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Abstract Bistability within a small neural circuit can arise through an appropriate
strength of excitatory recurrent feedback. The stability of a state of neural activity,
measured by the mean dwelling time before a noise-induced transition to another
state, depends on the neural firing-rate curves, the net strength of excitatory feed-
back, the statistics of spike times, and increases exponentially with the number of
equivalent neurons in the circuit. Here, we show that such stability is greatly en-
hanced by synaptic facilitation and reduced by synaptic depression. We take into ac-
count the alteration in times of synaptic vesicle release, by calculating distributions of
inter-release intervals of a synapse, which differ from the distribution of its incoming
interspike intervals when the synapse is dynamic. In particular, release intervals pro-
duced by a Poisson spike train have a coefficient of variation greater than one when
synapses are probabilistic and facilitating, whereas the coefficient of variation is less
than one when synapses are depressing. However, in spite of the increased variabil-
ity in postsynaptic input produced by facilitating synapses, their dominant effect is
reduced synaptic efficacy at low input rates compared to high rates, which increases
the curvature of neural input-output functions, leading to wider regions of bistability
in parameter space and enhanced lifetimes of memory states. Our results are based
on analytic methods with approximate formulae and bolstered by simulations of both
Poisson processes and of circuits of noisy spiking model neurons.
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1 Introduction

Circuits of reciprocally connected neurons have been long considered as a basis for
the maintenance of persistent activity [1]. Such persistent neuronal firing that contin-
ues for many seconds after a transient input can represent a short-term memory of
prior stimuli [2]. Indeed, Hebb’s famous postulate [3] that causally correlated firing
of connected neurons could lead to a strengthening of the connection, was based on
the suggestion that the correlated firing would be maintained in a recurrently con-
nected cell assembly beyond the time of a transient stimulus [3]. Since then, analytic
and computational models have demonstrated the ability of such recurrent networks
to produce multiple discrete attractor states [4], as in Hopfield networks [5, 6], or
to be capable of integration over time via a marginally stable network, often termed
a line attractor [7, 8]. Much of the work on these systems has assumed either static
synapses, or considered changes in synaptic strength via long-term plasticity occur-
ring on a much slower timescale than the dynamics of neuronal responses. Here,
we add some new results pertaining to the less well-studied effects of short-term
plasticity—changes in synaptic strength that arise on a timescale of seconds, the same
timescale as that of persistent activity—within recurrent discrete attractor networks.

The two forms of short-term synaptic plasticity—facilitation and depression—
affect all synapses of the presynaptic cell according to its train of action potentials.
Synaptic facilitation refers to a temporary enhancement of synaptic efficacy in the
few hundreds of milliseconds following each spike, effectively strengthening connec-
tions to postsynaptic cells as presynaptic firing rate increases. Synaptic depression is
the opposite effect—reduced synaptic efficacy in the few hundreds of milliseconds
following a presynaptic spike, effectively weakening connection strengths as presy-
naptic firing rate increases. The dynamics of these processes (Table 1) also impacts
the variability in postsynaptic conductance, in particular when synaptic transmission
is treated as a stochastic event. The variability affects information processing via the
signal-to-noise ratio [9-11] and also determines the stability, or robustness, of dis-
crete memory states [12, 13].

When analyzing the stability of discrete states, we focus on the mean value of and
fluctuations within the postsynaptic feedback conductance, since that is the variable
with a slow enough time constant to maintain persistent activity in standard models of
network-produced memory states [14, 15]. In our formalism, we rely on fluctuations
in this NMDA receptor-mediated feedback conductance to be on a slower timescale
(100 ms) than the membrane time constant, which is short (<10 ms), in part be-
cause each cell receives a barrage of balanced excitatory and inhibitory inputs. When
synapses are dynamic, both the mean postsynaptic conductance and its fluctuations
are altered from the case of static synapses.

Here, we show how a presynaptic Poisson spike train, which produces an exponen-
tial distribution of interspike intervals (ISIs), produces a distribution of inter-release
intervals (IRIs) that is not exponential if synapses are either facilitating or depressing.
We then consider how the nonexponential distribution of IRIs affects both the mean
and standard deviation of the postsynaptic conductance differently from the expo-
nential, Poisson, distribution of IRIs. These results affect the calculation of stability
of memory states, yielding differences in the parameter ranges where bistability ex-
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Table 1 Stochastic synapse model and parameters. (S) for single-synapse model; (M) for memory model
calculations, where different

(a) Presynaptic components

Synapse Determinant of release probability, Pl ()
Static Pre1(t) = po
Facilitating Pye1(t) = po F (¢), where between spikes: 7p dd—f =(1—F)and

immediately following each spike: F* = F~ + f F(pLo —F7)
Depressing Pre1(t) = poV, where P(V =1) =D(t); P(V =0)=1— D(t). Between

spikes: 7p ‘fl—lt) = (1 — D) and immediately following successful release,

D1 =0, while immediately following unsuccessful release, Dt =D~

(b) Postsynaptic components

Synapse Determinant of synaptic gating variable, s(t)
All Following successful release: st=s—+a(l-s)
Between successful releases: tg % =—s

(c) Parameters

Synapse Presynaptic t Po Factors Postsynaptic ts a

Static - 0.5(S) - 100 ms 1 —exp(—0.25)
0.5 (M)

Facilitating tr =500 ms 0.1 (S) fr=0.5() 100 ms 1 —exp(—0.25)
0.25 (M) fFr=025M)

Depressing Tp =250 ms 0.5 - 100 ms 1 —exp(—0.25)

ists and producing large changes in the spontaneous transition times between states,
which limit their stability.

A two-state memory system is limited by the lifetime of the less stable state [16].
For a given system, one can typically vary any parameter so as to enhance the lifetime
of one state while reducing the lifetime of the other state. If we define the system’s
stability as the lifetime of the less stable state, then the optimal stability of a system
arises when the lifetimes of the two states are equal. In this paper, for a given system,
defined by the neural firing-rate curve and type of synapse, we parametrically scale
the total feedback connection strength to determine the system’s optimal stability.
In so doing, we find that optimal stability of bistable neural circuits is enhanced by
synaptic facilitation.

2 Statistics of Synaptic Transmission Through Probabilistic Dynamic Synapses
In the following, we assume that synaptic facilitation and depression operate by mod-
ifying the release probability of presynaptic vesicles. Following vesicle release, neu-

rotransmitter binds to receptors in the postsynaptic terminal. The fraction of receptors
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Fig. 1 Dynamic synapses alter the distribution of interrelease intervals (IRI) of one vesicle produced
by a Poisson spike train. al-a2 Histogram of IRIs for static synapses is exponential (pg = 0.5). b1-b2
Histogram of IRIs for a facilitating synapse is more sharply peaked than exponential (with a CV greater
than one) (pg = 0.1, fr = 0.5, T = 500 ms). c¢1-c2 Histogram of IRIs for a probabilistic depressing
synapse has a dip at low intervals (producing a CV less than one) (pg = 0.5, Tp = 250 ms). al, b1, cl
Presynaptic Poisson spike train of 2 Hz. a2, b2, ¢2 Presynaptic Poisson spike train of 50 Hz

bound at any one time determines the fraction of open channels, known as the gat-
ing variable, s, which is proportional to the conductance producing current flow into
the postsynaptic cell. The dependence of s on presynaptic firing is affected by the dy-
namic properties of the intervening synapse. In particular, the distribution of intervals
between vesicle release events is not identical to the interspike interval (ISI) distribu-
tion: facilitating synapses increase the likelihood of short inter-release intervals (IRIs)
compared to long intervals, so increase the coefficient of variation (CV); whereas de-
pressing synapses make short release intervals unlikely and produce a more regular
sequence of release intervals, reducing the CV (Fig. 1). While the means of these dis-
tributions can be calculated by standard methods [17], it is valuable to know the full
distribution, since changes in the CV of IRIs affect the variability of the postsynaptic
conductance, and thus alter properties like signal-to-noise ratio and the stability of
memory states to noise fluctuations.

2.1 Distribution of Release Times for a Poisson Spike Train Through Stochastic
Depressing Synapses

The distribution of release times of a vesicle for depressing synapses with a single
release site is simpler to calculate than that for facilitating synapses, because when
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considering synaptic depression alone, the probability of release from a single site
simply depends on the time since last release of a vesicle from that site. Therefore, we
will solve for depressing synapses before moving to the case of facilitating synapses,
where the probability of release depends on the number of intervening spikes. The
subsequent result for facilitating synapses will prove to be more biologically relevant,
as synapses typically contain multiple releasable vesicles, so it is only in the case
where the baseline release probability is low—in which case facilitation dominates—
that failure of release is common enough to affect the distribution of release times.
The case of probabilistic release in depressing synapses with multiple release sites is
more complex, though the first two moments of the IRI probability distribution have
been calculated by others [18].

Synaptic depression arises because of the time needed to recycle and replenish
vesicles following release of neurotransmitter. Synaptic depression can be treated
stochastically [19] by assuming vesicle recovery is a Poisson process, with the likeli-
hood of a vesicle being release-ready, or “docked,” as P(V =1)=Pp=1— e T/,
where T is the time since the prior vesicle release. Thus, the distribution of inter-
release intervals (IRIs) can be calculated by requiring that a vesicle be docked within
the interval and then adding the time for a spike to appear after the vesicle is docked.
We assume a docked vesicle has a release probability of po and incoming spikes ar-
rive as a Poisson process of rate r. Since probability of docking between time Tp and
Tp +6Tp is 8Tp(d Pp/dT) evaluated at Tp, or

P(Tp)sTp =8Tpe™ /™ Jtp (0

and the probability of the first spike after time 7Tp being at time T and causing release
as e Po"(T=Tb) e have

T e—TD/TD
P(T)= / LT P TTIDa Ty 2)
0 ™D
SO
P(T) = L(e_T/TD _ e—porT) (3)
portp — 1
which leads to a mean IRI of
1
(TY=t0p+—. 4

por

The reduction in probability of small IRIs is a simple example of the temporal filter-
ing of information presented by others [18]. The addition of the extra probabilistic
process of vesicle recovery, which underlies synaptic depression, causes IRIs to be
more regular, as evidenced in Egs. (2)—(3) by a reduced coefficient of variation (CV)
of IRIs from the Poisson value of 1:

or 1+ (portp)?

CV=—=—— @)
(T) 1+ portp
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which has a minimum value of 1/ V2 at portp = 1 and a maximum value of 1 as
rtp — 0 or rtp — oo. For example, in the curves shown in Figs. 1cl-1c2, CV =
0.82 at 2 Hz and 0.87 at 50 Hz.

2.2 Distribution of Release Times for a Poisson Spike Train Through Stochastic
Facilitating Synapses

For facilitating synapses, we take the following form for release probability, P (?) =
poF (1), where between presynaptic spikes:

ar (1-F) (6)
r—=1-F).
P
Each spike produces an increase in F' from F~ (which determines the release prob-
ability of that spike) to F+ (which is the new release probability for an immediate,
subsequent spike) such that

F+=F_+fF($_F_>=F_+fF(Fmax_F_)a @)
where fF is the facilitation factor, taking a value between O and 1, indicating the
fractional increase from the pre-spike release probability toward a saturating release
probability of poF = 1.

To calculate the distribution of interrelease intervals (IRIs) we need to calculate
the probability of release as a function of time, following a prior release. Although
presynaptic spikes arrive with constant probability per unit time in a Poisson process,
vesicle release occurs more often when the facilitation variable is high. Thus, imme-
diately after release, the likelihood of release is greater than on average, because the
facilitation variable takes some time (on the order of 75) to return to a baseline value.
Furthermore, when calculating the IRI distribution, we must be aware that (F Igo(r)),
which is the mean value approached by F' conditioned on no intervening release event
will be lower than the mean value, (F ™), since long IRIs are more associated with
time windows of fewer intervening presynaptic spikes than chance.

To proceed, we first calculate (FI}|r (r)), the mean of the facilitation variable imme-
diately after vesicle release. To arrive at this quantity, we use the mean value of the
facilitation variable averaged across all presynaptic spikes [17]:

(F)= [1+r7F fr/pol

="' 8
14+ frrer ®)
and the variance of this quantity [9]:
2 2
rte fp(/po—1)
o2 a ©)

T A Frr 2+ rte fr2— fol

Together, these can be used to calculate (Fj (r)), which is the mean value of the
facilitation variable just prior to firing when averaged across only those spikes that

@ Springer



Journal of Mathematical Neuroscience (2013) 3:19 Page 7 of 22

actually cause release, since release probability is proportional to F~. The latter av-
eraging produces a higher value than (F ™), since higher instances of F'~ are more
likely to result in release, so weight the average more than lower values:

_ FP(F) _ F P(F)
T FP(FdF- | (F)

P(Fy) : (10)

where P(F ™) is the probability that F takes the value F~ immediately prior to an
incoming spike and the denominator normalizes the distribution. Hence,

_ ®© (F7)2P(F7) L, o
F = ~  —|(F . 11

From this, the mean value of the facilitation variable immediately following vesicle
release can be calculated as

£ ) = (F= ()1 — f_F_<- 0%)_ Ir
(Fr () =(Fg M)A = fr) + 0 (F7)+ ) a—fr+ o (12)
The above formula is exact and was matched by simulated data at all values of r
simulated (data not shown).

To estimate the steady state value of F a long time from any prior release—a
steady state that may never be reached if the product of firing rate and base release
probability is much higher than 1/tr—we solve a self-consistency equation for this
value, (F°(r)) and ignore fluctuations by assuming release probability is po(Fg°(r))
for each presynaptic spike. One can calculate then the probability of N spikes in a
given interval, T, conditioned on the requirement that none of those spikes caused
vesicle release, while the facilitation variable is at its mean steady state value of
(FR°(r)). The result is:

P(N. T)(1 = po(FR (D™
YN0 PIN. T)(1 = potFR2(r)"
_ T emNA = po(FR NV /N!
Y N=oe TN = po(FRE ()N /N!

= ¢ TU=PFROD[T (1 = po(FRN]Y /N (13)

P(N, T | No release) =

which is the result for a Poisson process of modified rate, r(1 — po{Fg°(r))). This
allows us to self-consistently calculate (F°(r)) by using the result for the mean value
of the facilitation variable given such a modified spike rate, such that

L+r(1 = polFZ (") Tr fF/Po

FR(n)~ ) (14
R O™ = potFer fr
which can be solved using the quadratic formula to give
2rtp fr+1—+/Qrip F+1)2—4 or'TF fF
(Fo(r)) ~ 227 V@rtrf porte fr. (15)

2portr fr
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a value which is always below (F ) and in close agreement with simulated data (not
shown).

Finally, to fit the IRI distribution, we assumed exponential decay from (FI‘Q|r (r))
to (Fg°(r)) with a time constant such that the initial slope (when the probability of
any intervening spikes is zero) matches that of an exponential decay to 1 with time
constant Ty (the initial rate of decrease of F in the absence of intervening spikes).
That is, we take the release to follow an inhomogeneous Poisson process with a rate,
which depends on time, T, since the prior release event, given by

rr(T) = por{{FF ") + [(FE () = (FR2(n))]e T/=r )}, (16)
where
_(FR) = (F(r)

Teff () = TF (FIJ{(r)) 1 . (17

The distribution of IRIs is then given by [17]

T
P(T) :rR(T)exp[—/ rR(t)dti| (18)
0

a function, which is plotted in Figs. 1b1-1b2, where it is indistinguishable from the
simulated data. Similarly, indistinguishable is the cumulative IRI distribution plotted
in Figs. 2b1-2b2, justifying the approximations that led to our results.

Finally, it should be noted that when synapses are facilitating, consecutive IRIs are
correlated. For example, when the presynaptic rate is 2 Hz in the simulation used to
produce Figs. 1bl and 2bl, the correlation between one IRI and the subsequent one
is 0.028, while with a presynaptic rate of 50 Hz the correlation is 0.015. Such a cor-
relation, which cannot be obtained from the IRI distribution alone, further increases
any variability in postsynaptic conductance, above and beyond the increase due to the
altered shape of the IRI distribution.

In summary, the main difference produced by facilitation from the exponential
distribution of inter-spike intervals (which is retrieved by setting either fr or 7 to
zero) is an enhancement of probability at low T and a corresponding reduction at
high T. These changes produce a CV of IRIs greater than 1 (CV =1.18 at 5 Hz and
CV = 1.03 at 50 Hz in the examples shown in Figs. 1b1-1b2) enhancing the noise in
any neural system.

2.3 Mean Synaptic Transmission via Dynamic Synapses

We assume that at the time of vesicle release the postsynaptic conductance increases

in a step-wise manner, with a fraction, &, of previously closed channels becoming

opened. This causes the synaptic gating variable, s, to increase from its prior value,

s~ to sT according to s = s~ + &(1 — s7). It then decays between release events
ds

with time constant, 7, according to T q=-S.
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Fig. 2 Cumulative distribution of inter-release intervals (IRIs) for the same curves shown in Fig. 1, veri-
fying the remarkable agreement of the approximation used in Fig. 1b with the simulated data. al—a2 Static
synapses, pg = 0.5. b1-b2 Facilitating synapses, pg = 0.1, fr = 0.5, tr = 500 ms. c¢1-¢2 depressing
synapses, po = 0.5, tp = 250 ms. al, b1, cl Presynaptic Poisson spike train of 2 Hz. a2, b2, ¢2 Presy-
naptic Poisson spike train of 50 Hz

If one assumes that successive inter-release intervals (IRIs) are uncorrelated then
one can calculate the mean, (s), and variance, (IS2 = (s%) — (s)?, in the postsynaptic
gating variable (and hence the postsynaptic conductance, which is proportional to s)

via:

(s7)={s" ™ ™). (192)
(sT)=(s")1-a) +a, (19b)
() = o)1 = (e = 25 () =57, (19¢)

where the averages of (e~7/%) and (T) are taken over the distribution of interrelease
intervals, P(T), as given in the prior section (Fig. 1, Egs. (3), (18)) and we have used
the solution s(r) = ste~ %)/ at time ¢ following the ith spike at time 7. Solution
of the above equations leads to

ar,  (1—(e7"/m))

()= 7=

) 20
(T) [1— (1 —a) (e~ T/m)] (20)

which allows us to calculate the mean synaptic conductance through static and dy-
namic synapses (Fig. 3a).
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Fig. 3 a Mean synaptic transmission, (s) and b variance of synaptic transmission, (52) — (s)z, arising
from presynaptic Poisson trains through probabilistic synapses. ¢ Variance in synaptic transmission as a
function of the mean transmission. Solid curves are analytic solutions (blue, middle curve for static, a =
Eq. (23), b= Eq. (24), ¢ = Eq. (25); green, upper curve for facilitating, a from Eqgs. (20) and (31), b from
Egs. (22) and (31), ¢ from a & b; and red, lower curve for depressing synapses, a = Eq. (26), b from Egs.
(4), (22), (25) and (27), ¢ from a & b). Black dots are corresponding results from simulations produced by
30,000 sec of Poisson input spike trains through saturating synapses

Similarly, combining

(7)) ={(7) e ") (21a)
(7)) = (7)) =@ +2a(1 —@)s ™) + &>, (21b)
()= 5ol P10 (), et

leads to

(5% = u@® (L= (eI —a)e ") + 1]
2T [1 = (1= @) (e=2T/5)][1 — (1 — @) (e~ /)]

which allows us to calculate the variance in postsynaptic conductance (Fig. 3b).

When synapses are static, release times are distributed as a Poisson process of rate
rpo, where r is the presynaptic Poisson rate and py is the static release probability.
In this case, the mean value of the gating variable is calculated by standard methods
[20] to give

(22)

a(Preir)ty  Qports
l+a(Per)t,  14+aports’

(Sstatic) = (23)
a function plotted in Fig. 3a (blue curve), where it exactly matches the simulated data
(black asterisks). A similar calculation leads to the variance in synaptic transmission
for static synapses [12, 20] as

a2 port[1 + (2 — &) ports]

— _ . \2
S AaprnR+aprn—d] e G

(2 .
O Static — <SStatic) — {SStatic)

a function plotted in Fig. 3b (blue curve), where it exactly matches the simulated
data (black asterisks). The variance can be written as a function of the mean synaptic
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transmission by substituting for r into Eq. (24) with (sstaic) from Eq. (23) to produce
the reduced formula:

(1 — (sstatic)) (25)

0_2 _ a(Sstatic)
,Static — ~
s>t — & (SStatic)

which is plotted in Fig. 3c (blue curve).

For probabilistic depressing synapses with “all-or-none” release, the IRIs are in-
dependent as the synapse is always in the same state immediately post-release. The
IRIs are distributed according to Eq. (3), which leads to

(e7T/m) = e (26)
N (rs + D)1 +r1y)

so that using Eq. (4) for the mean IRI, (T'), we have

_ aports(ts + To + portsTn)
(1+ portp)(ts + Tp + portsTp + aport?)’

(SDepress) (27)

which, plotted as a red curve in Fig. 3a, precisely matches the simulated data (black
circles). Similarly, making the substitution for probabilistic depressing synapses:

2

e=27/%) = s (28)
(ts +2tp) 2+ r1y)

into Eq. (22), allows us to evaluate (s]%epress) as plotted in Fig. 3b (red solid curve),
where it precisely matches the simulated data (black points).

For probabilistic facilitating synapses, we use an approximate formula for P(T) to
evaluate the expected value of the exponential decay (e~ 7/%)—essentially a Laplace
transform—since the full formula is intractable for these purposes. We found after
testing many formulas against simulated quantities that so long as we correctly in-
cluded the facilitation factor immediately after release as (FJIQ|r (r)) and the approxi-
mate release probability a long time after release as (FR°(r)), the principal require-
ment was to use a probability density of IRIs, with the correct value for the mean IRI.
For facilitating synapses we know the mean IRI, (T'):

1
T)=——. 29
o polF~)r (29

We fulfilled these three requirements by grossly simplifying the actual decay of the
facilitation variable post-release, letting it switch between its immediate post-release
value of (Fl}" (r)) to its steady state value, (Fg°(r)), at a time, T* into the IRI where

T* is chosen to produce the correct value of (T'). That is, we approximated the prob-
ability distribution of IRIs, P(T), as

P(T|T<T*) = rpo(FI‘?"(r»e—rpo(F;(r))T’ o
P(T|IT>T"= rpo(plgo(r)>e—rpo<F,3°(r)>T7
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where

-y _ +
T —1 ln< L/(F7) = 1/(Fg (r)) ) 31)

B rpo(Fg () \1/(FR°(r)) = 1/{Fg ()

From such a distribution we can easily calculate moments, (¢~7/%) and (e~27/%), of
the postsynaptic conductance using the Laplace transforms where

(eiT/TS)z ”PO(F,}F(V)WS
L+ rpo(Fg (1)

+ e T*/T g=rPolFg (T

( rpo{FRX(r)) s rpo(Fg ()T ) 32

L+rpo(FR ()T 1+ rpo(Fj ()1

The corresponding mean postsynaptic conductance, using Eq. (20), plotted in Fig. 3a
(green curve) is indistinguishable from the simulated data (black points). This form
of the mean synaptic transmission through facilitating synapses will be used in the
next section when we assess the stability and robustness of memory states produced
by such synaptic feedback. The variance in synaptic transmission of the simulated
data (Fig. 3b, black points) is no longer precisely fit by the approximate formula,
obtained from Eq. (22), Eq. (31) and using Eq. (31) with 7, replaced by 74/2 to
calculate (e~27/%) (Fig. 3b, green curve). However, since the approximate formula
slightly overestimates the variance, it will tend to underestimate the stability of any
memory state. Thus, a more precise fit would enhance stability (Fig. 4d). Figure 3c
(green curve) indicates that for all values of mean synaptic transmission, the variance
is greater when synapses are facilitating.

3 Stability of Discrete States Enhanced by Short-Term Synaptic Facilitation

Groups of cells with sufficient recurrent excitatory feedback can become bistable,
capable of remaining, in the absence of input, in a quiescent state of low-firing rate,
or after transient excitation, in a persistent state of high-firing rate. Given the inher-
ent stochastic noise in neural activity—spike trains are irregular, with the CV of ISIs
often exceeding one—the activity states have an inherent average lifetime, which in-
creases exponentially with the number of neurons in the cell-group. In this section,
we show analytically that addition of synaptic facilitation to all recurrent synapses
can increase the stability of such discrete memory states by many orders of magni-
tude. We follow the methods presented in a prior paper for static synapses [12] and
extend them to a circuit with probabilistic facilitating synapses. Calculations of sta-
bility are based on the mean of first-passage times between two stable states [21]. We
assume that neurons spike with Poisson statistics, while the variability in the postsy-
naptic conductance, which possesses a long time constant (100 ms) typical of NMDA
receptors [15], determines the instability of states. Since synaptic facilitation of prob-
abilistic synapses affects both the mean and variance of the postsynaptic conductance
(Figs. 3a—3b), both must be calculated and taken into account when determining the
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Fig.4 Synaptic facilitation enhances the stability of discrete memory states. a The firing rate curve (solid,
blue) and synaptic feedback (dashed red) for a system with feedback strength optimized for bistability in
a group of cells with static synapses. Firing rate curve follows Eq. (34) with ; = 119.5, B, = 0.615,
B3 = 5.326, which is the best fit to the leaky-integrate and fire neuron used in the simulations and de-
scribed in Table 2d. Feedback strength is optimized for bistability with W = 1.84. b Same firing rate curve
(solid, blue) as in a but synaptic feedback (dashed green) via facilitating synapses with feedback strength
optimized for bistability with W = 2.10. a—b Solid circles indicate stable fixed points separated by an un-
stable fixed point (open circle). ¢ Difference between firing rate and feedback curves in a and b determine
the basis for the gradient of an effective potential. Note the enhanced areas between fixed points (zero
crossings) producing a larger potential barrier when synapses are facilitating (green) compared to static
(red). d The lifetime of both the low activity state and the high activity state increases exponentially with
system size, but a given level of stability is achieved with far fewer cells when the synapses are facilitating
(solid curves, analytic results; filled and open circles simulated results for the high and low activity states,
respectively)

lifetime of memory states. We describe the method briefly below, leaving a reproduc-
tion of the full details to the following sections.

Bistability arises when the deterministic dynamics of the network produces mul-
tiple fixed points—firing rates at which dr/dt = O—at least two of which are stable.
The deterministic mean firing rate depends on the total synaptic input to a group of
cells. The total synaptic input includes a feedback component via recurrent connec-
tions as well as an independent external component. At a fixed point, the feedback
produced by a given firing rate is such that the total synaptic input exactly maintains
that given firing rate (intersections in Figs. 4a, 4b). For a network to possess multiple
fixed points, the curve representing synaptic transmission as a function of firing rate
and the curve representing firing rate as a function of synaptic input must intersect at
multiple points (Figs. 4a, 4b). Between any two stable fixed points is an unstable fixed
point, where the curves cross back in the opposite direction. The stability of any indi-
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vidual fixed point is strongly dependent on the area enclosed between the two curves
from that fixed point to the unstable fixed point. This enclosed area acts as the height
of an effective potential (Fig. 4c), which, for a given level of noise in the system de-
termines the mean passage time from one stable fixed point to the basin of attraction
of the other fixed point, i.e., the mean lifetime of the memory state. Importantly, the
lifetime is approximately exponentially dependent on the effective barrier height, or
the area between the two curves. Thus, changes in the curvature of synaptic feedback
as a function of firing rate, which can have a strong impact on the area between the
f-I curve and the feedback curve, can affect state lifetimes exponentially.

When we analyze the extent of this effect as wrought by synaptic facilitation, we
find a greatly enhanced barrier in the effective potential (Fig. 4c), which demonstrates
the additional curvature in the neural feedback function outweighs any increase in
noise in the system (which enters the denominator in the effective potential, Eq. (35).
Consequently, the lifetime of both persistent and spontaneous states in a discrete
attractor system, can be enhanced by several orders of magnitude when synapses are
facilitating (Fig. 4d). Alternatively, one can obtain the same necessary stability with
far fewer cells, for example, to produce a mean stable lifetime of over a minute for
both the low and high activity states, with all-to-all connections, only eight cells are
necessary in the example with facilitating synapses, whereas forty are necessary when
synapses are static.

3.1 Analytic Calculation of Mean Transition Time Between Discrete Attractor
States

To calculate transition times between discrete attractor states, and hence assess their
stability to noise, we produce an effective potential for the postsynaptic conductance
as the most slowly varying continuous variable of relevance. We use standard meth-
ods for transitions between stable states of Markov processes [21] but first must cal-
culate the deterministic term, A(s), and diffusive term, D(s), for a group of cells
with recurrent feedback. The calculations in the case of static synapses were pro-
duced and validated elsewhere [12] but we briefly reiterate them in the following
paragraphs. When synapses are facilitating, the only alterations are the expression
for mean synaptic conductance, (s(r)) (Fig. 3a) and its variance, osz(r) (Fig. 3b), and
a newly optimized strength of feedback connection to ensure both spontaneous and
active states remain as stable as possible.

Our essential assumption is to treat the behavior of the postsynaptic variable, s,
given a presynaptic Poisson spike train at rate r, as an Ornstein—Uhlenbeck process,
which matches the mean and variance of s, while maintaining the same basic synaptic
time constant for decay to zero in the absence of presynaptic input. Thus, we have

s a as (e /)
S R () .

(by matching the mean of s) and

dA(s)

Di(s) = =202 .

(34)
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(by matching the variance of s) where the subscript “1” indicates the variance pro-
duced by a single presynaptic spike train. For a circuit with N presynaptic neu-
rons producing feedback current, we scale down individual connections strengths
so that the mean feedback current is independent of N, but the noise is reduced as
Dy (s) = Di(s)/N, since s is the fraction of maximal conductance (0 <s < 1).

We close the feedback loop by ensuring the presynaptic firing rate is equal to the
postsynaptic firing rate, so use the firing rate function [22]:

_ _ Bi1(S —B2)
) A5 — ol G

with rate multiplier 81 = 115, threshold 8> = 0.571, and concavity 3 = 5.66 all
obtained by fitting to leaky integrate-and-fire simulations [12]. S is a scaled version
of s, accounting for the total feedback conductance, S = Ws, where W is the sum of
connection strengths of all cells and held fixed when N is varied.

The effective potential, @ (s), for a group with N feedback inputs per cell is

A(s")
@ —2N 36
()= f s’ (36)
which leads to a probability density, P (s):
2N
P(s) = exp[—®(s)], (37)

CD(s)

where C is a normalization constant. The mean transition time from a stable state
centered at 51 to a state centered at 5o > s7 is [21]:

C K s
Tirans(s1,2) = = f ds exp[@(s)] / P(s")ds’, (38)
sl 0
a function which is plotted for both static and facilitating synapses in Fig. 4d.
3.2 Simulation of Mean Transition Time Between Discrete Attractor States

We compared the results of our approximate analysis (Fig. 4d, curves) with those
of computer simulations of noisy leaky-integrate and fire neurons. To do this, we
simulated small circuits of excitatory neurons connected in an all-to-all manner, us-
ing the parameters given in Table 2. Each neuron received independent background
Poisson inputs, both excitatory and inhibitory, such that interspike intervals had a CV
of 1 at low firing rates, decreasing gradually to 0.8 by a firing rate of 100 Hz. We
simulated for either 200,000 seconds, or until 20,000 transitions between states were
made, whichever was sooner. The mean transition times are plotted in Fig. 4d (open
and closed circles), where they show good qualitative agreement with the analytic
curves.
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Table 2 Details of network simulations producing memory activity

(a) Model summary

Populations Single population, E

Connectivity All-to-all

Neuron model Leaky integrate-and-fire (LIF) with refractory period

Synapse model Excitatory AMPA + voltage-dependent NMDA, inhibitory GABA conductances —
step increase then exponential decay

Input Independent fixed-rate Poisson spike trains from populations of Input cells

Measurements State transitions times via mean population firing rate

(b) Populations

Name Elements Size

E LIF neurons N =38, 20, 30,40 (static) N =4, 8, 12, 16 (facilitating)

(c) Connectivity

Name Source Target Pattern

EE E E All-to-all, weight W

(d) Neuron and synapse model

Name LIF neuron

Type Leaky integrate-and-fire (LIF) with refractory period, and noisy Poisson
exponential conductance input

Subthreshold  Cpu Y- = g1.(V = VL) + gee(D(V = VE) + gampa(D(V — Vi) + gGaBa(D(V — V)
dynamics

EE synaptic SEE() = EE™ X celts.i i ()

zonduc.tance 75 % = —s; (1) between spikes of cell i at times 7 and
namics . _
Y 5i @) =5 () + @1 — ;)]
Spiking If V(t) > V;j, then
(1) emit spike with time-stamp ¢*
(2) V() = Vreset
(f) Input
Type Description
Poisson generators X = AMPA, GABA Y ddLIX =—sx()+ 281 —13)

P(t §t; <t+dt)=vyxdt; uampa = VGABA = 800 Hz

(g) Measurements

Transition times Time for (s; gg) to transition from below 0.05 to above 0.45 (Tqown)
and from above 0.45 to below 0.05 (Typ)
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Table 2 (Continued)

(h) LIF neuron parameters

VL Vg Vi Vin Vieset: 8L 8. Cm  &AmpA EGABA TAMPA TGABA

~70mV —70mV —70mV —45mV —60mV 50nS %85 0.5nF 20nS 20nS 2ms  5ms

(i) Synaptic parameters (EE)

Synapse Presynaptic t Do Factors Postsynaptic 7 a

Static - 0.5 (M) - 100 ms 1 —exp(—0.25)

Facilitating 7F =500 ms 0.25 M) fr=0.25M) 100 ms 1 —exp(—0.25)
a Low Threshold b High Threshold

20 20

F+S+D

Rate multiplier, beta 4
Rate multiplier, beta1

f-1 curvature, betal3 -1 curvature, he133

Fig. 5 Range of bistability is enhanced with facilitating synapses and reduced with depressing synapses.
a Low threshold, with 8o = 0.301. b High threshold with 8, = 1.001. a, b White region, all models (with
static, facilitating and depressing synapses) are bistable; yellow region, models with static or facilitating
synapses are bistable; orange region, only models with facilitating synapses are bistable; black region, no
models are bistable

3.3 Results for Multiple Circuits

In the example shown, bistability in the control system with static synapses required
particular fine-tuning of parameters, so was not very robust. One could wonder that if
a different system were chosen—in particular a different f-I curve were used—then
the system with static synapses might not be improved by the addition of synaptic
facilitation. That is, should synaptic facilitation always enhance robustness of such
bistable neural circuits? To address this point, we parametrically varied the properties
of the f-I curve (Eq. (34)) and for each set of parameters, {81, B2, 83} we systemat-
ically varied the feedback connection strength, W, to test whether the system could
be bistable.

As aresult (Fig. 5), we found that the set of parameters {81, 82, 83} able to produce
bistability when synapses are static is a subset of the set found when synapses are
facilitating. Thus, synaptic facilitation can produce bistability when it is not possible
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a Static Synapses b Facilitating Synapses

20 ﬁ,

200

30 beta3 200

80 30 beta, 80

Fig. 6 Maximum stability of memory states, for a given neural firing-rate curve, is always greater when
synapses are facilitating rather than static. a—b Low threshold, By = 0.451. c—d Medium threshold,
B2 = 0.701. e—f High threshold, By = 0.951. a, ¢, e Synapses are static. b, d, f Synapses are facilitat-
ing. All panels: Steepness of single neuron firing-rate curves increase with 81 (y-axis) while maximum
curvature increases with 3 (x-axis). Stability of a bistable system is determined by the minimum lifetime
of either of the two activity states. Maximum stability is calculated for each firing-rate curve as a function
of connection strength and plotted after logarithmic scaling in color code. Dark blue: no bistability exists.
Light blue = low stability; orange-red = high stability; cyan-green boundary = optimal lifetime of one
hour

with static synapses, but the reverse is not true. As a corollary, the set of parameters
{B1, B2, B3} able to produce bistability when synapses are depressing is a subset of
the set found when synapses are static.

For all parameter sets {81, B2, $3} able to produce bistability, we assessed the op-
timal stability of the memory system. As the excitatory feedback connection strength,
W, increases, so the mean lifetime of the high-activity state increases, while the mean
lifetime of the low-activity state decreases. We consider optimal stability of the mem-
ory state as the value of the lifetime when high-activity and low-activity states are
equally durable. More specifically, we calculate the minimum of Tians(s1, s2) and
Tirans (52, 51) as a measure of the stability of memory and parametrically vary W to
find the maximum stability for a given set of {81, B2, f3} and given type of synapses.
In all cases where comparison was possible, stability is enhanced when synapses are
facilitating and stability is reduced when synapses are depressing, compared to the
case of static synapses (Fig. 6).

It is worth emphasizing that the two effects of synaptic facilitation on synaptic
transmission have opposing consequences for attractor state stability. While the in-
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a Hybrid Synapses b Hybrid/Facilitating Ratio

beta3 80 20%0 beta3 80

Fig. 7 A hybrid model demonstrates the reduction in lifetime attributable to the enhanced fluctuations in
postsynaptic conductance produced by synaptic facilitation. a—b Low threshold, 8 = 0.451. ¢—d Medium
threshold, B, = 0.701. e—f High threshold, B, = 0.951. a, ¢, e Lifetime of states in the hybrid model with
synaptic facilitation but with the noise due to static synapses. Dark blue: no bistability exists. Light blue =
low stability; orange-red = high stability; cyan-green boundary = optimal lifetime of one hour. b, d, f
Logarithm of the ratio of Figs. 7a, 7c, 7e to 6b, 6d, 6f, respectively, demonstrates the decrease in state
lifetime attributable to enhanced noise when synapses are facilitating. Dark blue: ratio = 1. Cyan-yellow,
ratio > e. Orange-light red, ratio > 2. Dark red, ratio > 3. All panels: Steepness of single neuron
firing-rate curves increase with 81 (y-axis) while maximum curvature increases with 83 (x-axis). Stability
of a bistable system is determined by the minimum lifetime of either of the two activity states. Maximum
stability is calculated for each firing-rate curve as a function of connection strength and plotted after
logarithmic scaling in color code

creased curvature in the curve of mean synaptic transmission increases stability of
discrete attractors, the increased variance (Fig. 3c, green curve) decreases stability.
While our results demonstrate that the deterministic effect dominates (i.e., the net
effect of facilitation is to enhance stability), it is instructive to assess the contribu-
tion of each of the two effects alone. Thus, for a given mean synaptic transmission
calculated for facilitating synapses, we used the variance in synaptic transmission
corresponding to static synapses (Fig. 3c, blue curve) and recalculated the lifetimes
of memory states. While changing the noise does not change significantly the param-
eter range for bistability (i.e., Fig. 5 is, to first order, unaffected by changes in noise)
it does have a considerable impact on the lifetimes of states. In particular, by using
the reduced noise of static synapses—a reduction of at most 20 %—the optimal life-
time was typically a factor of e higher in a circuit with 20 neurons and ¢? higher in a
circuit with 40 neurons (using the parameters of Fig. 4d). Figure 7 demonstrates the
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enhanced lifetime in the hybrid model across networks—the ratio is always greater
than one and extended to as high as 50 in the networks examined. Thus, the increased
noise in the postsynaptic current produced by synaptic facilitation does produce con-
siderable destabilization of state lifetimes—the hybrid model of synaptic facilitation
without such enhanced noise produces the greatest possible stability of discrete mem-
ory states.

4 Discussion

Bistability relies upon positive feedback, which can arise from cell-intrinsic currents
or from network feedback. Synaptic facilitation is a positive feedback mechanism in
circuits of reciprocally connected excitatory cells, since the greater the mean firing
rate, the greater the effective connection strength, further amplifying the excitatory
input beyond that produced by the increased spike rate alone. This property of synap-
tic facilitation enhances the stability of memory states and renders them more robust
to distractors [23]. Other forms of positive feedback, such as depolarization-induced
suppression of inhibition (DSI), which depends on activity in the postsynaptic cell,
can similarly produce robustness in recurrent memory networks [24].

When the bistability necessary for discrete memory is produced through synap-
tic feedback in a circuit of neurons, the relative stability to noise fluctuations of
each of the two stable fixed points depends exponentially on the area between the
mean neural response curve and the synaptic feedback curve (Figs. 4a—4b). While
the synaptic feedback curve is monotonic in firing rate, for static synapses it is either
linear (in the absence of postsynaptic saturation) or of negative curvature (decreasing
gradient), with the effectiveness of additional spikes decreasing at high rates when
receptors become saturated. However, when the synapse is facilitating, the synaptic
response curve has positive curvature when firing rates are low—the effect of each
additional spike is greater as firing rate increases. Here, we showed how such an ef-
fect could increase the area between intersections of synaptic feedback and neural
response curves, enhancing stability dramatically (Figs. 4-06).

We note that the addition of positive curvature at low rates to the negative curva-
ture at high, saturating rates in the curve of synaptic transmission as a function of
presynaptic firing rates (Fig. 3a) inevitably increases the areas between three points
of intersection with any firing rate curve without such an “S”-shape (Figs. 4a—4b).
Since the “S”-shape is a hallmark of synaptic facilitation, not present for synaptic
transmission through static synapses, facilitation can always enhance stability of such
bistable systems. Less mathematically, a facilitating synapse with the same effective
strength as a static synapse at intermediate firing rates is stronger at high firing rates,
enhancing the stability of a high-activity state (where a drop in synaptic transmission
is detrimental), while at the same time is weaker at low firing rates, enhancing the
stability of a low-activity state (where a rise of synaptic transmission is detrimental).

It is worth pointing out the converse—that short-term synaptic depression reduces
the robustness of such discrete attractors. Indeed, in Fig. 5, we show that the range
of parameters for which a bistable system exists is much narrower when synapses
are depressing (D) versus static (S) or facilitating (F). Since synaptic depression con-
tributes a negative curvature to the f-I curve, it tends to reduce the “S-shape” needed
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for bistability. Or, perhaps more intuitively, high synaptic strength is needed to main-
tain a high-firing rate state if synapses are depressing, but such high synaptic strength
is more likely to render the low-firing rate spontaneous state unstable.

The changes in the shape of the distribution of inter-release intervals caused by dy-
namic synapses alter the fluctuations in post-synaptic conductance. In particular, fa-
cilitation enhances the variability and depression reduces the variability arising from
a Poisson spike train. While the extra variability caused by facilitating synapses tends
to destabilize a memory system, this effect was overwhelmed by the increase in sta-
bility due to the rate-dependent changes in mean synaptic transmission described
above. However, the increase in conductance variability, in particular, being on a
slower timescale than membrane potential fluctuations, can be a factor in explaining
the high CV of neural spike trains.

Our calculations are based on a simplified formalism, in which the firing-rate curve
(f-I curve) of a neuron is first assumed or fit (Eq. (34), [22]) under in vivo-like con-
ditions, assuming a given level of noise in the membrane potential. Since the shape
of the f-I curve depends on both the mean and variance of the input current [25, 26],
it might appear invalid to discuss changes in the variability of input current due to
dynamic synapses in the context of a fixed f-I curve. However, the time constants for
short-term synaptic plasticity and the NMDA receptor-mediated currents are more
than an order of magnitude greater than the time constant of the membrane potential
under the conditions of strong, fluctuating balanced input that produce the irregular-
ity of spike trains seen in vivo. Since the neuron’s membrane potential can sample its
probability distribution—which determines the likelihood of a spike per unit time—
more rapidly than the timescale for changes in that probability distribution, our ana-
lytic methods provide a reasonable description of the circuit’s behavior (Fig. 4d).

In summary, we have demonstrated the ability of short-term synaptic facilitation
to stabilize discrete attractor states of neural activity to noise. We have shown this
by simulations and through analytic methods, which include a consideration of how
stochastic dynamic synapses mold the distribution of interrelease intervals (IRIs) into
a form that differs from the exponential distribution of incoming interspike intervals
(ISIs). The altered IRI distribution affects both mean synaptic transmission and the
variability of transmission due to a presynaptic Poisson spike train—both of which
have a strong impact on the stability of memory states. The increased variability of
synaptic transmission due to facilitation is more than countered by the effect of facil-
itation on mean synaptic transmission, which enhances the robustness of bistability,
leading to stable memory states with fewer neurons.
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