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Abstract A major obstacle in the analysis of many physiological models is the is-
sue of model simplification. Various methods have been used for simplifying such
models, with one common technique being to eliminate certain ‘fast’ variables using
a quasi-steady-state assumption. In this article, we show when such a physiological
model reduction technique in a slow-fast system is mathematically justified. We pro-
vide counterexamples showing that this technique can give erroneous results near the
onset of oscillatory behaviour which is, practically, the region of most importance in a
model. In addition, we show that the singular limit of the first Lyapunov coefficient of
a Hopf bifurcation in a slow-fast system is, in general, not equal to the first Lyapunov
coefficient of the Hopf bifurcation in the corresponding layer problem, a seemingly
counterintuitive result. Consequently, one cannot deduce, in general, the criticality of
a Hopf bifurcation in a slow-fast system from the lower-dimensional layer problem.
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1 Introduction

Many models of physiological processes have the feature that one or more state vari-
ables evolve much faster than the other variables. Classic examples are neural activ-
ities such as bursting and spiking, and intracellular calcium signalling [1]. In many
of these models, the time scale separation becomes apparent in the form of a small
dimensionless parameter (often denoted by ¢) after non-dimensionalisation of the
model that brings it into a standard slow-fast form:!

x'=f(x,z; 1, ),
(1)

7 =eg(x,z; 1, &),

where x € R¥ denotes the fast (dimensionless) state variables, z € R! denotes the
slow (dimensionless) state variables, 1 € R™ denotes (dimensionless) parameters of
the model, prime denotes differentiation with respect to the fast (dimensionless) time
scale ¢, and ¢ < 1. Such a model has an equivalent representation on the slow time
scale T = et, obtained by rescaling time and given by

ex = f(x,z; 1, &),
. ()
z=g(x,z; 1, ),

where the overdot denotes differentiation with respect to the slow time scale . Mod-
els with this feature are called singularly perturbed systems and one can exploit the
separation of time scales in the analysis of these (k 4 /)-dimensional models by split-
ting the system into the k-dimensional fast subsystem obtained in the singular limit
& — 0 of (1) and known as the layer problem, and the one-dimensional slow subsys-
tem obtained in the singular limit ¢ — O of (2) and known as the reduced problem.
The aim is to make predictions about the dynamics in the full model based on what is
seen in the lower-dimensional fast and slow subsystems. Geometric singular pertur-
bation theory (GSPT) [2-9] forms the mathematical foundation behind this approach
and it is a well-established tool in the analysis of many multiple time scales problems
in the biosciences (see, e.g., [1, 10-12]).

Perhaps the best-known instance of the use of GSPT in this way is the analysis
of the famous Hodgkin-Huxley (HH) model of the (space-clamped) squid giant axon
[13] by FitzHugh [14, 15]. The HH model is a four-dimensional conductance-based
model in which two state variables (the inactivation gate of the sodium channel /2 and
the activation gate of the potassium channel n) have slow kinetics compared to the
other two fast state variables (the membrane potential V and the activation gate of the
sodium channel m). Thus, it is possible to split the analysis of this four-dimensional
problem into a two-dimensional layer problem and a two-dimensional reduced prob-
lem which are amenable to phase-plane analysis. Concatenation of solutions of these
two subsystems then allows an explanation of the genesis of, e.g., action potentials
observed in the full model.

1Identifying such a single separation and grouping the state variables roughly into slow and fast families
often is a difficult part of the model analysis.
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FitzHugh [15] and Nagumo [16] introduced a Van der Pol-type two-dimensional
model reduction (the now famous FHN model) which captures the essential quali-
tative dynamics of the HH model. Rinzel [17, 18] then performed a physiological
model reduction of the HH equations to a model with one slow (r) and one fast (V)
state variable that also retained the qualitative behaviour of the neural dynamics ob-
served. Rinzel’s first reduction step is to relax the fast gate m instantaneously to its
quasi-steady-state value m = mq, (V). This model reduction ‘technique’ of relaxing
fast gates to their quasi-steady-states is used in many conductance-based models. In
this article, we will show when such a reduction step is mathematically justified and
point out some potential problems of this technique.

The second reduction step used by Rinzel is based on a numerical observation
about the dynamics of the slow variables, namely that there seems to be a (linear)
functional relation along the attractor between n and & such that one can replace n by
a function of & (FitzHugh [15] observed this as well). This step has no mathematical
justification but the two-dimensional model obtained in this way still describes the
basic HH model dynamics well. Of course, some transient features of the original
model are lost [19] as well as possible chaotic behaviour [20, 21]. These transient
features might become important when one models coupled cells where such intrinsic
transient dynamics might play a role in forming new attractors.

In many physiological models, we are interested in the onset of oscillations, i.e. in
the existence and criticality of Hopf bifurcations. The existence and location of any
Hopf bifurcations in a model can easily be established by computing the eigenvalues
of the system linearised about the equilibrium solutions; a Hopf bifurcation occurs
generically when a pair of eigenvalues crosses the imaginary axis under parameter
variation. However, determination of the criticality of a Hopf bifurcation typically is
more complicated. For a general system, criticality of a Hopf bifurcation is computed
using centre manifold theory to reduce the problem to a two-dimensional system,
valid near the Hopf bifurcation, and then doing calculations on the model restricted
to this two-dimensional centre manifold. These calculations determine the so-called
first Lyapunov coefficient for the Hopf bifurcation [22, 23], the sign of which deter-
mines whether or not the Hopf bifurcation is supercritical, i.e. which side of the Hopf
bifurcation the oscillations appear and whether they are stable on the centre mani-
fold. It is desirable that model reductions be performed in such a way that a Hopf
bifurcation in the full model corresponds to a Hopf bifurcation in the reduced model
and that the criticalities of the bifurcations in the full and reduced models match. We
will point out where model reductions may have pitfalls in this respect.

For a physiological model given as a singularly perturbed system (1), there is an
added complication related to a Hopf bifurcation. Suppose the full system possesses
a Hopf bifurcation that persists in the singular limit as a Hopf bifurcation of the layer
problem (for k > 2). We may want to know if one can relate the criticality of the Hopf
bifurcation obtained in the layer problem to the criticality of the Hopf bifurcation in
the full problem. Care needs to be taken because, very near the Hopf bifurcation, the
time scale associated with the bifurcating directions (i.e. corresponding to the real
part of the complex conjugate pair of eigenvalues) will be comparable with the time
scale(s) associated with the slow variable(s), which can give rise to problems if we
wish to apply GSPT.
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In this article, we focus on the criticality of Hopf bifurcations in typical physi-
ological models with multiple time scales. We show that in some cases in which a
Hopf bifurcation involves the fast variables, all the information needed to determine
the criticality of the bifurcation is contained in the fast subsystem but in other cases
there is crucial information in the slow dynamics that can change the criticality of the
Hopf bifurcation, a seemingly counterintuitive result.

The outline of this article is as follows. In Section 2, we look at a model reduction
technique widely used in the analysis of physiological models that can be written
as slow-fast systems, and determine conditions under which the use of this tech-
nique can be rigorously justified by centre manifold theory. In Section 3, we focus
on Hopf bifurcations in slow-fast systems. After reviewing the general procedure for
computing the criticality of a Hopf bifurcation (Section 3.1), we show that the physi-
ological model reduction technique considered in Section 2 can change the criticality
of a Hopf bifurcation, so that the criticality of a Hopf bifurcation in a model may
not match the criticality of the corresponding Hopf bifurcation in the reduced model
(Section 3.2). We go on to show that there are potential traps in determining the crit-
icality of a Hopf bifurcation when we try to apply GSPT; the criticality of a Hopf
bifurcation in the layer problem may not match that of the corresponding Hopf bi-
furcation in the full system (Section 3.3), although matters are more straightforward
when there is no Hopf bifurcation in the layer problem (Sections 3.4 and 3.5). We il-
lustrate our results with numerical examples throughout Section 3. Section 4 contains
some conclusions.

2 A physiological model reduction technique for slow-fast systems

In this section, we outline a model reduction technique widely used in physiological
models that are modelled as slow-fast systems, and find conditions under which the
use of this technique is justified. Many physiological models, including many neural
and calcium models, contain gating variables m = (m1, ..., m;) which are thought
to evolve on a time scale which is fast compared with other processes. In these cases,
a classic first step is to set the fast gating variables to their quasi-steady-state values,
and thereby reduce the dimension of the model by the number of gating variables
treated in this way. In this section, we show that this procedure can sometimes be
justified by centre and invariant manifold theory.

Specifically, we are concerned with physiological models that are described in
dimensionless form by singularly perturbed systems of the form

V= fu,m,n, e,
ml:h(v’m’rl’l'l” S)’ (3)
n'=eg(v,m,n,u, e,
where (v,m) € R x R/ = R¥ are the fast variables, n € R! are the slow variables,
f, g and h are order-one vector-valued functions, € R™ are system parameters,

prime denotes differentiation with respect to the fast time 7 and ¢ < 1 is the singular
perturbation parameter reflecting the time scale separation. In neural models, v will
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typically represent voltage, while in calcium models, v might represent the cytosolic
calcium concentration. In biophysical (conductance-based) models, m represents the
fast gating variables and n represents the slow gating variables. In calcium models,
the total calcium concentration might also be included in the slow variables n.

By taking the singular limit ¢ — 0 in (3), we obtain the layer problem, which
possesses, in general, an /-dimensional manifold of equilibria called the critical man-
ifold,”

So:={(w,m,n): f(v,m,n, 1, 0) = h(v,m,n, u,0) =0},

We are interested in different cases, depending on whether or not the critical manifold
is normally hyperbolic, and, if it is not normally hyperbolic, the way in which it fails
to be normally hyperbolic.

Assumption 1 The critical manifold So is normally hyperbolic, i.e. all eigenvalues
of the (k x k) Jacobian matrix of the layer problem evaluated along Sy,

J_<%f Dmf>
Lh  Dyh

have real parts not equal to zero.

So

Fenichel theory [2, 3] applies under this assumption and we have the following
result:

Proposition 1 Given system (3) under Assumption 1, then there exists an -
dimensional invariant manifold S given as a graph (v,m) = (V(n,,u, g), M(n,
W, €)). This invariant manifold is a smooth O(g) perturbation of Sy. System (3)
reduced to S; has the form

i=g(V(n, &), M(n, u, ), n, 1, €), 4

where the overdot denotes differentiation with respect to the slow time scale T = ¢t.
Since Sg is a regular perturbation of So, the slow flow (4) on S; is a regular O(¢g)
perturbation of the reduced flow on Sy given by

i=g(V(n,u,0), M(n,u1,0),n,uw,0). Q)

If we assume that Sy is normally hyperbolic with all eigenvalues having real part
less than 0, then Proposition 1 implies that a model reduction onto the slow manifold
Se will cover the dynamics of the model after some initial transient time. In a bio-
physical model that would imply that the reduction of the fast gating variables m and,
e.g., voltage or cytosolic calcium concentration v to their quasi-steady-state values is
correct to leading order of the perturbation, i.e. it correctly describes the flow on Sp.

2Note that this manifold also represents the phase space for the slow variables # in the other singular limit
problem on the slow time scale T = ¢t, the reduced problem.
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Unfortunately, most physiological models have a critical manifold that is not nor-
mally hyperbolic and the reduction technique that Proposition 1 suggests is not (glob-
ally) justified. In the following, we focus on the two main cases that cause loss of
normal hyperbolicity of Sy: a fold or a Hopf bifurcation in the layer problem.

Assumption 2 The Jacobian of the layer problem evaluated along So, i.e. the (k x k)-
matrix
, ( 3wl Duf )
- 9
351 Dmh
has a zero eigenvalue along F := {(v,m,n) € Sp : det(J) =0, rank(J) = j=k — 1}

which is an (I — 1)-dimensional subset of So. We further assume that the other j
eigenvalues all have real parts less than 0 along Sy.

So

Generically, the manifold Sy is folded near F if the following non-degeneracy
conditions are fulfilled (evaluated along F):

Wi [(DE (o) (D) e, w1 #0,  wi - [Dy(f, )] #0 (6)

where w) and w; denote the left and right null vectors of the Jacobian J. Without loss
of generality, we assume that the (j x j) sub-matrix D,,h of the Jacobian J has full
rank j. This implies that the right nullvector w; of J has a non-zero v-component,
i.e. the nullspace is not in v = 0.

Next we make use of the fact that the determinant of the Jacobian J can be calcu-
lated by

det(J) =det(D,,h) - det (if — Dmf(Dmh)_lih>
av v

which follows from the block structure of J and the Leibniz formula for determi-
nants. By Assumption 2, det(J) = 0 along F. Since D,,h has full rank, det(D,,h) # 0
along F. Hence, the second determinant

3 )
det (—f - Dmf(Dmh)—l—h) =0
ov v

along F which implies that > f — Dy, f(Dyh)~':2h = 0 along F (because it is
a scalar). This reflects the zero eigenvalue of J. Since det(D,,h) # 0, it also fol-
lows from the implicit function theorem that h(v,m,n, u,e) = 0 can be solved
for m = M (v, n, u, €). Note that in neural models this functional relation is auto-
matically given by the quasi-steady-state functions m; = M; (v, n, i, &) = m; o (v),
i=1,...,J, for the fast gating variables.

In the following, we generalise a result that was presented in [19] for the HH
model (compare also with general results on systems with folded critical manifolds
in [9]).

Proposition 2 Given system (3) under Assumption 2, then there exists an (I + 1)-
dimensional centre manifold W€ in a neighbourhood of the fold F given as a graph
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m= M(v, n, i, ). System (3) reduced to W€ has the form

U/ = f(v’ M(v’ n’ /J/7 8)7 n7 l‘l’a 8)5
N @)
n' =eg(v,M(v,n,pu,e),n, [, e).

Since the right nullvector w; has a non-zero v-component it follows that the one-
dimensional centre manifold of the layer problem of (3) is (locally) given as a graph
over the v-space. Thus, the corresponding (/ + 1)-dimensional centre manifold of the
full system (3) is also (locally) given as a graph m = M(v, n, u, €). Introducing the
nonlinear coordinate transformation # = m — M (v, n, 1, €) to system (3) gives

vV =f(v,mW,m,n,un,&e),n, K1, s,

m' =h,m,m,n, u,€),n, Wk, &)
3 . .
—8—M(v,n,,u,s)f(v,m(v,m,n,u,s),n,,u,s), ®)
v

—eD, M (v, n, (1, 8)g(v, m(v, i, n, 1, €),n, w, €,

n' =eg(v,m(,m,n, pu,e),n,p1,e),

where the (I + 1)-dimensional centre manifold is now aligned with 7 = 0. Hence, the
flow on the (I + 1)-dimensional centre manifold is given by system (7). This proves
the assertion.

Note that, in general, M # M i.e. solving the equation i (v, m, n, u, ) =0 for
m = M (v,n, i, e) does not yield the centre manifold for any ¢, including & = 0.
Thus, the dynamics of the reduced system obtained using the quasi-steady-state re-
duction is, in general, different to the dynamics of the full system reduced to the cen-
tre manifold. The difference between M and M is due to two terms: an g-dependent
term that tends to zero in the singular limit and a term that is due to f. This last term
will vanish on the critical manifold (where f = 0) and so on the critical manifold,
M — Mase—0.

In summary, we have shown that making a quasi-steady-state approximation can
be mathematically justified if the critical manifold is normally hyperbolic (Proposi-
tion 1) or if it loses normal hyperbolicity in a simple fold and we are concerned with
dynamics near the fold only (Proposition 2). In these cases, quantitative changes may
be introduced by the approximation but the qualitative features of the dynamics will
be preserved.

2.1 The Hodgkin-Huxley model

As an example of such a model reduction, we look again at the HH model which
models the space-clamped squid giant axon. This model is a four-dimensional system
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that in dimensionless form is given by

ev' =1 —mPh(v — Eng) — @un* (v — Ex) — g1(v — EL) = S(v,m,n, h),

, 1 )
em = ‘Emtm( )(moo(v) — m) = M(U, m)’
h' = ———(hoo(v) —h) = H (v, h) ©)
Thin (U) o ’ s
;1 )
n = m(noo(v) — n) = N(U, I’l),

where the fast variables are v and m (dimensionless membrane potential and activa-
tion gate of the sodium channel) and the slow variables are . and n (inactivation gate
of the sodium channel and activation gate of the potassium channel). The quantity 7 is
the bifurcation parameter (and is proportional to the applied external current /), and
expressions for the functions m e, (v), neo (v), hoo (v), etc. and the values of constants
used in (9) are given in the Appendix.

It was shown in [19] that the two-dimensional critical manifold is cubic-shaped
in the physiologically relevant domain of the phase space, with two fold-curves F*,
attracting outer branches and a middle branch of saddle type. Furthermore, the vec-
tor field has a three-dimensional centre manifold m = M (v,n, h, &) along each fold
curve F*, which is exponentially attracting. Hence, Proposition 2 can be applied and
the vector field reduced to the centre manifold near each fold F* is given by

eW=i—M%vnhemw—EM»—ng—Ew—@w—Em,

= o ( )( oo (V) —h), (10)

1
n' = 1) (noo (V) — n).

One of the classical reduction steps in the literature is to use the quasi-steady-state
approximation m = mq,(v) rather than perform the full centre manifold reduction
m = M shown above. We have to expect quantitative changes in the reduced model
(i.e. in Equations (10) with M(v, n, h, ) replaced by mso(v)) compared to the full
HH model (9), and such changes are in fact observed. For example, (9) has a sub-
crltlcal Hopf bifurcation for 7 = 9.8 uA/cm (i.e. I=0. 00082) while (10) with
M= Moo has a subcritical Hopf bifurcation for I = 7.8 uA/ cm? (i.e. I =0.00065).
We note that the Hopf bifurcation of (9) is in the vicinity of the fold curve for suffi-
ciently small ¢, because in the singular limit the bifurcation is a singular Hopf bifur-
cation [19, 24]. Thus, the Hopf bifurcation in (9) is in the regime covered by Proposi-
tion 2. Further discussion of this type of Hopf bifurcation is contained in Section 3.4.

3 Hopf bifurcation in slow-fast systems

In the previous section, it was shown that the quasi-steady-state reduction technique is
mathematically justified in a slow-fast system if the critical manifold is normally hy-
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perbolic or if we are interested in the dynamics near a simple fold of the critical man-
ifold. In this section, we show that the model reduction technique discussed above,
when applied to slow-fast systems with a Hopf bifurcation, may lead to changes in the
criticality of the Hopf bifurcation. From a dynamical systems point of view, it is well
established that misleading results can be obtained if a proper centre manifold reduc-
tion is not performed prior to the identification of bifurcations [22, 23]. However, in
the context of biophysical systems, model variables often have a direct physiological
meaning and so it is tempting to try to avoid making coordinate transformations that
combine the variables into physically ambiguous combinations. (Transformations re-
quired for centre manifold reductions are frequently of this type.) Unfortunately, this
has resulted in some erroneous conclusions in the literature about the criticality of
Hopf bifurcations in some biophysical models, as we will show in this section.

We then go on to show that there can be problems with the use of GSPT in
analysing models with Hopf bifurcations, and in particular show that the critical-
ity of a Hopf bifurcation in a full slow-fast system may not match the criticality of
the corresponding Hopf bifurcation in the associated layer problem. This last result is
independent of whether a quasi-steady-state assumption or other reduction technique
has been used prior to applying GSPT.

3.1 Computing the criticality of a Hopf bifurcation

We first give a brief review of the general procedure for computing the criticality of
a Hopf bifurcation. The criticality of a Hopf bifurcation is determined by the sign
of the first Lyapunov coefficient of a system near a Hopf bifurcation [23, 25, 26].
Specifically, consider a general system

x' = f(x; ),

with x € R", u € R and with a Hopf bifurcation at x = 0, u = fi. Write the Taylor
expansion of f(x; 1) at x =0 as

1 1
F6; 1) = Ax + S B(x, ) + £ Cx,x, ) + o(lxIh,

where A is the Jacobian matrix evaluated at the bifurcation, and B(x,y) and
C(x,y, z) are multilinear functions with components

n 2 ~
°fi; )
Bi(x,y) =) —I=—|  xw, (1)
P 08,08 £=0
n 3 ~
9 fi: 1)
Cix,y, =Y —=—|  XYiim (12)
Myt 085 0510&m 60
where j =1,2,...,n. Let ¢ € C" be a complex eigenvector of A corresponding to

the eigenvalue iw, i.e. Ag =iwgq. Let p be the associated adjoint eigenvector, i.e.
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peC’and AT p=—iwp, (p,q) =1.Here (p,q) = p’ ¢ is the usual inner product
in C". Then the first Lyapunov coefficient for the system is defined as

1
h=o- Re[(p.C(q.9.9)) —2(p. B(q. A"'B(q.§)))
® (13)

+(p, B@q, Qiwl, — A)"'B(g,9)))],

where [, is the n x n identity matrix. If /; < 0 the Hopf bifurcation is supercritical and
produces periodic solutions that are stable on the two-dimensional centre manifold
corresponding to the Hopf bifurcation. If /; > 0, the Hopf bifurcation is subcritical
and the associated periodic orbits are unstable within the centre manifold.

3.2 Hopf bifurcations and model reduction

Here we are concerned with physiological models that are of the same form as (3)
except that v is now in R? instead of in R. Specifically, we are interested in models
that are described in dimensionless form by singularly perturbed systems of the form

vV = f(v,m,n, u,e),
m =h(v,m,n, u,¢), (14)

n'=eg(v,m,n, u, e,

where (v, m) € R2 x R/ = R¥ are the fast variables, n € R! are the slow variables,
f, g and h are order-one vector-valued functions, i € R™ are system parameters
and ¢ < 1 is the singular perturbation parameter reflecting the time scale separation.
Without loss of generality, we fix m — 1 parameters, and consider Hopf bifurcations
that occur as the other parameter, which we denote by v, is varied.

Assumption 3 System (14) possesses a non-degenerate Hopf bifurcation at v = ,.
Specifically, for sufficiently small €:

(a) there exists a family of equilibria (v(v, e),m(v, e),n(v, €)), for v in a neigh-
bourhood of Vg, such that the Jacobian matrix has a pair of eigenvalues, A1 (v)
and 2 (v), with A1 (Dg) = A2 (D) = iw where w = O(1), while the other (k — 2)
eigenvalues associated with the fast components of the vector field all have real
parts of order O(1), which we assume to be negative;

(0) 5 Re(hp)ly=p, = O(1) #0;

(©) l1(e) = O(1) # 0, where 1} is the first Lyapunov coefficient associated with the
Hopf bifurcation;

(d) the bifurcation parameter v persists in the singular limit ¢ — 0, i.e. v appears
explicitly in the layer problem.

The condition w = O(1) ensures that the Hopf bifurcation is in the fast variables.
Thus, there is a Hopf bifurcation for v = Dy in the singular limit system of (14), the
layer problem.> We assume, without loss of generality, that the complex eigenvector

3In fact, there will be a manifold of Hopf bifurcations in the layer problem, one associated with each
choice of the (fixed) slow variables. We are concerned only with the Hopf bifurcation of the distinguished
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g € CK of the eigenvalue iw in the layer problem of (14) has non-zero entries in
the first two fast components of the vector field, v € R?, i.e. we associate the Hopf
bifurcation with the direction of v.

A natural first step in determining the criticality of the Hopf bifurcation in the full
system (14) might be to reduce the dimension of the model by setting the fast gating
variables m € R/ to their quasi-steady state as described in Section 2. Since D,,h
is invertible we can invoke the implicit function theorem and solve 4 = 0 for m =
M (v, n, u, ). Again, we can introduce a coordinate change m =m — M (v, n, i, €).
However, this process need not correspond to a proper centre manifold reduction
as in the case of a folded critical manifold. In general, one also has to introduce new
coordinates 9 € R? to align the centre manifold with 7 = 0. Hence, a reduction of the
fast gating variables m alone typically changes the first Lyapunov coefficient which
might change the criticality of the Hopf bifurcation, so that the Hopf bifurcation in
the full system is subcritical while the Hopf bifurcation in the lower-dimensional
system is supercritical (or vice versa). This effect is independent of whether the Hopf
bifurcation involves fast or slow variables.

3.2.1 The Chay-Keizer model
An example in which we get such a change of criticality is the Chay-Keizer model of

a pancreatic B-cell [27]. This minimal biophysical model was originally developed
as a system of five ordinary differential equations:

dv _ _K,C Cc -
Cn—— = —Ica(V) — (gKn“ + g—) (V= V) = gL(V — VL) + Lpp,

dt Ki+c

dn

i a,(1 —n) —byn,

dm

E =auy(1 —m) — bym, (15)
h (1 —h) — byh

L —a(l—=h) — ,

dt h h

dc

i f(=kilca(V) —kcc),

where V represents the membrane potential, n the activation gate of a potassium
channel, m and & the activation and inactivation gates of a calcium channel and ¢ the
cytosolic concentration of free calcium. The quantity Icy(V) = gCam3h(V — Vca) 18
the calcium current and I, is an applied external current and is also the bifurcation
parameter. The other parameter values and the functions a,, b,, etc. are specified in
the Appendix. A straightforward numerical bifurcation analysis of system (15) using
the software package AUTO [28] shows that there are two Hopf bifurcations, with a
subcritical Hopf bifurcation at I, A~ 0.4419, as shown in Fig. 1.

equilibrium in the layer problem obtained from taking the branch (v(v, ), m(v, €), n(v, €)) in the limit
g — 0.
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10

(8) proeseeeeereeeoo

%0 10° 10" Paa 0.441 0.442  0.443  0.444
applied current (mA) applied current (mA)

Fig. 1 Bifurcation diagrams for two versions of the Chay-Keizer model: the full five-dimensional model,
Equations (15) and the reduced three-dimensional model obtained by setting m and & equal to their
quasi-steady-state values. The position of the equilibrium solutions is the same in both models and is
indicated by the pink dot-dash curve. The black dashed curve shows the maximum voltage attained on
a branch of periodic solutions in the full model, while the red solid curve shows the maximum voltage
attained on the corresponding branch of periodic orbits in the reduced model. (b) An enlargement of part
of (a), near the left pair of Hopf bifurcations.

On the other hand, in [29], the authors simplify the five-dimensional Chay-Keizer
model by setting the gating variables m and & equal to their quasi-steady-state values,
i.e. they choose

an(V+V)
m= =meo(V),
am(V+V)+by(V+V)
b ap(V+V" = hoo(V)

apn(V+V)+b(V+V)

assuming implicitly that these gates have fast kinetics. Numerical bifurcation analysis
of the corresponding three-dimensional system that results from this process reveals
that this reduced model has a supercritical Hopf bifurcation at I,pp ~ 0.4429. Thus,
the reduction of the dimension of this system by removing (fast) gating variables
changes the criticality of the Hopf bifurcation;* if an aim of analysis is to deter-
mine the criticality of Hopf bifurcations, then this type of reduction should not be
attempted.’

Fig. 1 also shows that both versions of the model have a second Hopf bifurcation
at much higher applied current. In both cases, this is a supercritical bifurcation but
the value of the parameter at the bifurcation differs significantly between the models.
Thus, the model reduction used also has the effect of making a significant change to
the amplitude of the oscillations and the range of values of the applied current for
which the oscillations occur.

4Note that the reduction of the gates (m, n) or (h, n) would remove the Hopf bifurcation from the model.

5Tt should be mentioned that the widely used three-dimensional model captures the most important dy-
namical feature of pancreatic B-cells, namely their bursting behaviour.
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3.3 Hopf bifurcation in the full slow-fast system versus the layer problem

A second potential trap in determining the criticality of a Hopf bifurcation in system
(14) comes when we try to apply GSPT. From Assumption 3 it follows that a Hopf
bifurcation in the full system will persist in the singular limit as a Hopf bifurcation
in the layer problem. It might be tempting to proceed by determining the nature of
the Hopf bifurcation in the layer problem and then asserting that the Hopf bifurcation
in the slow-fast system will be of the same type. However, the existence of a Hopf
bifurcation satisfying Assumption 3 automatically implies that the critical manifold
of the full system is not normally hyperbolic near the bifurcation, and, hence, that
Fenichel theory [2] is not applicable. In this case, there is no guarantee that complete
information about bifurcations in the full system can be obtained from analysis of the
layer problem alone.

Let us revisit the Chay-Keizer model (15). If we assume that ¢ is a slow variable
and (v, m, h, n) are fast variables, as is usually done in the literature, then the layer
problem is four-dimensional. Numerical bifurcation analysis of the layer problem
shows that it has a supercritical Hopf bifurcation at I, ~ 0.4427. Again, the criti-
cality of the Hopf bifurcation has changed: the criticality of the Hopf bifurcation in
the layer problem is not the same as the criticality of the corresponding Hopf bifur-
cation in the full system. At first glance, this result seems counterintuitive since one
does not expect that the small (O (¢)) terms of the slow ¢ equation in (15) play an
important role in the calculation of the first Lyapunov coefficient.

In the following, we show how these small O(g) terms can be significant in de-
termining the criticality of a Hopf bifurcation in a slow-fast system. In particular, we
show that calculating the first Lyapunov coefficient /1 (¢) of a Hopf bifurcation in the
full system and then taking the limit ¢ — 0 does not give the Lyapunov coefficient I
of the Hopf bifurcation in the corresponding layer problem, i.e. in general,

lim /1 (e) #1, . (16)
e—0
3.3.1 First Lyapunov coefficient for a three-dimensional problem

Consider the system of equations

x'= fi(x,y,z 1, 8),
V= falx,y, 2 1, ), (17)
7 =eg(x,y,z, 1, 8),

where x,y,z € R, u € R is the bifurcation parameter, ¢ is a small parameter and
f1, f>» and g are O (1) smooth functions. Then, x and y are fast variables and z is a
slow variable. Suppose that Assumption 3 is fulfilled for system (17) - thus system
(17) and the corresponding layer problem both have Hopf bifurcations. Furthermore,
we assume that (0, 0; 0, jig, 0) is the Hopf point of the layer problem. Note that the
position of the Hopf point in phase and parameter space can vary with €, by O(¢g),
and so the Hopf bifurcation value u = fi. of the full system is, in general, different
to the bifurcation value p = fip of the layer problem. More importantly, we show
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that the O(¢) terms in the slow equation can produce an O(1) change in the first
Lyapunov coefficient which in turn may lead to a change of the criticality of the Hopf
bifurcation in the full system compared with the criticality of the associated Hopf
bifurcation in the layer problem. This means that analysis of the layer problem alone
is not sufficient to determine the dynamics associated with the Hopf bifurcation.

Since the Hopf point of the layer problem is (0, 0; 0, f19, 0), it is straightforward
to use the formulae in Section 3.1 to compute the first Lyapunov coefficient (13) for
the Hopf bifurcation in the layer problem for (17), i.e. for the system

x'= filx,y;z,1,0),
/ (18)
Y = falx,y; 2z, 1,0).

It is convenient for what follows to introduce some notation. The Jacobian matrix,
A, at the Hopf point, and its inverse A;l are

1 _
Aa:<a11a12>’ A;1:_2< axn 6112)’
arz) an) wz \ —ax ail
with a1 +ax =0and ajjayn —arjap = a)(% > 0. Let g, = (q1, g2) be a (right) eigen-
vector of A, corresponding to the eigenvalue iw, and let p, = (p1, p2) be the cor-
responding adjoint (or left) eigenvector. Then, defining B, and C, as in Section 3.1

(with the subscript merely denoting that they are the B and C multilinear forms cor-
responding to the same system as A,), the first Lyapunov coefficient (13) is

Re[(l’aa Ca(Gas9a>qa)) — 2{Pa> Ba(qa, A;lBa (a, 9a)))

lig =
Wq

+ (Pas Ba(u, Qiwglr — Aa) "' Ba(gas a)))]-

We now return to the full system (17). The Jacobian matrix at the Hopf point will
have the form

a1 +0(e) ax+0(e) ap

ail+0() ap+0(e) a3
Ac = s
easy eaz £azs

where the matrix has a purely imaginary eigenvalue i w, with wf = wi + O(¢). The
inverse matrix AC_1 is given by

oy [ @@+00 —an+0(1) 0@
A;1=—2< —az1 + 0(1) ari + 0(1) 0(8_1)>,
“e \(a31 +k1an)0(1) (a3 +kaz)O(1) O™

where k1 and kp are O(1) coefficients. We note that the position of the Hopf bifurca-
tion point can vary with ¢ and thus the entries in the corresponding (2 x 2)-submatrix
of the Jacobian A, may differ (by at most O(¢)) from their values in the Jacobian A,
of the layer problem.

A (right) eigenvector of A, corresponding to the eigenvalue iw. is given by
qge = (q1 + O(e),q2 + O(¢), O(e)) with adjoint (or left) eigenvector p. = (p1 +
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0(e), p2+0(¢e), p3+ O(¢)). Note that p3 = O (1), since it satisfies ajz p1 +ax3 p2 +
iwep3 =0 to leading order.

Our aim is to calculate the difference of the first Lyapunov coefficients for the full
and layer problems, i.e. [1.(g) — i1a~ We have C.(q¢, gc,qc) = (0(1), O(1), O(¢))
which gives

(Pa> Ca(qa,qa>qga)) — (Pc, Ce(ges ges qc)) = O(&). (19)

We also have B (qc. Gc) = (O(1), O(1), O(¢)) and A7 !Be(ge, gc) = (O(1), O(D),
O (1)) from which follows that

(Pas Ba(@as A7  Ba(qa, Ga))) — (Pes Be(@es AT Be(qe, Ge))) = O(1).  (20)

Similarly, we obtain that

(Pa> Ba(Gus Qiwalr — Ag) "' Ba(qa, 94)))

_ 2n
—<Pc, Bc(‘]c» (Ziwc[3 - Ac)ich(QCv QC))> =0(1).
Combining all these results, we find that
lie(e) — l1a = O(1). (22)

Thus, /;. may not tend to [ 1a as € — 0. In other words, an O(¢) perturbation to
Equations (17) can yield an O (1) difference in the first Lyapunov coefficient, which
may induce a sign change.

It is worth having a closer look to see what causes this O(1) difference in (22).
Note that (19) only contributes an O (e) perturbation to the Lyapunov coefficient.
Thus, third-order terms in (x, y, z) of the function g have no influence on the result.
On the other hand, linear and second-order terms in (x, y, z) of the function g are re-
sponsible for the O (1) difference in (20) and (21). To be more precise, the quantities

9 _ gy 08 g Vg g i i
ax = 31> 5y =32, 5255 gyoy and oy evaluated at the Hopf bifurcation are respon-

sible for this discrepancy. So, if these five terms do not exist, or vanish at the Hopf
bifurcation, then the terms (20) and (21) are of O(¢) and the Lyapunov coefficient
l1c(e) is an O (e) perturbation of fla.

These results have significant consequences for computation of the criticality of
the Hopf bifurcation for (17). Specifically, the O(1) difference found above may re-
sult in a sign change of the first Lyapunov coefficient, so that the Hopf bifurcation in
the layer problem may be supercritical while the Hopf bifurcation in the full system
is subcritical (or vice versa). Thus, we see that, in general, it is not possible to pre-
dict the criticality of a Hopf bifurcation in a slow-fast system with two or more fast
variables in the limit ¢ — 0 simply by observing the criticality of the associated Hopf
bifurcation in the layer problem. However, in the special case that the component of
the vector field associated with the slow variable is sufficiently aligned with the cen-
tre manifold of the full system (17) then there is no such difficulty; the criticality of
the Hopf bifurcations in the ¢ = 0 limit of the full system and in the layer problem
will match.
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Table 1 Parameters of the simplified Atri model, Equations (23).

o ks ky kp ®1 %3 T Y

0.05s~! 20.0s~! 20.0s7! 20.0s~! 2.0 uM 1.0 uM 205! 5.0

3.3.2 Application to a model of intracellular calcium dynamics

To see how these results apply to a specific model with two fast and one slow vari-
ables, we consider a simplified version of a model of calcium oscillations [30]. In
this model, oscillations in the concentration of free cytoplasmic calcium arise via se-
quential release and uptake of calcium to and from the endoplasmic reticulum (ER).
Release of calcium from the ER is through inositol trisphosphate receptors (IPR,
which are also calcium channels) and uptake of calcium into the ER is via calcium
ATPase pumps, or SERCA pumps. Calcium can also enter from the outside, and is
pumped out across the plasma membrane of the cell by other ATPase pumps.

In the original model of Atri et al. [30], the SERCA and plasma membrane pumps
were modelled as saturating Hill functions of the calcium concentration. In addition,
release of calcium through the IPR was modelled by assuming fast activation of the
IPR by calcium followed by slower inactivation.

However, to construct the simplified model used here much of this complexity
has been discarded, while keeping the essential qualitative features of the model.
Thus, firstly, calcium release through the IPR is modelled by a combination of Hill
functions, one of them delayed via the dynamic variable, n. The steady-state flux
through the IPR is thus a biphasic function of the calcium concentration, as in the
original Atri model, but the functional form is as simple as possible. Secondly, the
calcium pumps are modelled as linear functions of the calcium concentration. These
assumptions result in the following model:

2

. c
¢= <oz +kfﬁn> (cc — (¥ + Do) — kse + e(Jin — kpo),
C +(ﬂ1

) 1< @2 ) (23)
n=-— —-nj,
T\¢2+cC

¢t =¢e(Jin —kpo),

where values of all the system parameters are given in Table 1. In this model, ¢
represents the concentration of free calcium in the cytosol, ¢; is the total number
of moles of calcium in the cell, divided by the cytoplasmic volume, and » is the
proportion of IP3 receptors that have not been inactivated by calcium. This simplified
version of the Atri model captures the qualitative features that are important to our
discussion, but has a much simpler functional form than the full model, making it
easier to work with. In this way, it bears the same relationship to a more complex
calcium oscillation model as does the FitzHugh-Nagumo model to the HH model.
The Atri model is known to be a multiple time scale system, and some results have
been established about the utility of GSPT for explaining the dynamics of both the
full and simplified versions of the model [31-33]. For the values of the parameters
used here, the right-hand sides of the ¢, 7 and ¢, equations, respectively, are O(1),

@ Springer



Journal of Mathematical Neuroscience (2011) 1:9 Page 17 of 22
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5 8 1 14 g 17 5.2 5.7 62 j 67

Fig. 2 Partial bifurcation diagram for the simplified Atri model, Equations (23) with various values of &
and other parameter values as in Table 1. The pink (solid) curve shows the position of the unique equilib-
rium of the model. This equilibrium has two Hopf bifurcations (labelled HB), with the equilibrium being
of saddle type for parameter values between the two Hopf bifurcations and being stable otherwise. The
remaining curves show the maximum c-values attained by the periodic orbits created in the Hopf bifurca-
tions, for three choices of ¢, i.e. ¢ =0 (layer problem), ¢ = 104 and & = 10~2 on the black solid, red
dashed and blue dotted curves, resp. (b) Enlargement of the marked rectangle in (a). Note that the left-most
Hopf bifurcation in (a) is subcritical when ¢ = 0 but supercritical for all &€ > 0.

O (1) and O(e), respectively, and so the model has two fast variables and one slow
variable when ¢ < 1. (Note that Ji, ~ 5 at the Hopf bifurcation of interest; see Fig. 2.)

Part of the bifurcation diagram for this model is shown in Fig. 2, for three different
choices of ¢. The model has a unique equilibrium when ¢ 5 0, the position of which
does not depend on ¢. This equilibrium has two Hopf bifurcations at parameter values
that depend on ¢; we are interested in the criticality of the left-most Hopf bifurcation.

As can be seen in Fig. 2, the left-most Hopf bifurcation for this model is subcritical
in the layer problem but supercritical for the full problem for the two non-zero choices
of & shown. It can be shown that the Hopf bifurcation is in fact supercritical for all
choices of small €, not just the values shown. Inspection of Equations (23) shows that
the differential equation for the slow variable ¢ contains a term that is linear in ¢, one
of the fast variables, and this feature is not changed by the transformation required to
shift the branch of equilibria to the origin (which is linear for the ¢ component). As
discussed at the end of Section 3.3.1, we can thus expect an O(1) difference between
the first Lyapunov coefficients for the Hopf bifurcations in the layer system and the
full system, and there is no reason to expect the criticality of the Hopf bifurcations to
be the same for the full system and the layer problem. Knowledge of the dynamics in
the layer problem is therefore insufficient to predict the criticality of the Hopf bifur-
cation in the full system. The Chay-Keizer model discussed above provides another
example of a specific model with the same difficulty.

3.4 Hopf bifurcation involving both fast and slow variables
In a range of biophysical systems, including HH-type neuronal models such as sys-
tem (9) and a variety of calcium models such as those in [32], Hopf bifurcations in

the full system are found in the neighbourhood of a fold of the critical manifold So,
as defined by Assumption 2. In such cases, Assumption 3 is automatically violated,
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and neither the fast nor slow subsystem has a Hopf bifurcation; instead the Hopf
bifurcation involves both fast and slow variables. This implies that the pair of com-
plex conjugate eigenvalues associated with the Hopf bifurcation is A; and A, with
A (L, &) = A (fl, €) = iw, where w = O(/e) and so the Hopf bifurcation vanishes
in the singular limit. This special type of Hopf bifurcation is known as a singular
Hopf bifurcation [34-36] and it is closely related to the notion of canard explosion
and type II folded saddle-node singularities in GSPT; we refer the reader to the liter-
ature on this subject [5, 19, 37]. Since the singular Hopf bifurcation vanishes in the
singular limit, it is mandatory to calculate the criticality of the Hopf bifurcation for
& # 0 and we do not run into the same problem as in the previous case study; we are
not tempted to use the first Lyapunov coefficient from the singular limit to predict the
value of /1 in the full system, since it is zero in the singular limit and clearly non-zero
in the full system.®

3.5 Hopf bifurcation in the slow subsystem

The case of Hopf bifurcation in the slow subsystem is trouble free for a singularly
perturbed system (2) under Assumption 1 that the critical manifold Sp is normally
hyperbolic. In this case, the eigenvalues are A = +iw with w = O(¢), Proposition 1
applies and the slow flow on the slow manifold S, is given by (4) which is a regular
perturbation of the reduced flow (5), a remarkable insight from Fenichel’s study. It
now follows from the regular perturbation structure of the slow flow (4) that if we
have a Hopf bifurcation in the reduced problem (5) then it persists generically as a
Hopf bifurcation in the full problem (2). Furthermore, the first Lyapunov coefficient
[1(¢) is a regular perturbation of the singular limit value /; (0). Criticality of the Hopf
bifurcation in the full system is then as in the reduced problem, the slow subsystem.’

If, on the other hand, the critical manifold loses normal hyperbolicity at the Hopf
bifurcation, then we are dealing with a more degenerate bifurcation: a ‘fold-Hopf’-
type bifurcation in the case where the critical manifold is folded and a ‘Hopf-Hopf’-
type bifurcation in the case of a simultaneous Hopf bifurcation in the layer problem.
These cases are outside of the scope of this article and we do not consider them
further.

4 Conclusions

In this article, we have discussed some difficulties that may arise when computing the
criticality of Hopf bifurcations in slow-fast systems. We have identified two potential
problems. The first problem may occur in neuronal-type models that include fast gat-
ing variables. In systems of this type, a typical first step in the analysis is to reduce

Ot is possible to rescale (locally) slow-fast systems with a singular Hopf bifurcation into a slow-fast system
which possesses a Hopf bifurcation in the singular limit, but this Hopf bifurcation of the ‘new’ layer
problem is degenerate [5, 36, 37]. Hence one also cannot conclude the criticality of the Hopf bifurcation
from this singular limit.

7Interestingly enough, Fenichel’s results [2] were only concerned with the persistence of periodic orbits in
the slow manifold but not with that of a Hopf bifurcation.
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the dimension of the model by making a quasi-steady-state assumption and replacing
the differential equations for one or more of the fast gating variables by algebraic
equations. This technique is widely used in the analysis of biophysical models, and
in such cases is believed to preserve many important qualitative features of the dy-
namics. However, we have shown that this reduction technique can alter the criticality
of Hopf bifurcations in the system, so that a subcritical Hopf bifurcation in the full
system becomes a supercritical Hopf bifurcation in the reduced system, or vice versa.
If the purpose of analysis is to determine the nature of the onset of oscillations, it may
not be advisable to perform a quasi-steady-state reduction.

We note that a change in the criticality of the Hopf bifurcation alone may not
make a large change to the overall observed dynamics. For instance, in the Chay-
Keizer model discussed in Section 3.2.1, the branch of periodic solutions near the left-
most Hopf bifurcation is very steep, in both the full system and the reduced system
obtained by applying a quasi-steady-state assumption (see Fig. 1). This means that the
onset of stable oscillations occurs at almost the same parameter value in both versions
of the model, despite the criticalities of the Hopf bifurcations being different. Note,
however, that in this model the amplitude of the oscillations is very different in the
two models, as is the overall parameter range for which oscillations exist.

The second potential problem we discussed may arise if we attempt to use GSPT in
the analysis of a model with a Hopf bifurcation. GSPT aims to use lower-dimensional
fast and slow subsystems to make predictions about the dynamics in the full system.
We have shown that when a Hopf bifurcation in a (full) slow-fast system has a corre-
sponding Hopf bifurcation in the layer problem (i.e. the equilibrium has eigenvalues
A = $iw with = O(1)) the criticality can differ between the full system and the
fast subsystem. This means that the layer problem cannot be used to make predictions
about the criticality of the Hopf bifurcation in the full system. In some biophysical
models, the layer problem corresponds to a physically distinct state of the system. For
example, in models of intracellular calcium dynamics, the layer problem frequently
can be thought of a modelling the cell with no flux across the cell membrane. In such a
situation, it is tempting to presume that the dynamics of the layer problem will match
the dynamics of the full model in the limit that we approach the layer problem. We
have shown that this is not the case, at least for the criticality of Hopf bifurcations.

There are no such difficulties in computing the criticality of Hopf bifurcations
that involve slow variables. We discussed two cases. The first case occurs when the
Hopf bifurcation in the full model is caused by the interaction of a slow and a fast
variable. In this case, the Hopf bifurcation is a singular Hopf, in which case the Hopf
bifurcation vanishes in the singular limit (i.e. the relevant eigenvalues for the Hopf
bifurcation are A = fiw with w = O(y/¢)), and one is not tempted to deduce the
criticality of the Hopf bifurcation in the full problem from the dynamics of the layer
problem (or the reduced problem). Alternatively, if the critical manifold is normally
hyperbolic and there is a Hopf bifurcation in the reduced problem (i.e. A = £iw with
o = 0(¢)), the criticality of the Hopf bifurcation will be the same in the full system
and the reduced problem.

In recent study [38], Guckenheimer and Osinga investigate two slow-fast systems
in which the criticality of a Hopf bifurcation in the full system does not match the crit-
icality of the corresponding Hopf bifurcation in the layer problem. They show that in

@ Springer



Page 20 of 22 Zhang et al.

Table 2 Parameter values and function definitions for the HH model, Equations (9).

Eng=05 Ex =-077 E;p=-0544 g =03 g =0.0025

ky=100mV  &=0.0083 =1 =1 =1
0.01(kyv+55) 0.1(kyv+40) kyv—65
= 2 KpbToI) = O lUpural) —0.07 u—
an(v) exp(— kvl{a—SS) am (v) Iexp(— T 1{-(%)—40) ap(v) = exp( )
—kyv—65 kyv—65 1
b, =0.125exp(—%5— b dexp(— 45— b, =
n (V) P( 30 ) m (V) = P( ) 7 (V) oxp( _kvl%_35 T
— _ an() — _ am@) __ aW®
100(V) = G0 o) Moo (V) = Gt by hoo (V) = G T3y
— 1 _ 1 _ 1
in®) = @B ® i) = G @ () = G

Table 3 Parameter values and function definitions for the Chay-Keizer model, Equations (15).

Cpm =1 pFlem? 2K.Ca = 0.09 mS/cm? gk = 12 mS/cm?

gca = 6.5 mS/cm? g1, = 0.04 mS/cm? Vg =—-75mV

Vea = 100 mV Vi =—40 mV V* =30 mV

V/ =50 mV Kg=1uM f=0.004

k; =0.0275 uMcm?2/nC ke =0.02ms™!

_ 10-V-V* V V
a,,(v+v*)_o.01(m) bn(V + V*) = 0.125exp(= )

25-vV-V’ V V’

am(V-i-V/):O,I(W) b (V + V') =4dexp(= )

7
) bp(V + V') = I

" _
ap(V + V') =0.07exp( m

each case there is a nearby torus bifurcation in the slow-fast system, and that the fam-
ily of periodic orbits in the full system is O(¢g) close to the family of periodic orbits
in the layer problem, regardless of the criticality of the Hopf bifurcation. A practical
consequence of their study is that observation of a torus bifurcation close to a Hopf
bifurcation in a slow-fast system is a possible indication that the full system and the
corresponding layer problem will have Hopf bifurcations of different criticalities, so
extra care should be taken in the analysis of the model.

It is worth mentioning that there is a fourth type of Hopf bifurcation observed
in singularly perturbed systems. In this fourth case, there is a Hopf bifurcation in
the layer problem but the full system does not possess a Hopf bifurcation. This Hopf
bifurcation in the layer problem may cause a delayed loss of stability in the full system
[39]. A classical example in biophysical models where such a delayed loss of stability
plays an important role is given by elliptic bursting (see, e.g., [29, 40]).

A wide variety of biophysical models are of the types that are potentially affected
by the problems we have discussed in this article, including HH-type neuronal mod-
els and many models of intracellular calcium dynamics. In light of our results, it
seems advisable that care be taken when attempting to use either quasi-steady-state
reductions or GSPT for the analysis of slow-fast systems with Hopf bifurcations.
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Appendix: Parameter and function definitions

Tables 2 and 3 show the values and function definitions that were used in numerical
integration of the HH model, Equations (9) in Section 2.1 and the Chay-Keizer model,
Equations (15) in Section 3.2.1, respectively.
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