from P [x(t)] by marginalizing over the
interior points of the function x(t). Consider the transition probability U(x1, t1|x0, t0)

between two points x0, t0 and x1, t1. This is equal to p(x, t) given the initial condition
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Fig. 10 Phase plane portrait for trajectories in the Fitzhugh–Nagumo model for D = 0.01 (solid line),
D = 0.015 (dashed), and D = 0.02 (dotted). For D = (0.015,0.02), one can see the large excursions
away from the fixed point which appear as the bifurcation becomes closer. These excursions contribute to
the ensemble averages and thus the divergence in the diagrammatic series

p(x, t0) = δ(x − x0). In terms of path integrals this can be expressed as

U(x1, t1|x0, t0) =
∫ (x(t1)=x1)

(x(t0)=x0)

Dx(t)P
[
x(t)

]
,

where the upper limit in the integral is fixed at x(t1) = x1 and the lower at x(t0) = x0.
The lower limit appears as the initial condition term in the action and can thus be
considered part of P [x(t)]. The upper limit on the path integral can be imposed with
a functional Dirac delta via

U(x1, t1|x0, t0) =
∫

Dx(t)δ
(
x(t1) − x1

)
P
[
x(t)

]
,

which in the Fourier representation is given by

U(x1, t1|x0, t0) = 1

2πi

∫
dJ

∫
Dx(t)eJ (x(t1)−x1)P

[
x(t)

]
,

where the contour for the J integral runs along the imaginary axis. This can be rewrit-
ten as

U(x1, t1|x0, t0) = 1

2πi

∫
dJe−J (x1−x0)ZCM(J ) (61)

in terms of an initial condition centered moment generating function

ZCM(J ) =
∫

DxeJ(x(t1)−x0)P
[
x(t)

]
,
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where the measure Dx(t) is defined such that ZCM(0) = 1. Note that this generating
function ZCM(J ) is different from the generating functionals we presented in previ-
ous sections. ZCM(J ) generates moments of the deviations of x(t) from the initial
value x0 at a specific point in time t . Taylor expanding the exponential gives

ZCM(J ) = 1 +
∞∑

n=1

1

n!J
n
〈(
x(t1) − x0

)n〉
x(t0)=x0

,

where
〈(
x(t1) − x0

)n〉
x(t0)=x0

=
∫

Dx
(
x(t1) − x0

)n
P
[
x(t)

]
.

Inserting into (61) gives

U(x1, t1|x0, t0) = 1

2πi

∫
dJe−J (x1−x0)

(

1 +
∞∑

n=1

1

n!J
n
〈(
x(t1) − x0

)n〉
)

.

Using the identity

1

2πi

∫
dJe−J (x1−x0)J n =

(
− ∂

∂x1

)n

δ(x1 − x0)

results in

U(x1, t1|x0, t0) =
(

1 +
∞∑

n=1

1

n!
(

− ∂

∂x1

)n〈(
x(t1) − x0

)n〉
x(t0)=x0

)

δ(x1 − x0). (62)

The probability density function p(x, t) obeys

p(x, t + �t) =
∫

U
(
x, t + �t |x′, t

)
p
(
x′, t
)
dx′. (63)

Inserting (62) gives

p(x, t + �t) =
(

1 +
∞∑

n=1

1

n!
(

− ∂

∂x

)n〈(
x(t + �t) − x

)n〉
x(t)=x

)

p(x, t).

Expanding p(x, t + �t) in a Taylor series in �t gives

∂p(x, t)

∂t
�t =

∞∑

n=1

1

n!
(

− ∂

∂x

)n〈(
x(t + �t) − x

)n〉
x(t)=x

p(x, t) + O
(
�t2).

In the limit �t → 0 we obtain the Kramers–Moyal expansion

∂p(x, t)

∂t
=

∞∑

n=1

1

n!
(

− ∂

∂x

)n

Dn(x, t)p(x, t) + O
(
�t2),



Page 32 of 35 C.C. Chow, M.A. Buice

where the jump moments are defined by

Dn(x, t) = lim
�t→0

〈(x(t + �t) − x)n〉
�t

∣∣∣∣
x(t)=x

. (64)

As long as these limits are convergent, then it is relatively easy to see that only
connected Feynman graphs will contribute to the jump moments. In addition, we
can define z = x − y, where y is the initial condition, z̃ = x̃ and use the action
S[z(t) + y, z̃(t)]. This shift in x removes the initial condition term. This means we
can calculate the nth jump moment by using this shifted action to compute the sum
of all graphs with no initial edges and n final edges (as in Fig. 1d for n = 2).

As an example, consider the Ito SDE (3). From the discretization (6), where h =
�t , it is found that

lim
�t→0

〈(x(t + �t) − x)n〉
�t

∣∣∣∣
x(t)=x

= lim
�t→0

〈(fi(x, t)�t − gi(x, t)wi

√
�t)n〉

�t
, (65)

which yields D1(x, t) = f (x, t), D2 = g(x, t)2, and Dn = 0 for n > 2. Thus for the
Ito SDE (3), the Kramers–Moyal expansion becomes the Fokker–Planck equation,

∂p(x, t)

∂t
=
(

− ∂

∂x
D1(x, t) + 1

2

∂2

∂2x
D2(x, t)

)
p(x, t).

We have Dn = 0 for n > 2 even though there are nonzero contributions from con-
nected graphs to these moments for n > 2 in general. However, all of these mo-
ments require the repeated use of the vertex with two exiting edges; this will cause
Dn ∝ �tm for some m > 1 and thus the jump moment will be zero in the limit.

We can envision actions for more general stochastic processes by considering ver-
tices which have more than two exiting edges, i.e. we can add a term to the action of
the form

SV [x, x̃] = 1

n!
∫

dtx̃nh(x)

for some n and function h(x). This will produce a nonzero Dn. The PDF for this
kind of process will not in general be describable by a Fokker–Planck equation, but
we will need the full Kramers–Moyal expansion. If we wished to provide an initial
distribution for x(t0) instead of specifying a single point, we could likewise add sim-
ilar terms to the action. In fact, the completely general initial condition term is given
by

Sinitial
[
x̃(t0)

]= − lnZy

[
x̃(t0)

]
,

where Zy is the generating functional for the initial distribution. In other words, the
initial state terms in the action are the cumulants of the initial distribution multiplied
by the corresponding powers of x̃(t0).

Returning to the Ito process (3), the solution to the Fokker–Planck equation can
be obtained directly from the path integral formula for the transition probability (61).
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Let lnZ[J ] be the cumulant generating function for the moments of x(t) at time t . It
can be expanded as

ZCM[J ] = exp

[∑

n=1

1

n!J
n
〈
x(t)n

〉
C

]
,

yielding

p(x, t) = 1

2πi

∫
dJe−Jx exp

[∑

n=1

1

n!J
n
〈
x(t)n

〉
C

]
.

For the Ornstein–Uhlenbeck process the first two cumulants are given in (15) and
(16), yielding (assuming initial condition x(t0) = y)

p(x, t) =
√

a

πD(1 − e−2a(t−t0))
exp

(−a(x − ye−a(t−t0))2

D(1 − e−2a(t−t0))

)
. (66)

7 Further Reading

The methods we introduced can be generalized to higher dimensional systems in-
cluding networks of coupled oscillators or neurons [16, 17, 19, 21–24]. The reader
interested in this approach is encouraged to explore the extensive literature on path
integrals and field theory. Bressloff [13] covers the connection between the path in-
tegral approach and large deviation theory. The reader should be aware that most of
the references listed will concentrate on applications and formulations appropriate
for equilibrium statistical mechanics and particle physics, which means that they will
not explicitly discuss the response function approach we have demonstrated here.
For application driven examinations of path integration there is Kleinert [11], Schul-
man [34], Kardar [27] and Tauber [12]. More mathematically rigorous treatments can
be found in Simon [35] and Glimm and Jaffe [36]. For the reader seeking more fa-
miliarity with concepts of stochastic calculus such as Ito or Stratonovich integration
there are applied approaches [3] and rigorous treatments [37] as well. Zinn-Justin
[26] covers a wide array of topics of interest in quantum field theory from statistical
mechanics to particle physics. Despite the exceptionally terse and dense presentation,
the elementary material in this volume is recommended to those new to the concept
of path integrals. Note that Zinn-Justin covers SDEs in a somewhat different man-
ner from that presented here (the Onsager–Machlup integral is derived; although see
Chaps. 16 and 17), as does Kleinert. We should also point out the parallel between the
form of the action for exponential decay (i.e. D = 0 in the OU process) and the holo-
morphic representation of the harmonic oscillator presented in [26]. The response
function formalism was introduced by Martin et al. [29]. Closely related path inte-
gral formalisms have been introduced via the work of Doi [5, 6] and Peliti [7] which
have been used in the analysis of reaction–diffusion system [8–10, 30]. Uses of path
integrals in neuroscience have appeared in [14, 15, 17–21, 23, 25].
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