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Abstract Midbrain dopamine neurons exhibit a novel type of bursting that we call
“inverted square wave bursting” when exposed to Ca>*-activated small conductance
(SK) KT channel blockers in vitro. This type of bursting has three phases: hyper-
polarized silence, spiking, and depolarization block. We find that two slow variables
are required for this type of bursting, and we show that the three-dimensional bi-
furcation diagram for inverted square wave bursting is a folded surface with up-
per (depolarized) and lower (hyperpolarized) branches. The activation of the L-type
Ca’*t channel largely supports the separation between these branches. Spiking is
initiated at a saddle node on an invariant circle bifurcation at the folded edge of
the lower branch and the trajectory spirals around the unstable fixed points on
the upper branch. Spiking is terminated at a supercritical Hopf bifurcation, but
the trajectory remains on the upper branch until it hits a saddle node on the up-
per folded edge and drops to the lower branch. The two slow variables contribute
as follows. A second, slow component of sodium channel inactivation is largely
responsible for the initiation and termination of spiking. The slow activation of
the ether-a-go-go-related (ERG) K™ current is largely responsible for termination
of the depolarized plateau. The mechanisms and slow processes identified herein
may contribute to bursting as well as entry into and recovery from the depolariza-
tion block to different degrees in different subpopulations of dopamine neurons in
vivo.
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1 Introduction

The activity of midbrain dopamine neurons, as reflected in levels of extracellular
dopamine concentration and the fMRI BOLD signals in their target areas, is hypoth-
esized to represent a reward prediction error [1] or, alternatively, confidence in a
prediction of a desired outcome [2]. The firing pattern of dopamine neurons affects
dopaminergic signaling; for example, electrical stimulation of dopaminergic cells at
40 Hz is much more effective in elevating dopamine extracellular concentration in
rat striatum [3] than the same number of stimuli applied at 10 Hz. Dopamine (DA)
neurons are regular pacemakers at 1-7 Hz in vitro [4, 5], but in vivo exhibit dif-
ferent firing patterns, including regular single-spiking, irregular single-spiking and
burst firing both in freely moving [6] and anesthetized [7] rats. In the dopamine neu-
ron literature, a single burst is operationally defined [8] as beginning with an ISI of
less than 80 ms and terminating with an ISI of 160 ms. Bursts are often interspersed
within episodes of single-spike firing [6], although at least some examples of rhyth-
mic bursting have been observed in vivo [9]. Bursts are associated in awake animals
with reward-related stimuli [10, 11], and they are referred to as a phasic signal in
contrast to the tonic signal mediated by single-spike firing.

The origin of the operational definition of bursting is that DA neurons typically
fire at 3—8 Hz [12] in the tonic, single-spike mode in vivo, so the operational criterion
was developed to detect an episode of faster than normal firing. In contrast, in the
mathematical neuroscience literature [13—15], bursting is often defined as a rhythmic
alternation of spiking and quiescent episodes without reference to specific frequen-
cies. We propose that although special dynamic mechanisms for bursting are not re-
quired to achieve a temporary acceleration in frequency, the intrinsic currents that
characterize dopamine neurons provide burst mechanisms that may be harnessed as
needed to facilitate single or multiple bursts. In many mathematical models of burst
firing, there is an underlying slow oscillation in membrane potential, and bursts of
spikes occur during the depolarized portion of the slow envelope, whereas the silent
interburst interval is more hyperpolarized than the interspike intervals during a burst.
This type of bursting is often called square wave bursting [13, 14]. Here, we will
consider an anomalous type of bursting in which the silent, interburst interval occurs
at more depolarized potentials than the average membrane potential observed during
the interspike intervals within a burst.

Dopamine neurons exhibit multiple oscillatory modes under different conditions.
For example, blocking spikes using TTX reveals an additional oscillation, an ap-
proximately sinusoidal, calcium-mediated slow oscillatory potential (SOP) [5, 16]
that has a frequency in the spiking range. On the other hand, blocking (or negatively
modulating) the small conductance SK potassium channel increases the tendency to
burst rhythmically both in vivo [17, 18] and in vitro [5, 19, 20]. These bursts often
terminate in depolarization block, similar to bursts in rats chronically treated with
antipsychotic drugs [21]. Depolarization block is a state of silence at membrane po-
tentials more depolarized than those that support the generation of action potentials,
also called spikes. Clues to the burst mechanism are: (1) blocking both spikes and
the SK channel induces underlying plateau potential oscillations [5, 22] in which the
depolarized phase can last for seconds, and (2) L-type calcium channel agonists are
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also sufficient to elicit bursting whereas L-type calcium channel antagonists abolish
bursting elicited by SK channel block [23]. We focus on bursts elicited in vitro by
SK channel block that terminate in depolarization block. To our knowledge, our re-
cent modeling study [24] is the only model that captures the curious nature of these
SK channel block mediated bursts in dopamine neurons in which the most prominent
silent phase is more depolarized than the membrane potential during the interspike in-
tervals within the burst. Here we perform a bifurcation analysis of a slightly modified
version of that model to elucidate the mechanism in a reduced single-compartment
model, and then we show that it is viable in a morphologically realistic model as well.

2 Methods
2.1 Model Equations

The model (Fig. 1a) consists of a fast spiking sodium current (In,) [25, 26], an L-type
calcium current (Ic, 1) [27], a delayed rectifier (/x pr) [28], a transient outward
potassium current (/g a) [28], an ether-a-go-go-related potassium current (/K ERG)
[29], a calcium-activated small conductance SK potassium current (/g sk ), a nonspe-
cific hyperpolarization-activated cation current (/y), and a leak current (/i cax) that
is comprised of a nonspecific (/1 ns) and calcium ion specific component (/1 ca)-
A small applied stimulus current Iy, was required for one simulation, and converted
from pA to intensive units using the diameter d = 15 pm and L = 25 pm of the cylin-
drical somatic compartment. The conductances for these currents (g;) are in parallel
with the membrane capacitance Cy, = 1 uF/cm?. The differential equations for trans-
membrane potential are as follows:

dv
Cm— = —INa—IcaL— Ix, DR — Ik, A — IK.ERG — Ik ,SK — IH — ILeak + 0.1 l5tim/ d L.

dt

Maximal conductances in pS/crn2 were gna = 6000, gca, L. = 139, gk pr = 1117,
gr.a = 1680, gk ErG = 130, gk sk =70, gL Ns =280, gL,ca =2.45, gu = 78.

The sodium current description, Iny = gNam3hhS (v — 60), was modified from
that given by Ji et al. [20] by making the slopes of the half-activation of m and fast
inactivation of & slightly less steep. We also modified the slow component of sodium
channel inactivation kg to better fit the data from [26] as explained in our earlier
study [24]. The L-type current description, Ica 1. = gca,L!/ (v — 50), is similar to those
used in our previous models [20, 24, 30] and represents only the fraction of calcium
current activated near the spike threshold. The delayed rectifier description, Ix pr =
gK,DRn3(v + 90), was slightly modified (specifically the mathematical form of the
time constant) from [20]. The description of the A-type potassium current, Ig A =
gxk.Ap(q1/2 + g2/2)(v + 90), was fit to published voltage clamp data (Figs. 1bl
and b2) [28] using two components of inactivation, g; and g. The description of the
H current, Iy = ggmu (v + 29), is very similar to that in [31]. The gating variables
m, h, hg, 1, n, p, q1, g2 and my obey equations of the form dx/dt = (xeo — X)/ T,
with xeo = 1/[1 + exp(— %k‘““‘)], with parameters as given in Table 1.
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Fig. 1 Calibration of dopamine neuron model. a The equivalent circuit for the conductance-based model
with nonlinear conductance in parallel with the membrane capacitance Cp,. The maximal conductance and
reversal potential of each current are indicated by gy and Ey, respectively. The arrows indicate time and
voltage-dependent conductances. b Calibration of model KT currents. b1 The parameters of the descrip-
tion of the A-type KT current were adjusted to fit published voltage clamp data from nucleated membrane
patches from SNc dopamine neurons (representative current traces from Fig. 11A3 of [28]). The conduc-
tance used for these simulations (120 uS/cmz) was chosen to match the amplitude of the currents from
the voltage clamp data, obtained with 100 ms steps from a holding potential of —100 mV to 50 mV in
increments of 10 mV. b2 The parameters of the description of the ERG-type KT current were adjusted
to fit published voltage clamp data (Fig. 1A of [32]) from human channels heterologously expressed in
Xenopus oocytes. The conductance used for these simulations was chosen to match the amplitude of the
currents from the voltage clamp data, obtained with 600 ms steps from a holding potential of —80 mV to
—100 to 50 mV in increments of 10 mV. Tail currents were measured at —70 mV. ¢ The model neuron
exhibits slow pacemaker firing at 3.6 Hz under control conditions. d With gn, set to zero and Iy, set to
35 pA, the model exhibits a Ca2+—dependent sinusoidal slow oscillatory potential (SOP)
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Table 1 Time and voltage dependence of model gating variables

X Xpaif (mV) xg (mV) Time constants: T (ms)

m  —30.09 132 001+ 45,

a = —(15.6504 + 0.4043v) /[exp(—19.565 — 0.50542v) — 1],
b =3.0212exp(—7.463e—3v)

ho =54 —128 04+ L
a=5.0754e—4exp(—6.3213e—2v),
b =9.7529 exp(0.13442v)

hy —54.8 —1.57 20+ 580/(1 +exp(v))

227165 i
n =25 12 TFexp(= (U 61.1253) 744429 | TFexpo+36.8869)79-7083) + 0-00521+0.7397
I —45 75 1/ expfﬁ-(‘ﬁ)§;"7<§5ﬁ_§f?][] +0.19444 exp[— (v + 15.338)/224.21]}
my —77.6 17.317 26.21 +3136/[1 + exp(—(v + 22.686)/29.597)]

95.5813 i
p =351 34 w71 540207260598 | THexp(uF62.5026)76.5199) — 0-5108] 4-48.2438
g1 —80 6 6.1exp(0.015v)

55.8321 |

g2 —80 =6 294.0087 + [ Tgprisn 503330108 — 52348 Trepru—sa8598)/35.3239) |

The ERG potassium current uses a kinetic scheme described previously [19] in
which transitions between the closed and inactivated state must pass through an open
state,

o, o
c2o2i,
ﬁo ,Bi

where ¢, o and i denote the fraction of ERG channels in the closed, open and inac-
tivated states, respectively; and «,, B,, @; and B; are the voltage-dependent reaction
rates. The transition rates between the closed and open states (¢, and 8,) are much
slower than the transition rates between open and inactivated states (¢; and S;). The
current description, Ix ErG = gK,ERGO(V 4 90), requires two differential equations:

do ; .

Z =dao(1 —0—i)+ Bii —ola; + Bo),
di .

7 =0~ Bil

with ¢, = 0.0036exp(0.0759v), B, = 1.2523e—S5exp(—0.0671v), o; = 91.11 x
exp(0.1189v) and B; = 12.6exp(0.0733v). The values resulted from our fit (Fig. 1b2)
to previously published data [32].

The leak current description was separated into two components: Ij ek = I1..ca +
I Ns, with a calcium component, It ca = gL,ca(v — 50), and a nonspecific com-
ponent, I, Ns = gL.Ns(v 4 65), in order to keep track of Ca%t ions separately for
the material balance on free cytosolic Ca**. The Ca’>* balance was required to
determine the level of Ca?t concentration [Ca] that activates the SK potassium
current. The description for this current was taken from our previous papers [30]:
Ik sk = gk.sk(v +90)/(1 + (0.00019/[Ca])4). The calcium balance is given by

% = —2fcallL,ca + Icap + IcaL)/(Fd) where [Ca] is the Ca%t concentration
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in mM, fc, = 0.018 is the fraction of unbuffered free calcium, d is the diame-
ter of soma (or of a compartment in the compartmental model) and F is Fara-
day’s constant. Extrusion of Ca®* is modeled using a nonelectrogenic pump Ica,p:
Ica,p = Ica,p max/(1 + [Ca]/0.00055), with Ica p max = 11 pA/cm?.

2.2 Full Morphology Model

In order to verify that the single-compartment model captured the features of the den-
dritic architecture of a real DA neuron, the model parameters established for single-
compartment model were applied to a multi-compartmental model that was based on
the reconstructed morphology [33] of an actual SNc DA neuron, except fc, was set
to 0.0018. It consisted of a total of 41 compartments, including three somatic, and
38 dendritic compartments. The morphology description was obtained from the file
labeled Nigra2a955-1 at NeuroMorpho.Org [34]. The equations were identical in all
compartments to the equations given above for the single-compartment model except
that the length and diameters of the compartments were variable, I, is applied only
in the soma, and axial currents flowing between compartments were computed us-
ing an axial resistivity of 100 ©2-cm. For simplicity, all conductance densities were
modeled as homogeneous throughout the somatodendritic tree, since dopaminergic
dendrites are active [35]. However, we note that recent evidence [36] that the distal
dendrites contribute less to setting the pacemaking frequency than the proximal ones
implies a degree of heterogeneity that may be considered in future models.

2.3 Simulation Methods

Numerical simulations for the single-compartment model were performed using code
written in MatLab (MathWorks), whereas simulations for the multi-compartmental
model based on the morphological reconstruction were performed using the simu-
lation package NEURON [37, 38]. The bifurcation diagrams for the slow plateau
potential were calculated with XPPAUT [39], whereas the bifurcation diagrams for
bursting were generated by the MATCONT package [40].

3 Results
3.1 Single-compartment Model

The single-compartment model parameters were calibrated so that the model exhibits
spontaneous pacemaking activity at about 3 Hz (3.6 Hz, Fig. 1¢) under control condi-
tions with all parameters set to their default value. We also confirmed that a calcium-
driven, approximately sinusoidal, slow oscillatory potentials (SOP) can be obtained
when bath application of TTX is simulated by setting gna = 0 (Fig. 1d) to block spik-
ing. A small bias current of 35 pA was required in Fig. 1d to reveal this oscillation;
although some dopamine neurons produce the SOP spontaneously, others require a
small bias current [16]).

Next we examined the ability of SK channel block to evoke oscillatory plateau po-
tentials that resemble a square wave. With both gn, and gk sk set to zero, the model
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a

20mV

Fig. 2 Oscillatory plateau potentials. a With gn, and gk sk set to zero and all other parameters set
to their default values, the model produces oscillatory plateau potentials of long duration. b Oscillatory
plateau potentials persist when gg pr is also set to zero. ¢ Oscillatory plateau potentials are abolished
when gc, 1 is also set to zero

produces depolarized plateaus lasting seconds, separated by periodic hyperpolarizing
phases (Fig. 2a). These plateau potentials persist (Fig. 2b) when gx pr is set to zero
to mimic bath application of TEA, consistent with experimental data [5]. Finally, we
show that the plateau potentials in the model are abolished when gc, 1. is also set to
zero to mimic the application of nifedipine, again consistent with experimental data
[22, 23].

3.2 Model Reduction and Bifurcation Analysis (Without Spiking)

A bifurcation analysis was performed on the single-compartment model from
Fig. 2b with gNa, gk sk, and gk pr set to zero. The remaining state variables were
(v, 1, p,q1,q2, my, o, i). The trajectory (thin black closed curve with arrows) corre-
sponding to Fig. 2b was replotted in Fig. 3a in the plane of membrane potential (v)
and the fraction of ERG channels (o + i) that are not closed, but are in either the open
or inactivated state. The choice of these coordinate axes was motivated by a previous
modeling study [19] that suggested that the o + i pool of ERG potassium channels
was the appropriate slow variable for a fast/slow analysis. As noted in Sect. 2, the
transition rates between the closed and open states (¢, and f,) are much slower than
the transition rates between open and inactivated states («; and §;), so the inactivated
channels remain approximately at steady state with respect to the open fraction as
their sum (o + i) changes slowly.

In the bifurcation analysis (v, [, p, q1, g2, mg) was taken as the fast subsystem,
and the o 4+ i pool was the control parameter representative of the slow system.
Branches of stable fixed points are indicated by dark curves and unstable one by
the dotted part of the curve. The bifurcation diagram in Fig. 3a displays a “Z” shape
constructed by two stable equilibrium branches at the top and bottom, and one unsta-
ble equilibrium branch in the middle. The unstable branch is created by the positive
feedback due to the L-type Ca>* channel, which is an inward current that turns on
with depolarization, causing more depolarization as a result. The stable and unstable
branches are connected by saddle-node (SN) bifurcation, and the trajectory jumps be-
tween depolarized and hyperpolarized branches at these points. The trajectory forms
a limit cycle by following stable equilibrium branches. Membrane potential changes
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o+i

Fig. 3 Fast-slow bifurcation diagrams for oscillatory plateau potentials. a Bifurcation analysis of the
full model from Fig. 2b with gnNa = gk sk = gK,DR = 0. Solid and dotted lines represent the stable and
unstable fixed points on the bifurcation diagram, respectively. Dots indicate bifurcation points, with SN
denoting saddle-node bifurcation. Double and single arrows indicate the direction of fast and slow changes
in voltage, respectively, on the closed curve (thin black lines) that represents the limit cycle trajectory.
b Same as a except the bifurcation diagram is equivalent to the voltage nullcline in the reduced two-variable
system, and the nullcline for the o + i pool is shown (dashed curve)

slowly when following the stable branches (denoted by single arrows in Fig. 3a), be-
cause the transmission between activation and closing states of ERG channels are
slow, but changes rapidly when switching (double arrows) between stable branches
due to switching on or off of the L-type calcium channel current.

Based on Fig. 3a, we theorized that a two-dimensional reduced model would be
adequate to capture the dynamics of the system in Fig. 2b. The fast gating variables
for the L-type calcium, A-type potassium and H currents (I, p, g1, g2, my) were set
to their corresponding steady states as a function of v, and we set i = «;0/8; as
explained above. The reduced two-variable system is

d
Cd—l; = —gKErRG(0+1)/(e; + Bi)(v— Ex) — IcaL — Ik, A — ILeak — IH,
dosi
% — a1 = 0+ )] = Bofi(0+ i)/ (i + ).

The phase plane analysis of the reduced system is shown in Fig. 3b, and consists
of the solution trajectory of the two-dimensional system superimposed on the volt-
age nullcline. This nullcline is the same as the bifurcation diagram from Fig. 3a. The
trajectory for the reduced system follows the voltage nullcline exactly, whereas the
trajectory for the full system in Fig. 3a follows it only approximately, but the cor-
respondence is close. Furthermore, the nullcline (dashed curve) for the o 4 i pool
intersects the voltage nullcline in its unstable branch, resulting in a limit cycle solu-
tion.

3.3 Inverted Square Wave Bursting with Two Slow Variables

Having clarified in the model the basis for the underlying plateau potential oscil-
lations, we returned to the full model from Fig. 1c to simulate the curious type of
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Fig. 4 Inverted square wave bursting requires two slow variables. a Top: The model exhibits inverted
square wave bursting with the default parameter set and gk sk = 0. Bottom: For comparison, the oscilla-
tory plateau potentials from Fig. 2b (dashed line, with gna = gk sk = €K, DR = 0) are shown. b The time
course of slow sodium channel inactivation /4 and o + i pool of ERG channels that corresponds to the top
trace in a is shown

bursting evoked by SK channel block in dopamine neurons. As stated in the Intro-
duction, this type of bursting is curious because spiking in general occurs during the
hyperpolarized phase of the underlying oscillation and quiescence occurs during the
depolarized phase, which is inverted compared to square wave bursting [13, 14], so
we use the term inverted square wave bursting to describe this pattern. Whereas under
control conditions the model fires in a pacemaker fashion (Fig. 1c), when gk sk alone
is set to zero to simulate block of the SK channels due to bath application of apamin,
the model bursts (Fig. 4a). Bursting is characterized by three phases: spikes, depo-
larization block and hyperpolarized silence. For comparison, the oscillatory plateau
potentials with both gna and gk sk set to zero is shown in dashed lines at the bot-
tom of panel A, showing that the period, in this instance, is about the same with and
without spikes.

Multiple time scales are inherent in bursting dynamics. We have identified two
slow variables that are sufficient to generate this bursting pattern: the slow compo-
nent of sodium channel inactivation /; and the o 4-i pool of ERG potassium channels
(Fig. 4b). Slow sodium channel inactivation terminates spike firing, whereas a slow
increase in the pool of open ERG potassium channels terminates and repolarizes the
plateau potential. Conversely, removal of slow sodium channel inactivation allows
spiking to begin, and a slow decrease in the pool of open ERG potassium channels
allows the membrane potential to enter the depolarized plateau supported by L-type
calcium channel activation. Figure 4b illustrates the role of the slow variables in de-
tail. Increasing depolarization during the silent phase triggers the start of the spik-
ing phase. The frequency of spiking increases as the spiking phase progresses, and
controls whether A increases or decreases. Above a certain frequency, & begins to
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decrease. When /h; decreases below a critical level, there is insufficient sodium chan-
nel availability to support spiking, resulting in depolarization block. The other slow
variable, the o + i pool of ERG potassium channels, slowly decreases during spiking
and slowly increases during depolarization block. When o + i pool reaches a thresh-
old value, the net current becomes outward, triggering a regenerative closing of the
L-type Ca%* channels and a sharp repolarization to the silent phase. During the silent
phase, hy recovers from inactivation, and when & recovers sufficiently, a new spiking
phase is triggered.

3.4 Model Reduction and Bifurcation Analysis (with Spiking)

We then performed a bifurcation analysis of the system that produced the bursting in
Fig. 4a (top), with (v,m, h,l, n, p, q1, g2, my) as the fast subsystem, but in this case
we used two control parameters, the o + i pool as described in the bifurcation anal-
ysis without spiking, plus the slow component of sodium channel inactivation /.
Figure 5a shows the numerically computed three-dimensional bifurcation structure
with v as the third dimension, and gives the equilibrium points for which the deriva-
tives of the fast subsystem, including that for the membrane potential, are zero. The
fundamental Z-shape of the bifurcation curve for the lower-dimensional case in Fig. 4
that appears in the plane of v versus the o 4-i pool, and is a result of the positive feed-
back loop mediated by Ic, 1, has been extended into a folding plane in Fig. 5a. The
additional axis of &g allows a variable contribution of the regenerative sodium cur-
rent to the positive feedback loop that creates the unstable branch of the Z; Iy, is
also a depolarizing current that turns on with increasing depolarization. Note that the
cross-sectional Z in the v versus the o + i pool plane is much more pronounced for
hs = 1 compared to iy = 0. The branch of lower saddle nodes (cyan curve, labeled
SN) turns into a saddle node on an invariant circle branch (green curve, labeled SNIC)
when the limit cycles initiated by the supercritical Hopf bifurcation (magenta curve,
labeled HB) collide with the SNs. Here, we use the abbreviation SNIC to indicate a
periodic orbit emerging from a homoclinic connection to a saddle node [41, 42].

The SN/SNIC branch constitutes an edge where the surface folds and is formed by
joining all the saddle nodes on the lower branches of the Z in the 2D nullclines at each
value of h;. The presence of a supercritical Hopf bifurcation (magenta curve, labeled
HB), introduced by the spiking currents, converts the branch of saddle nodes at the top
of the Z into a limit point branch instead (blue curve, labeled LP). This is because, for
most of its length in Fig. 5a, instead of being comprised of nodes between an unstable
and a stable branch as in the 2D case, it is now mostly comprised of nodes between
two unstable branches. This upper LP branch, like the lower SN branch, constitutes
an edge where the surface folds back on itself; in contrast, the surface does not fold
along the HB branch. The supercritical HB divides the top portion of the surface into
stable (left side) and unstable (right side) regions. The middle (between the SN/SNIC
branch and the LP branch) and bottom portions of the folding surface (below the
SN/SNIC branch) are unstable and stable, respectively.

Figure 5b projects the three branches of bifurcation curves onto the plane of A
versus the o + i pool. For clarity, we have omitted a number of neutral bifurcation
curves and codimension-2 bifurcation points. The view has been expanded, as the
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Fig. 5 Bifurcation analysis for inverted square wave bursting (color online). a Three-dimensional bifur-
cation diagram with A and o + i pool as control parameters and v as the third variable. Three major
bifurcation curves are demonstrated with different colors (magenta: Hopf bifurcation (HB), blue: limit
points (LP), green: saddle node on an invariant cycle (SNIC), cyan: saddle node (SN)). The control pa-
rameter o +1i is expanded beyond its maximum of 1, in order to demonstrating the folding structure in 3D.
The dashed edge of the surface indicates that it would not be visible if the surface were not transparent.
b Two-parameter bifurcation diagram in the plane of &y and 0 + i pool. The HB curve and LP curve merge
at a zero-Hopf bifurcation (red open circle, denoted ZH). The black curve is the projection of bursting
trajectory from the top of Fig. 4a in the same plane. Arrows indicate bifurcation points along the trajectory.
¢ Rotated, expanded version of 3D bifurcation diagram from panel a. The black curve again indicates a
3-D version of the bursting trajectory

o0+ i axis has been expanded to cover the range of [0, 1] instead of [0, 3] as in Fig. 5a.
In this view, it is evident that the HB curve collides with the LP curve at a zero-Hopf
bifurcation (ZH, red open circle). Due to the stability of the adjacent upper surface,
the portion of LP curve on the left side of ZH is also a saddle-node branch (limit
point is a general term of which saddle node is a special case). The bursting limit cy-
cle trajectory (black curve) is also projected on the /g versus o + i pool plane. Since
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the curves have been collapsed into a single plane, not all apparent intersections in
the plane actually occur. The bifurcation points along the trajectory are indicated by
arrows. Spiking begins at the SNIC (green arrow) and terminates with a delay after
passing through the supercritical Hopf (red arrow). The depolarized plateau termi-
nates at a SN (blue arrow) and, as in the nonspiking case, quickly repolarizes as the
L-type Ca®t channel turns off regeneratively.

Figure 5c superimposes a three-dimensional version of the trajectory (black closed
curve in Fig. 5b) from the simulation in Fig. 4a (top), which now includes membrane
potential v, on a rotated version of the bifurcation diagram shown in Fig. 5a. The
very first spike of burst spiking mode is initiated at the lower fold of the surface
on a SNIC (green arrow, dashed SNIC line indicates this fold would be invisible if
the upper lobe were not transparent). Spiking proceeds on the far side of the Hopf
(magenta curve), in other words, behind it from this perspective. As hg decreases, the
spiking mode terminates spikes through HB bifurcation (magenta arrow). The fast
dynamic v trajectory causes the last spike to occur after the trajectory has crossed the
HB point. Such “bifurcation delay” or “memory effect” has been reported in many
studies (see for example [43—45]). The membrane potential remains on a depolarized
plateau until sufficient channels accumulate in the o 4 i pool to reach the upper SN
bifurcation (blue arrow) and cause the trajectory to jump to the bottom stable lobe.
Note that in this expanded and rotated view in Fig. 5c, only the SN portion of the
LP curve is visible. The trajectory remains quiescent until 4 recovers sufficiently to
restart bursting spikes at the SNIC.

3.5 Morphologically Realistic Model

We ported the same parameter set used in the previous sections to a realistic
morphology (Fig. 6a, left) implemented using the NEURON simulation package
(Fig. 6a, right) as described in the Methods. For simulations with no SK channel
current, and therefore no dependence on the rate of calcium ion accumulation set
by the diameter of each compartment, the exact same results were obtained for the
single-compartment and the full morphology. Setting gk sk to zero in the multi-
compartmental model resulted in bursting activity (Fig. 6¢). In addition, the abil-
ity to generate oscillatory plateau potentials with gna, gk sk, and gk pr all set to
zero was preserved (Fig. 6d). Therefore, in these cases, the bifurcation structure of
this very complex multi-compartmental model, which is not always possible to de-
termine directly, is qualitatively identical to the reduced, one-compartment model
examined in the previous sections. However, for simulations with nonzero SK con-
ductance (Fig. 6b), the parameter set from the single-compartment model resulted in
quiescence rather than spiking. The dendrites have a higher surface to volume ratio
than the single-compartment somatic model. This allows for faster accumulation and
removal of free CaZt, and faster activation of the SK channel current, which abol-
ished pacemaking. In order to match the frequency and waveform of pacemaking in
the single-compartment model, the free Ca>* fraction fc, was reduced by a factor of
10, from 0.018 to 0.0018.
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Digital reconstruction Neuron implementation
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Fig. 6 Simulation results of the NEURON model with a realistic morphology. a Left: digital reconstruc-
tion of neural morphology [33]. Right: Morphology rendered by the NEURON simulation package. b With
the default parameter set except fc, = 0.0018, the model paces regularly at 3.5 Hz. Membrane potential
from a somatic compartment is illustrated. ¢ Setting gg sk to zero produces inverted square wave bursting.
d Setting gNa = gK,SK = &K, DR = 0 produces oscillatory plateau potentials

4 Discussion

Here we describe the bifurcation structure of a type of bursting observed in midbrain
dopamine neurons in vitro when exposed to SK K™ channel blockers. This type of
bursting has three phases: hyperpolarized silence, spiking, and depolarization block.
Two slow variables are required, and the three-dimensional bifurcation diagram is
a folded surface with upper (depolarized) and lower (hyperpolarized) branches. The
activation of the L-type Ca>* channel largely supports the separation between these
branches. Spiking is initiated at a SNIC at the edge of the lower branch and forms a
limit cycle around the unstable fixed points on the upper branch. Spiking is terminated
at a supercritical Hopf bifurcation, but the trajectory remains on the upper branch
until it hits a saddle node and drops to the lower branch. The slow variables contribute
as follows. The slow component of sodium channel inactivation is largely responsible
for initiation and termination of spiking. The slow activation of the ERG K+ current
is responsible for termination of the depolarized plateau.
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4.1 Relationship to Previous Bifurcation Analyses

The first dynamic classification of bursting neurons included three types of burst-
ing [13, 14]: square wave, parabolic and elliptical. Of these, only parabolic bursting
requires two slow variables, and bursting is initiated by a SNIC and terminated by
a SNIC. More recent work exhaustively catalogued every possible bifurcation type
leading to burst firing [15]. The bifurcation structure we presented here for inverted
square wave bursting is most closely related to Izhikevich’s fold/Hopf bursting and
circle/Hopf bursting (Figs. 63 and 67, respectively, in [15]). For all three cases, the
surface on which the derivative of the membrane potential is equal to zero has the
same fundamental structure: a “Z”-shape comprised of upper and lower surfaces con-
nected at folds by an unstable surface corresponding to the middle branch of the “Z”.

In the circle/Hopf bursting as illustrated in Fig. 67 of [15], there are depolarized
plateaus on the upper surface alternating with episodes of hyperpolarized silence on
the lower surface. Transitions between these “up” and “down” states are caused by
fold, or saddle node, bifurcations at the edges of the upper and lower surfaces. The
circle (SNIC) and Hopf bifurcations that initiate and terminate spiking both occur
on the upper surface, so the sequence of bifurcation starting with spike initiation is
SNIC-HB-SN-SN, and there are nonspiking, silent periods before and after spiking
on the upper surface, as well as during the entire trajectory on the lower surface.
In the fold/Hopf bursting as illustrated in Fig. 63 of [15], spiking is initiated on the
fold of the lower surface causing a jump to the upper surface and termination on the
upper surface via a Hopf bifurcation, followed by a quiescent period of depolarization
block, so the bifurcation scheme is SN-HB-SN.

In our model, spiking is also initiated on the edge of the lower fold, but at a SNIC
(green arrow in Fig. 5¢) instead of a SN, and terminates on the upper surface at a Hopf
(magenta arrow). Then the trajectory remains on the upper surface until the edge is
reached at a fold (SN, dark blue arrow) and the trajectory moves across the lower sur-
face. The bifurcation structure, starting with spike initiation, is SNIC-HB-SN. Since
the burst categorization given by Izhikevich is based on the bifurcations that initi-
ate and terminate spiking, inverted square wave bursting is, by definition, a special
case of the circle/Hopf bursting. The important distinction from the example given
by Izhikevich is that, in our model, spiking appears to emerge smoothly from the
“down” state, or hyperpolarized silence, which is consistent with the experimental
phenomenon we are trying to model. In Izhikevich’s example of circle/Hopf burst-
ing, the transition to the “up state” clearly occurs before spiking begins, which is not
consistent with experimental observations in dopamine neurons.

Another important distinction is that in both the circle/Hopf and the fold/Hopf
examples given by Izhikevich, the depth of the spike after-hyperpolarization is lim-
ited by the unstable part of the surface corresponding to the middle branch of the
“Z” shape, because the spiking trajectory spirals around unstable fixed points on
the upper surface above the unstable branch. The second slow variable allows for
the trajectory to move between the SNIC (green arrow in Fig. 5¢) and the HB (ma-
genta arrow) in a direction parallel to the lower fold, but in a region of state space
beyond the extent of the lower surface, removing the limitation on the spike after-
hyperpolarization. A bursting pattern similar to that in this study, in which spiking
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was also initiated smoothly from the silent hyperpolarized phase and terminated in
depolarization block, was previously identified in a model of pancreatic beta cell ac-
tivity [46]. That study also found that two slow variables are necessary to construct
the folded bifurcation plane on which these complicated bursting trajectories arise.

In Fig. 3, we show that the transitions into and out of the depolarized phase of the
oscillatory plateau potentials with both gk sk and gna set to zero occur at a saddle
node, in agreement with a previous bifurcation analysis [17] of the same oscilla-
tory phenomenon in a similar model of a dopamine neuron. However, in that study,
only one slow variable was used and removing the sodium channel block produced
“bursts” in which a single spike rides a depolarizing wave, rather than inverted square
wave bursting.

4.2 Relationship to Previous Models of Bursting in Dopamine Neurons

This paper builds on previous modeling results from our group and others. The first
models of bursting in dopamine neurons [47, 48] focused on the ability of the NMDA
receptor current (/NMpa) to support depolarization underlying bursting, and the abil-
ity of the electrogenic sodium pump (INa,p) to terminate bursts, a mechanism sug-
gested by experiments performed in vitro [49] as well as the known contribution [50-
52] of NMDA receptors to burst firing in vivo. One of the early models [47] postulated
arole for the Ca’T-activated K+ conductance in burst termination. Although this cur-
rent likely contributes to burst repolarization under some circumstances, blocking this
current facilitates bursting, as described in the Introduction. The explanation for this
counterintuitive experimental observation requires an understanding of the role of the
SK current in allowing only one spike per Ca>* channel-mediated depolarization [30,
53, 54].

A clue to the mechanism by which blocking the SK conductance facilitates burst-
ing was provided by models [17, 55, 56] that showed that the Ca>*-mediated slow
oscillation in membrane potential (SOP) observed when spikes are blocked with TTX
is caused by the interplay between the L-type Ca>* channels and the Ca®*-activated
SK K™ channels. Moreover, decreasing the level of the SK conductance converted
the sinusoidal oscillatory potential (similar to those in Fig. 1d) to oscillatory plateau
potentials (similar to those in Figs. 2a and b). When the fast sodium conductance in
not blocked, the sinusoidal oscillatory potentials support single spiking; in contrast,
the oscillatory plateau potentials support bursting. The role of the ERG current in
termination of plateau potentials was elucidated previously [19, 20], but the inverted
square wave bursting that the SK block can induce was only recently modeled by our
group [24]. Most recently, a type of bursting in which Invpa provides the depolariz-
ing drive and the ATP-mediated K™ current provides the repolarizing drive was iden-
tified [57] in a subpopulation of dopamine neurons and modeled by our group [58].
The degree to which different burst mechanisms and currents contribute to bursting
in distinct subpopulations of dopamine neurons [59, 60] in vivo is an open question.

4.3 Implications for Dopaminergic Signaling

Here we have focused on (1) the ability of the SK K current to inhibit bursting,
(2) the ability of the L-type Ca%* channel to support depolarization underlying a
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burst and any subsequent depolarization block, (3) the role of the slow ERG K™ cur-
rent in opposing the L-type Ca>* channel to repolarize the membrane after an episode
of depolarization block, and (4) the role of the slow component of sodium channel
inactivation in initiating and terminating spiking. The role of the second, slow com-
ponent of sodium channel inactivation %, in the induction of depolarization block
in dopamine neurons has previously been suggested [20, 24, 61], but here was rig-
orously examined in the context of spontaneous bursting. The ability of dopamine
neurons to enter into and recover from depolarization block may be physiologically
significant because bursts terminating in depolarization block have been observed in
vivo in rats chronically treated with an antipsychotic [21], and the therapeutic value
of antipsychotics has been attributed to their ability to induce depolarization block in
dopamine neurons [62]. One side effect of antipsychotic drugs is blocking the ERG
K™ current [63]; since the ERG K current contributes to recovery from depolariza-
tion block, it is possible that this side effect contributes to therapeutic efficacy [63].

Although the simplified model in this paper relies exclusively on the ERG K* cur-
rent to repolarize the membrane after a plateau potential or the depolarization block
that can follow a burst, it is likely that several slow outward currents, such as Ina,p
or additional slow K™ currents contribute to burst termination and recovery from de-
polarization block in vivo, because blocking the ERG K current only rarely causes
cells to fail to repolarize from the plateau potential induced by negative modulation
of the SK channel current [20].

During bursting induced by SK block in vitro, spiking begins at a low frequency,
but just prior to entry into depolarization block, often a burst of fast frequency, full
amplitude spikes is emitted; these particular spikes may provide an in vitro analog
of operationally defined bursts (see Introduction) in vivo. Unfortunately, the model
emits only a few, partial amplitude very fast frequency spikes upon entry into de-
polarization block (Fig. 4a, top). This is an aspect of the model that provides an
opportunity for further improvement in our understanding of the dynamics and bi-
furcation structure underlying this type of bursting. The ability of the SK channel to
modulate bursting is physiologically relevant because the level of SK current activa-
tion is regulated endogenously in dopamine neurons. For example, repeated ethanol
exposure and withdrawal reduces the contribution of the SK conductance in VTA
dopaminergic neurons, which increases their tendency to burst [64]. The bifurcation
structure of bursting in dopamine neurons in the model critically depends on the cur-
rents Ix sk, IL,ca, IERG, and In,, and this result likely generalizes to physiological
dopamine neurons, with broad implications for therapeutic strategies for disorders
such as schizophrenia and alcohol addiction.
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