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Abstract Population density models that are used to describe the evolution of neural
populations in a phase space are closely related to the single neuron model that de-
scribes the individual trajectories of the neurons of the population and which give in
particular the phase-space where the computations are made. Based on a transforma-
tion of the quadratic integrate and fire single neuron model, the so-called theta-neuron
model is obtained and we shall introduce in this paper a corresponding population
density model for it. Existence and uniqueness of a solution will be proved and some
numerical simulations are presented. The results of existence are compared to previ-
ous results of existence or nonexistence (burst) for populations of leaky integrate and
fire neurons.

1 Introduction

It is a big challenge to find the most appropriate mathematical model to describe
the electrical activity of populations of neurons; it should, in the first place, give
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a realistic view of the very complex brain activity and be able to describe the emergent
phenomena that are observed in vivo, but in the same time, it should keep a certain
simplicity that would help to analytically solve it and to numerically implement it.

Our attention has been kept by the so-called population density approach that has
been successfully used to describe the evolution of physiologically structured pop-
ulation in many areas of biology, and in particular, in neuroscience. A population
density model will track down the evolution of a density function of the population
in the state space, which is determined by the structuring variable. In theoretical neu-
roscience, the concept of a probability density function has been already extensively
used ([1–3]). A step forward, though, was made by applying this concept to model
interactions of large populations of sparsely connected neurons ([4–7]). The connec-
tion between probability-density approach and population density approach is based
on the observation that, for a large population of similar neurons, the probability
density can be interpreted as a population density ([4, 6]). For a method to derive
population density models, we refer to [6], where an illustrative exemplification is
given for the case of integrate-and-fire neurons. Here, the effect of the synaptic con-
nections has been modeled as a jump in the state variable, the membrane potential in
this case, when a neuron of the population receives a synaptic input. For more sim-
ulations of networks of integrate-and-fire neurons via population density models, we
also refer to [8] and [9]. Another method can be found in [10] where a population
density equation has been derived for a population of SRM (spike-response model)
neurons with escape noise. A well-posedness result for a population density model of
Leaky Integrate-and-Fire (LIF) neurons can be found in [11]. The approach proved
to be an useful tool in analyzing special behaviors of neural populations, such as
the existence of equilibrium solution ([12]), or the emergence of synchronization of
neurons ([13–15]).

It is somehow usual to apply the population density formalism to populations of
integrate-and-fire neurons, due to the simplicity of the model and to the possibility
to express the firing rate in terms of the population density function. We have chosen
in this paper to consider a large homogeneous population of neurons that are char-
acterized by the theta-neuron model ([16]). As it is known, the theta neuron model,
or Ermentrout–Kopell model, is an alternative version of the Quadratic Integrate-
and-Fire (QIF), which is the simplest spiking neuron model. In contrast to the leaky
integrate-and-fire model, the QIF model does have a spike generation mechanism,
which makes it suitable for us to describe the internal state of a population density
function of neurons. Nevertheless, the use of the equivalent theta-neuron model is
preferable since it is a continuous version of the QIF model, and the state variable
varies in a finite domain. We will come back in the first section of this paper with
more details about this subject.

We therefore use the population density formalism in this paper to derive a pop-
ulation density model for a population of theta-neurons and we shall prove the well-
posedness of the model by a method similar to those used in [11] or [14] in the case of
populations of leaky integrate-and-fire neurons. The main difference between these
cases and the one considered in this paper is due to the different expressions of the
firing rates of the populations.

The paper is structured as follows: In the first section, the method used in [6] to ob-
tain a population density model for integrate-and-fire neurons is adapted to the case of
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a homogeneous population of neurons characterized by the quadratic integrate-and-
fire model. Based on the Ermentrout–Kopell transformation, the quadratic integrate-
and-fire can be written in its equivalent form in terms of a new variable called the
phase of a neuron. We next introduce a population density model for the population
of neurons that is structured by their phase instead of their membrane’s potential. We
continue by proving the well-posedness of the model; in the non-connected case, i.e.,
when all the neurons of the population receive only an external stimulus, the result
we prove is global. In the case of a connected population, we prove a global well-
posedness result under an assumption that has sense from a biological point of view.
If the above specified assumption is not taken into consideration, the result is only
local.

We end this paper by presenting some numerical simulations for the population
density model that we introduced, which are compared to direct Monte Carlo simu-
lations.

2 Quadratic Integrate-and-Fire Neurons: Population Density Approach

The quadratic integrate-and-fire model was introduced in [17] and consists in an or-
dinary differential equation that models the evolution in time of the membrane’s po-
tential, and a reset mechanism. We consider in this paper a model that describes the
dynamics of a (QIF) neuron that receives external stimuli:{

d
dt

v(t) = v2(t) + Ib + h
∑+∞

j=1 δ(t − tj )

If v = +∞ then v = −∞.
(1)

Here, v(t) represents the potential of the neural membrane at time t , tj are the ar-
rival times of external impulses, and the effect of the reception of a spike at neuron’s
synapse has been modeled as a jump of size h of the potential v. The jump is pos-
itive (respectively negative) if the spike is received from an excitatory (respectively
inhibitory) source. Due to the quadratic term, v can reach infinity in finite time. The
time when v reaches the infinity value is considered as the time when the neuron is
emitting a spike and the potential of the membrane is instantaneously reset to −∞.
The parameter Ib plays a key role in the dynamics of the (QIF) model of neuron’s
potential (see [18, 19], and [20] for details).

Let us now introduce the population density function such that∫ v2

v1

p(t, v)dv = {
Fraction of neurons having at time t

the potential of the membrane v ∈ [v1, v2]
}
.

Then p(t, v) is the relative density of the population that has at time t the potential
of the membrane v and one has ∫ +∞

−∞
p(t, v)dv = 1.
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We shall follow below the same assumptions and derivation formalism as those used
in [4, 6, 7] for the case of leaky integrate-and-fire neurons, assumptions that will be
shortly reminded below.

One of the main hypotheses used to obtain a population density model is that
the population is homogeneous, i.e., all the neurons of the population have the same
properties, and, in our case, are individually described by the model (1).

The spikes received by the neurons of the population, either from internal or exter-
nal sources, are supposed to be uniformly distributed in the population, and let σ(t)

be the average spike arrival rate. Given a state v, the flux flowing through the state v

is supposed to be composed of two parts: a drift flux due to the continuous evolution
determined by the (QIF) model (1) and a flux due to synaptic connections among
the neurons of the population. The flux due to synaptic connections is generated by
all the neurons that jump from the state v − h into the state v whenever an electric
impulse is received. Thus, the total flux is defined as

J(t, v) = (
v2 + Ib

)
p(t, v) + σ(t)

∫ v

v−h

p(t,w)dw. (2)

Therefore, the evolution in time of the density function p is given by

∂

∂t
p(t, v) = − ∂

∂v
J(t, v) (3)

which can be written equivalently as

∂

∂t
p(t, v) +

Quadratic integrate-and-fire︷ ︸︸ ︷
∂

∂v

((
v2 + Ib

)
p(t, v)

) + σ(t)

Excitation︷ ︸︸ ︷(
p(t, v) − p(t, v − h)

) = 0. (4)

A periodic boundary condition for the flux is imposed next, which is consistent with
the reset mechanism of the single neuron model (1):

lim
v→−∞

(
v2 + Ib

)
p(t, v) = lim

v→+∞
(
v2 + Ib

)
p(t, v). (5)

Due to the boundary condition, one can check easily the conservation property of
Eq. (4) by simple integration on the interval (−∞,+∞),

d

dt

∫ +∞

−∞
p(t, v)dv = 0. (6)

Let r(t) be the firing rate of the population, that is, the flux through v = +∞ and
J the average connection per neuron

r(t) = lim
v→+∞

(
v2 + Ib

)
p(t, v). (7)

Throughout this paper, the average spike arrival rate σ(t) is defined as the sum
of a given external reception rate σ0(t) that models the impulses received from other
populations of neurons, and a term that models the impulses received from the rest of
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Fig. 1 Scheme of a population
under an external influence
without conduction delay. The
population receives a known
external influence σ0(t), and
produces the activity r(t). The
feedback is instantaneous and
given by J r(t)

Fig. 2 Scheme of a population
under an external influence with
conduction delay. The
population receives a known
external influence σ0(t) from an
excitatory population of
neurons, and produces an
activity r(t)—the firing rate of
the population. The feedback is
then given by
J

∫ t
0 α(u)r(t − u)du

the neurons in the same population. The second term can be considered in two ways:
either we neglect the synaptic conduction delays within the population (Fig. 1), in
which case σ is written as

σ(t) = σ0(t) + J r(t),

or we take into account synaptic delays (Fig. 2) and write

σ(t) = σ0(t) + J

∫ t

0
α(u)r(t − u)du, (8)

with ∫ ∞

0
α(u)du = 1, (9)

where α is a delay density function.
We can now give the model in its complete form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t

p(t, v) + ∂
∂v

((v2 + Ib)p(t, v))

= σ(t)(p(t, v − h) − p(t, v)), (t, v) ∈ (0,+∞) × (−∞,+∞)

σ (t) = σ0(t) + J
∫ t

0 α(s)r(t − s)ds, t ≥ 0

r(t) = limv→+∞(v2 + Ib)p(t, v), t ≥ 0

limv→−∞(v2 + Ib)p(t, v)

= limv→+∞(v2 + Ib)p(t, v), t ≥ 0

p(0, v) = p0(v), v ∈ (−∞,+∞).

(10)
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In the model above, the case of instantaneous reception of the impulses can be ob-
tained by taking α = δ(0).

Note that if the initial condition satisfies
∫ +∞
−∞ p0(v)dv = 1, then the solution to

the nonlinear problem (10) also satisfies
∫ +∞
−∞ p(t,w)dw = 1.

In our paper, σ0 stands for the rate of the Poisson spike train that each neuron
receives from an external source, which is not explicitly modeled. The rate σ0 is
then considered as given. The case of a probability density model where the Pois-
son spike train is approximated by the sum of a deterministic baseline and a white
noise has been considered in [21]. In the paper [22], the authors derived an explicit
formula of the firing rate of a noisy quadratic integrate-and-fire neuron with and with-
out the synaptic dynamics. It is possible to look at this formula as the second-order
approximation of the firing rate of a neural network where each neuron receives an
independent Poisson spike train.

In the paper [23], the authors study the firing rate of the noisy quadratic integrate-
and-fire neuron receiving an oscillatory input. To this end, the authors used the so-
called linear response theory. The theory is not really adapted to a neural network
where each neuron receives an independent Poisson spike train since the transfer
function cannot be computed explicitly.

3 A Population Density Model for Theta Neurons

We shall shortly recall the derivation of the theta-neuron model (Ermentrout–Kopell).
Let us consider a non-connected (QIF) neuron, i.e., its membrane potential is given
by {

d
dt

v(t) = v2(t) + Ib

If v = +∞ then v = −∞.
(11)

Then, by taking the transformation

θ = 2arctanv + π, (12)

one can prove directly by changing the variable v = tan θ−π
2 in the first equation of

(11), that the evolution in time of the new variable θ , called the phase, is given by

d

dt
θ(t) = (1+ cos θ) + (1− cos θ)Ib. (13)

Obviously, the following correspondences take place:

v −→ +∞ ⇔ θ −→ 2π,

v −→ −∞ ⇔ θ −→ 0.

That means that the reset mechanism in (11) is replaced in this model by the simple
passing of the phase of the neurons, θ , through the value 2π .
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Fig. 3 Left: A graphical
representation of the function
s(θ), given by (16), in (0,2π).
Right: Plot of the function
θ − s(θ). In both figures, each
curve corresponds to a different
value of the potential jump h:
the blue curve—h = 3, the black
curve—h = 5, the red
curve—h = 10

Now, if we consider next a coupled neuron which is described by the model (1),
corresponding to the jump in potential generated by an impulse arrival

v −→ v + h, (14)

we have a phase shift (see [24]), given by

θ −→ 2arctan

(
h + tan

(
θ − π

2

))
+ π.

Or, equivalently, if a neuron receiving an impulse has a jump in potential

v − h −→ v, (15)

then, the phase θ changes correspondingly as

s(θ) := 2arctan

(
tan

(
θ − π

2

)
− h

)
+ π −→ θ. (16)

By continuity, we extend the formula at θ = 0 by

0 −→ 0,

which means that a neuron which receives an impulse at the time of spike emission
will not have a phase shift. The evolution of the function s with respect to phase θ is
exemplified in Fig. 3.

Then the evolution of the phase of a connected neuron is given by

d

dt
θ(t) = (1+ cos θ) + (1− cos θ)Ib

+
(
2arctan

(
h + tan

(
θ − π

2

))
+ π − θ

) +∞∑
j=1

δ(t − tj ). (17)

Based on the transformation of the model (1) into the model (17), we intend to
obtain a corresponding population density model for a population of neurons charac-
terized by their phase θ . The advantages of doing so are obvious: first of all, through
this transformation, the state space v ∈ (−∞,+∞) is transformed into a finite one
θ ∈ (0,2π). More than that, the reset mechanism which creates a discontinuity in
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the state v will be replaced by a continuous flow through the state 2π , which will
influence the expression of the firing rate of the population, as it can be seen below.

As before, if we denote by q(t, θ) the density of neurons having phase θ at time t ,
then ∫ θ2

θ1

q(t, θ)dθ = {
Fraction of neurons with phase θ ∈ [θ1, θ2] at time t

}
,

and one can assume once again that∫ 2π

0
q(t, θ)dθ = 1.

As in the previous section, we assume the homogeneity of the population and the
uniform distribution of the average reception rate over the neurons of the population.
Similarly, we consider the flux flowing now through a state θ as formed of the drifting
flux due to the continuous evolution of the phase of the neurons due to (13), and the
flux determined by the phase shifting generated by the arrival of synaptic impulses:

J(t, θ) = f (θ)q(t, θ) + σ(t)

∫ θ

s(θ)

q(t, y)dy, (18)

where

f (θ) = (1+ cos θ) + (1− cos θ)Ib,

s(θ) = 2arctan

(
tan

(
θ − π

2

)
− h

)
+ π.

(19)

Then, corresponding to Eq. (4), we obtain

∂

∂t
q(t, θ) +

Theta neuron︷ ︸︸ ︷
∂

∂θ

(
f (θ)q(t, θ)

) = σ(t)

Excitation︷ ︸︸ ︷(
s′(θ)q

(
t, s(θ)

) − q(t, θ)
)
, (20)

where the functions f and s are defined by (19).
Due to the fact that the second term of the flux (18) does not affect the neurons at

the firing state, the boundary condition becomes in this case:

f (0)q(t,0) = f (2π)q(t,2π) ⇔ q(t,0) = q(t,2π).

The same argument is applied to obtain the expression of the firing rate, which was
defined as the flux through the phase 2π :

r(t) = f (2π)q(t,2π)

= 2q(t,2π). (21)

We can underline now few differences between the expression of the firing rate in
the case of a theta-neuron population and that of a population of leaky integrate-and-
fire neurons. The first one has been stated above; if in the case of leaky integrate-and-
fire populations, the firing rate was taking into account only the “jumping” part of the
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flux, we have here the opposite case, since only the drift flux influences the rate of
neurons at the firing phase. Another major difference is that, in our model, the firing
rate does not explicitly depend on the average reception rate σ as it is the case in the
leaky integrate-and-fire population density models ([6, 11]).

Using the boundary condition, and integrating (20) on the domain (0,2π), one can
easily check the conservation property of Eq. (20).

Therefore, the evolution in time of the density function q(t, θ) is described by the
following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t

q(t, θ) + ∂
∂θ

(f (θ)q(t, θ))

= σ(t)(s′(θ)q(t, s(θ)) − q(t, θ)), t > 0, θ ∈ (0,2π)

σ(t) = σ0(t) + J
∫ t

0 α(s)r(t − s)ds, t ≥ 0

r(t) = 2q(t,2π), t ≥ 0

q(t,0) = q(t,2π), t ≥ 0

q(0, θ) = q0(θ), θ ∈ [0,2π],

(22)

where, as before, if we take α as a given function of time, we obtain the case where
synaptic delays are considered, whereas for α(t) = δ(t), we obtain the case of instan-
taneous synaptic transmission.

The models (10) and (22) are obviously related through the following relation
between the density functions p and q:

p(t, v)dv = q(t, θ)dθ ∀t ∈ (0,+∞).

4 Existence and Uniqueness of the Solution

In this section, we shall prove the existence and uniqueness of the solution to problem
(22). This will be done first in the linear case, i.e., when σ(t) = σ0(t) (with σ0 a given
function), and later in the general nonlinear case.

4.1 The Linear Case

In this subsection, we are going to prove the global existence of a unique solution for
the linear version of the model. Assuming that J is zero, which corresponds to the
case when the neurons of the population are not connected but each of them receives
an external input σ0, the model reduces to the following problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂
∂t

q(t, θ) + ∂
∂θ

(f (θ)q(t, θ))

= σ(t)(s′(θ)q(t, s(θ)) − q(t, θ)), t > 0, θ ∈ (0,2π)

q(t,0) = q(t,2π), t > 0

q(0, θ) = q0(θ), θ ∈ [0,2π],

(23)

where σ(t) = σ0(t) is a given continuous function. The main result of the subsection
is stated below.
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Theorem 1 Let σ ∈ C(0,+∞) a bounded function and the initial condition q0 ∈
C[0,2π] a periodic function. Then there exists a unique positive solution to prob-
lem (23), q ∈ C([0,+∞) × [0,2π]), which is periodic with respect to the second
argument. Furthermore, the firing rate r(t) is bounded by an exponential: for some
λ > 0,

r(t) ≤ Ceλt .

Let Xλ, where λ > 0 will be specified later, be defined by

Xλ = {
p ∈ C

([0,+∞) × [0,2π])/p(t,0) = p(t,2π),

and e−λt
∣∣p(t, ·)∣∣

L∞[0,2π] < ∞}
.

We endow Xλ with the following norm:

‖p‖ = ess sup
t∈[0,+∞(

e−λ(t)
∣∣p(t, ·)∣∣

L∞[0,2π]. (24)

Let us introduce on Xλ the mapping F defined by

F : Xλ → Xλ

m �→ q,
(25)

where q is the solution to the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂t

q(t, θ) + ∂
∂θ

(f (θ)q(t, θ))

= σ0(t)(s
′(θ)m(t, s(θ)) − q(t, θ)), t > 0, θ ∈ (0,2π)

q(t,0) = q(t,2π), t ≥ 0

q(0, θ) = q0(θ), θ ∈ [0,2π].

(26)

In order to prove Theorem 1, we shall use the Banach’s fixed-point theorem for the
application F . First of all, let us introduce more rigorously the notion of a solution to
our system. First, we define a characteristic line as the solution to

θ̇ (t) = f
(
θ(t)

)
, θ(0) = θ0, (27)

where

f (θ) = (1+ cos θ) + (1− cos θ)Ib.

Since f is a Lipschitz continuous function on [0,2π], there exists a unique solution
to problem (27) that gives the characteristic curve that starts from a point θ0 at t = 0,
and it can be extended to every t > 0 by periodicity, due to the periodicity of f .
Actually, it will be more helpful to define the characteristic in the equivalent way, as
follows: for every t ≥ 0 fixed, for every θ ∈ [0,2π], there exists a single curve, let us
denote it c[(0, θ0)](t), such that

ċ
[
(0, θ0)

]
(t) = f

(
c
[
(0, θ0)

]
(t)

)
, c

[
(0, θ0)

]
(t) = θ, c

[
(0, θ0)

]
(0) = θ0. (28)
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Fig. 4 The evolution in time of
the characteristic lines in the
case Ib < 0

We have used here a different notation for a curve starting from a point (0, θ0) in
order to avoid confusions. Due to the properties of the function f , we will have that,
for any given point (t, θ) there is a unique initial point (0, θ0).

The computations below were considered for all the cases Ib < 0, Ib = 0 and
Ib > 0. The way the characteristics behave in time in each case is different, but this
does not affect the results stated below. We just remind that for Ib < 0, Eq. (27) has
two equilibria: a stable attractor and a nonstable equilibrium. In Fig. 4, we represented
the evolution in time of the characteristics in the case Ib < 0. For Ib = 0, the equation
has one equilibrium, which is a saddle node, while for the case Ib > 0, (27) has no
equilibrium.

The main problem for defining a solution on these lines is to be sure that they do
not cross in order not to lose the diffeomorphic property. By a simple computation
one can find that

∂c[θ0](t)
∂θ0

= exp

{∫ t

0
f ′(c[θ0](τ )

)
dτ

}
, (29)

therefore we have that for any finite t , ∂c[θ0](t)
∂θ0

is strictly positive, and then the char-
acteristics starting from different points do not cross. Nevertheless, depending on the
sign of f ′ the above derivative can go asymptotically to 0.

On the characteristic lines, we can rewrite (26) as an ordinary differential equation

d

dt
q
(
t, c

[
(0, θ0)

]
(t)

) = σ0(t)s
′(c[(0, θ0)](t))m(

t, s
(
c
[
(0, θ0)

]
(t)

))
− (

σ0(t) + f ′(c[(0, θ0)](t)))q(
t, c

[
(0, θ0)

]
(t)

)
.

Since the domain [0, T ]×[0,2π] is covered by the above defined characteristic lines,
we have that for every (t, θ) ∈ [0, T ] × [0,2π],

q(t, θ) = q
(
t, c

[
(0, θ0)

]
(t)

)
= e− ∫ t

0 (σ0(s)+f ′(c[(0,θ0)](s)))dsq0(0, θ0)

+
∫ t

0
e− ∫ t

u (σ0(s)+f ′(c[(0,θ0)](s)))ds

× σ0(u)s′(c[(0, θ0)](u)
)
m

(
u, s

(
c
[
(0, θ0)

]
(u)

))
du. (30)
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By direct computation one gets that

f ′(c[(0, θ0)](t)) = (Ib − 1) sin
(
c
[
(0, θ0)

])
(t),

∣∣f ′(θ)
∣∣ ≤ |Ib − 1|, (31)

and

s′(θ) = 2

[tan((θ − π)/2) − h]2 + 1
· 1

cos2((θ − π)/2)
· 1
2

= 1

[sin((θ − π)/2) − h cos((θ − π)/2)]2 + cos2((θ − π)/2)
≤ β. (32)

Let us denote in the following

σ0 = inf
t≥0

σ0(t), σ0 = sup
t≥0

σ0(t). (33)

Thus, one has∣∣∣∣exp
{
−

∫ t

0

[
σ0(s) + f ′(c[(0, θ0)](s))]ds

}∣∣∣∣ ≤ exp
{
t
(−σ0 + |1− Ib|

)}
:= exp{tM}, ∀t ≥ 0.

Let us prove the contraction property of the map F and take m1, m2 two solutions
to the problem; then∣∣F(m1)

(
t, c

[
(0, θ0)

]
(t)

) − F(m2)
(
t, c

[
(0, θ0)

]
(t)

)∣∣
≤

∫ t

0
exp

{
(t − u)M

}∣∣σ0(u)
∣∣∣∣s′(c[(0, θ0)](u)

)∣∣
× ∣∣m1

(
u, s

(
c
[
(0, θ0)

]
(u)

)) − m2
(
u, s

(
c
[
(0, θ0)

]
(u)

))∣∣du

≤ βσ0

∫ t

0
exp

{
(t − u)M

}
× ∣∣m1

(
u, s

(
c
[
(0, θ0)

]
(u)

)) − m2
(
u, s

(
c
[
(0, θ0)

]
(u)

))∣∣du.

Thus, multiplying the last inequality by e−λt and taking the ess sup with respect to t ,
one gets that

∥∥F(m1) − F(m2)
∥∥ ≤ βσ0

λ + M
‖m1 − m2‖

{
1− exp

{
t (−λ + M)

}}
≤ βσ0

λ + σ0 − |1− Ib|
∥∥(m1 − m2)

∥∥,

which implies that, for λ > βσ0 − σ0 + |Ib − 1|,∥∥F(m1) − F(m2)
∥∥ ≤ K

∥∥(m1 − m2)
∥∥, K < 1,

which ends the proof.
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4.2 The Nonlinear Case

Let us go back now to the general model (22). Below, we prove the existence and
uniqueness of a solution locally in time. Then, under an assumption regarding the
number of connections per neuron and the delay kernel, the global in time existence
is proved.

Theorem 2 Let σ0 and α be two functions of C(0,+∞) and the initial condition q0
be a periodic function of C[0,2π]. Then one can find T > 0 such that there exists
a unique positive solution to the nonlinear problem (22), q ∈ C([0, T ] × [0,2π]),
which is periodic with respect to the second argument.

In the following, the computations will be made in the space

X = (
C�

([0, T ] × [0,2π]),‖ · ‖∞
)
,

where C� stands for the functions that are continuous in time and continuous and
periodic in phase. Let us define on X the map G by

G : X → X

m �→ q,

where q is the solution to the problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂
∂t

q(t, θ) + ∂
∂θ

(f (θ)q(t, θ)) = σ(t)[s′(θ)m(t, s(θ)) − m(t, θ)]
σ(t) = σ0(t) + Jf (2π)

∫ t

0 α(t − s)m(s,2π)ds

q(t,0) = q(t,2π)

q(0, θ) = q0(θ).

The proof will use the standard Banach–Picard fixed-point theorem applied to the
map G with respect to the usual norm on L∞([0, T ] × [0,2π]). Below ‖ · ‖ will
denote the norm in L∞.

Let (t, θ) ∈ [0, T ] × [0,2π]. As before, we define a characteristic c[(0, θ0)](t) as
a solution to (28) and write the problem along these curves as

d

dt
q
(
t, c

[
(0, θ0)

]
(t)

)
= −f ′(c[(0, θ0)](t))q(

t, c
[
(0, θ0)

]
(t)

)
+ σ(t)

[
s′(c[(0, θ0)](t))m(

t, s
(
c
[
(0, θ0)

]
(t)

)) − m
(
t, c

[
(0, θ0)

]
(t)

)]
. (34)

For any fixed bounded functions m and σ , one can find a unique solution q by inte-
grating (34)

q(t, θ) = q
(
t, c

[
(0, θ0)

]
(t)

)
= e− ∫ t

0 f ′(c[(0,θ0)](s))dsq0(θ0)
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+
∫ t

0
e− ∫ t

u f ′(c[(0,θ0)](s))ds

× σ(u)
[
s′(c[(0, θ0)](t))m(

u, s
(
c
[
(0, θ0)

]
(t)

)) − m
(
u, c

[
(0, θ0)

]
(t)

)]
du

:= G(m). (35)

It remains therefore to show that the application

m �→ G(m),

with G defined by (35), and σ given by

σ(t) = σ0(t) + 2J
∫ t

0
α(t − s)m(s,2π)ds, (36)

has a fixed point.
To prove the invariance of a ball in X, let us take R a positive real number to be

fixed later on, and m ∈ X such that ‖m‖ ≤ R. Then, for every T > 0:

‖σ‖ ≤ ‖σ0‖ + 2JT ‖α‖R. (37)

Choosing for now T ≤ 1
2J‖α‖R , the last relation yields:

‖σ‖ ≤ ‖σ0‖ + 1.

First note that, defining MT as

MT = ess sup
0≤u≤t≤T

exp

{
−

∫ t

u

[
f ′(c[θ0](s))]ds

}
,

we get that

MT < exp
(
T |1− Ib|

)
. (38)

Next, taking the absolute value in (35), we obtain by using the relations (32) and (38):∥∥G(m)
∥∥ ≤ exp

(
T |1− Ib|

)(‖q0‖ + T
{(‖σ0‖ + 1

)[βR + R]})
≤ exp

(
T |1− Ib|

)(‖q0‖ + 1

2J‖α‖
{(‖σ0‖ + 1

)
(β + 1)

})
,

where we have also used the fact that T ≤ 1
2J‖α‖R .

Let us assume that the time interval is chosen less than a given value T0, and take

T ≤ min

(
T0,

1

2J‖α‖R
)

,

for R defined as a

R = exp
(
T0|1− Ib|

)(‖q0‖ + 1

2J‖α‖
{(‖σ0‖ + 1

)
(β + 1)

})
.
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Then

T ≤ min

(
T0,

1

exp(T0|1− Ib|){2J‖α‖‖q0‖ + (‖σ0‖ + 1)(β + 1)}
)

,

which shows that the invariance of the ball property takes place locally in time.
Let us go now to the contraction property and take solutions m1,m2 ∈ X two

solutions to (35). We denote by σ1 and σ2 the corresponding quantities defined by
(36) to m1 and m2. Then∣∣(G(m1) − G(m2)

)(
t, c

[
(0, θ0)

]
(t)

)∣∣
≤ exp

(
T0|1− Ib|

)
×

{∫ t

0

[∣∣σ1(τ )
∣∣∣∣s′(c[(0, θ0)](τ )

)∣∣
× ∣∣m1

(
τ, s

(
c
[
(0, θ0)

]
(τ )

)) − m2
(
τ, s

(
c[θ0](τ )

))∣∣
+ ∣∣s′(c[(0, θ0)](τ )

)∣∣∣∣m2
(
τ, s

(
c
[
(0, θ0)

]
(τ )

))∣∣∣∣σ1(τ ) − σ2(τ )
∣∣]dτ

+
∫ t

0

[∣∣σ1(τ )
∣∣∣∣m1

(
τ, c

[
(0, θ0)

]
(τ )

) − m2
(
τ, c

[
(0, θ0)

]
(τ )

)∣∣
+ ∣∣m2

(
τ, c

[
(0, θ0)

]
(τ )

)∣∣∣∣σ1(τ ) − σ2(τ )
∣∣]dτ

}
.

Using the fact that the solutions are elements of X, the bound for σ given by (37),
and, again, the relations (32) and (38), we obtain:∥∥(

G(m1) − G(m2)
)∥∥ ≤ exp

(
T0|1− Ib|

)
T

{
(β + 1)

(‖σ0‖ + 1
)‖m1 − m2‖

+ (β + 1)2RJT ‖α‖‖m1 − m2‖
}

≤ T exp
(
T0|1− Ib|

){
(β + 1)

(‖σ0‖ + 2
)}‖m1 − m2‖,

where we have also used 2JT R‖α‖ < 1. Choosing now T such that

T < min

{
T0,

1

exp(T0|1− Ib|)(β + 1)(‖σ0‖ + 2)
,

1

exp(T0|1− Ib|){2J‖α‖‖q0‖ + (‖σ0‖ + 1)(β + 1)}
}
,

one gets the conclusion on the interval [0, T ].

Theorem 3 Let us assume the same hypothesis as in Theorem 2.We assume further-
more that 2J‖α‖ < 1. Then there exists an unique solution to problem (22) that is
global in time.

In order to prove the global result, we shall reiterate the above procedure on a
series of intervals [Ti, Ti+1]n−1

i=1 and we denote the value T found above by T1. The
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corresponding lengths of the intervals will be denoted by {li}ni=1. We will also use,
for convenience, the following notations: γ = |1−Ib|, k1 = 2J‖α‖ and k2 = (‖σ0‖+
1)(β + 1). Using these notations, we have obtained that there exists a unique solution
on B(0,R1) with

R1 := exp(γ l1)

(
‖q0‖ + k2

k1

)
on the interval [0, T1], where T1 is chosen such that

l1 < min

{
T0,

1

exp(γ l1)(β + 1)(‖σ0‖ + 2)
,

1

exp(γ l1){k1‖q0‖ + k2}
}
. (39)

Let us consider now the problem on the next interval, [T1, T2] with the initial condi-
tion q01(θ) = q(T1, θ). We shall concentrate our attention on the third term in (39)
since it explicitly depends on the initial condition. Then considering again the same
application G, given by (35), and following the same computations, we obtain that

∥∥G(m)
∥∥ ≤ exp

(
l2|1− Ib|

)(‖q01‖ + 1

2J‖α‖
{(‖σ0‖ + 1

)
(β + 1)

})
.

Since

‖q01‖ ≤ R1,

we get that ∥∥G(m)
∥∥ ≤ exp

(
γ (l1 + l2)

)(‖q0‖ + 2
k2

k1

)
,

and T2 is chosen such that

l2 ≤ exp
{
γ (l1 + l2)

}[
k21‖q0‖ + k1k2 + k2

]
.

By induction, it follows that, for the nth interval, the following relations should hold:

Rn = exp

(
γ

n∑
i=1

li

)(
‖q0‖ + n

k2

k1

)

and

ln ≤ 1

exp{γ ∑n
i=1 li}[kn

1‖q0‖ + k2
∑n−1

i=0 ki
1]

. (40)

In order to get this, we shall choose the time intervals such that

ln = c

n
,

with c a positive constant to be specified later. By doing so, we obtain the result on
the interval [0, Tn] of length ∑n

i=1
c
i
, and since the harmonic series is divergent, by

making n −→ ∞, we will get the existence and uniqueness of the solution on [0,∞).
It remains to show that the inequality (40) holds.
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Using
n∑

i=1

1

i
< 1+ logn,

it follows that

exp

{
γ

n∑
i=1

li

}
≤ exp{cγ }ncγ .

Also, for k1 < 1

kn
1 < 1,

n−1∑
i=0

ki
1 = 1− kn

1

1− k1
. (41)

Then we can bound

1

exp{γ ∑n
i=1 li}[kn

1‖q0‖ + k2
∑n−1

i=0 ki
1]

≥ 1

ecγ ncγ [‖q0‖ + k2/(1− k1)] ,

and choosing c such that cγ < 1, it follows that for some N0

1

ecγ ncγ [‖q0‖ + k2/(1− k1)] ≥ c

n
, for n ≥ N0,

which completes our proof.
We shall end with a remark regarding a special case of the nonlinear problem, for

which the global result obtained in the linear case holds. Suppose that we consider
the case of delayed average reception rate, i.e.,

σ(t) = σ0(t) +
∫ t

0
α(t − s)q(s,2π)ds

and we assume that the delay function α is zero in a neighborhood of the origin [0, τ ].
When integrating along the characteristics on the interval [0, τ ], the solution of our
problem is given by the solution of the linear problem considered in the first subsec-
tion. Next, reiterating the procedure on the intervals [kτ, (k + 1)τ ], k = 1,2, . . . , and
having in mind that∫ (k+1)τ

kτ

α
(
(k + 1)τ − s

)
q(s,2π)ds =

∫ τ

0
α(s)q

(
(k + 1)τ − s,2π

)
ds = 0

and q is already calculated on the interval [0, (k − 1)τ ], one gets a global solution for
this special case, which is given by the solution of the linear problem.

5 Numerical Results

In this section, we shall present some numerical simulations of our model obtained
via a finite differences scheme. In order to validate the numerical results, we com-
pare the simulations of our model with the simulations obtained via a Monte Carlo
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method applied to the theta-neuron model. To solve numerically (22), we write the
first equation of the system in a conservative form

∂

∂t
q(t, θ) + ∂

∂θ
J(t, θ) = 0,

with the flux J(t, v) given by

J(t, θ) = f (θ)q(t, θ) + σ(t)

∫ θ

s(θ)

q(t, θ̃ )dθ̃

:= F(t, θ) + I (t, θ),

where I (t, θ) stands for the integral part of the flux and F(t, θ) for the drift part of
the flux.

Denoting by 
t the time step and by 
θ the phase step, we define

θk = k
θ, tn = n
t, qn
k = q

(
tn, θk

)
,

F n
k+1/2 = F

(
tn, θk+1/2

)
, I n

k+1/2 = I
(
tn, θk+1/2

)
, J

n
k+1/2 = J

(
tn, θk+1/2

)
.

For the discretization of (22), we use a first-order explicit in time scheme given by

qn+1
k = qn

k − 
t


θ

(
J

n
k+1/2 − J

n
k−1/2

)
= qn

k − 
t


θ

(
Fn

k+1/2 − Fn
k−1/2

) − 
t


θ

(
In
k+1/2 − In

k−1/2

)
.

The drift numerical flux Fn
k+1/2 was reconstructed by using the upwind method (see

[25] for details of the upwind numerical reconstruction) and the integral part In
k+1/2

was approximated by using a first order reconstruction.
The simulations of the model (22) presented in Fig. 5 show the evolution in time

of the phase distribution of the neural population. The blue curve in the plots cor-
responds to the Monte Carlo simulation and the black curve to the finite differences
scheme discretization of (22). In the first plot, upper left of Fig. 5, the initial repar-
tition q0, which is a truncated Gaussian, is represented. Under the influence of the
external impulses σ0(t), the jump process present in the model (22) takes place. The
density seems to reach an equilibrium that is shown in the last plot of Fig. 5. Unfor-
tunately, we have not proved theoretically the existence of a steady state, which is
subject to our future research. In Fig. 6, we show the evolution in time of the firing
rate of the population r(t) under a constant external influence and in Fig. 7 the firing
rate of the population under an oscillatory external influence. Again, it can be noticed
that under a constant influence, the firing rate seems to converge toward a steady state.

6 Discussion and Conclusion

Single neuron models such as the LIF or the QIF models have a weak electrophysi-
ological basis, but thanks to their simplicity, they are quite useful for simulations of
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Fig. 5 Simulations of the model (22). The figures give the repartition of the population at different instants
in time: t = 0, t = 0.1, t = 0.5, t = 0.6. For each instant, the two plots in the figures represent the same
density q(t, θ) obtained by two different methods: the Monte Carlo method—blue curve, and the finite
differences scheme approach for the model (22)—black curve. The initial Gaussian repartition q0 is repre-
sented in the upper left plot. The simulations have been obtained for a constant external influence σ0 = 20,
the potential jump size—h = 5, the coupling parameter—J = 3 and the basic current—Ib = −1. The last
figure shows the repartition at the final time t = 3, which evidences a convergence toward an equilibrium
repartition

Fig. 6 Simulation of the evolution in time of the firing rate r(t) for a constant external influence σ0 = 20;
the potential jump size is h = 5, the coupling parameter—J = 3 and the basic current—Ib = −1. The
initial condition was taken as a Gaussian repartition

Fig. 7 Simulations of the model in the case when the initial condition is a Gaussian. The figures rep-
resent the evolution in time of the firing rate r(t) of the model for a non constant external influence
σ0(t) = I0 + I1 sin(ωt). In the first plot I0 = 10, I1 = 10, ω = 2, in the second plot I0 = 10, I1 = 10,
ω = 5 and in the third plot I0 = 10, I1 = 10, ω = 10. The potential jump size is h = 5, the coupling
parameter—J = 3 and the basic current—Ib = −1
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the behavior of populations of neurons. The population density approach leading to
partial differential equations is suited for very large populations of neurons; we think
that mathematical studies on the qualitative behavior of population density models
may help for the choice of the particular single neuron model used to describe the
internal state of the neurons of the population, and give insights on the results. In par-
ticular, the possibility of burst of the firing rate corresponding to a synchronization of
the neurons, as opposed to a regular activity, is of interest to neuroscientists.

We have highlighted a qualitative difference between the population density ap-
proach applied to a population of theta-neurons, and the same approach applied to
populations of LIF neurons. In [11], it was proved that a global solution exists for the
LIF population density approach equation with no delay and the firing rate remains
bounded in the case where J < 1. On the other hand, in [14] it was shown that for J

and σ0 large enough, for any initial condition there will be a burst in finite time: The
firing rate goes to infinity.

In the present study of populations of theta-neurons, we consider only the case
with conduction delay. The condition for existence of a global solution (no burst)
involves the product of the number of connections J and the maximum of the delay
repartition ‖α‖. In order to satisfy this condition for large J , the delay kernel α should
spread over the time interval in order to decrease its maximum. So, it is possible to
exhibit populations with the same J that will burst in finite time with the LIF model
but will have a regular behavior on an infinite horizon with the QIF model with a
different delay repartition.

As it is known, the formal threshold imposed in the LIF model is defined as the
value at which an action potential is initiated, and the firing rate of the population
density models in this case is defined as the flux passing through this threshold. In
our case, the neurons of the population are supposed to transmit the electrical signal
at the peak value, instead of the value at which the initiation of a spike occurs, which
is actually the θ+ root of the model (19). Therefore, the firing rate in our model de-
pends only on the drifting flux through the phase 2π . This fact allowed us to obtain a
global well-posedness result in the general case of the model. But the same fact does
not allow to use the same argument as in [14] to study the conditions of bursting. Fur-
thermore, in all the simulations that we have done, the synchronization phenomenon
have not been observed in the case of a theta-neurons population.
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