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Abstract Low frequency firing is modeled by Type 1 neurons with a SNIC, but, be-
cause of the vertical slope of the square-root-like f—I curve, low f only occurs over
a narrow range of /. When an adaptive current is added, however, the f—I curve
is linearized, and low f occurs robustly over a large I range. Ermentrout (Neural
Comput. 10(7):1721-1729, 1998) showed that this feature of adaptation paradoxi-
cally arises from the SNIC that is responsible for the vertical slope. We show, using
a simplified Hindmarsh—Rose neuron with negative feedback acting directly on the
adaptation current, that whereas a SNIC contributes to linearization, in practice lin-
earization over a large interval may require strong adaptation strength. We also find
that a type 2 neuron with threshold generated by a Hopf bifurcation can also show
linearization if adaptation strength is strong. Thus, a SNIC is not necessary. More
fundamental than a SNIC is stretching the steep region near threshold, which stems
from sufficiently strong adaptation, though a SNIC contributes if present. In a more
realistic conductance-based model, Morris—Lecar, with negative feedback acting on
the adaptation conductance, an additional assumption that the driving force of the
adaptation current is independent of I is needed. If this holds, strong adaptive con-
ductance is both necessary and sufficient for linearization of f—I curves of type 2
f—I curves.
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1 Introduction

One of the striking features of neuronal spiking is that many neurons fire at low
rates near threshold and robustly resist increasing their firing rates when driven in
vitro by an applied current. In early observations Hodgkin noted that there was a
sub-population of neurons that could fire at arbitrarily low rates near threshold [1].
He called these Class I neurons to distinguish them from Class II neurons, which
have a minimum firing frequency well above 0. With properly chosen parameters,
the Hodgkin-Huxley equations can exhibit both classes of behavior, and theoretical
analysis has identified these two cases with two distinct bifurcations leading to peri-
odic solutions, saddle node on an invariant circle (SNIC) and Hopf bifurcation (HB),
respectively [2, 3]. This is an elegant classification scheme, but is of limited help in
accounting for the robustness of low-frequency firing; the firing rate is only low very
near the SNIC bifurcation because

f ) o/ (I = o),

where I — Iy is the distance from the threshold applied current [2]. In particular, the
derivative of the f—I curve is infinite at the bifurcation, so large changes in frequency
are seen with small increments of current.

An alternative approach is to focus on adaptation currents that provide negative
feedback to slow the firing rate. This respects the physiology of slow-firing neurons
and is also needed to have actual adaption—the slowing of firing rate over time during
a maintained stimulus. However, as shown in detail in [4], the presence of particular
currents (they considered the A-type K™ current) proposed by [5] is neither necessary
nor sufficient to have low-frequency firing. They again emphasized the role of SNIC
bifurcations.

The two approaches were married by theoretical analysis of HH-type models with
various adaptation currents appended [6-9]. Our starting point is [9], where it was
argued that the infinite slope of the f—I curve at the SNIC is, paradoxically, respon-
sible for the ability of the adaptation current to reduce the firing rate and, moreover,
accounts generically for the linear f—I curve of the adapted system.

We take another look here at spiking systems that have SNICs and are augmented
with a slow adaptation variable, using phase-plane and bifurcation analysis. We aim
in part to answer the question of why the lack of robustness is not merely transferred
to the parameters of the adaptation variable and identify a geometric condition for
avoiding this. We find that a SNIC in the system without adaptation does promote
linearization, but that the f—I curve in the presence of adaptation may be linear
only over a small interval unless the conductance of the adaptation current is suffi-
ciently large. Finally we find that a SNIC is not necessary; type 2 systems in which
oscillations arise from a Hopf bifurcation [2] can also show robust adaptation and
linearization, though not generally low-frequency firing, if certain conditions hold.

2 Results

We consider first a very simple model with polynomial expressions instead of ionic
currents, Hindmarsh—Rose (HR) [10], that has the essential components, a fast spik-
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Table 1 Parameter values for
SNIC and Hopf bifurcations SNIC Hopf
with Hindmarsh—Rose model

1 [0, 20] [—0.8,22]
a 1 1

b 3.5 3.5

c 1 1

d 5.5 5.5

€ 0.0005 0.00005

¢ 0.1 0.1

X —1.11 —0.63

[% 0 0.13

ing subsystem and a slow adaptation variable. The adaptation equation is linear,
which simplifies the application of averaging. We then extend the approach to a
conductance-based HH-type model, Morris—Lecar (ML) [11], by reducing it to a form
very similar to that of HR. This will show that linear adaptation, while convenient for
the analysis, is not required for the effect.

2.1 Slow Firing in the Hindmarsh—Rose Model

The slightly modified HR system we use is
dx

E=y—a(x—9)3+b(x—9)2+I—ZEF(x,y)+I—z, (1)
d

= g(c—dx’ = y) = (30 - ). 2)
dz _

E=e(s(x—x)—z), (€)

where x represents a non-dimensional membrane potential, y is a fast recovery vari-
able, like n in HH or ML, and z is a slow negative feedback variable. HR was
adapted from the Fitzhugh—-Nagumo model (FHN) to make the oscillations look more
neuronal, with brief spikes and a long interspike interval, in contrast to the square-
wave oscillations of FHN, which look more like cardiac action potentials. This was
achieved by making the y equation quadratic rather than linear. The slow variable z
is responsible for adaptation; it has also been widely used to study bursting, but that
will not be considered here.

Equations (1), (2) constitute the fast, non-adaptive spiking system (or the “un-
adapted system”). Parameters are listed in Table 1. Our main interest will be to study
how the firing rate depends on the applied current I, as modified by the adaptation
variable z. The z equation (3) is slow (¢ = 0.0005), and the adaptive current param-
eter s will be varied to study its effect on the f—I curves. X is adjusted to locate the
threshold for spiking at 7 = 0.

To illustrate the effect of adaptive currents on the firing rate curve in the x—y
phase plane, we first freeze z. When z = 0 (Fig. 1A) spiking is much faster than
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Fig. 1 Solutions of Egs. (1), (2). I =1 and z fixed at O (A and B) or 0.7 (C and D). Time courses
shown in (A and C). In the phase planes (B and C) the blue curves are the x nullclines, red curves are
y nullclines, black curves are the trajectories, labeled with slow (single arrow) and fast (double arrow)
segments. Increasing z narrows the gap between the left branches of the x and y nullclines, increasing the
period by prolonging the interspike interval

(A) (B)

I z

Fig. 2 Bifurcation diagrams for Egs. (1), (2). Bifurcation parameter / (A) or z (B). (A) The S-shaped
curve (grey) shows the steady states, stable (solid), unstable (dashed). The periodic branch (black, thick)
emerges from a Hopf bifurcation (HB) and terminates at a SNIC. (B) The diagram with respect to z is a
reflection of the one for /. In addition, the thick solid line connecting HB and SNIC shows the value of x
averaged over a spike, (x)

when z = 0.7 (Fig. 1C). The phase planes (Fig. 1B, C) show why: the gap between
the left branch of the x-nullcline and the y-nullcline shrinks when z is increased.

Hindmarsh and Rose described this as the “narrow channel” mechanism because
the trajectory is slow when it moves through the region between the nullclines. The
current view is that the narrow channel is the ghost of the SNIC created when the
nullclines become tangent at a slightly larger value of z or, equivalently, for a smaller
value of I (Fig. 2).
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Fig. 3 Adaptation and firing rate curves. (A) The unadapted f—I curve ( fo([); solid) and the steady-state
adapted firing rate curve with s =22 ( foo (1); dashed). (B)—(D): Adaptation in response to a step of / from
0 to 5 after equilibration with adaptation turned off. (B) x; (C) z; (D) frequency obtained as reciprocal of
interspike interval

2.2 Approximating the Adapted Firing Rate Geometrically

In order to study adaptation, we now let z be a slow variable, and carry out a geo-
metric fast-slow decomposition of Eqs. (1)—(3). With z dynamic, the system shows
adaptation as z increases in response to a step of I (Fig. 3B). Fig. 3A shows the f—1
curve of the fast subsystem without adaptation ( fy, solid) and the steady-state f—1I
curve when adaptation is turned on ( f, dashed). The steady-state curve consists of
the frequencies approached by the solution as + — 0o at each value of /. Figure 3A
shows the curves as a function of I extracted from the bifurcation diagram of either
the fast subsystem without adaptation or of the full system, and Figs. 3B-D show
the approach to the steady state for I = 5; the empirical frequency (reciprocal of the
interspike interval) in panel D agrees with the values predicted in panel A.

Figure 4 shows how the bifurcation diagram of x with respect to z shifts to the
right as I increases. This is evident algebraically, as the equation of the z-shaped
curve is z = F(x,y) + I = F(x, g(x)) + I, where x and y are set to steady state.
Then g—ﬁ =1, so the bifurcation diagram shifts to the right in the z—x phase plane.

We view this as a pseudo-phase plane for the full three-variable system and super-
impose the steady-state (adapted) spiking solutions, which are accurately predicted
by the intersection of the curve of average x, (x) in Fig. 4.

We can now partially answer one of the questions raised in the Introduction: what
are the conditions for adaptation to increase the robustness of slow firing? Figs. 5A,
B show that the reduction in the firing rate at steady state is greater when the slope

@ Springer



Page 6 of 21 A.S. Sherman, J. Ha

Fig. 4 Bifurcation diagram with respect to z shifts with /. The curve of average x, (x), starts at HB
to the left of the frame and terminates at SNIC. Colors correspond to / = 0.18, 3, 6, 9, left to right. The
trajectories evolve closely around the intersection points of the average curves and the z-nullcline (cyan).
x=—1.1and s =22 forall /
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Fig. 5 Effect of z nullcline slope. (A) Decreasing the slope shifts the intersections with the (x) curve.
This results in larger steady-state z and lower firing rate. Nullclines drawn for s = 2 (red), s = 22 (green),
and s = 33 (blue); (x) drawn for I = 0.18, 3, 6, 9, increasing to the right. (B) f(I) for the system without
adaptation and the three slopes in (A). (C) Least squares linear fits (thin) for the three f—I curves (thick)
in (A) over intervals of length 6 starting at the threshold for the corresponding value of s. (D) L, error for
I over intervals of length 6 (lower) and 10 (upper) as a function of s

of the z nullcline is smaller because the intersections are closer to the threshold. The
extreme case of a vertical z nullcline corresponds to s = 0 in Eq. (3), which implies
that the steady-state value of z = 0. The adapted system would then be equivalent to
(i.e. no better than) the unadapted system. Figure 5B suggests that, in addition to a
SNIC, adaptation needs to be sufficiently strong for the f—I curve to be linear over a
large region.

To investigate this quantitatively, we fit straight lines to the steady-state f—I
curves for several values of s over intervals of length 6 (Fig. 5C) or 10 and plotted the
L, error as a function of s for both long and short intervals (Fig. 5D). The error gen-
erally decreases with s, and larger s is needed for linearity over longer intervals. The
non-monotonic behavior for small s is a consequence of the shapes of the curve of
(x) and the s nullcline (Fig. SA). When s is small, the nullcline intersects the curve of
{(x) on its linear portion, which helps to linearize the adapted f—I curve. (However,
there is little reduction of firing rate, as the behavior of the f—I curve is dominated
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Fig. 6 Schematic of stretching. 80
The assumed unadapted firing

rate, fo(/) =30+/0.51 (black,

solid) and the adapted firing

rate, foo(I) = fo(I — A(I)), oof-
where A(1) =0.61 (gray,
dashed). The horizontal dashed
line is equal in length to A(7),
indicating that fno is f shifted
by A(I) (I =5 shifted back to
I =2). Thus, foo(I) can be
viewed as a stretched version of 2 LM =£,a-AWD)

SoD)

40

Frequency (Hz)

by the properties of the fast subsystem.) When s is large, the nullcline intersects the
vertical portion of (x), which again facilitates linearization. For intermediate values
of s, however, the intersections occur along the nonlinear portion of (x), especially
for larger 1, which inhibits linearization. These geometric relationships will play an
important role later, when we address systems without a SNIC.

2.3 Approximating the Adapted Firing Rate by Averaging

Figure 4 also shows that the effect of the increase in z is to walk the trajectory back
towards the threshold (SNIC). That is, following [8], we write

foo (D)~ fo(I — A(D)),

where fo(I) is the unadapted firing rate, f (/) is the steady-state adapted firing rate,
and A(/) is the adaptive current. (The function A(/) includes implicitly the more
direct dependence of the adaptive current on firing rate, f.) The walking back is il-
lustrated schematically in Fig. 6. Equivalently, this can be interpreted as saying that
the effect of A(I) (which is just z in HR) is to stretch the f—I curve, mapping the
interval of low-frequency firing near the SNIC to larger values of 1. This would both
lower and linearize the f—I curve. In the analysis below, we will relate this geomet-
ric picture to the dynamics of the system by a fast-slow analysis of the equations
(averaging), with special attention to the role of the SNIC.

The adapted firing rate predicted by the method of averaging can be expressed as

fored(D) = fo(I — A(D)). “

The approximate firing rate fpreq is calculated for HR as follows: Obtain the curve
(x)(z, 0) (thick red curve in Fig. 4A) by averaging x over a spike at z for a range of
values of z. The (x)(z, I) curves for other values of I (the other thick colored curves
in Fig. 4A) are obtained by translating (x)(z, 0) by I. Finally, the intersection of (x)
with the z nullcline is calculated. The value of z at that intersection is substituted for
A(I) in Eq. (4) to obtain fpreq(/). This should be a good approximation to the firing
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rate foo(I), which is calculated numerically by integrating the full system to steady
state, provided averaging is justified, i.e. provided ¢ in Eq. (3) is small.

Equation (4) incorporates the assumption that the firing rate depends only on the
applied current as modified by the adaptive current, A(/); in addition we assume that
A is an increasing function of I and that A(I) = 0 at the threshold value of 7, I,.. The
last is reasonable because the adaptation current responds to spike activity, and any
baseline current could be absorbed into the other currents. Our goal is to predict the
steady-state adapted firing rate but, in contrast to [8, 9], do not address the transient
approach to the steady state.

2.3.1 Taylor Expansion Method

The approach in [9] was in essence to use a Taylor series to calculate a linear approx-
imation, fiaylor, t0 fpred:

ftaylor(l) = féred(lt)(l —1). (5
Formally differentiating Eq. (4) gives
Fored @) = fo (L — A(L)) (1 = A'(1)). (6

A problem immediately arises: we don’t know a priori whether féred(l*) exists be-
cause it involves fé(l*), which is infinite because A (/) = 0 by assumption. We show
below that f’ -eq(Ix) is finite. Indeed, the heart of [9] was an argument that this infinite
derivative ofP fo at threshold is not only harmless but is exactly what is needed to lin-
earize fpred. We reproduce the argument here by formally averaging the z-equation
to estimate A’(I), which for HR is just %. The averaged equation for z is

dz _
- =<ls(t0) =% —2), )
where
1 T(z,1)
() = ()G 1) = 1)/0 *(tz, D ®)

and T'(z, I) is the period of the limit cycle for those values of z, 1.
Since we seek the effect of the adaptive current on the full system at steady state,
we set the right hand side of equation (7) to zero,

s((x)(z, 1) — %) —z=0, )

and indicate explicitly that (x) is a function of z and [ along the (x)—z curve in Fig. 4.
The solution gives the z value of the intersection of the z-nullcline with the average
curve (x).

Next, we implicitly differentiate Eq. (9) with respect to I and solve for %, which
is needed for the Taylor expansion:

d{x) 9{x)dz dz
s[5+ =) =—
al daz dlI dl
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or
d(x)
d S =
ax _ 1 (10)
dl 11— s%

Since the effects of I and z are equal in magnitude but opposite in sign we can
simplify Eq. (10) using

ax) )
9z al’
to get
d(x)
d S
L T T O (11)
dl 1452

We now substitute for A’(I) in Eq. (6):

C o= tim (1 - O 12
fpred( *)—Il)n}*fo( )( —m> (12)

again using A (1) = 0. We need the factor in big parentheses to — 0 rapidly enough
to balance fé, which — oo as I — I,. To evaluate this expression, we use the obser-
vation in [9] that, if there is a SNIC at I = [, the time-average of x is proportional to
the firing rate because the spike shape does not change much as [ increases from I;
only the interspike interval changes (increases). In other words, the integral in Eq. (8)
is nearly independent of /. These considerations give the approximation

(xX)(z, D)~ Bfoll —2), 13)

where S is constant. (Note that (x a&npears to inherit the square-root behavior of fj
near the threshold in Fig. 2B.) Thus (O H~§p fO(I ), and

sBfod) >

fpeatt Jim g0 (1 s

foD)
= lim ——————
-1, 1+ spfoD)

=— (14)

where the third line uses the assumption that lim;_,j, fé(l ) = o0 because of the
SNIC.
It is now safe to substitute in Eq. (5) to obtain

1
ftaylor(l) ~ E(I —L). (15)

Thus, ftaylor, Which is linear by construction, has a slope that decreases with s, in
agreement with Fig. 5. However, it will only be a good approximation to fpreq When
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JSpred 1s in fact nearly linear. This analysis does not tell us when that is true, but
Fig. 5D shows that f(I), which should be well approximated by fpred(/) because &
in Eq. (3) is small, may not be very linear unless s is large, and thus may not be well
approximated by fiaylor. The Taylor approximation also relies on f;(I,) = oo and so
does not account for linearization by adaptation in systems without a SNIC, which
will be illustrated below.

2.3.2 Mean Value Theorem Method

An alternative to the Taylor expansion of fyred that avoids the above problems is
to apply the mean value theorem to A(J) and show that fpeq is approximately a
stretched version of fj. Using again our assumption that A(/,) =0 we have

A=A DU — 1),

where I is in some closed interval [1., I*] and depends on I. A’(I), given in Eq. (11),
satisfies A’ (f ) — 1 as s — oo. Moreover, this convergence is uniform if we make the
mild assumption that the mean membrane potential decreases monotonically with the
adaptation current:

Claim 1 Given any interval [1,, I*] on which (x) is a monotonically decreasing func-
tion of z (cf. Fig. 5), A’(I) — 1 uniformly as s — o0

Proof: As illustrated in Fig. 5, —%;) is bounded below, and this can be assumed

to hold for any reasonable neural model. Then | — 3§—?| > K for some K > 0 and

d(x)
S
l+s%
1

9(x)
1+Sd—)](
1

1-—

|1—A'(D

1+s(—%“>)‘
1
sK’

IA

(16)

Since A’(I) is bounded by 1, Claim 1 implies that for any § > O there exists an
5o > 0 such that

(1-8=<AM=1

for all s > sg and all [ in [/, I'*]. Together with A(Z,) = O this implies that A(I) —
I — I, uniformly on [/, [*] as s — oo. Formally, for any n such that 0 < n < 1, there
exists an sg > 0 such that

A= -L)<AU)=U—-1)

forall I in [I,, I*] and s > s¢.
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Fig. 7 Predicted and actual 140 F

f—I curves. The predicted f—1 120 |

curve fpred (1) (red) estimated é\ 100 |+

by averaging is a good 5] 80

approximation to the true f—/ % 60 |
curve f(I) (green) for the HR [ 40

model. The black line is the 20 | /
unadapted firing rate, fj . e M
(s =22) 2 4 6 8 10 12 14 16 18

I

Then, assuming fj is monotonically increasing and rewriting

Jorea() = fo(I — A(D))
= fo(L.+ I — L) — A())

we have our main result:

Jo(L) < forea(D) < fo(Le + 0 = 1,)). 7)

In words, fpred is non-negative and bounded by fj evaluated at values of I scaled
back towards I,, as suggested by Fig. 6. Linearity here comes from stretching the
I axis, not from assuming that f;j(I,) = oo as in the Taylor series analysis. More-
over, the region of approximate linearity grows as s grows, consistent with Fig. 5D.
Figure 7 shows that f,eq(1) is a good approximation to f(/) over a large interval.

The arguments in this section do not rely on the SNIC property, f;(I,) = oo, but if
a SNIC is present in the unadapted system it would contribute to linearization of the
adapted f—I curve. We can see this by using the approximation (x) o« f (Eq. (13)),
which is good in the SNIC case, and rewrite A’(I) as

iy = PR

=0 (18)
1+ spfo (D)

If f(;(l*) = oo (or is large because the unadapted system is near one with a SNIC),

then fé(i ) will also generally be large, and s will not need to be large to make A’(7)
near 1.

2.4 Adaptation When the Unadapted System Does Not Have a SNIC

Figure 5 shows that having a SNIC in the unadapted HR system (Egs. (1), (2)) is
not sufficient for a linearized firing rate; the adaptation also has to be strong. In this
section we show by example, a modified HR model that lacks a SNIC, that a SNIC
is not necessary for linearization. The bifurcation diagram of the modified system
(Fig. 8) shows that the low-1 threshold is now a Hopf bifurcation (HB). As a result,
the slope % is not infinite even when s is large (Fig. 9). Nonetheless, the f—I curve
is linearized and the firing rate is robustly suppressed for large I when adaptation is
included with sufficiently large s (Fig. 10). The adapted frequency is robustly held
near the firing rate that the unadapted system exhibits at threshold, which is about

@ Springer



Page 12 of 21 A.S. Sherman, J. Ha

Fig. 8 Modified HR system
with HB instead of SNIC. Fast
subsystem bifurcation diagram
with respect to z. The change
was accomplished by shifting
the x-nullcline to the right by
0.13 (see 0 in Table 1)

Fig. 9 Curves of (x) in
modified HR with HB. Averaged
x curves, (x), (thick solid)
correspond to / = —0.8, 2.8,
and 5.8, increasing from the left.
z-nullclines (dotted) correspond
to = 20 (steeper) and 60. Other
parameters as in Fig. 8

5 Hz, rather than 0. In other examples (not shown) we have found initial firing rates
as high as 20 Hz.

2.5 Generalizing to a Conductance-Based Model

In this section, we consider a conductance-based model for adaptive current and apply
averaging to approximate the firing rate curve. The model is based on Morris—Lecar
[2, 11] with an added adaptive current, g,z(v — E), which has a gating variable z
that is slower than the other two variables, v and n:

dv
dt
d

n
2 — 8w, 19)

= —lion(v,n) +1 — gz(v — E),

140 | 1
120
100
80
60
40
20

Frequency

0 5 10 15 20
I

Fig. 10 Firing rate curves for modified HR. Adding the adaptive variable z to the modified HR system
of Fig. 8 makes the f—I curve shallow and linear. This shows that a SNIC in the unadapted system is not
necessary for adaptation and linearization, but larger s values are required (compare to Fig. 5B)
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Table 2 Parameter values for
SNIC and Hopf bifurcations SNIC Hopf
with Morris—Lecar model

1 [40,100]  [58,80]

gz 4nS 6 nS

Vg —84 mV —84 mV
vy —60 mV —60 mV
Veg  120mV 120 mV
Sk 8nS 8nS

8l 2nS 2nS

gca 4nS 4 nS

cm 22 uF 22 uF

vy —12mV —-12mV
) 18 mV 18 mV

v3 12mV 4 mV

V4 17 mV 20 mV

2 1.2

—-17 18
0.0001 0.0001

¢ 0.066667  0.066667

ST

™

dz
I = s(h(v) - Z),

where
Lion = —8caMoo (V) (V — Veg) — gan(v — vg) — g1 (v — vp),
g, n) = A(v)(noo(v) — n),
1
1~|—e_(%)’

Moo (V) = 0.5(1 +tanh<v —u ))
v

oo (V) = 0.5(1 —i—tanh(v — ”3>>,
Vs

Av) = ¢cosh<v2_ v3).

v4

h(v) =

Parameter values are in Table 2.
2.5.1 Morris—Lecar with SNIC
As noted in [9], the averaged driving force for the adaptive current, A = (v — E,), is

nearly constant as long as the spike width is small compared to the interspike interval,
which will hold if the firing rate is not too high. If we assume that A is constant, we
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can transform the system (19) into a form similar to HR by rescaling the adaptation
current using w = g,zA:

D onom)+1

dr ion(V, 11 w,

d

=g, (20)
d

d—lf = e(gzh(v)A - w).

Averaging over a spike period we have

dw

— = ¢, DA —w),

and at steady state
w=g:(h)A, 2D

which is equivalent to Eq. (9) for z in HR, except that we now have to average a
nonlinear function of v rather than v itself. As for HR, we implicitly differentiate
with respect to I to obtain

ah
do _ &A%
T TN

which is equivalent to Eq. (11) with the conductance g, of the adaptation current play-
ing the role of s in HR, and the argument used for the HR case goes through. When
g. is large, the ML system exhibits linearization and strong adaptation (Fig. 11A). As
for HR, the f—I curve predicted by averaging agrees well with the actual f—I curve
of the full system (not shown).

In order to generalize the geometrical analysis of HR in Fig. 5 to ML (Eq. (20)),
in particular to plot the w nullcline, we need to define the equivalent voltage, Vequiv,
asin [12, 13]:

1 T (w,I)
h(Vequiv(w, 1)) = T D) /0 h(v(0))dt. (22)
In addition, we need to evaluate A. Although we assumed that A was constant to
derive Eq. (20), it does vary somewhat with /. This would require using different w
nullclines for each value of /. However, we have found that it is sufficiently accurate
to choose one value for all 7, A(1,), in plotting Fig. 11B. Note that the locations of
the trajectories are accurately predicted by the intersections of the w nullclines with
Vequiv-

As in the HR case, the vequiv curve is vertical near the SNIC and for the same
reasoning evoked for Eq. (13). Also as in HR, a linear f—I curve with substantial
reduction in firing rate is obtained only when the w nullcline intersects the equivalent
voltage curve along the vertical portion (blue curves), which only happens when g, is
sufficiently large. When this holds, the w nullcline picks off equally spaced values of
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Fig. 11 Conductance-based Morris—Lecar model with SNIC and adaptive current. (A) Adaptation and
linearization of the f—I curve are seen for large adaptive conductance (g; = 4 nS, blue), but not for
small conductance (g; = 0.2 nS, red). (B) Curves of vequiy are shown for equally spaced values of I,
41,43.5,46 pA, increasing from left to right. Each trajectory evolves closely around the intersection point
of the equivalent voltage curve and the w-nullcline for each /. To keep the diagram simple, we have plotted
all the w nullclines with A = A(I,) = —54 mV
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Fig. 12 Conductance-based Morris—Lecar model with HB and adaptive current. (A) Adaptation and lin-
earization of the f—I curve are also seen in this case for large conductance (g = 6 nS, blue), but not
small conductance (g = 1 nS, red). (B) Curves of vequijy are shown for / = 58, 60, 62 pA, increasing from
left to right. Each trajectory evolves closely around the intersection point of the equivalent curve and the
w-nullcline. All w nullclines are plotted with A = A(1,) = —63 mV

w for equally spaced values of /. Assuming again that A is approximately constant,
this implies that the adaptive current is linear in /, and this in turn yields the linear
f—I curve. In fact, the adaptive current is linear for the large conductance but is
nonlinear for the small conductance (not shown).

2.5.2 Morris—Lecar with HB

As we did for HR, we modify ML so that it has an HB instead of a SNIC. Figure 12A
shows that in this case as well, the system exhibits linearization and strong adaptation
for g, sufficiently large. Also in this case, linearization results when the w nullcline
intersects the vequiv curve on its vertical portion (Fig. 12B). Because A can no longer
be assumed to be constant in the frozen system, we cannot apply the rescaling used to
obtain Eq. (20), and hence cannot use the argument of Claim 1 to predict linearization
of f—I. Also, with A non-constant, the linearity of w does not imply linearity of the
adaptive current. Nonetheless, f—I and the adaptive current are linear in / when g,
is large (the latter is not shown).
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How can the results be so similar to the SNIC case when none of the assumptions
needed to derive the properties of the SNIC case hold? One might think that it is
because the system with HB is near one with a SNIC, but the time course of V near
threshold is very different from the SNIC case—the spikes are distorted sinusoids
with no long interspike interval (not shown).

An important clue is that, even though A is not constant in the unadapted (frozen)
system for the HB case, A is very close to a constant in the adapted system for a
large range of I near threshold, and that constant is A(Z,). This can be seen from
Fig. 12A, where the adapted f—I curve for large conductance samples values of f
over I = [58, 80] that correspond to values of f achieved over I = [58, 63] in the
unadapted system. The values of A are correspondingly limited to those attained in
the unadapted system in the narrower range of /. In view of this, the near linearity
of w does imply near linearity of the adaptive current. The near constancy of A is
further demonstrated by the accurate prediction of the w locations of the trajectories
in Fig. 12B, in which the w nullclines are plotted using A(l,).

The near constancy of A in the adapted system could have been predicted a priori
because, independent of Claim 1, we should expect stretching of the f—I curve when
g is large from the diagram in Fig. 6. We do not know whether the stretching is
linear, but this observation justifies replacing (v — E;) in Eq. (19) with A(/,) for
the purpose of predicting the behavior of the full, adapted system. The argument of
Claim 1, which does not depend on a SNIC or low frequency near threshold, then
goes through, giving linear adaptive current and linear f—I for large g,.

A final point that requires explanation is why the vequiv curve has a nearly vertical
portion near the threshold in the HB case. In the SNIC case, this follows from aver-
aging (Eq. (13)) and, biophysically, from the lengthening of the interspike interval,
which decreases (V), as I — I,. This does not occur in the HB case, rather the sig-
moidal shape we assumed for & comes into play. Mean v, and hence mean 2 (RHS
of Eq. (22)), will tend to decrease as the SNIC is approached, but this increase may
be gradual. However, if 4 (v) ~ 0 for v at the threshold, which is plausible, vequiy is
forced to drop sharply to the flat region of A.

Note that in HR with HB (Fig. 9), where the activation of z is linear, Xequiv = (X),
and the drop in Xequiy is gradual. We have checked that if /2 is made linear in the
ML system (Eq. (19)), vequiv is similarly gradual (not shown). The example of Fig. 9
shows that a vertical drop in vequiv is not necessary for a linear f—I curve. We will
not attempt to account for all possible cases but conclude merely that a vertical drop
in Vequiv is not improbable in the HB case, and, if there is a vertical drop, f—I will be
linearized and stretched when g, is large enough.

3 Discussion

3.1 Context

Spike-frequency adaptation in neurons is well-studied in part because it is a basic and
ubiquitous feature of neural behavior and in part because it contributes to information

processing by networks of neurons. For example, in [6] it was shown to participate in
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forward masking, and in [14] local fatigue, which includes adaptation, was found to
be responsible for switching between percepts in binocular rivalry. This in turn has
generated interest in simplified models to facilitate simulation of large networks [8].

Others have focused on the ability of adaptation to linearize the f—I curve, be-
cause adapted neurons show this behavior and also because it has been found to have
favorable properties in artificial neural networks for learning [15]. It was argued in
[9] that linearization does not need to be imported into the system by assuming that
the adaptation current was linear, as in [6]. Rather, linearization is a natural conse-
quence of the square-root behavior of the unadapted f—I curve, which in turn comes
from the presence of a SNIC in the unadapted spiking system.

As in previous analyses, we assume that adaptation is slow so that averaging can
be applied, but we ask a different question: how does adaptation make low-frequency
firing robust, that is, how is it maintained for a large range of input current? The main
result that flowed from this question was that robustness and linearization both arise
from adaptation because it stretches out the f—I curve. In retrospect this is natural
because, as we learn in the first week of calculus, linearization is fundamentally a
matter of stretching the scale of the independent variable. The role of stretching was
previously illustrated in [8], their Fig. 8A, but was not made central to the theory.

Another way to linearize f—I curves that does not involve adaptation is noise,
which can trigger firing at sub-threshold levels of 7 and smooth out a sharp threshold.
See for example Fig. 1 in [16]. This is different in effect as well as mechanism from
adaptation in that it achieves linearization by increasing firing at low [ rather than
reducing firing rate, so we will not address it further here.

3.2 Comparison to Previous Analyses

We confirmed the results in [9] that a SNIC in the unadapted system fosters lineariza-
tion and robust reduction in firing rate. However, we showed numerically (Fig. 5D)
that, whereas any degree of adaptation will result in linearization of the f—I curve,
the size of the linear region depends continuously on the strength of adaptation
(Fig. 5D). This showed that our concern about transferring parameter sensitivity to
the adaptation equation was not unfounded and that it has a natural geometric inter-
pretation. If the conductance is too low, then the nullcline of the adaptation variable in
the Hindmarsh—Rose (HR) model will be nearly vertical (Fig. 5A), and the adapted
system will be little different from the unadapted one (Fig. 5B). Similar but more
complex graphs were made for the conductance-based Morris—Lecar (ML) model, in
which the adaptation variable nullcline is nonlinear (Figs. 11B, 12B).

For the simple case of HR, in which the adaptation current has no fast voltage de-
pendence (for example, no driving force), we showed further that a SNIC is not nec-
essary if the adaptation conductance is large. If a SNIC is present, however, it would
combine with the conductance to mediate linearization, so that the conductance need
not be as large (Eq. (18)). The role of adaptation strength is intuitively obvious, and
previously published numerical examples of linearization must have tacitly assumed
it, but this feature was not revealed in previous analyses.

For ML with a SNIC, where voltage dependence comes into the adaptation current
through the driving force (A = v — E; in Eq. (19)), we needed to assume that A is
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nearly constant. As argued in [9], this is likely to be a good approximation when there
is a SNIC because v is nearly constant during the interspike interval, which dominates
the oscillation period. If the unadapted system lacks a SNIC but is sufficiently near
one that does have a SNIC, the firing rate would be low, and A should again be nearly
constant. In [8] a more detailed analysis was carried out of this assumption and ways
in which it may fail to hold, but we limit our consideration to cases where this is not
a problem in order to focus on the essential features.

In addition to a SNIC, the analysis in [9] used the approximation that the adapta-
tion current is proportional to the firing rate, as did [6] and [8]. This approximation
was argued in [9] to follow from averaging the equation for the adaptation variable. In
[8] it was shown that this may not always hold, depending on the voltage or calcium
dependence of the adaptation current, and it was stated as a separate assumption (their
Eq. (5.5)). This assumption is equivalent to the approximation we used in recasting
the argument from [9], (x)(z, I) = Bfo({ — z) (Eq. (13)), because z is proportional
to (x). (See Eq. (9); the offset x is inconsequential as it could be absorbed into the
applied current / and shifted to the x equation.) Note that we did not use this assump-
tion in deriving the role of the adaptation conductance (Claim 1 and following text),
but only the milder assumption that (x) decreases monotonically with z.

The analysis of [9] essentially employed a linear approximation obtained by Tay-
lor expansion around the SNIC. However, the Taylor approximation is only good
when the adapted firing rate is nearly linear, and this is only assured when adaptation
is strong. In [8], it was assumed tacitly that the slope of the unadapted f—I curve is
sufficiently large in a sufficiently large neighborhood of threshold, as expected for a
SNIC.

We circumvented this difficulty by applying the mean value theorem to the adap-
tation current, rather than approximating the firing rate itself. We showed that the
adaptation current is nearly proportional to the applied current when the adaptation
conductance is large (Claim 1). Our argument provided a uniform bound on the devia-
tion from linearity as adaptation strength increases and also made the role of stretch-
ing more apparent (Eq. (17)). We did not have to make any assumption about the
frequency dependence of the adaptation current.

Our analysis of stretching applies to HR in the type 2 (HB) case, but the strength
of adaptation will generally have to be larger to achieve a linear f—I curve because
there is no help from a SNIC (Fig. 10). Also, the firing rate defended by adaptation
will not be 0, but whatever the threshold firing rate of the unadapted system happens
to be.

However, our method does not apply to conductance-based, type 2 neurons be-
cause the voltage dependence of the adaptation current (present at least in the driving
force) prevents use of the scaling argument we needed to transform the ML system
to HR form. Nonetheless, adaptation and linearization can occur for sufficiently large
adaptation conductance, as illustrated in Fig. 12. This happens because A is nearly
constant for the adapted system even though it varies in the unadapted system. That
in turn follows from the stretching, possibly nonlinear, of the f—1I curve by the adap-
tive current (Fig. 6). Finally, this allows us to replace the type 2 system by one with
constant driving force, and Claim 1 gives linear stretching as for type 1. The approx-
imation breaks down for large enough 7, but in practice it is good for a large range.
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Our formulation for conductance-based models, with an adaptation current that is
linear in a single gating variable, may not cover all possible cases, but it does include
many typical ones, including two cases considered in [8] and [9], a voltage-dependent
M-type K™ current and an AHP current with a conductance that is linear in calcium.
For adaptation currents with more complex voltage dependence, such as a slowly
inactivating Na™* current with fast gating variables, our theory may not apply even in
the presence of a SNIC because the scaling argument used to derive Eq. (20) may not
be valid even approximately.

3.3 Heuristic Summary

Consider an adaptation current of the form
A=gz(v—Ey),

where 7 is slow and has a monotonic activation function, 4 (typically a sigmoid):
z=¢(h(v) —z).

Let the unadapted firing rate be fy. The steady-state adapted firing rate f is
approximated by

fooD) = fo(I — A(D)).

WLOG let f3(0) =0 and A(0) = 0. Then, if g, is sufficiently large, A(I) = al,
where a < 1, and

fooD = fo(I(1—a)).

The larger g, is, the closer a will be to 1, and the more strongly will the I axis be
mapped toward 0, resulting in a linearized adaptation curve.

This result depends on v — E, being nearly constant, which will hold if the un-
adapted system has a SNIC; together with large g this constitutes a sufficient set of
conditions. If the unadapted system does not have a SNIC but has low-frequency fir-
ing near threshold, or an interspike interval that is much larger than the spike width,
then large g, is sufficient. Even if none of the above conditions apply, large g, may be
sufficient in many cases, as illustrated in Fig. 12. As observed in [8], there is unlikely
to be a general theory to cover all type 2 systems.

3.4 Extensions

The SNIC plus slow negative feedback scenario is general, and should apply to
many situations other than neuronal adaptation. One well-known candidate system
is ER-driven calcium oscillations, which may exhibit frequency encoding of stimulus
strength (ligand concentration) [17]. This can be achieved if the oscillation threshold
is generated by a SNIC but is not robust. It has been suggested that control of os-
cillation frequency can be made more robust by adding a slow process to inhibit the
IP3 receptor, specifically a calmodulin-dependent phosphorylation in Fig. 3B, [18].
Since calmodulin is activated by calcium, it would qualify as an activity-dependent
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adaptation process analogous to neuronal adaption, but this has not to our knowledge
been modeled in detail.

Other means of achieving robustness have been considered theoretically. One is to
average cell properties over a large population [19, 20]. That works well for a uniform
but sloppy population of cells that need to synchronize to carry out a stereotypical
task. For neuronal networks, in which individual cells may need to be constrained,
the mechanism studied here, making parameters into variables, is more appropriate.
A previous line of investigation had already introduced dynamic control of parame-
ters, but differed in locating control at the level of gene expression [21]. Such regu-
lation is slow, requiring tens of minutes to hours, whereas adaptation operates on the
sub-second time scale.

What if a given adaptation process is not sufficiently strong? One solution is to
increase the strength, but, if this is not feasible, an alternative is to make a parameter
of the adaptation process itself into another slow variable. Chaining multiple negative
feedback loops together should lead to a multiplicative improvement. This is also
appropriate from the point of view of evolution, which cannot afford to rip out the
knitting and start over. It is better to keep moving forward by adding new layers of
control.
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