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Abstract Dendritic spines are small protrusions on a neuronal dendrite that are the
main locus of excitatory synaptic connections. Although their geometry is variable
over time and along the dendrite, they typically consist of a relatively large head
connected to the dendritic shaft by a narrow cylindrical neck. The surface of the head
is connected smoothly by a funnel or non-smoothly to the narrow neck, whose end
absorbs the particles at the dendrite. We demonstrate here how the geometry of the
neuronal spine can control diffusion and ultimately synaptic processes. We show that
the mean residence time of a Brownian particle, such as an ion or molecule inside
the spine, and of a receptor on its membrane, prior to absorption at the dendritic shaft
depends strongly on the curvature of the connection of the spine head to the neck
and on the neck’s length. The analytical results solve the narrow escape problem for
domains with long narrow necks.

1 Introduction

Recognized more than 100 hundreds years ago by Ramén y Cajal, dendritic spines
are small terminal protrusions on neuronal dendrites, and are considered to be the
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Fig. 1 Upper row (from left to
right): The dendritic spine head
is connected smoothly to the
neck (the postsynaptic density is
marked red) and (right) the
connection is not smooth (from
[6]). Lower row:

A mathematical idealization of a
cross section: A cross section of
a sharp and non-sharp
connection approximating the
spine morphology.

main locus of excitatory synaptic connections. The general spine geometry consists
of a relatively narrow cylindrical neck connected to a bulky head (the round part in
Figure 1). Their geometrical shape correlates with their physiological function [1-6].
More than three decades ago, the spine-dendrite communication associated with the
particle transfer was already anticipated [7] to be mediated not only by pure diffu-
sion but it was hypothesized to involve other mechanisms such as twitching. This
idea was reinforced by the findings [8] that inside the spine, the cytoplasmic actin is
organized in filaments, involved in various forms of experimentally induced synap-
tic plasticity by changing the shape or volume of the pre- and postsynaptic side and
by retracting and sprouting synapses. The fast dendritic spine contraction was finally
confirmed in cultured hippocampal neurons [9] and consequences were studied theo-
retically in [10-12]. Interestingly, a serial electron microscopy and three-dimensional
reconstructions of dendritic spines from Purkinje spiny branchlets of normal adult
rats allowed to relate spine geometry to synaptic efficacy [1]. This image reconstruc-
tion approach leads to the conclusion that the cerebellar spine necks are unlikely to
reduce transfer of synaptic charge by more than 5-20%, even if their smooth endo-
plasmic reticulum were to completely block passage of current through the portion of
the neck that it occupies. The constricted spine neck diameter was proposed to isolate
metabolic events in the vicinity of activated synapses by reducing diffusion to neigh-
boring synapses, without significantly influencing the transfer of synaptic charge to
the postsynaptic dendrite [1].

Change of spine morphology can be induced by synaptic potentiation protocols
[13—-15] and indeed intracellular signaling such as calcium released from stores alters
the morphology of dendritic spines in cultured hippocampal neurons. These changes
in geometry can affect the spine-dendrite communication. One of the first quantita-
tive assessment of geometry was obtained by a direct measurement [16] of diffusion
though the spine neck. Using photobleaching and photorelease of fluorescein dextran,
by generating concentration gradients between spines and shafts in rat CA1 pyrami-
dal neurons, the time course of re-equilibration was well approximated by a single
exponential decay, with a time constant in the range of 20 to 100 ms. The role of the
spine neck was further investigated using flash photolysis of caged calcium [3, 17]
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and theory [18], and the main conclusion was that geometrical changes in the spine
neck such as the length or the radius are key modulator of the spine-dendrite commu-
nication [12, 19, 20], affecting calcium dynamics. However, in all these studies, the
nature of the connection between the neck and head was not considered. The theoreti-
cal studies [19, 21] considered non-smooth connection only of the head to the narrow
cylindrical neck (Figure 1) and did not account for any effect of curvature. This is
precisely the goal of this article to investigate the consequences of this connection.

The connection between the head and the neck is not only relevant for the three-
dimensional diffusion, but also essential to the analysis of other synaptic proper-
ties. Indeed, synaptic transmission and plasticity involve the trafficking of receptors
[22-27] such as AMPA or NMDA receptors (AMPARs or NMDARSs) that mediate
the glutamatergic-induced synaptic current. Single particle approaches have further
[28, 29] revealed the heterogeneity of two-dimensional trajectories occurring on the
neuron surface, suggesting that there are several biophysical processes involved in
regulating the receptor motion. In addition, the number and type of receptors that
shape the synaptic current [23] could be regulated by the spine geometry. This ques-
tion was further explored theoretically [30, 31], using asymptotic expressions for the
residence time and experimentally [32] by monitoring the movements of AMPARs
on the surface of mature neurons using FRAP. Employing a combination of confo-
cal microscopy and photobleaching techniques in living hippocampal CA1 pyramidal
neurons, a correlation between spine shape parameters and the diffusion and compart-
mentalization of membrane-associated proteins was recently confirmed [33]. Lateral
diffusion seems to be a constitutive process of AMPAR trafficking; it depends on
spine morphology and is restricted by the spine geometry [34].

In this article, we develop a method for computing the NET from composite spine-
like structures that consist of a relatively large compartment (head) €2 and a narrow
cylindrical neck of cross section |0€2, and length L (see Figure 2). Our connection
formula is given as

; _ n L? QL
Ty—>¢ = Ty— . — .
xX— 02, xX— 082 2D |8Qa|D

ey

The connection between the two parts in the context of the NET problem was at-
tempted in [21, 35] for the oversimplified model of a discontinuous connection. Here,
we study a large class of connections and reveal the role of curvature in the spine-
neck connection in regulating diffusion flux through narrow necks. More specifically,
we study here the residence time of a Brownian particle from the spine head to the ab-
sorbing end of the spine neck moving either on the surface or inside the spine. We use
the results of [36, 37] for the mean first passage time (MFPT) to an absorbing bound-
ary at the end of a cusp-shaped protrusion in the head. They account for the effects
of curvature generated by the neck-head connection in the spine. The reciprocal of
the MFPT is the rate of arrival (probability flux) of Brownian particles from the head
to the dendrite [38]. We calculate the narrow escape time (NET) from spine-shaped
domains with heads connected smoothly and non-smoothly to the neck.
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Fig. 2 The composite domain
consists of a head 2| connected
by an interface 9$2; to narrow
neck €25. The entire boundary is
reflecting, except for a small
absorbing part 92 .

aQ,
AfB
— Qz

a0

a

2 The NET from a domain with a bottleneck

We consider two- and three-dimensional composite domains €2 that consist of a head
Q1 connected through a small interface 9€2; to a narrow cylindrical neck €2;. The
boundary of €2 is assumed reflecting to Brownian particles, except the far end of €2,
denoted 9€2,, which is absorbing. For example, in Figure 2, the interface 9€2; is the
black segment AB and the absorbing boundary 9€2, is the segment CD at the bot-
tom of the strip. The NET from such a composite domain cannot be calculated by
the methods of [39—42], because the contribution of the singular part of Neumann’s
function to the MFPT in a composite domain with a funnel or another bottleneck is
not necessarily dominant. The method of matched asymptotic expansions requires
different boundary or internal layers at a cusp-like absorbing window than at an ab-
sorbing window which is cut from a smooth reflecting boundary (see [43—46]). The
methods used in [21, 35] for constructing the MFPT in a composite domain of the
type shown in Figure 1d are made precise here and the new method extends to the
domains of the type shown in Figure 1c.

First, we recount some basic facts about the NET [35, 39-41, 43-45, 47, 48]. The
NET is the MFPT of a Brownian trajectory to a small absorbing part of the bound-
ary of a domain, whose remaining boundary reflects Brownian trajectories. Refined
asymptotic formulas for the NET were derived in [42, 46, 49, 50], and were used to
estimated chemical reaction rates.

Consider Brownian motion x(#) in a sufficiently regular bounded domain €2,
whose boundary 02 consists of a reflecting part d<2, and an absorbing part 9€2,.
The expected lifetime of x(¢) in €2, given x(0) = x € , is the MFPT v(x) of x(¢)
from x to €2, is the solution of the mixed boundary value problem [38]

1
Av(x):—B for x € Q 2)
v(x) =0 forx €dQ, 3)
0
%) _ 0 forx €09, )
on

where dv(x)/dn is the normal derivative at the boundary point x. If the size of the
absorbing part €2, of the boundary is much smaller than the reflecting part 92, the
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MFPT t = v(x) is to leading order independent of x € 2, and can be represented by
the Neumann function N (x, y) as

av(x)
on

1
1?:1)(y):—5/;2N(x,y)dx—/BQ N(x,y) dSy. )

The sum of the integrals is independent of y € €2, outside a boundary layer near 92,.
The Neumann function is a solution of the boundary value problem

1

AxN(x,y)=—8(x—y)+@ forx,yeQ (6)

IN(x,

INEY) o forxed.yen %)
ony

and is defined up to an additive constant [39, 47].
2.1 The MFPT from the head to the interface

In the two-dimensional case considered in [40] the interface 9€2; is an absorbing
window cut from the smooth reflecting boundary of €21, as in Figure 1d. The MFPT
Tx—9q; 18 the NET from the reflecting domain €2 to the small interface 9€2; (of
length a), such that ¢ = w[02;|/|021| = ma/|021| K 1 (this corrects the definition
in [40]). It is given by

Q 194
[Sal, | 1|+0(1)

Tx—0Q; = n
e 7D || (8)

for x € 2 outside a boundary layer near 9€2;.

In particular, if €21 is a disk of radius R, then for x = the center of the disk,

R? R 1
Ty =7 I:log;+2log2+z+0(8)], 9

averaging with respect to a uniform distribution of x the disk

_ R? R 1
Ty»90; = —— |log — +2log2 4+ -4+ O(¢) |. (10)

D a 8
When the interface 9€2; (of length a) is located at an algebraic cusp with radius of

curvature R, (see Figures lc and 2), the MFPT is given in [36, 37] as
f:ﬁ(l—{—O(l)) for e < |0€2]. (11)
4D\/2a /R,

In the case of Brownian motion on a spherical head of the surface of revolution ob-
tained by rotating the curve in Figure 1d about its axis, €2 is a sphere of radius R
centered at the origin, connected to €2, by a circle 9€2; centered on the north-south
axis near the south pole, with small radius @ = Rsind/2. The domain €2, is a right
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Fig. 3 A surface of revolution
with a funnel. The z-axis points
down.

cylinder of radius a connected to €2 at 9€2;, and the absorbing boundary 9€2, is the
circle of radius a at the bottom of the cylinder. The MFPT from 21 to 9€2; is given
in [37, 41, 51-53] as

_ 2R? sm%
Tx—oq, = —— log —=, (12)
' D sin%

where 6 is the angle between x and the south-north axis of the sphere.
A surface of revolution generated by rotating a curve about an axis, as in Figure 3,
with a funnel of diameter ¢ can be represented parametrically as

x =r(z)cosH, y=r(z)sin(@), 0<60<2m,0<z<A, (13)

where the axis of symmetry is the z-axis with z = 0 at the top of the surface and
z = A at the end of the funnel, r is distance to the z-axis, and r = r(z) is the equation
of the generating curve. We have

r(z) =0(/7) nearz=0
r)=a+ %A -1 +40(1)) fora>0nearz=A, (14)

where ¢ has dimension of length. For &« = 1 the parameter ¢ is related to the radius of
curvature R, at z= A by £ =2R.. For o > 0 [37]

1
i ()

2D (1 +a)sin T

TesdQ; ™ (15)

where |€21] is the entire area of the surface. In particular, for « = 1 we get the MFPT

_ €21 |
Tx—0Q; ™~ DR (16)

D./2a/R,

The case o = 0 corresponds to a circular cap of a small radius a cut from a closed
surface.

The MFPT of Brownian motion from a solid ball €21 to a disk 9€2; of small radius
a near the south pole is given by [42]

_ IQll a R
Tesa = 12D [ + —log— +o (Elog E)] a7n
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(note that the MFPT is independent of x up to second order, see [46]). For a general
three-dimensional domain, €27 the MFPT to a circular cap 9€2; cut from a smooth
boundary is given by [42]

o] LR 02|11
X0 = 40D 2 19|
(18)
[0€2; ] [0€2; | o(1)
+ol, w=log | —— )| +—,
(\/wsm &\ jo%] D
where Ly, R, are the principal curvatures at a point x, and |d2;| = wa? is the area

of the circular cap.
When the interface 92; is a circular disk of radius a at the end of an axisymmetric
solid funnel, the MFPT is drastically affected and changes to

fx_ﬁm:i Re v |Ql|(]+0(])) fora < R., (19)
o2 \a R.D

where R, is the radius of curvature at the end of the funnel [37].

3 Connecting a head to a narrow neck

We consider Brownian motion in a domain €2 that consists of a head, which is a reg-
ular bounded domain €21, and a narrow neck €2,, which is a right circular or planar
cylinder of length L, perpendicular to the boundary d€2;, and of radius a (see Fig-
ure 2). Thus, the interface 9€2; between the head and the neck is a line segment, a
circle, or a circular disk, depending on the dimension. We assume that 0€2; — 9€2;
is reflecting and that the other basis of the neck, 92, C 9€2;, is absorbing for the
Brownian motion. The length (or area) |9€2;]| is given by

a for a line segment
|0R2;] = 1 2mra for acircle (20)
mwa®  for adisk.

The MFPT 17,_, 5q, can be represented as [54], [38, Lemma 10.3.1, p. 388]
Ty, = Te—sdQ; T 109,00 » (21)

where the MFPT 70, 50, 1S Tx—oq,. averaged over d€2; with respect to the flux
density of Brownian trajectories in €21 into an absorbing boundary at 0<2; (see [38]
for further details).

First, we calculate Tyq, 30, and the absorption flux at the interface. In the nar-
row neck €2, the boundary value problem (2)—(4) can be approximated by the one-
dimensional boundary value problem

Du,, =—1
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u(0) =0, u(L)=ug,

where the value at the interface u(L) = u g is yet unknown. The solution is given by

22
u(z) = ————4—Bz, (22)
so that
L2
L)= =———+ BL, 23
u(l)=ugy 2D+ (23)

which relates the unknown constants B and u# . The constant B is found by multi-
plying Equation 2 by the Neumann function N (x, y), integrating over 21, applying
Green’s formula, and using the boundary conditions (3) and (4). Specifically, we ob-
tain for all y € 9%2;

v = [ Newax- [ NepBEas s o [ ey
Y="D ol Y 9 ¥ on il Je, -

Approximating, as we may, v(y) ~ u(L) and using (23), we obtain

L? 1 dv(x)
_E+BL__E Q]N(x y)dx—[ N(x, )—de
(25)

+ —— v(x)dx.
[€21]

Because v(x) is the solution of the boundary value problem (2)—(4) in the entire
domain 2 = ;] U 2,, the meaning of (25) is the connecting rule (21), where

1
Ty s dQy = = v(x)dx (26)
* 1211 Je,
To; -0, = (L) 27

dv(x)
3 (28)

_ 1
Tx—0Q; :_B/ N(x,y)dx —
Q 02

Equation 26 gives the MFPT, averaged over €2;. The averaging is a valid approxi-
mation, because the MFPT to 9€2; is constant to begin with (except in a negligible
boundary layer). Equation 27 is the MFPT from the interface to the absorbing end
02, of the strip, and (28) follows from (5).

Matching the solutions in €2 and €25 continuously across 9€2;, we obtain the total
flux on 0€2; as

0
J=D/ g“M&=—«m+mm, (29)
AQ: Vv
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Noting that dv(x)/dn = —u’(0) = — B, we get from (20) and (29) that

€21 -
— 4+ — for a line segment
aD + D &
Q L
B=— 2|7mll|) + = D for a circle (30)
121} + — for acircular disk
wa’D D .

Finally, we put (21)—(30) together to obtain

[$21]L
19Q,1D

Tx 590 = Tx— 0 + — + 31

The MFPT 17, _, 3q; is given by (8)—(19) above.
3.1 The NET from two- and three-dimensional domains with bottlenecks

The expression (31) for the NET from a domain with a bottleneck in the form of
a one-dimensional neck, such as a dendritic spine, can be summarized as follows.
Consider a domain 2 with head €2; and a narrow cylindrical neck €2 of length L
and radius a. The radius of curvature at the bottleneck in smooth connecting funnel
is Rc. In the two-dimensional case

Sal, 8¢l O 1€21]L
nD a "D 2D aD
planar spine connected to the neck at a right angle

7T|S21| |QI|L
(1 +o (1))+ toD

planar spine with a smooth connecting funnel
Teag, =1 |Qu | sing L2 |Q|L (32)
27D F5ind " 2D 2maD
spherical spine connected to the neck at a right angle
@ (§)" T 12 L
2D (1 +a)sin 7 2D 2maD
14+«

spherical spine with a smooth connecting funnel,

where R is the radius of the sphere, a = Rsin§/2, and 6 is the initial elevation angle
on the sphere. If |[21| > aL and L > a, the last term in (32) is dominant, which is
the manifestation of the many returns of Brownian motion from the neck to the head
prior to absorption at d€2, (see an estimate in [19]). The last line of (32) agrees with
the explicit calculation in [37].

The NET of a Brownian motion from a three-dimensional domain 2 with a bot-
tleneck in the form of a narrow circular cylinder of cross-sectional area wa? is given
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2.5
2000f
2,
1500}
— 15}
= z
2 1000} 9
& e 4
0 L L s
0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

neck radius a(um) neck radius a(um)

Fig. 4 Left: The NET of Brownian motion on a sphere with a bottleneck connected by a smooth funnel to
the neck (dashed line), and with a non-smooth connection (continuous line). Right: The NET of Brownian
motion in a ball with a bottleneck connected by a smooth funnel to the neck (dashed line), and with a
non-smooth connection (continuous line).

by

'1+ a_| R +0(1)+L2+|91|L

_ 0 JE— - _

| 7R & D 2D ma’D
solid spherical head of radius R connected to the

neck at a right angle

[S21]
4aD

|9n'L%@x+R» 992, |2
4aD 27 v/
) o |aszl|+0 |852a|10 10€2,]
Tx—>09, = g |08, (0821 ] ¢ |0€21 | (33)

o . L? L L
D 2D  mwa’D
a general head connected to the neck at a right angle

1 (RN 9] L* QL
(I+o(h)+ 5+

V2 \a R:D wa’D
a general head connected smoothly to the neck by
a funnel,

where R, is the curvature at the cusp. The order 1 term can be computed for the
sphere using the explicit expression of the Neumann-Green function [46]. Figures 4
and 5 show the NET for various parameters, such as the neck length and radius.

Finally, the influence of the neck length on the residence time is shown in Figure 5:
changing the neck length modulates dramatically the residence time. Interestingly, the
geometry of the connection affects much significantly the dimension two rather than
that the three dimensional Brownian motion.
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Fig. 5 Effect of modulating the neck length. The geometry is the same as in Figure 4.

4 Discussion and conclusion

We have shown that the mean residence time (or flux) of Brownian particles inside a
spine-like structure or on its surface depends strongly on the geometrical properties
of both head and neck. Surprisingly, it also depends strongly on the smoothness of
the connection between the two.

The application to a freely diffusing AMPA receptor, which is responsible for the
excitatory synaptic current, shows that its motion on the spine membrane is strongly
restricted by dendritic spine geometry. Our results can be used to estimate the res-
idence time of the receptor on the membrane if interactions with any scaffolding
molecules are neglected (the latter are mostly concentrated in a local microdomain
called the PSD). Using Equation 32 for non-smooth geometry (Figure 1b) and for
a spherical head of radius R = 1 um, a neck length L =1 um, a neck radius
a =0.1 um, and a diffusion coefficient D = 0.1 umz /s, we obtain from the third
line of Equation 32 that the residence time is 7op & 260 s, while for a smooth con-
necting geometry (Figure 1a) with a curvature radius of R, = 1 um at the connecting
neck-head t2p & 1150 s (line 2 in Equation 32). Evidently, the residence time is more
than doubled, leading to the conclusion that there is a significant difference between
the function of spines with smoothly and non-smoothly connected necks. We con-
clude from this analysis that an AMPA receptors that do not interact with the PSD
stay on a typical dendritic spine between one and a half to 5 min on average and this
residence time is controlled mostly by the geometrical properties of the spine.

We now consider the residence time for freely diffusing particles such as
molecules, mRNA, and ions (e.g., calcium) inside a dendritic spine. For a calcium
ion, the diffusion constant is about D¢, = 400 ,um2 /s [12]. Calcium ions that exit the
spine only to the dendrite shaft at the end of the neck, but not through exchangers,
give the following residence time estimates. Using formula 33 for a non-smooth con-
nection between the spine head and the neck, we obtain that 73p &~ 195 ms (line 1),
while for a smooth connection with radius of curvature 1 pm, the residence time is
73p &~ 820 ms (line 3 in Equation 33). Interestingly, the mean residence time is tripled
from the non-smooth to a smooth connection.
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A remaining open question is to extend the present analysis to the case where many
binding molecules can trap receptors. This effect should be expected to significantly
increase the residence time inside a dendritic spine, as has already been observed in
[55] for the case of a receptor inside the PSD. The present mathematical analysis of
the residence time provides a solution to the narrow escape problem for domains with
bottlenecks [21, 35]. Other generalizations of this study is to include the dynamics of
many receptors [30, 56] or/and to study dendritic trafficking [57].

There are many other factors that affect the spine-dendrite communication with re-
spect to calcium. This includes calcium pumps, endogenous buffers, calcium stores,
the number and rates of exchangers. These mechanisms affect the residence of cal-
cium in spines [58—60] and it would be interesting to add them in the present analysis.
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