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Abstract We investigate the dynamic mechanisms of generation of subthreshold and
phase resonance in two-dimensional linear and linearized biophysical (conductance-
based) models, and we extend our analysis to account for the effect of simple, but not
necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability
of neurons to exhibit a peak in their voltage amplitude response to oscillatory input
currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the
ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory
input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-
plane analysis approach to account for the dynamic effects of oscillatory inputs and
develop a tool, the envelope-plane diagrams, that captures the role that conductances
and time scales play in amplifying the voltage response at the resonant frequency
band as compared to smaller and larger frequencies. We use envelope-plane diagrams
in our analysis. We explain why the resonance phenomena do not necessarily arise
from the presence of imaginary eigenvalues at rest, but rather they emerge from the
interplay of the intrinsic and input time scales. We further explain why an increase
in the time-scale separation causes an amplification of the voltage response in addi-
tion to shifting the resonant and phase-resonant frequencies. This is of fundamental
importance for neural models since neurons typically exhibit a strong separation of
time scales. We extend this approach to explain the effects of nonlinearities on both
resonance and phase-resonance. We demonstrate that nonlinearities in the voltage
equation cause amplifications of the voltage response and shifts in the resonant and
phase-resonant frequencies that are not predicted by the corresponding linearized
model. The differences between the nonlinear response and the linear prediction in-
crease with increasing levels of the time scale separation between the voltage and the
gating variable, and they almost disappear when both equations evolve at comparable
rates. In contrast, voltage responses are almost insensitive to nonlinearities located in
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the gating variable equation. The method we develop provides a framework for the
investigation of the preferred frequency responses in three-dimensional and nonlinear
neuronal models as well as simple models of coupled neurons.

1 Introduction

Rhythmic oscillations have been observed in various areas of the brain and have been
implicated in cognition and motor behavior [1–4] in both health and disease [5].
Network oscillations result from the cooperative activity of the participating neurons
[3]. Many neuron types possess membrane potential oscillatory properties [4], which
emerge either in the form of intrinsic subthreshold oscillations (STOs) [4, 6–9], or
subthreshold resonance [10–20], or both [12, 15, 21, 22]. Subthreshold resonance
refers to the ability of neurons to exhibit a peak in their voltage amplitude response to
oscillatory input currents at a preferred non-zero (resonant) frequency [10]. Intrinsic
STOs in isolated neurons emerge spontaneously or in response to tonic (DC) current
inputs, and primarily reflect interactions among the neuron’s intrinsic currents. In
contrast, subthreshold resonance results from the interaction between these intrinsic
currents and an oscillatory input currents. Because of this, subthreshold resonance
has been implicated in the generation of oscillations at the network level [23–27].

The relation between intrinsic STOs and subthreshold resonance is still an open
question. For some neuron types, STOs and subthreshold resonance have been shown
to result from the same mechanism [12]. However, theoretical and experimental stud-
ies have demonstrated that they are not equivalent phenomena [11, 28]: neurons may
exhibit one and not the other [10, 11, 21]. Furthermore, standard calculations for
linear models show that their natural (intrinsic) and resonant frequencies do not gen-
erally coincide except in some, rather restricted, parameter regimes [11, 29] (see also
our discussion in Appendix A.3).

The phase-shift (or phase) of the neuronal voltage response to subthreshold os-
cillatory input currents has received less attention that the corresponding amplitude
response [11, 14, 29]. This despite the fact that phases are expected to play a ma-
jor role in determining the synchronization properties of neuronal networks [30].
A zero-phase response indicates that both voltage output and current input peak
at the same time, thus generating in-phase synchronized patterns. We use the term
phase-resonance to refer to the ability of neurons to exhibit a zero-phase response to
oscillatory inputs at a non-zero (phase-resonant) frequency. The resonant and phase-
resonant frequencies do not generally coincide [29] for neuronal models (they do so
for circuits in parallel but not for circuits in series as neuronal models are). In ad-
dition, resonance may occur in the absence of phase-resonance [29] (see also our
discussion in Appendix A.3).

The properties of subthreshold resonance have been investigated in many sys-
tems [9, 11, 14, 15, 20, 21, 25, 29]. Theoretical studies have focused on simulations
of conductance-based models and the analysis of the impedance profiles (curves of
amplitude and phase-shift as a function of the input frequency) for the correspond-
ing linearized models around resting potential [11, 14–16, 18, 31–35]. However, the
mechanisms underlying the generation of resonance and phase-resonance in neurons
are not fully understood. This is partly because adequate tools are lacking.
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These mechanisms can be addressed from two different, but complementary per-
spectives: biophysical and dynamic. The former focuses on the role of the ionic cur-
rents and their biophysical properties in shaping the neuron’s voltage response, and
it has been discussed in terms of the so-called resonant and amplifying ionic cur-
rents (see Sect. 2.5) [10, 11]. The latter focuses on (i) the geometric properties of the
neuronal models in terms of the nullclines and phase planes, and (ii) the interaction
between the neuron’s intrinsic time scales and the time scales associated with the
input currents to produce optimal voltage responses in both amplitude and phase.

In [29] we have identified the basic biophysical mechanisms of generation of res-
onance and phase-resonance in two-dimensional linear and linearized conductance-
based models, and we have conducted a thorough study of the properties of the volt-
age response in terms of the biophysical parameters. In particular, we have shown
how changes in the maximal conductances affect the resonant and phase-resonant
frequencies and other attributes of the impedance amplitude and phase profiles in
ways that are not always intuitive.

The goal of this paper is to investigate the dynamic mechanisms that give rise to
resonance and phase-resonance. Specifically, we aim to identify the basic dynamic
and geometric principles that govern the generation of these phenomena in order to
understand (i) how the resonant and phase-resonant frequencies are selected, (ii) how
the voltage response is amplified at the resonant frequency band, (iii) how these prop-
erties are affected by changes in parameters (e.g., maximal conductances, time con-
stants), and (iv) how resonance and phase-resonance are related to intrinsic STOs.

We use dynamical systems tools and numerical simulations, and we extend the
classical phase-plane analysis approach to generate a tool (envelope-plane diagrams)
that enables us to address the mechanistic issues described above. For simplicity, in
this paper we focus on two-dimensional linear systems and we illustrate how the ideas
we develop here can be used to investigate linearized conductance-based models and
nonlinear models.

From a dynamic perspective, we view the properties of the forced oscillations as
reflecting the interaction between the forced neuron’s intrinsic time scales, which
result from a combination of its biophysical properties and the time scales of the
input. The time scales that emerge from these interactions determine the amplitude
and phase of the voltage response for each value of the input frequency. The resonant
and phase-resonant frequencies correspond to the emergent time scales that allow the
neuron to maximize its voltage amplitude response and to peak in phase with the
input, respectively. Therefore, we aim to elucidate how these emergent time scales
are generated, how intrinsic and emergent time scales are related, and how they are
affected by changes in the model parameter.

It is clear that for linear systems the voltage response can be computed ana-
lytically. However, due to its complexity, the dependence of the voltage response
properties with the model parameters is not straightforward, not even for linear two-
dimensional systems [29]. Additionally, due to the same complexity, it is difficult to
extract from the closed-form solutions a mechanistic understanding of the neuron’s
resonant properties in terms of the time scales. The use of geometric tools aids in this
effort. Since the phase plane contains information about the biophysical properties of
neurons through the structure of the nullclines and time scales, dynamical systems
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tools allow us to make statements that are valid for generic classes of biophysical
models.

2 Methods

2.1 Conductance-Based Models

We consider conductance-based models of Hodgkin–Huxley type [36]. The current-
balance equation is given by

C
dV

dt
= −IL − I1 − I2 + Iapp + Iin(t), (1)

where V is the membrane potential (mV), t is time measured in msec, C is the mem-
brane capacitance (µF/cm2), Iapp is the applied bias (DC) current (µA/cm2), Iin(t) is
a time-dependent input current (µA/cm2), IL = GL(V − EL) is the leak current, and
Ij (j = 1,2) are ionic currents of the form

Ij = Gjxj (V − Ej) (2)

with maximal conductance Gj (mS/cm2) and reversal potentials Ej (mV), respec-
tively. The ionic currents (2) we consider here are restricted to have a single gating
variable xj and to be linear in xj . This choice is motivated by the persistent sodium
(INap), h- (Ih) and M-type (IM) currents found in several neurons that exhibit sub-
threshold resonance [15, 37–39] (see Appendix B). All gating variables x obey a first
order differential equation of the form

dx

dt
= x∞(V ) − x

τx(V )
, (3)

where x∞(V ) and τx(V ) are the voltage-dependent activation/inactivation curves and
time scales, respectively. For external sinusoidal inputs we use the following notation:

Iin(t) = Ain sin(Ωt) with Ω = 2πf

T
, (4)

where T = 1000 msec and [f ] = Hz.
In this paper we focus on two-dimensional models having one dynamic gating

variable (x1) and, possibly, an additional gating variable evolving on a fast time scale
for which the adiabatic approximation x2 = x2,∞(V ) is made. Additional fast cur-
rents can be including without significantly changing the formalism. The investiga-
tion of three-dimensional systems is beyond the scope of this paper.

2.2 Linearized Conductance-Based Models

We follow Richardson et al. [11] and linearize the autonomous part of system (1)–(3)
(Iin = 0) around the fixed point (V̄ , x̄1) by defining

v = V − V̄ and w = x1 − x̄1

x′
1,∞(V̄ )

, (5)



Journal of Mathematical Neuroscience (2014) 4:11 Page 5 of 41

where x̄1 = x1,∞(V̄ ). The linearized equations are [11]

C
dv

dt
= −gLv − g1w + Iin(t), (6)

τ̄1
dw

dt
= v − w, (7)

where the effective conductances gL and g1, and time constant τ̄1 are defined by

gL = GL + G1x1,∞(V̄ ) + G2x2,∞(V̄ ) + g2, (8)

gj = Gj(V̄ − Ej)x
′
j,∞(V̄ ), j = 1,2 (9)

and

τ̄1 = τ1(V̄ ). (10)

The sign of the effective ionic conductances gj (j = 1,2) determines whether
their associated gating variables are resonant (gj > 0) or amplifying (gj < 0) [10,
11]. The effective conductance gL includes information not only about the original
leak conductance GL but also about the voltage-dependent (“passive”) terms of the
ionic currents. The ionic currents I1 and I2 each contribute a positive term to gL. The
ionic current I2 contributes to gL with an additional term (g2) due to its instantaneous
dynamics. If x2 is amplifying and g2 < 0 is large enough in absolute value, then gL
is negative. Note that the gating variable w in (5) has units of voltage.

2.3 Rescaled Linearized Models

We rescale system (6)–(7) to aid in the analysis and to reduce the number of parame-
ters that effectively govern its dynamics (without loss of information). The rescaling
we use here focuses on the geometric properties of the system and the time-scale
separation between the participating variables, and is amenable to analysis using dy-
namical systems tools (phase-plane analysis). A different scaling, appropriate for ad-
dressing biophysically related questions, has been used in [11, 29].

We define the following dimensionless time and (dimensional) voltage variables:

t̂ = gL

C
t, v̂ = gL

g1
v = v

α
, (11)

parameters

α = g1

gL
, ε = C

τ̄1gL
, (12)

and

Îin(t) = Âin sin(2πf t̂/T̂ ) with

Âin = Ain

g1
, T̂ = T gL

C
and Ω̂ = 2πf

T̂
.

(13)
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Fig. 1 Dimensionless parameters α and ε as a function of the biophysical resonant conductances in two
representative conductance-based models. The models are described in Appendix B. a Ih + INap model
with slow Ih and fast INap (biophysical conductances: Gh and Gp, respectively). b IKs + INap model with
slow IKs and fast INap (biophysical conductances: Gq and Gp, respectively). For small enough values of
Gp (dashed curves) both α and ε are positive for all values of Gh and Gq (a and b, respectively), while
for larger values of Gp (solid curves) both α and ε are negative for large values of Gh and small values
of Gq (in a and b, respectively). Note that although Ih and IKs are resonant currents, both α and ε exhibit
different monotonic properties as Gh (a) and Gq (b) increase

Substituting into (6)–(7) and dropping the “hat” signs we obtain

dv

dt
= −v − w + Ain sin(Ωt), (14)

dw

dt
= ε[αv − w]. (15)

Geometrically, the parameter α is the slope of the w-nullcline and can be thought
of as representing the strength of the gain of the feedback in the linearized system.
The parameter ε represents the time-scale separation between v and w.

Since for resonant gating variables g1 > 0, the sign of both α and ε depends on
whether gL is positive or negative. In the absence of fast amplifying currents (G2 =
g2 = 0), gL > 0 and then both α > 0 and ε > 0.When an amplifying current is present
and its contribution to gL is small enough, the sign of both α and ε remains positive
(Fig. 1, dashed curves). However, when stronger contributions of the fast amplifying
current causes gL to be negative, the sign of both α and ε are also negative (Fig. 1,
solid curves). Resonance occurs in both cases [11, 29]. Since resonance becomes
amplified as gL decreases [29], we expect resonance to be more amplified for negative
values of both ε and α as compared to positive ones. The cases including values of
α and ε having different signs are excluded from this study since the underlying
autonomous system is either unstable (saddle) or stable (node) but does not exhibit
resonance (Fig. 3). In both cases x1 is amplifying (g1 < 0). The case ε < 0 and α > 0
requires that both gL < 0 and g1 < 0, while the case ε > 0 and α < 0 requires that
gL > 0 and g1 < 0.

2.4 Impedance and Impedance-Like Functions

The voltage response of a linear system receiving sinusoidal current inputs of the
form (4) is given by

Vout(t;f ) = Aout(f ) sin
(
Ωt − φ(f )

)
, (16)
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Fig. 2 Schematic diagrams of the impedance (a) and phase (b) profiles (impedance and phase as a
function of the input frequency f ). a1 Band-pass filter (resonance). a2 Low-pass filter (no resonance).
b1 Zero-frequency phase crossing (phase-resonance). b2Monotonically increasing and positive phase (no
phase-resonance). a The resonant frequency fres is the input frequency f at which the impedance Z(f )

reaches its maximum Zmax. The resonance amplitude QZ = Zmax −Z(0) measures the resonance power.
The half-width frequency band Λ1/2 is the length of the frequency interval in between fres and the input
frequency value at which Z(f ) = Zmax/2, and measures the system’s selectivity to incoming frequencies
close to fres. b The phase-resonant frequency fphas is the zero-crossing phase frequency. The minimum
phase φmin measures the magnitude of the negative phase

where Aout is the amplitude and φ is the phase-shift (or phase), defined as the
difference between the peaks of the current input Iin(t;f ) and the voltage output
Vout(t;f ).

Linear systems exhibit resonance if there is a peak in the amplitude of the
impedance function Z(f ) given by

∣∣Z(f )
∣∣ = Aout(f )

Ain
(17)

at some positive (resonant) frequency fres. In what follows, we will refer to
impedance amplitude simply as the impedance Z(f ). In Fig. 2a we show repre-
sentative graphs of the impedance function Z(f ) for a model that does (panel a1)
and does not (panel a2) exhibit resonance. We characterize the impedance profiles
using four parameters: (i) the resonant frequency fres, (ii) the maximum impedance
Zmax = Z(fres), (iii) the resonance amplitude QZ = Zmax − Z(0), and (iv) the half-
width frequency band Λ1/2, defined as the frequency interval in between fres and the
input frequency value at which Z(f ) = Zmax/2. Λ1/2 is a measure of the frequency
selectivity. Neurons have a higher selectivity to inputs with frequencies around fres
the sharper the graph of Z(f ). In Fig. 2b we show two representative graphs of the
phase φ(f ) where φ vanishes at a non-zero value of f (panel b1) and φ is always pos-
itive (panel b2). We refer to the ability of the neuron to exhibit a zero-phase frequency
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response at a non-zero frequency as phase-resonance and to the corresponding fre-
quency as the phase-resonant frequency fphas. In panel b1, fphas > 0. The voltage
response is “advanced” and “delayed” for lower and higher frequency inputs, respec-
tively. Although phase advance and phase delay are ambiguous concepts to describe
phase differences between inputs and outputs in oscillatory systems, we still use them
since typical phase differences lie in the range (−π/2,π/2). In panel b2, fphas = 0,
that is, the voltage response is delayed for all values of f . We characterize the phase
profiles using two parameters: (i) the phase-resonant frequency fphas, and (ii) the
minimum phase φmin.

For nonlinear systems, or for linear systems with non-sinusoidal inputs, (17) does
no longer provide an appropriate definition of the impedance function. Here we as-
sume that the voltage output is periodic and has the same frequency as the input and
we use the following definition:

Z(f ) = Vmax(f ) − Vmin(f )

2Ain
, (18)

where Vmax(f ) and Vmin(f ) are the maximum and minimum of the oscillatory volt-
age response Vout(f ) for each value of the input frequency f . For linear systems
receiving sinusoidal inputs, (18) and (17) are equivalent. The resonant frequency fres
is the peak frequency of Z(f ) in (18). Similarly to the linear case φ(f ), the phase
is computed as the distance between the peaks of the output and input normalized
by the period. Note that (18) can be thought of as a filtered version of the impedance
function computed using the so-called ZAP functions [10, 11, 28] that sweep through
a given range of frequencies continuously over time.

2.5 Resonant and Amplifying Ionic Currents

Biophysically, subthreshold resonance has been argued to result from a combination
of low- and high-pass filter mechanisms that have been described in terms of neural
currents [10]. RC circuits act as low-pass filters. (As the input frequency increases the
voltage amplitude response of passive neurons decreases from its resistance value, for
zero input frequency, to zero, for input frequencies approaching infinity.)

Ionic currents, or more precisely their associated gating variables, have been clas-
sified into resonant (g1 > 0) and amplifying (g1 < 0) [10, 11]. Resonant gating vari-
ables (e.g., hyperpolarization-activated h-currents [15–17] and slow potassium, M-
type currents [14]) have the ability to create resonance by opposing voltage changes
(negative feedback). Amplifying gating variables (e.g., persistent sodium currents
[14–17] and high-threshold calcium currents [10]) generate a positive feedback ef-
fect that enhances voltage changes but they do not create resonance [10]. Some cur-
rents such as the low-threshold calcium current IT have both resonant and amplifying
gating variables [10].

The interaction between resonant and amplifying currents in shaping the neuronal
voltage response (impedance and phase profiles) to oscillatory input currents is com-
plex [29], sometimes non-intuitive, and involves not only changes in the maximal
amplitude of the voltage response but also in other attributes including the resonant
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and phase resonant frequencies. The role that different types of resonant and amplify-
ing currents play in shaping the impedance profile has been recently clarified in [29].
An important outcome of this study is that the standard classification “resonant vs.
amplifying” does not capture in its entirety the effect that changes in their biophysi-
cal parameters have on the shapes of the impedance and phase profiles. For instance,
while hyperpolarization-activated (h- or Ih) and M-type slow potassium (IKs) cur-
rents have qualitatively similar effects on the impedance profile as the corresponding
ionic conductances (Gh and GKs), they may have opposite effects in the presence of
a persistent sodium current (amplifying). Specifically, in the latter case, an increase
in Gh leads to an amplification of the voltage response, while an increase in GKs
causes an attenuation of the voltage response. Additionally, an increase in the time
constant associated to the gating variable, which increases the system’s time-scale
separation, does not only affect the resonant and phase-resonant frequencies, but it
may also produce a significant amplification of the voltage response.

3 Results

3.1 Stability and Resonant Properties in the α–ε Rescaled System

Here we review the stability and resonant properties of the rescaled equations (14)–
(15) in terms of the parameters α and ε for later use. These properties have been
discussed in [11, 29] for a different rescaling based on dimensionless effective con-
ductances.

3.1.1 Stability Properties for the Autonomous System and Intrinsic Oscillations

We first consider system (14)–(15) with Ain = 0. The fixed point is given by (v̄, w̄) =
(0,0) and the eigenvalues are given by (Appendix A)

r1,2 = −(1+ ε) ± √
(1− ε)2 − 4αε

2
. (19)

The stability diagram in the α–ε parameter space is presented in Fig. 3a1. From (19),
the fixed point is a focus if (1− ε)2 − 4αε < 0 and a node otherwise. Foci are stable
if 1+ ε > 0. Nodes are stable if 1+ ε > 0 and ε(1+α) > 0. If ε(1+α) < 0 the fixed
point is a saddle. The natural frequency of the damped oscillations (for stable foci) is
given by

fnat = T

2π
μ with μ =

√
4αε − (1− ε)2

2
. (20)

3.1.2 Impedance, Phase, Resonance, and Phase-Resonance

The impedance function (17) for system (14)–(15) with Ain > 0 is given by (Ap-
pendix A)

Z2(Ω) = ε2 + Ω2

[ε(1+ α) − Ω2]2 + (1+ ε)2Ω2
. (21)
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Fig. 3 Stability and resonant properties for the reduced two-dimensional linear system (14)–(15). a Stabil-
ity and resonance diagrams in the α–ε parameter space. a1 Stability diagram for the autonomous system.
The blue curves separate between regions with different stability properties. a2 Resonance diagram. The
red curves separate between regions where the system does (above and below) and does not (middle) ex-
hibit resonance. a3 Superimposed stability (blue curves) and resonance (red curves) diagrams showing
that intrinsic oscillations and resonance may occur in the absence of the other. b Natural (fnat), resonant
(fres), and phase-resonant (fphas) frequencies as a function of α (b1) and ε (b2) illustrating that these
characteristic frequencies have different values (b1 and b2) and different monotonic properties (b2) as the
model parameters change. c Maximum impedance (Zmax) and resonance amplitude (QZ ) as a function
of α (c1) and ε (c2) illustrating the two basic mechanisms of generation of resonance in 2D linear sys-
tems. c1 As α increases, resonance results from a decrease in both Z(0) and Zmax with Z(0) decreasing
faster than Zmax. c2 As ε decreases (time-scale separation increases), resonance results from an increase
in Zmax with Z(0) fixed

The resonant frequency, if it exists, is given by

fres = T

2π
Ωres with Ωres =

√
−ε2 +

√
ε2α(α + 2ε + 2). (22)

System (14)–(15) exhibits resonance if Ωres > 0. In order Ωres to be defined, α(α +
2ε + 2) ≥ 0 and

√
ε2α(α + 2ε + 2) > ε2. The first condition is satisfied either if

α ≥ −2(1+ ε) (α ≥ 0) or α < −2(1+ ε) (α < 0). (23)
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For the second condition to be satisfied,

|α + 1+ ε| >
√
2ε2 + 2ε + 1. (24)

This yields either

α > −1− ε +
√
2ε2 + 2ε + 1 or α < −1− ε −

√
2ε2 + 2ε + 1. (25)

These regions are illustrated in the resonance diagram in Fig. 3a2. Figure 3a3 illus-
trates that resonance may occur in the absence of intrinsic oscillations and vice versa.

The phase φ for system (14)–(15) is given by

φ(Ω) = tan−1
(

Ω2 − ε(α − ε)

(ε(α + 1) − Ω2)ε + (1+ ε)Ω2
Ω

)
. (26)

The phase-resonant frequency, if it exists, is given by

fphas = T

2π
Ωphas with Ωphas = √

ε(α − ε). (27)

The natural, resonant, and phase-resonant frequencies do not necessarily coincide
(Fig. 3b). In fact, they rarely do so.

Figure 3c illustrates the two basic mechanisms of generation of resonance for 2D
linear systems [29] in terms of α and ε: (i) as α increases, resonance emerges from
a combined and unbalanced decrease in both Z(0) and Zmax with Z(0) decreasing
faster than Zmax (panel c1), and (ii) as ε decreases (time-scale separation between
v and w1 increases), resonance emerges from an increase in Zmax with Z(0) un-
changed.

3.2 The Structure of the “Oscillatory Phase Plane”

Here we consider system (14)–(15) with Ain ≥ 0. For the type of analysis we present
in this paper it is useful to rescale time by defining

t̂ = f t (28)

in order to separate the effect of the input frequency f from the input’s time depen-
dence. Substituting (28) into (14)–(15), and dropping the “hat” sign from the time t̂ ,
we obtain

dv

dt
= 1

f
[−v − w + At ], (29)

dw

dt
= ε

f
[αv − w], (30)

where the sinusoidal input

At = Ain sin(2πt/T ) (31)
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has the same frequency (1 cycle per T units of time) for all values of the input fre-
quency f . The latter affects the speed of the trajectories in the phase plane (i.e., the
speed of the system’s response) without affecting the direction of the underlying vec-
tor field. Here we use T = 1000.

The v- and w-nullclines for the unforced system (Ain = At = 0) are given by
Nv(v) = −v and Nw(v) = αv, respectively. The stability properties of this au-
tonomous system have been discussed in Sect. 3.1.1. For Ain > 0, system (29)–(30)
is no longer two-dimensional. In our analysis, we will think of the projection of the
zero-level curve for (29) for each value of t as the v-nullcline Nv(v) for the au-
tonomous system forced by the sinusoidal input At :

Nv,t (v) = −v + At . (32)

For t = 0 (or any multiple of t = 500), Nv,t coincides Nv = −v. As t increases Nv,t

“moves” cyclically, generating lines parallel to Nv = −v in between the lines

N+
v (v) = −v + Ain and N−

v (v) = −v − Ain. (33)

The moving v-nullcline reaches these two lines at t = 250 and t = 750, respectively.
As Nv,t moves so does its intersection with the w-nullcline Nw generating a “moving
fixed point”

(v̄t , w̄t ) =
(

At

1+ α
,

αAt

1+ α

)
, (34)

which oscillates with frequency 1 between the endpoints (v̄250, w̄250) (A250 = Ain)
and (v̄750, w̄750) (A750 = −Ain), reaching the origin three times within a cycle at
t = 0, t = 500, and t = 1000.

This moving fixed point together with the moving nullclines organize the dynam-
ics of the forced system. Specifically, the stable fixed point (either a node or a focus)
acts as a moving target for trajectories, which track its motion by evolving with a
f -dependent speed.

The dynamics of the forced system (29)–(30) results from the interaction between
the vector field of the autonomous system (Ain = At = 0) and the forcing term (At )
that causes the cyclic motion of both the v-nullcline and the fixed point (34) in ad-
dition to a cyclic change in the direction field. For each point in the phase plane
the value of the direction field is independent of f . However, the trajectories’ f -
dependent speed causes them to sweep different distances in a given unit of time.
Since they reach different points, subject to different values (magnitude and direc-
tion) of the vector field, trajectories describe different curves for different values of f .
The resonant frequency, if it exists, is the value of the input frequency f for which
the corresponding limit cycle trajectory has the maximal amplitude in the v-direction,
provided this amplitude is larger than the instantaneous amplitude corresponding to
the effective resistance Z(0).

3.3 Transient Dynamics for Instantaneously Forced Systems

As a first step in our investigation we describe the response of system (29)–(30) to
instantaneous constant inputs (with no associated time scales) in order to understand
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how the system’s intrinsic time scales depend on the parameters α and ε, and how
these parameters contribute to the amplification or attenuation of the voltage response
to these instantaneous changes. We will use this knowledge to explain the dynamics
of the forced system when the inputs do have associated times scales.

For the purpose of this part we will consider constant values of At in system (29)–
(30). Without loss of generality, we assume that (i) At instantaneously changes from
At = 0 to either At = 1 or At = −1, (ii) this change occurs at t = 0, and (iii) f = 1.

3.3.1 Transient Dynamics and Effective Time Scales

An instantaneous change in At causes an instantaneous displacement of the v-
nullcline on the phase plane, and consequently an instantaneous change in the loca-
tion of the fixed point. The vector field changes accordingly, and can also be thought
of being instantaneously displaced.

The stability properties of the fixed point, however, remain unchanged since the
system (29)–(30) is linear and, therefore, its associated Jacobian matrix is indepen-
dent of At .

Consequently, for different values of At , trajectories at a given initial point have
the same long term behavior as they approach the corresponding fixed points, but
they have different initial transient behaviors (Fig. 4). For the purpose of this paper,
we are particularly interested in the initial transient behavior caused by changes in
At . As we explain in more detail below, this transient behavior rather than the long
term behavior is the one that plays an important role in determining the amplitudes
of the limit cycle trajectories for the time-dependent forced systems.

The trajectories’ transient behavior relevant to this paper corresponds to the time
elapsed from the initial point (red dots in Fig. 4) until they cross the corresponding
v-nullcline (dashed-red line), reaching their maximum value for v. The effect of dif-
ferent values of At on the behavior of trajectories initially at the same point can be
understood by looking at the horizontal and vertical components of the vector field

Dv = −v − w + At and Dw = ε(αv − w), (35)

respectively. As At increases, Dv increases and the motion in the horizontal direction
strengthens relative to the motion in the vertical direction. Consequently, the largerAt

the “more horizontal” the trajectories’ transient direction of motion. From a different
perspective, trajectories starting at the same initial point in the “standard” coordinate
system whose origin is (0,0), start at different initial points in translated coordinate
systems whose origins are the fixed points (v̄t , w̄t ) determined by At through (34).
The larger At , the larger the distance between the trajectory’s initial point and the
corresponding v-nullcline, and so they are less affected by it and they can transiently
move in more horizontal directions.

Figure 4 also illustrates the roles of α and ε in determining both the effective time
scales for system (29)–(30) and the amplitude of the voltage response (maximum
value of v for any given trajectory) to constant perturbations (At ). For ε = 0.01 (top
panels) the time scales are well separated and the system is fast-slow. Trajectories
move first fast in almost horizontal directions, then they slow down as they approach
the v-nullcline, and finally they reverse direction and move towards the fixed point
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Fig. 4 Phase-plane diagrams for the autonomous linear system (29)–(30) for various representative values
of α, ε and At . a α = 1. Top row: ε = 0.01. Middle row: ε = 0.1. Bottom row: ε = 1. b α = 6. Top row:
ε = 0.01.Middle row: ε = 0.1. Bottom row: ε = 1. c α = −2. Top row: ε = −0.01.Middle row: ε = −0.1.
Bottom row: ε = −0.5. Each panel shows superimposed phase-planes diagrams for three different con-
stant values of At (= 0,1,−1) generating three v-nullclines (solid-red for At = 0, dashed-red for At = 1
and At = −1) and three fixed points (blue dots on the intersections between the red and green lines). The
w-nullcline (green line) is common to all values of At . Solid-red line: v-nullclines for At = 0. Dashed-red
lines: v-nullclines for At = 1 (above) and At = −1 (below). Red dots at (0,−1) and (0,−0.5): represen-
tative initial conditions. Solid-blue lines: trajectories initially located at these initial points. Each trajectory
emerging from the red dots corresponds to a different value of At and converges to the corresponding fixed
point. The fixed points in panels a-top, a-middle and b-top are stable nodes and the fixed points in panels
a-bottom, b-middle and b-bottom are stable foci

in close vicinities of the displaced v-nullcline. This effect is more pronounced for
smaller values of α (compare top panels a and b) because of the product αε in (30),
which affects the effective time scales. As α decreases so does the slope of the v-
nullcline, thus “pressing” trajectories that become more “compacted”. As ε increases
(from the top to the bottom panels), the separation of time scales decreases, trajecto-
ries become more “rounded”, and reach lower maximal values of v.

An important observation is that, qualitatively, the initial transient behavior of
trajectories in Fig. 4 is not dependent on whether the fixed point is a stable node or
focus but rather on the magnitude of the differences between the corresponding values
of α and ε. Specifically, trajectories with close enough values of both α and ε will
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Fig. 5 Voltage traces for the autonomous linear system (29)–(30) for various representative values
of α, ε and At = 1. a α = 1. The maximum times are tmax,ε=0.01 = 4.31, tmax,ε=0.1 = 2.38, and
tmax,ε=1 = 1.12. b ε = 0.1. The maximum times are tmax,α=1 = 2.38 and tmax,α=6 = 1.44

display qualitatively similar transient behavior regardless of the possible differences
in the stability of the corresponding fixed points (Fig. 5).

3.3.2 Amplification of the Voltage Response to Instantaneous Constant Inputs

The voltage response is amplified by a given parameter if v is able to reach a higher
value when this parameter changes. Figures 4 and 5 demonstrate that the amplifica-
tion of the voltage response increases as the time-scale separation increases (ε de-
creases) (compare top, middle and bottom panels for increasing values of ε in Fig. 4
and see the traces in Fig. 5) and as α decreases (compare Figs. 4a and 4b and see the
traces in Fig. 5). These results reflect the roles of the resonant and amplifying currents
in determining the amplification of the voltage response through the dimensionless
parameters α and ε given by (12). For example, an increase in time constant τ1 causes
a decrease in ε (time-scale separation), leading to an amplification of the voltage re-
sponse. The explanation of the effects of other biophysical parameters (e.g., gL and
g1) through the dimensionless parameter α is less straightforward since α has been
used as a voltage scale. A thorough study of these effects has been carried in [29].

Figure 4 also demonstrates that voltage responses are more amplified for negative
values of α and ε than for positive ones (compare panels a and c). This is consis-
tent with the fact that negative values of α and ε are obtained for negative values
of the effective conductance gL, which in turn reflects the presence of a strong, fast
amplifying current (I2) in the biophysical model.

3.4 Voltage Amplitude Response to Sinusoidal Inputs at Different Frequencies:
Resonance and Phase-Resonance

Here we build up on the ideas discussed in Sect. 3.3 to investigate the mechanism
of selection of the resonant and phase-resonant frequencies in the two-dimensional
system (29)–(30) in response to sinusoidal inputs of the form At (31). Without loss
of generality we consider the canonical case Ain = 1. With this choice, for each
value of f the impedance function (18) coincides with the maximum value of v;
i.e., vmax(f ) = Z(f ).

As t increases, At changes and the v-nullcline Nv,t (32) moves cyclically, parallel
to itself between the lines N+

v (v) and N−
v (v) (33) (dashed-red lines in Fig. 4) with
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frequency equal to 1. The fixed point (34) moves cyclically with the same frequency
between the two corresponding extreme values. The input amplitude is coded by the
distance between the moving fixed point and the origin.

Trajectories respond to changes in At by evolving according to the dynamics dic-
tated by the underlying vector field (35). The trajectories’ speed ν is given by the
product of the magnitude of the vector field and f −1

ν =
√

D2
v + D2

w

f
=

√
(−v − w + At)2 + ε2(αv − w)2

f
. (36)

At any given point, the underlying vector field is independent of f . However, the
f -dependent speed (36) causes the resulting limit cycle trajectory to be f -dependent
as explained at the end of Sect. 3.2. This dependence is reflected primarily on the
shape and orientation of the limit cycle as we illustrate this in Fig. 6a for a system
that exhibits resonance (see Fig. 6b) and phase-resonance (see Fig. 6c). For small
values of f limit cycles are elliptic and very narrow, with their major axis lying on
a vicinity w-nullcline. As f increases, the limit cycle first widens and rotates, then
it narrows as it continues to rotate until the major axis becomes horizontal (on the
v-axis), and finally the limit cycle shrinks until it collapses to a point as f → ∞. The
system exhibits resonance because the maximal value of v for f ∼ 65 is larger than
the maximal value of v for f → 0.

3.4.1 Envelope-Plane Diagrams: Resonant and Phase-Resonant Responses

Figure 6d shows a graph containing the curve generated by the points with maximum
values of v on the limit cycles for continuously changing values of f ∈ [0,∞) and
the parameter values in Fig. 6a. We refer to this curve as the upper envelope curve
of the voltage response. (The lower envelope curve, not shown, is determined by
the minimum values of v on the f -dependent limit cycles, and is symmetric to the
upper envelope curve with respect to the v-nullcline and w-nullclines.) We refer to
the diagrams containing the envelope curves together with the v- and w-nullclines
(green, solid-red, and dashed-red), as in Fig. 6d, as the envelope-plane diagrams.

Envelope-plane diagrams contain geometric and dynamic information about a sys-
tem’s frequency response to oscillatory inputs, and they are the frequency analogs to
phase-plane diagrams. Trajectories in the envelope-plane diagrams (upper and lower
envelopes) are curves parameterized by the input frequency as trajectories in the
phase planes are curves parametrized by time. Neither f nor t are explicit in the
corresponding diagrams. The red-dashed lines quantify the maximal input amplitude.
For f → 0, the envelope curve is at the intersection between the upper dashed-red
line N+

v and the w-nullcline. For f → ∞, the envelope curve is at the origin (limit
cycle shrinking to a point).

The cusp (“horizontal peak”) in the envelope curve in Fig. 6d corresponds to the
peak in the impedance profile (Fig. 6b), and hence to the resonant frequency. At this
cusp the voltage response is the largest across input frequencies, and larger than the
response for f → 0: vmax = (1+ α)−1.

The point in the envelope curve tangent to the upper dashed-red line corresponds
to the phase-resonant frequency for reasons that we will clarify later in the paper.
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Fig. 6 Dynamics of the sinusoidally forced linear system (29)–(30) for α = 1, ε = 0.01. a Projections
of the phase-plane diagrams on the v–w plane for various representative values of the input frequency f .
The fixed solid-red line and the solid-green line represent the v- and w-nullclines for the unforced sys-
tem (At = 0), respectively. The dashed-red lines represent the v-nullclines for At = 1 (above-right) and
At = −1 (below-left). The solid-blue lines represent the trajectories of the forced system for a single pe-
riod (T = 1000). b Impedance profile. c Phase profile. d Envelope-plane diagram. The solid-blue line
represents the envelope curve: Each point on this curve is the maximum point on the limit cycle response
to sinusoidal inputs parametrized by the input frequency f which increases from f = 0 (blue-square at
the intersection between upper dashed-red and green curves) to f → ∞ (blue dot at the origin). (The
v-coordinates of the envelope curve are the impedance function Z, since Ain = 1.) Solid-red and -green
lines: v- and w-nullclines for the unforced system (At = 0). Dashed-red lines: v-nullclines for At = 1
(above) and At = −1 (below)

Below, we first discuss the voltage response mechanisms for the two limiting cases
(f → 0 and f → ∞) and then elaborate on the dynamics for intermediate values of
f , in particular fres and fphas.

3.4.2 Low Input Frequencies Generate Quasi-one-dimensional Dynamics Along the
w-Nullcline

For values of f � 1 both equations in system (29)–(30) are very fast (dv/dt → ∞
and dw/dt → ∞), and then the limit cycle trajectory tracks the motion of the fixed
point almost instantaneously (in a quasi-steady-state fashion). In the limit f → 0, the



Page 18 of 41 H.G. Rotstein

Fig. 7 Snapshots of the moving phase-plane diagram for the linear system (29)–(30) for α = 1, ε = 0.1,
f = 1 and representative values of t within one cycle (T = 1000). The solid-red lines represent the mov-
ing v-nullcline. The dashed-red lines represent the v-nullclines for At = 0 (middle), At = 1 (top), and
At = −1 (bottom). The solid-green line represents the (fixed) w-nullcline. The fixed solid-red line and
the solid-green line represent the v- and w-nullclines for the unforced system (At = 0), respectively. The
dashed-red lines represent the v-nullclines for At = 1 (above), At = 0 (middle), and At = −1 (below). As
t increases, the red nullcline moves cyclically between the two dashed-red lines. The blue dot indicates the
initial location of the trajectory (t = 0 = 1000)

limit cycle trajectory moves cyclically along the w-nullcline in between the points
(34) with At = ±Ain = ±1. From (34), vmax/Ain = (1+ α)−1, which coincides with
Z(0) in (21). In Fig. 7 we present snapshots of the evolution of the limit cycle trajec-
tory for f = 1 (corresponding to Fig. 6a, top-left panel).

3.4.3 High Input Frequencies Generate Quasi-one-dimensional Dynamics Along
the Horizontal v-Axis

For large enough values of f 	 1, both (29) and (30) are very slow (dv/dt → 0
and dw/dt → 0), and then the limit cycle trajectory evolves with a very low speed
according to (36). Relative to the trajectory’s speed, the v-nullcline Nv,t moves very
fast. The time it takes the trajectory to cover a very small distance while tracking
the motion of the v-nullcline is enough for the latter to reach its maximum level
N+

v , reverse direction, and intersect the trajectory on its “way back”. This causes
the trajectory to reverse direction. As a result, the limit cycle trajectory is not able
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to cover any significant distance away from the origin, and so the amplitude of the
limit cycle is small as compared to other values of f (Fig. 6a, bottom-right panel). In
the limit f → ∞, the amplitude of the limit cycle trajectory is zero (the limit cycle
shrinks to the origin), which coincides with limf →∞ Z(f ) = 0.

3.4.4 Voltage Response Amplification at the Resonant Frequency Band

For small and large enough values of f the corresponding limit cycle trajectories
are constrained to move along quasi-one-dimensional directions (w-nullcline and v-
axis, respectively). For intermediate values of f there is a transition in the shapes
of the limit cycle trajectories between these two limit cases. Specifically, limit cycle
trajectories are neither too fast nor too slow, and then, while they are “left behind”
by the moving v-nullcline, they can take advantage of the two-dimensional vector
field without being constrained to move in quasi-one-dimensional directions. For the
appropriate values of α and ε this degree of freedom allows limit cycle trajectories to
reach values of vmax(f ) larger than vmax(0), and so to exhibit resonance.

In Fig. 8 we show a sequence of snapshots of the evolution of the limit cycle trajec-
tory for f = fres = 65 (Fig. 6a, bottom-left). The initial snapshot (t = 0) corresponds
to a point (blue dot) on the limit cycle trajectory and At = 0. As t increases the v-
nullcline moves and the limit cycle trajectory tracks its motion. The limit cycle’ shape
and amplitude result from the combined effect of At , f , and the model parameters
(α and ε).

In Fig. 8 we are using a relatively small value of ε (ε = 0.1). While, small values of
ε are enough to account for the almost horizontal transient trajectories in autonomous
systems (Fig. 4), they are not enough to account for the almost horizontal directions
of motion for limit cycles trajectories in forced systems such as in Fig. 8. In fact, for
the same value of ε but a different value of f (f = 1 instead of f = 65) the limit
cycle trajectory moves in the (oblique) direction of the w-nullcline (Fig. 7).

To better understand how At , f , ε and α affect the direction of motion of the
limit cycle trajectory in Fig. 8, it is useful to go back and look at the initial transient
segment of the evolution of trajectories for the autonomous systems presented in
Fig. 4 (from the initial, red point until they cross the v-nullcline). Figure 4a (middle)
corresponds to the same parameter values (α = 1 and ε = 0.1) as in Fig. 8. The
increase in the constant input from At = 0 to At = 1 causes both an increase in the
distance between the tip of the trajectory and the v-nullcline (from the solid line to
the dashed-red line) and a strengthening of the horizontal component of the vector
field Dv (35) relative to its vertical component Dw . As a result, during the initial
transient interval, the larger At > 0, the more horizontal is the trajectory’s direction
of motion.

A similar, but dynamic effect is partially responsible for the determination of the
direction of motion in Fig. 8. Trajectories move faster in more horizontal directions
as At increases during the ascending phase (t = 0 to t = 250) because the contin-
uous increase in At causes a continuous increase in Dv while Dw remains almost
unchanged. However, differently from the static case, in the dynamic case there is
an opposite, dynamic effect caused by the decreasing distance between the tip of the
limit cycle trajectory and the moving v-nullcline Nv,t since Dv decreases as the limit
cycle trajectory approaches the v-nullcline.
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Fig. 8 Snapshots of the moving phase-plane diagram for the linear system (29)–(30) for α = 1, ε = 0.1,
f = 65 and representative values of t within one cycle (T = 1000). The solid-red lines represent the
moving v-nullcline. The dashed-red lines represent the v-nullclines for At = 0 (middle), At = 1 (top),
and At = −1 (bottom). The solid-green line represents the (fixed) w-nullcline. The fixed solid-red line and
the solid-green line represent the v- and w-nullclines for the unforced system (At = 0), respectively. The
dashed-red lines represent the v-nullclines for At = 1 (above), At = 0 (middle), and At = −1 (below). As
t increases, the red nullcline moves cyclically between the two dashed-red lines. The blue dot indicates the
initial location of the trajectory (t = 0 = 1000)

In the autonomous case, the nullclines are fixed, so the distance between the tra-
jectory and Nv,t depends only on the trajectory’s speed (36). In the forced case, on
the other hand, the trajectory and the v-nullcline Nv,t are simultaneously moving,
with different speeds. The resonance frequency fres is the input frequency for which
their relative speed is optimal in the sense that it allows the limit cycle trajectory to
move in a direction that maximizes (over the range of input frequencies f ) the dis-
tance (in the v direction) the limit cycle trajectory can cover before intersecting the
moving v-nullcline, at which time they are forced to reverse direction. This causes
a maximization (over the range of input frequencies f ) of the maximum value vmax
on the limit cycle trajectories. In Fig. 8 (f ∼ fres), this intersection occurs for vmax
(∼ 1). The remainder of the limit cycle can be explained using similar ideas.

For values of f < fres, the limit cycle trajectory moves faster than for f = fres,
and so the direction of motion is less horizontal causing this cycle trajectory to inter-
sect Nv,t at a higher point; i.e., for a lower value of vmax (e.g., Fig. 6a, f = 48). For
values of f > fres, the limit cycle trajectory moves slower than for f = fres. The rela-
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tive speed between this trajectory andNv,t is large enough to allow the limit trajectory
to move in an almost horizontal direction, but, due to the limit cycle trajectory’s lower
speed, Nv,t “returns” before this trajectory covers a large enough distance. Thus, the
intersection between the trajectory and Nv,t occurs for lower values of vmax (e.g.,
Fig. 6a, f = 200).

3.4.5 Resonance and Intrinsic Oscillations Are Generated by Related, but not
Identical Mechanisms

Intrinsic STOs and subthreshold resonance have been proposed to result from the
same underlying mechanism [12]. However, in linear systems, resonance may occur
in the absence of intrinsic oscillations and vice versa [11] (see Fig. 3a). Even for
parameter values for which linear systems exhibit both resonance and intrinsic oscil-
lations, the resonant and natural frequencies do not necessarily coincide (Fig. 3b).

The phase-plane analysis discussed above demonstrates that the resonant proper-
ties are not expected to be directly linked to the stability properties of the underlying
autonomous system. The time scales corresponding to intrinsic oscillations, if they
exist, are determined by the stability properties of the stable foci, which reflect the
long term behavior of trajectories. In contrast, the time scales corresponding to the
resonant frequency do not involve the stability properties of the fixed points of the un-
derlying autonomous system (nodes or foci) but rather the initial transient behavior
of trajectories as described above. This initial transient behavior is the link between
the autonomous and forced systems. This transient dynamics is associated with ei-
ther the onset of intrinsic oscillations (foci) or a “sag” (node) typically observed in
the response of h-currents to constant inputs [11]. Importantly, as we demonstrated
in Sect. 3.3, autonomous systems may display qualitatively similar transient behavior
for nodes and foci, even though the long time behavior of the corresponding trajecto-
ries is qualitatively different (see Fig. 4b).

3.4.6 Phase Advance, Phase Delay and Phase-Resonance

In Fig. 3b we showed that the resonant (fres) and phase-resonant (fphas) frequencies
do not necessarily coincide, and that resonance may occur in the absence of phase-
resonance. For the parameters values in Fig. 6, fres = 65 and fphas = 48. Typical
phase profiles show “phase advance” for f < fphas and “phase delay” for f > fphas
(see Fig. 6c).

Geometrically, for the output and input to be synchronized in phase, the intersec-
tion between the limit cycle trajectory and the moving v-nullcline must occur when
the v-nullcline reaches its highest level At = Ain (when the solid-red line in the mov-
ing phase-plane diagrams reaches the dashed-red line at t = 250). The phase is ad-
vanced when the limit cycle trajectory “peaks” before the input does, which requires
the trajectory to evolve fast enough as compared to the speed of the v-nullcline. Con-
versely, the phase is delayed when the limit cycle trajectory intersects the v-nullcline
“on its way back” (descending phase), after the v-nullcline has reached its high-
est level. For f = fres = 65 (Fig. 8), the limit cycle trajectory is still behind the
v-nullcline at the time this v-nullcline reaches its highest level (t = 250), and the
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Fig. 9 Snapshots of the moving phase-plane diagram for the linear system (29)–(30) for α = 1, ε = 0.1,
f = 48 and representative values of t within one cycle (T = 1000). The solid-red lines represent the
moving v-nullcline. The dashed-red lines represent the v-nullclines for At = 0 (middle), At = 1 (top),
and At = −1 (bottom). The solid-green line represents the (fixed) w-nullcline. The fixed solid-red line and
the solid-green line represent the v- and w-nullclines for the unforced system (At = 0), respectively. The
dashed-red lines represent the v-nullclines for At = 1 (above), At = 0 (middle), and At = −1 (below). As
t increases, the red nullcline moves cyclically between the two dashed-red lines. The blue dot indicates the
initial location of the trajectory (t = 0 = 1000)

phase is therefore delayed (the intersection occurs at a time in between the top-right
and middle-left panels, t = 250 and t = 375, respectively).

For f = fphas = 48 (Fig. 9), on the other hand, the limit cycle trajectory intersects
the v-nullcline when the latter is at its highest level (t = 250). Since the point of
intersection corresponds to v = vmax (on the limit cycle trajectory), the correspond-
ing point on the envelope curve “touches” the top dash-red line. For all other fre-
quencies, the intersection between limit cycle trajectories and the moving v-nullcline
occurs away from the top dashed-red line, therefore the phase-resonant frequency
corresponds to the point in the envelope curve that is tangent to the top dashed-red
line. This tangent point is not necessarily the cusp that corresponds to the resonance
frequency fres.

Specifically, the phase-resonance phenomenon depends on the ability of the limit
cycle trajectory for f = fphas to track the v-nullcline fast enough so to reach vmax
before the v-nullcline reaches its highest level. But this does not preclude limit cycle
trajectories for frequencies f 
= fphas to reach higher values of v due to the different
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directions of motion generated by these values of f . In fact, values of f > fphas
cause limit cycle trajectories to evolve slower than for f = fphas, and so (within
some range of values of f ) they can move along more horizontal directions, and thus
reach higher values of v before intersecting the “returning” v-nullcline. This is the
case for f = fres in Fig. 8.

3.5 Effects of α and ε on Resonance, Phase-Resonance, and Other Attributes of the
Impedance and Phase Profiles

Geometrically, the value of α determines one of the boundaries of the region (triangle)
in the envelope-plane diagramwhere the envelope curves live (Fig. 6d). The other two
boundaries are the v-nullcline for At = 1 (dashed-red line) and the v-axis. The value
of α also determines Z(0) = vmax(0)/Ain = (1 + α)−1, which is the v-coordinate
of the intersection between the w-nullcline and the v-nullcline for At = 1. As we
mentioned earlier, for resonance to occur, vmax(f ) > vmax(0) (on the envelope curve)
for some range of values of f around fres.

The value of ε plays a key role in determining the direction of motion of limit cycle
trajectories analogous to its effect on the initial transient behavior of trajectories for
the autonomous systems discussed in the context of Fig. 4. For fixed values of α, the
smaller ε the more horizontal (and less rounded) is the direction of motion of the
initial portion of the trajectories, and the larger the value of v these trajectories reach;
i.e., the voltage response is amplified.

From the biophysical point of view, α and ε convey information about the effec-
tive conductances g1 and gL, the capacitance C, and the time constant τ̄1 (gating
variable x1) through (12). In [29] we use numerical simulations to conduct a through
analysis of the effects of resonant and amplifying biophysical conductances on the
determination of fres, fphas and other attributes of the impedance and phase profiles.

Here we use the envelope-plain diagrams developed in Sect. 3.4 to explain how
the parameters α and ε affect the resonant and phase-resonant properties of (14)–
(15), and how they contribute to the amplification of the voltage response. In Figs. 10
and 11 we examine the effects of changes in ε and α, respectively. In Figs. 12 and 13
we investigate the additional amplifying effects for negative values of both α and ε.

3.5.1 An Increase in the Time-Scale Separation (Decreasing Values of ε) Causes an
Amplification of the Voltage Amplitude Response

In Fig. 10 we compare the voltage responses for various representative values of ε

and α = 1. As ε decreases, both Zmax and QZ increase, fres and fphas decrease, and
the neuron becomes more selective (Λ1/2 decreases) (Fig. 10b). These differences are
captured by the shapes of the envelope curves, which are sharper the smaller the ε.
For ε = 0.01 (panel a, left) the system is fast-slow causing trajectories to move fast
along horizontal fibers as compared to larger values of ε (middle and right panels),
and thus the limit cycle trajectory corresponding to fres reaches a higher value of
vmax (the voltage response is more amplified). The envelope-plane diagrams predict
that fres and fphas are very close since the envelope curve is tangent to the dashed-red
line almost at the peak (panel a).
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Fig. 10 Effects of changes in ε on the resonant and phase-resonant properties of the linear system
(29)–(30) for α = 1. a Envelope-plane diagrams for ε = 0.01 (left), ε = 0.1 (middle), and ε = 1 (right).
b Impedance (Z) profiles. c Phase (φ) profiles. The parameter values correspond to the autonomous sys-
tems presented in Fig. 4a

Fig. 11 Effects of changes in α on the resonant properties of the linear system (29)–(30) for ε = 1.
a Envelope-plane diagrams for α = 2 (left), α = 0.5 (middle), and α = 0.2 (right). b Impedance (Z)
profiles. c Phase (φ) profiles

As ε increases, the tangent point and the peak separate (panels b and c), and hence
the difference between fres and fphas increases. For ε = 1 (panel c), the tangent point
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Fig. 12 Dynamics of the sinusoidally forced linear system (29)–(30) for α = −2, ε = −0.5. a Projections
of the phase-plane diagrams on the v–w plane for various representative values of the input frequency f .
The fixed solid-red line and the solid-green line represent the v- and w-nullclines for the unforced sys-
tem (At = 0), respectively. The dashed-red lines represent the v-nullclines for At = 1 (above-right) and
At = −1 (below-left). The solid-blue lines represent the trajectories of the forced system for a single pe-
riod (T = 1000). b Impedance profile. c Phase profile. d Envelope-plane diagram. The solid-blue line
represents the envelope curve: Each point on this curve is the maximum point on the limit cycle response
to sinusoidal inputs parametrized by the input frequency f which increases from f = 0 (blue-square at
the intersection between upper dashed-red and green curves) to f → ∞ (blue dot at the origin). (The
v-coordinates of the envelope curve are the impedance function Z, since Ain = 1.) Solid-red and -green
lines: v- and w-nullclines for the unforced system (At = 0). Dashed-red lines: v-nullclines for At = 1
(above) and At = −1 (below)

coincides with the intersection between the green and dashed-red lines, and hence the
system exhibits no phase-resonance (fphas = 0), while it still exhibits resonance.

In the limit of ε → 0, the system becomes quasi-one-dimensional and the dynam-
ics occurs almost exclusively along the v-axis for almost all values of f , except a
small range close to f = 0. For ε = 0 the dynamics is fully one-dimensional, thus
generating a low-pass filter response (no resonance). For f → 0 (and ε = 0) in (29)
and (30) the maximum value of v approaches the intersection between the dotted-
red line and the v-axis in the envelope-plane diagram. The maximum value of v

(along the v-axis) decreases as f increases. As soon as ε > 0, the dynamics becomes
two-dimensional. The envelope curves unfold in the two-dimensional space and ac-
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Fig. 13 Effects of changes in ε on the resonant properties of the linear system (29)–(30) for α = −2.
a Envelope-plane diagrams for ε = −0.01 (left), ε = −0.1 (middle), and ε = −0.5 (right). b Impedance
(Z) profiles. c Phase (φ) profiles

quire “triangular-like” shapes similar to these shown in Fig. 10a (left), but peakier the
smaller ε. Regardless of how small is ε, there is always a range of values of f < ε

such that as f → 0, the limit cycle trajectory evolves fast, “almost along” the w-
nullcline (green line) following the motion of the fixed point. Therefore, the point on
the envelope curve for f = 0 lies on the intersection of the dotted-red line and the w-
nullcline. The remaining of the envelope curve will be as in Fig. 10a, but the distance
between the envelope curve and the dotted-red line will be larger the smaller ε. This
distance is determined by the minimum phase, which increases in absolute value as ε

decreases.

3.5.2 Increasing Values of α Generate Resonance and Phase-Resonance and Cause
an Amplification of the Voltage Response

In Fig. 11 we compare the voltage responses for various representative values of α

and ε = 1. The value of α determines the slope of the w-nullcline, which is steeper
for larger values of α, and vmax(0) = (1+α)−1. The smaller slope of the w-nullcline
for lower values of α (right panel) reduces the trajectories’ freedom of motion by
constraining them to evolve in close vicinities of both nullclines (the w-nullcline and
the moving v-nullcline). The consequent decrease in speed prevents the limit cycle
trajectory from reaching large enough values of vmax. This together with the fact that
vmax(0) increases with α prevents the system from exhibiting resonance.

For larger values of α (left and middle panels), vmax(0) is smaller. Although an
increase in α increases the horizontal component of the vector field (through the
product αε) and hence reduces the effective time-scale separation, this is not enough
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to prevent limit cycle trajectories from moving beyond vmax(0), and the system is
able to exhibit resonance.

The envelope-plane diagrams predict the generation of phase-resonance as α in-
creases above some critical value (in between these for α = 2 and α = 0.5). For
α = 0.2 and α = 0.5 (middle and right panels) the envelope curve is tangent to the
dashed-red at its intersection with the w-nullcline, and hence the system exhibits no
phase-resonance. In contrast, for α = 2 (left panel), the tangent point occurs in be-
tween this intersection and the peak of the envelope curve, and thus the system does
exhibit phase-resonance.

3.5.3 Negative Values of Both α and ε Amplify the Voltage Response

From (12), negative values of both α and ε reflect the presence of a strong enough
amplifying current that makes the effective conductance gL < 0 and a resonant cur-
rent (g1 > 0). For the underlying autonomous system to be stable the values of ε are
constrained to be in the region ε > −1 (see Fig. 3a). We present a representative ex-
ample in Fig. 12 (α = −2 and ε = −0.5). Comparison with the examples presented
in Figs. 10 and 11 demonstrates that the voltage response is more amplified for neg-
ative than for positive values of both α and ε. This is true even for negative values
of ε that are not very small in absolute value (time-scale separation no necessarily
small).

Geometrically, negative values of α cause the slow of the w-nullcline to be nega-
tive (Fig. 12a) and affect the direction of motion of trajectories. The dynamics of the
forced system for very low and very large values of the input frequency f is similar
to the cases discussed above for positive values of both α and ε (Fig. 12 for f = 3 and
f = 400, respectively). For intermediate values of f , the amplification of the voltage
response reflects the interaction of the oscillatory inputs with an intrinsic vector field
(for the autonomous system) that is correlated with the amplification of the voltage
responses to instantaneous inputs discussed in the context of Fig. 4c for negative as
compared to positive values of both α and ε (Figs. 4a and 4b).

There are three main differences between the two cases (positive and negative
values of both α and ε). First, the phase-resonant frequency fphas = 138 is larger than
the resonant frequency fres = 108 for negative parameter values (Fig. 12b), while
fphas < fres for positive parameter values. This difference is also captured by the
envelope-plane diagram in Fig. 12d. Second, the voltage response is amplified by
decreasing, rather than increasing levels of the time-scale separation (given by |ε|),
for negative parameter values (Figs. 13a and 13b). Finally, the phase profiles are
initially at φ = −π and increase towards φ = π/2 (Fig. 13c) for negative values of
both α and ε (compare with Figs. 10 and 11), while φ never decreases below −π/2
for positive values of these two parameters.

3.6 Extension of the Envelope-Plane Diagram Approach to Simple Nonlinear
Systems

Linearization around resting potential produces a good approximation to the
impedance and phase profiles for weakly forced linear systems. However, signifi-
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cant departures from the linear prediction are expected for larger input amplitudes in
the presence of strong nonlinearities, in particular when they are close to the voltage
threshold for spike generation. The question arises of how nonlinearities affect the
voltage response and, in particular, how the resonant and phase-resonant frequencies
depend on the type of these nonlinearities and the time-scale separation between the
participating variables.

Linear responses to sinusoidal inputs are characterized by (i) the coincidence of
the input and output frequencies, (ii) the proportionality between the output and the
input signals that renders the impedance function independent of the input ampli-
tude Ain, and (iii) the symmetry between positive and negative values of the voltage
response. In terms of the envelope-plane diagrams, the information about the volt-
age response is captured by the upper envelope curve for Ain = 1. Here we illustrate
how the ideas developed in the previous sections can be extended to the investigation
of the mechanisms underlying the generation of resonance and phase-resonance in
nonlinear systems.

We use simple piecewise-linear (PWL) systems of the form

dv

dt
= hv(v) − w + Ain sin(Ωt), (37)

dw

dt
= ε

[
hw(v) − w

]
, (38)

where the functions hv and hw are continuous PWL functions with two linear pieces.
We consider two representative cases: (i) hv is PWL and hw is linear, and (ii) hv

is linear and hw is PWL. In both cases, the nullclines intersect at the origin. By
construction, in a vicinity of the fixed point (v̄, w̄) = (0,0) both hv and hw are linear,
and system (37)–(38) has the form (14)–(15).

3.6.1 The Voltage Response Is Amplified by Nonlinearities in the Voltage Equation

Here we consider system (37)–(38) with

hv(v) =
{

ηv if v ≤ 0.8,

ηrv if v > 0.8
and hw(v) = αv (39)

with η = −1, ηr = −0.4 and α = 1. Our results are presented in Fig. 14. Figure 14a
shows the envelope-plane diagrams (including both the upper and lower envelopes)
for representative values of α and ε. The v-nullcline for the unperturbed system
(solid-red lines) breaks at v = 0.8. For the forced system, the location of the v-
nullcline changes with t and so does the breaking point. The impedance and phase
profiles for the parameters in Figs. 15a (ε = 0.01) and 15b (ε = 0.1) are presented in
Figs. 15d1 and 15d2, respectively.

For small values of Ain (Figs. 15a1 and 15b1) the dynamics of the PWL system
is governed by the underlying linear system and the voltage response is linear. The
envelope-plane diagrams are symmetric and similar to the ones discussed in previ-
ous sections. For larger values of Ain the voltage response exhibits an amplification
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Fig. 14 Voltage response of the PWL system (37)–(38) with hv and hw given by (39) to sinusoidal
inputs. a–c Envelope-plane diagrams for representative values of Ain and ε. a1 Ain = 0.8, ε = 0.01.
a2 Ain = 1, ε = 0.01. a3 Ain = 1.2, ε = 0.01. b1 Ain = 0.8, ε = 0.1. b2 Ain = 1.2, ε = 0.1. c Ain = 1.2,
ε = 1. d Impedance profiles for representative values of Ain and ε. d1 ε = 0.01. d2 ε = 0.1. We used the
following parameters: α = 1, η = −1, ηr = −0.4, vc = 0.8

that is not captured by the linearization (Figs. 15d1 and 15d2). As Ain increases, the
values of both Zmax and QZ increase, the resonant frequency fres decreases, and the
selectivity increases. Notably, this nonlinear amplification of the voltage response
is more pronounced the smaller the value of ε (larger levels of time-scale separa-
tion).

The nonlinear amplification of the voltage response can be understood by com-
paring the envelope-plane diagrams in Fig. 14a. Geometrically, the nonlinearities are
reflected by a sudden change in the slope of the v-nullcline. Similarly to the linear
case, as t progresses, the nonlinear v-nullcline moves cyclically between the two
dashed-red curves corresponding to ±Ain. The envelope curves live in the region
bounded by the w-nullcline, the moving w-nullcline (dashed-red line) and the v-axis
(horizontal w = 0 line). As Ain increases, the area of this region increases as the tri-
angle in panel a1 becomes a (non-triangular) polygon in Figs. 15a2 and 15a3. These
changes are accompanied by an increase in the voltage amplitude of the regions that
allow trajectories to reach higher values of v.
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Fig. 15 Voltage response of the PWL system (37)–(38) with hv and hw given by (40) to sinusoidal
inputs. a Ain = 0.8. b Ain = 1. c Ain = 1.5. We used the following parameters: α = 1, η = −1, αr = 0.4,
vc = 0.5, ε = 0.01

The nonlinearities do not affect the dynamics of the limit cycle trajectory for low
and large values of f , which behaves as explained above for linear systems, but they
do affect the dynamics of the limit cycle trajectories for intermediate values of f .
For Ain = 0.8 (Fig. 15a1), the voltage response is quasi-linear since the nonlinearity
is not present in the triangular region where the envelope curve is located. The limit
cycle trajectories cannot move beyond the piece of the v-nullcline with slope η = −1.
For larger values of Ain the nonlinearity moves above the horizontal axis (Figs. 15a2
and 15a3) during the ascending phase of the oscillatory input, thus changing the shape
of the envelope-curve region (to a non-triangular polygon).

3.6.2 The Voltage Response Is Amplified by the Time-Scale Separation in the
Presence of Nonlinearities in the Voltage Equation

The nonlinear amplification of the voltage response results from the ability of the
limit cycle trajectories to move beyond the dashed-red line with slope η = −1.
Clearly, this phenomenon is more pronounced for larger values of Ain. As expected
from our previous discussion for linear systems, this phenomenon is also more pro-
nounced for smaller values of ε (compare Figs. 14a and 14b) since limit cycle trajec-
tories move in more horizontal directions for smaller values of ε, and they are able to
reach larger voltage values. As ε increases, limit cycle trajectories move in less hori-
zontal directions and, consequently, they do not take advantage of the extra available
region of motion in the envelope-plane created by the nonlinear v-nullcline.

We emphasize that the nonlinearities are present, and they are the same, for all val-
ues of ε, but the underlying vector field causes the limit cycle trajectories to “ignore”
these nonlinearities and move inside the linear region (Fig. 14d).

The asymmetry in the system’s nonlinearity is reflected in the asymmetry in the
voltage responses, which is captured by the differences between the upper and lower
envelope curves in the envelope-plane diagrams. Clearly, the difference between these
two curves increases as Ain increases.

We note that information about this asymmetric voltage response is not captured
by the impedance function.
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3.6.3 The Voltage Response Is Almost Insensitive to Nonlinearities in the Gating
Variable Equation

Here we consider system (37)–(38) with

hv = ηv and hw(v) =
{

αv if v ≤ 0.5,

αrv if v > 0.5
(40)

with η = −1, α = 1 and αr = 0.4. Envelope-plane diagrams for representative values
of ε are shown in Fig. 15. The nonlinearities are reflected in the sudden change in
the slope of the w-nullcline. This change slightly affects the dynamics of the limit
cycle trajectories for low values of f , since they evolve in close vicinities of the w-
nullcline but they do not significantly affect the dynamics of the limit cycle trajectory
for larger values of f . Even for large values of Ain (not shown), the nonlinearities
in the w-nullcline do not cause any significant change in the envelope-curve region
in the envelope-plane, and thus the impedance function does not significantly change
with increasing values of Ain. The resonant frequency does decrease with increasing
values of Ain but significantly less than for the case considered above (not shown).

4 Discussion

Subthreshold (membrane potential) resonance has been investigated in a number of
neuron types both experimentally and theoretically [10, 12–22, 29, 40], and has been
implicated in the generation of preferred neuronal firing rates [11] and network oscil-
lations [23, 25, 27, 41–43]. Phase-resonance has also been investigated in neuronal
systems [11, 14, 29], although to a lesser extent than subthreshold resonance, and it
has been proposed to play an important role in neuronal synchronization [30].

The voltage response to oscillatory inputs in neurons and other electric circuits is
typically characterized in terms of the impedance and phase profiles [10]. For lin-
ear systems receiving sinusoidal inputs, these curves can be computed analytically.
For nonlinear systems or linear systems receiving non-sinusoidal oscillatory inputs,
analytical calculations are not possible, and these curves are computed numerically.

Even when analytical expressions for the impedance and phase are available, the
information they provide about the dynamic mechanisms leading to resonance is lim-
ited. For instance, the impedance and phase profiles fail to provide the necessary
insight into the roles played by the interaction between the neuron’s intrinsic time
scales and the time scales associated with the input currents in the generation of reso-
nance. Furthermore, linearized models fail to capture important nonlinear properties
of the voltage response such as its nonlinear amplification for significant levels of the
time-scale separation (small values of ε).

In this paper we have developed and used dynamical system tools to investigate
the dynamic mechanisms of generation of subthreshold and phase resonance in two-
dimensional linear and linearized (conductance-based) models, and we have extended
these tools to include the effect of simple, but not necessarily weak, types of nonlin-
earities. The mechanistic analysis and the envelope-plane diagrams we developed in
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this paper provide a framework for the investigation of the preferred frequency re-
sponses in three-dimensional and nonlinear models. They can also be used as tools
complementary to both the numerically computed and the experimentally measured
impedance and phase profiles. More research is needed to adapt these tools to small
neuronal networks.

Mechanistic studies of subthreshold resonance have mainly focused on the role
that resonant and amplifying currents (and their associated gating variables) play in
shaping the neuronal voltage response [10, 11, 29]. As we have shown in [29], the de-
termination of the attributes and phase profiles as the result of the interaction between
these two current types is more complex and not as straightforward as previously
thought [10] (see our discussion of resonant and amplifying currents in Sect. 2.5).
This is further emphasized by the fact that resonance may occur in the absence of
intrinsic oscillations and vice versa [11, 29] (see also Fig. 3).

In this study, we set out to understand the dynamic mechanisms underlying the
generation of resonance and phase-resonance for a generic class of linearized bio-
physical models. We were particularly interested in issues that cannot be addressed
solely by considering the impedance and phase profiles. These include (i) the identi-
fication of the mechanisms of amplification of the voltage response, (ii) the mecha-
nisms of selection of the resonant and phase-resonant frequencies, (iii) the identifica-
tion of the roles played by the intrinsic time scales and the time scales associated to
the current inputs, (iv) the mechanisms that govern their interaction, (v) how all this is
affected by changes in the model parameters, (vi) the relation between intrinsic STOs
and subthreshold resonance, and (vii) the relation between subthreshold resonance
and phase-resonance.

Perhaps our intuition on the resonant properties of neuronal models is based on
the dynamics of the so-called λ–ω systems (55)–(56) (in Appendix A.3), which were
used to build the resonate-and-fire models introduced in [31]. These systems dis-
play intrinsic oscillations with natural frequency Ωnat = ω for all values of λ (58).
They also exhibit resonance and phase-resonance. The natural, resonant and phase-
resonant frequencies (59) coincide for λ = 0 and they are different for other values
of λ. Although λ–ω systems have been used to investigate the dynamics of resonant
neurons [31], they are not representative of linearized neuronal models [11]. They
rather correspond to cases where the voltage and gating variables evolve with compa-
rable rates (ε = 1) (see (61)–(62) in Appendix A.3), and leave out the large class of
neuron types that have a strong time-scale separation (ε is small) in the subthreshold
regime.

The fact that resonance may occur in the absence of intrinsic STOs for non-
negligible parameter regimes [11, 29] implies that resonance is not necessarily re-
flecting the amplification of an existing intrinsic oscillation by an oscillatory input
current. Instead, resonance is uncovering the ability of the neuron to operate at time
scales that are neither intrinsic nor imposed by the oscillatory input, but they emerge
as the result of the interaction between a neuron’s intrinsic time scale (determined by
the neuron’s intrinsic properties) and the time scales of the oscillatory input. These
emergent time scales are likely to be the ones that play a significant role in network
interactions.

To address these mechanistic issues from a geometric/dynamic perspective, we
have extended the classical phase-plane analysis approach to include the effects of
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oscillatory inputs. This approach consists of projecting the three-dimensional space
(for v, w and t) onto the two-dimensional plane (for v and w) and viewing the pro-
jection of the two-dimensional v-nullsurface (spanned by the v-nullcline for the au-
tonomous system and t) as a moving one-dimensional v-nullcline as t progresses.
Trajectories track the motion of the v-nullcline and the fixed point with a speed that
depends on the underlying vector field and the input frequency f . The shapes of
the limit cycle trajectories depend on f . A system exhibits resonance if for some
value of f the amplitude of the limit cycle trajectory in the v-direction is larger than
for f = 0. Qualitative predictions on the effect of changes in parameters on both
resonance and phase-resonance can be made by looking at the phase-plane and the
associated envelope-plane diagrams. Approaches including “moving nullclines” have
been used before to investigate the mechanisms of synchronization of neuronal [44–
47] and other systems [48, 49] but they have not been used before in the context of
the analysis of subthreshold and phase resonance.

From a geometric perspective, we view both resonance and phase-resonance as
the result of the interaction between the time scales of the neuron (determined by the
geometry of the unperturbed phase plane and the intrinsic time-scale separation) and
the oscillatory input (captured by the moving v-nullcline). The resonant frequency, if
it exists, is the input frequency at which the voltage responds optimally to the oscil-
latory driving current, which is captured by the cyclic movement of the v-nullcline.
The trajectory’s response is neither too fast nor too slow so that the voltage is able
to reach a higher value than for other input frequencies. The time scale associated to
the zero-phase frequency is also an emergent time scale, and is optimal in the sense
that the trajectory is neither too fast nor too slow so that the trajectory intersects the
moving v-nullcline at the exact time at which the latter reaches its maximum; i.e.,
both the voltage response and the input current peak at the same time. We showed
that these two phenomena are captured by the shape of the envelope-plane diagrams
not only for linear models, but also for nonlinear ones.

The concept of time scale for neural models is not always easy to quantify. In some
limiting cases the time constants provide reliable information about the rate of change
of the participating variables. This is the case for the one-dimensional passive mem-
brane equation and for the so-called slow–fast systems [47]. However, time constants
do not always capture the effective time scales. For the purpose of our study, we have
qualitatively characterized the effective time scales of the isolated neurons by looking
at their response to instantaneous DC (tonic) inputs and the shapes of the correspond-
ing trajectories. We have identified the effective time scales of the isolated neurons
that are relevant for their interaction with oscillatory inputs with the time scales that
govern the behavior of the initial portion of the trajectory from its initial point until
it reaches its highest voltage value. Geometrically, this is determined by the crossing
point with the v-nullcline displaced by Ain units (dotted-red v-nullclines). The effec-
tive time scales defined in this way may or may not represent the dynamic behavior
of the autonomous trajectories for all subsequent times t , depending on the parameter
values, but they are appropriate to describe the interaction between neurons and oscil-
latory inputs. As we showed, trajectories reverse direction after crossing the moving
v-nullclines.

This notion of effective time scales for the underlying autonomous system is con-
nected with its eigenvalues. However, our discussion of resonance is independent of
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the behavior of the autonomous system for large values of t . Therefore, the mecha-
nisms of generation of resonance are in general independent from those responsible
for the generation of intrinsic STOs.

The mechanism of generation of intrinsic STOs in linear systems is well under-
stood [50]. The natural frequency (Ωnat) corresponds to the eigenvalues’ imaginary
part. The eigenvalues’ real part affects the amplitude of solutions, and consequently
the evolution of trajectories in the phase plane, without affecting the oscillation fre-
quency. The initial time interval of transient behavior that determines the effective
time scales depends on both the eigenvalues’ real part and Ωnat, and not only on Ωnat.
Only when the effect of the eigenvalues’ real part is small enough, both the generation
of intrinsic STOs and resonance are governed by a similar underlying mechanism as
occurs for the λ–ω systems discussed above.

To our knowledge, no previous study has addressed questions on subthreshold
resonance in nonlinear systems from an analytical perspective. In this paper, we have
extended our analysis for linear systems to include simple, piecewise-linear types of
nonlinearities in both the equations for v and w. Our main question was: to what
extent does the linear prediction capture the nonlinear effects? We found that when
the v-nullcline is nonlinear the differences between the nonlinear response and the
linear prediction increase not only with increasing values of the input amplitude Ain
but also with increasing levels of the time-scale separation between the voltage and
the gating variable (decreasing values of ε). These differences almost disappear when
both equations evolve at comparable rates. In contrast, voltage responses are almost
insensitive to nonlinearities located in the gating variable equation. In these two latter
cases, the nonlinearities are present in the system but the voltage response does not
detect them. More research is needed to understand whether these findings play out
in more realistic nonlinear models.

Resonance has been first studied in the damped harmonic oscillator subject to
sinusoidal forcing (see Appendix A.4). Similar to the λ–ω system, the natural and
resonant frequencies coincide when the system is undamped and they are different in
the damped case. Unlike the neural models discussed in this paper, the over-damped
system (real eigenvalues) does not exhibit resonance. The damped harmonic oscil-
lator can be rewritten as a system of two first order equations (64)–(65). However,
differently from the systems considered in this paper, the sinusoidal forcing is lo-
cated in the second equation rather than the first. In other words, the forcing term
does not directly affect the dynamics of the variable for which we compute the re-
sponse to the oscillatory input (analogous to v), but its derivative (analogous to w).
Therefore, one should not necessarily expect resonance to occur in the absence of
intrinsic oscillations. The geometric ideas developed in this paper can adapted to
these systems. The moving nullcline will be the analog to the w-nullcline (oblique
with negative slope) instead of the v-nullcline. The latter will be horizontal and
fixed.
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Appendix A: Forced Two-dimensional Linear Systems: Eigenvalues, Natural
Frequency, and Impedance and Phase Profiles

We consider the following forced two-dimensional linear system:

dx

dt
= ax + by + Ain sin(Ωt), (41)

dy

dt
= cx + dy, (42)

where a, b, c, and d are constant, Ω > 0 and Ain ≥ 0.

A.1 Intrinsic Oscillations and Natural Frequency

The Jacobian matrix for the corresponding autonomous system (Ain = 0) is given by

J =
(

a b

c d

)
. (43)

The roots of the characteristic polynomial are given by

r1,2 = (a + d) ± √
(a − d)2 + 4bc

2
. (44)

From (44), the unforced system displays oscillations for values of the parameters
satisfying

4bc + (a − d)2 < 0, (45)

with the natural frequency given by

Ωnat =
√−4bc − (a − d)2

2
. (46)

A.2 Voltage Response to Sinusoidal Inputs: Impedance Amplitude and Phase

System (41)–(42) can be written as a second order linear ODE,

d2x

dt2
− (a + d)

dx

dt
+ (ad − bc)x = Ain

[−d sin(Ωt) + Ω cos(Ωt)
]
. (47)

The particular solution to system (47) has the form

xp(t) = Aout,1 sin(Ωt) + Aout,2 cos(Ωt) (48)
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with

Aout,1 = − (ad − bc − Ω2)d + (a + d)Ω2

[ad − bc − Ω2]2 + (a + d)2Ω2
Ain (49)

and

Aout,2 = (ad − bc − Ω2)Ω − (a + d)Ωd

[ad − bc − Ω2]2 + (a + d)2Ω2
Ain. (50)

The solution (48) can be written as

xp(t) = Aout sin(Ωt − φ). (51)

The impedance amplitude and phase are given by (see Appendix A.5)

Z2(Ω) := A2
out

A2
in

= A2
out,1 + A2

out,2

A2
in

= d2 + Ω2

[ad − bc − Ω2]2 + (a + d)2Ω2
(52)

and

φ(Ω) = − tan−1
(

Aout,2

Aout,1

)
= tan−1 (ad − bc − Ω2)Ω − (a + d)Ωd

(ad − bc − Ω2)d + (a + d)Ω2
, (53)

respectively. The impedance Z peaks at the resonant frequency

Ωres =
√

−d2 +
√

b2c2 − 2abcd − 2d2bc, (54)

provided the quantity inside the radical is positive.

A.3 The λ–ω Systems with Sinusoidal Forcing

The so-called λ–ω systems [51] with sinusoidal forcing have the form

dx

dt
= −λx − ωy + Bin sin(Ωt), (55)

dy

dt
= ωx − λy, (56)

with λ > 0, ω > 0 and Bin ≥ 0. System (55)–(56) can be written as the following
second order linear ODE:

d2x

dt2
+ 2λ

dx

dt
+ (

λ2 + ω2)x = Bin
[
λ sin(Ωt) + Ω cos(Ωt)

]
. (57)

The eigenvalues and natural frequency of the autonomous system are given by (see
Appendix A.1)

r1,2 = −λ ±
√

−ω2 and Ωnat = ω. (58)
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The resonant and phase-resonant frequencies are given by (see Appendix A.2)

Ωres =
√

−λ2 + ω
√
4λ2 + ω2 and Ωphas =

√
ω2 − λ2, (59)

provided the quantities inside the radicals are positive. For λ = 0,

Ωnat = Ωres = Ωphas. (60)

System (55)–(56) can be transformed into a system of the form (14)–(15) by defin-
ing

v = λx, w = ωy, t̂ = λt, (61)

and

α = ω2

λ2
, ε = 1. (62)

A.4 The Harmonic Oscillator with Sinusoidal Forcing

The equation for the harmonic oscillator with sinusoidal forcing reads

d2x

dt2
+ β

dx

dt
+ γ x = Cin sin(Ωt), (63)

where β ≥ 0 and γ > 0. By defining y = −dx/dt , (63) can be rewritten as the fol-
lowing two-dimensional linear system of ODEs:

dx

dt
= −y, (64)

dy

dt
= γ x − βy − Cin sin(Ωt). (65)

Differently from the systems considered in this paper, and the general form (41)–
(42), the sinusoidal forcing is located in the second equation rather than the first.
We note that the two equations are not interchangeable since we are following the
convention that the first equation describes the dynamics of the variable (x) for which
we compute the response to the oscillatory input.

The eigenvalues of the autonomous system are given by

r1,2 = −β ± √
β2 − 4γ

2
. (66)

The natural frequency of the autonomous system is given by

Ωnat =
√
4γ − β2

2
=

√
γ − β2

4
, (67)



Page 38 of 41 H.G. Rotstein

provided 4γ − β2 > 0. The impedance is given by

Z(Ω) = 1

(γ − Ω2)2 + β2Ω2
. (68)

Note that the formula (54) is not applicable in this case and the impedance has to be
calculated separately. The impedance peaks at

Ωres =
√

γ − β2

2
, (69)

provided the quantity inside the radical is positive. For β = 0, Ωnat = Ωres = √
γ . For

other values of β for which both Ωnat and Ωres are defined, Ωnat 
= Ωres. If the eigen-
values are real, the over-damped harmonic oscillator does not exhibit resonance since
the inequalities 4γ − β2 < 0 and 2γ − β2 > 0 cannot be simultaneously satisfied.

System (64)–(65) can be rescaled by defining

t̂ = βt and ŷ = β

γ
y (70)

and substituting into system (64)–(65). The resulting equations read

dx

dt̂
= − γ

β2
ŷ, (71)

dŷ

dt̂
= x − ŷ − Cin

γ
sin(Ωt̂/β). (72)

A.5 Oscillatory Inputs: Additional Calculations

For a sinusoidal input of the form F(t) = Ain sin (Ωt) the system’s output will be a
function

X(t) = Aout sin(Ωt − φ). (73)

Equation (73) can be rewritten as follows:

X(t) = Aout cosφ sin (Ωt) − Aout sinφ cos (Ωt) (74)

or

X(t) = Aout,1 sin (Ωt) + Aout,2 cos (Ωt) (75)

with

Aout,1 = Aout cosφ, Aout,2 = −Aout sinφ. (76)

Solving for Aout and φ we obtain

A2
out = A2

out,1 + A2
out,2 (77)
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and

φ = − tan−1
(

Aout,2

Aout,1

)
. (78)

From (77)

Z2(Ω) = A2
out,1 + A2

out,2

A2
in

. (79)

Appendix B: Biophysical Ih + INap and IKs + INap Models

B.6 Ih + INap Model

This model has been proposed in [37]. It has a persistent sodium current and a two-
component (fast and slow) h-current given by Ip = Gpp(V − ENa) = Gpp∞(V ) ×
(V − ENa) and Ih = Ghr(V − Eh) = Gh(cf rf + csrs)(V − Eh), respectively, with
Eh = −20 mV, ENa = 55 mV, cf = 0.65, and cs = 0.35. The voltage-dependent ac-
tivation/inactivation and time constants are given by

p∞(V ) = 1/
(
1+ e−(V +38)/6.5),

τp(V ) = 0.15,

rf,∞(V ) = 1/
(
1+ e(V +79.2)/9.78),

τrf (V ) = 0.51/
(
e(V −1.7)/10 + e−(V +340)/52) + 1,

rs,∞ = 1/
(
1+ e(V +71.3)/7.9),

τrs (V ) = 5.6/
(
e(V −1.7)/14 + e−(V +260)/43) + 1.

For the two-dimensional model used in this paper, the cf = 1 and cs = 0.

B.7 IKs + INap Model

This model has been proposed in [37]. It has a persistent sodium current and a slow
potassium (M-type) current given by Ip = Gpp(V − ENa) = Gpp∞(V )(V − ENa)

and IKs = Gqq(V − Exk
) with ENa = 55 mV and Ek = −90 mV. The voltage-

dependent activation/inactivation and time constants are given by

p∞(V ) = 1/
(
1+ e−(V +38)/6.5),

τp(V ) = 0.15,

q∞(V ) = 1/
(
1+ e−(V +35)/6.5),

qτ (V ) = 90.
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