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Abstract In the primary visual cortex, the processing of information uses the distri-
bution of orientations in the visual input: neurons react to some orientations in the
stimulus more than to others. In many species, orientation preference is mapped in a
remarkable way on the cortical surface, and this organization of the neural population
seems to be important for visual processing. Now, existing models for the geometry
and development of orientation preference maps in higher mammals make a crucial
use of symmetry considerations. In this paper, we consider probabilistic models for
V1 maps from the point of view of group theory; we focus on Gaussian random fields
with symmetry properties and review the probabilistic arguments that allow one to es-
timate pinwheel densities and predict the observed value of π . Then, in order to test
the relevance of general symmetry arguments and to introduce methods which could
be of use in modeling curved regions, we reconsider this model in the light of group
representation theory, the canonical mathematics of symmetry. We show that through
the Plancherel decomposition of the space of complex-valued maps on the Euclidean
plane, each infinite-dimensional irreducible unitary representation of the special Eu-
clidean group yields a unique V1-like map, and we use representation theory as a
symmetry-based toolbox to build orientation maps adapted to the most famous non-
Euclidean geometries, viz. spherical and hyperbolic geometry. We find that most of
the dominant traits of V1 maps are preserved in these; we also study the link between
symmetry and the statistics of singularities in orientation maps, and show what the
striking quantitative characteristics observed in animals become in our curved mod-
els.
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1 Introduction

In the primary visual cortex, neurons are sensitive to selected features of the visual
input: each cell analyzes the properties of a small window in the visual field, its re-
sponse depends on the local orientations and spatial frequencies in the visual scene
[1, 2], on velocities or time frequencies [3, 4], it is subject to ocular dominance [1],
etc. These receptive profiles are distributed among the neurons of area V1, and in
many species they are distributed in a remarkably orderly way [5–7]. For several of
these characteristics (position, orientation), the layout of feature preferences is two-
dimensional in nature: neurons form so-called microcolumns orthogonal to the cor-
tical surface, in which the preferred simulus orientation or position does not change
[1, 8]; across the cortical surface, however, the two-dimensional pattern of receptive
profiles is richly organized [1, 5, 7–10].

Amongst all feature maps in V1, it seems that the orientation map has a special
part to play. Its beautiful geometrical properties (see Fig. 1) have prompted many ex-
perimental and theoretical studies (see [5, 7, 11–13]); the orientation map seems to
be closely tied to the horizontal wiring (the layout of connectivities between micro-
columns) of V1 [7, 14, 15], its geometry is correlated to that of all the other feature
maps [16, 17], and while the geometrical properties of other feature maps vary much
across species, those of orientation maps are remarkably similar [11].

Fig. 1 (Modified from Bosking et al. [7].) An Orientation Preference Map observed in the visual cortex of
a tree shrew. The experimental procedure leading to this map is recalled in the main text. See also Swindale
[18]. On the upper right corner, details at singular points (pinwheels) or regular points are shown
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It is thus tempting to attribute a high perceptual significance to the geometry of
orientation maps, but is a long-standing mystery that V1 should develop this way:
there are species in which no orientation map is present, most notably rodents [19,
20], though some of them, like squirrels, have fine vision [21]; on the other hand,
it is a fact that orientation maps are to be found in distantly related species whose
common ancestor likely did not exhibit regular maps. This has led to an intense (and
ongoing) debate on the functional advantage of these ordered maps for perception,
on the conditions under which such maps develop, and on the part self-organization
has to play in the individual (ontogenetic) development of V1-like geometries [11,
20, 22, 23].

Our concern here is not with these general issues, but on geometrical principles
that underlie some elements of the debate. We focus on models which have been quite
successful in predicting precise quantitative properties of V1 maps from a restricted
number of principles.

Our results will be based on methods set forth by Wolf, Geisel and others while
discussing development models. They have shown that the properties of mature maps
in a large region of V1 (that which is most easily accessible to optical imaging) are
well reproduced by treating the mature map as a sample from a random variable with
values in the set of possible orientation maps, and by imposing symmetry conditions
on this random variable (see Sect. 2).

A remarkable chain of observations by Kaschube et al. [11, 24, 25] has shown
that there are universal statistical regularities in V1 orientation maps, including an
intriguing mean value of π for their density of topological defects (with respect to
their typical length of quasiperiodicity; see Fig. 1 and Sect. 2). Wolf, Geisel and
others [12, 26, 27] give a theoretical basis for understanding this; one of its salient
features is the use of Euclidean symmetry.

In this discussion, the cortical surface is treated as a full Euclidean plane. Then
conditions of homogeneity and isotropy of the cortical surface are enforced by asking
for the probability distribution of the mentioned random variable to be invariant under
translations and rotations of this plane. This is a condition of invariance under the
action of the Euclidean group of rigid plane motions.

There are several reasons for wondering why the cortical surface should be treated
as a Euclidean plane, and not as a curved surface like the ones supporting non-
Euclidean geometries.

The underlying assumptions are not explicitly discussed in the literature. For in-
stance, rigid motions can be considered in

• the geometry of the visual field,
• the geometry of the cortical surface, that of the actual biological tissue,
• or an intermediate functional geometry (e.g. treating motions of solid objects

against a fixed background).

It is true that the part of V1 which is accessible to optical imaging is mostly flat,
and that we may imagine an affine visual field to be flat as well.

However, we feel these three “planes” should be carefully distinguished, and that
using Euclidean geometry simultaneously at all levels is not without significance.

A first, casual remark is that the way the (spherical) retina records the visual field
uses its projective properties; it is on a rather functional level that we wan think of
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“the” affine visual field related to it by central projection from the retina (eye move-
ments are amazingly well adapted to this reconstruction: see [28] for a discussion of
motor computation in the Listing plane).

But more importantly, for almost all (if not all) animals which have been investi-
gated, the correspondence between the accessible cortical region and the visual field
(the retinotopic map) strongly departs from a central projection: it is logarithmic in
nature, with a large magnification factor. For instance, even for the Tree Shrew which
is known to have cortical V1 mostly flat, the observed region does not correspond
to the center of the retina and the representation of the central field covers the major
part of V1. A consequence is that Euclidean plane motions on the cortical surface and
rigid motions in the visual field are very different. This is even more strikingly true
for cats, primates and humans, whose calcarine sulcus has a more intricate 3D struc-
ture [29]. With this in mind, it seems very striking that the functional architecture of
V1 should rely on a structure, the “association field” (see [13], Chap. 4) and its con-
dition of “coaxial alignment” of orientation preferences, which simultaneously uses
Euclidean geometry at several of these levels. It is also very interesting to note the
successful use of shift-twist symmetry (see Sect. 3.2.4), a geometrical transformation
which relates rotations on the cortical plane and rotations in the visual plane, in the
study of hallucinatory patterns with contours [30] and of fine geometrical properties
of V1 maps [31].

Thus when discussing plane motions, we feel that one should carefully keep track
of the level (anatomical, functional, “external”) to which they refer. On the other
hand, it is quite clear in Wolf and Geisel’s development models that the Euclidean in-
variance conditions are imposed at the cortical level, independently of the retinotopic
map [11, 31].

Is then using flat Euclidean geometry at the cortical level indispensable? A closer
look at the literature reveals that, when it appears, Euclidean geometry is endorsed
only as a way to enforce conditions of homogeneity and isotropy on the two-
dimensional surface of cortical V1. This makes it reasonable to look at the conditions
of homogeneity and isotropy in non-Euclidean cases.

Now, these two notions are not at all incompatible with curvature; they are cen-
tral in studying two-dimensional geometries with nonzero curvature, discovered and
made famous by Gauss, Bolyai, Lobatchevski, Riemann and others. Extending the
notions from geometry, analysis and probability to these spaces has been a source
of great mathematical achievements in the late 19th and throughout the 20th century
(Lie, Cartan, Weyl, Harish-Chandra, Yaglom). The central concept is that of trans-
formation group, and the corresponding mathematical tools are those of noncommu-
tative harmonic analysis, grounded on Lie group representations. In fact, Wolf and
Geisel’s ingredients precisely match the basic objects of invariant harmonic analysis.

Our aim in this paper is to use these tools to define natural V1-like patterns on
non-Euclidean spaces. Because symmetry considerations are central to the whole
discussion, we need our non-Euclidean spaces to admit enough symmetries for the
conditions of homogeneity and isotropy to make sense, and we thus consider the
two-dimensional symmetric spaces. Aside from the Euclidean plane there are but
two continuous families of models for such spaces, isomorphic to the sphere and
the hyperbolic plane, so these two spaces will be the non-Euclidean settings for our
constructions.
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The success of Euclidean-symmetry-based arguments for describing flat parts of
V1 makes it quite natural, from a neural point of view, to wonder whether in curved
regions of V1, the layout of orientation preferences develops according to the same
principles, and what could be the importance of the metric induced by cortical fold-
ing or of “coordinates” which would be induced by flattening the surface (and with
respect to which the notion of curvature loses its meaning). It is a matter of cur-
rent debate whether the three-dimensional structure induced by cortical folding has
functional benefits; present understanding seems to be that its structure is the re-
sult of anatomical constraints (like the tension along cortico-cortical connections, or
the repartition of blood flow; see [32]), but several hypotheses have been put for-
ward to assess its functional meaning (see for instance [32, 33]). In a study trying
to assess the importance of cortical folding for orientation maps it would be natu-
ral of course to consider variable curvature, but it is difficult to see how symmetry
arguments could generalize and even make sense, whereas in regions having large
(local) symmetry groups we shall see that it is very natural to adapt the successful
arguments for flat V1 after a suitable interpretation of the latter. As we shall point
out in the upcoming Discussion, there might also be benefits (in terms of informa-
tion processing) in having symmetry groups as large as possible in rather extended
regions.

Here is an outline of the paper. In Sect. 2, we first proceed to describe some as-
pects of Wolf and Geisel’s models with the words of representation theory; in this
situation the relevant group is the Euclidean group of rigid plane motions. We intro-
duce the probabilistic setting to be used in this paper, that of Gaussian random fields,
in Sect. 2.1, and discuss the crucial Euclidean symmetry arguments in Sect. 2.2. We
bring group theory into the picture in Sect. 2.3, and irreducible representations in
Sect. 2.4.

To pass over to non-Euclidean geometries, we then examine what happens if the
Euclidean group is replaced by the isometry groups of other symmetric spaces; we
thus define “orientation maps” on surfaces of negative or positive curvature. For sym-
metric spaces the curvature is a numerical constant, and after a renormalization the
two-dimensional symmetric spaces turn out to be isomorphic with the Euclidean
plane, the hyperbolic plane or the round sphere. We begin Sect. 3 with the hyper-
bolic, negatively curved setting rather than the spherical, positively-curved one, be-
cause there are closer links with flat harmonic analysis in that case. After introducing
our orientation-preference-like maps on these spaces, we emphasize the important
part symmetry plays in the existence of the universal value for defect (pinwheel) den-
sities in V1 maps by discussing the density of topological defects in non-Euclidean
orientation maps.

As we shall see, in the Euclidean case, irreducible representations enter the pic-
ture through the existence of a dominant wavelength in the correlation spectrum; our
recent paper in this journal [34] focuses on the role of this monochromaticity con-
dition in getting a precise pinwheel density and quasiperiodicity. Although some of
our results can find motivation from a few remarks in that paper, the present study is
independent from [34].
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2 Methods

2.1 Gaussian Random Fields

How was the map of Fig. 1 obtained [7]? High-contrast square wave gratings were
presented to the animal, and optical imaging was used to measure the difference be-
tween the responses of neurons on the cortical surface upon translation of the visual
input. From these data, a pattern emerges that attributes, given a stimulus orienta-
tion ϑ , a sensitivity aϑ(x) to every point x of the cortical surface (so aϑ is a positive-
valued continuous function on the cortical surface X ). If this is recorded for a number
of directions ϑ1, . . . , ϑN , and if the column beneath a point x0 ∈ X of the cortical
surface has orientation preference ϑj , then the polygon whose vertices are the points
aϑk

(x0)e
2iϑk in C will be elongated in the direction 2ϑj , and the argument of the

complex sum

zexp(x0) =
N∑

k=1

aϑk
(x0)e

2iϑk

will be approximately 2ϑj . The functions aϑk
for a tree shrew V1 were obtained using

optical imaging, and the map drawn on Fig. 1 is simply x �→ 1
2 arg zexp(x).

Let us add that if there is a pinwheel center at x0, by definition1 zexp takes all val-
ues of the argument in a neighbourhood of x0, so zexp(x0) must be zero. On the other
hand, the modulus of zexp may loosely be interpreted as a measure of orientation
selectivity: when orientation tuning at x0 is poor, all of the aϑk

(x0) will be approxi-
mately the same, so x0 will be close to a zero of zexp, while if orientation selectivity
at x0 is sharp, the numbers aϑk

(x0) for which ϑk is close to the preferred orientation
will be much larger than the others, and the modulus of z will be rather high at x0.

With this interpretation, we may discuss any complex-valued smooth function z
on a surface X as if its argument were an orientation map, and its modulus were
a measure of orientation selectivity. Orientation selectivity near pinwheel centers is
being actively researched and debated, see [9, 35] and the references in [36], so inter-
preting the modulus of the vector sum zexp in this way might be questioned, but this
tradition dates back to 1982 [18].

If mathematical models yielding plausible maps z are to be furnished, then cer-
tainly they should be compared to the multitude of maps observed in different indi-
viduals. Let us neglect, for a given species, the slight differences in cortical shape
and assume that each test subject comes with a coordinate system on the surface of
its V1, so that we may compare a given map from R

2 to C to the orientation map
observed in this individual.

We can then compare the different individual maps, leading to map statistics; if
orientation maps are to be described mathematically, it seems fair to hope for a math-
ematical object that produces, rather than a single complex-valued function with the
desired features, statistical ensembles of realistic-looking maps [12]. This approach
might not be the best way to account for the finer properties of mature maps as ex-
perimentally observed, and it is certainly a rough approximation that needs to be

1Note that zexp is automatically continuous.
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confronted with the output of more biologically plausible development models. How-
ever, it does have the advantage of mathematical simplicity, and as we shall see, it is
particularly well suited to discussing the part symmetry arguments have to play in
producing realistic maps.

So what we need is a random field, that is, a random variable with values in the set
of smooth maps from R

2 to C. Since the set of smooth maps is infinite-dimensional,
we cannot expect to find interesting “probability distributions” from closed formulae
[37, 38]; but in the case of V1, the general theory of random fields and the available
biological information make it possible to describe special fields whose “typical re-
alizations” yield rather realistic maps [26, 38]. When we go over to non-Euclidean
settings in this paper, we shall see that the mathematical description can be adapted
to provide special random fields defined on non-Euclidean spaces; their typical real-
izations will yield V1-like maps adapted to the considered non-Euclidean geometry.

But let us now make our way toward the special fields on Euclidean space whose
typical realizations look like orientation maps.

Measured statistical properties of real orientation maps include correlation func-
tions [31]: it turns out that the structures of correlation measured in different individ-
uals look very much alike. This is important: many discussions take the architecture
of correlations to be essential to the horizontal wiring of V1, and to be at the heart
of its perceptual function [13, 39]; it is also at the heart of striking results on the dis-
tribution of singularities in OPMs [11, 12, 26]. So using models that reproduce this
correlation structure seems to be a good idea, and there is a way to associate special
random fields to correlation structures.

Definition A complex-valued random function z on a smooth manifold M (a col-
lection z(x), x ∈ M of complex-valued random variables) is a complex-valued
centered Gaussian random field (GRF) if, for every integer n and every n-tuple
(x1, . . . , xn) ∈ Mn, the C

n-valued random variable (z(x1), . . . , z(xn)) is Gaussian
with zero mean. Its correlation function C : M2 → C is the (deterministic) map
(x, y) �→ E[z(x)z̄(y)].

Just as a Gaussian probability distribution on R is available when a value for ex-
pectation and a value for variance are given (and is the “best bet”, that is, the mini-
mum entropy distribution, given these data [40]), a continuous two-point correlation
function C : M2 �→ C (together with the zero-mean requirement in the definition we
use here) determines a unique GRF thanks to an existence theorem by Kolmogorov:
see [41], Theorem 12.1.3, [38], and [37], p. 4.2

In what follows, we shall always require that C : M2 → C be smooth enough; in
fact we will only meet fields with real-analytic correlation functions. Maps drawn
from such fields are almost surely smooth, so there is no regularity problem ahead.

Before we add symmetry constraints on our Gaussian fields, note that C(x, x)

is the variance of z(x); this depends on a choice of unit for measuring orientation
selectivity. We shall proceed to a convenient one in the next subsection.

2There are some conditions for this, called positive-definiteness, but they are automatically satisfied by
correlation functions obtained from experimental data.



Page 8 of 45 A. Afgoustidis

2.2 Euclidean Symmetry in V1

Let us for the moment deal with the cortical surface as if it were an Euclidean plane
R2. In a grown individual, different points on this plane correspond to neurons that
usually do not have the same orientation preference, whose connectivity reaches out
to different subsets of the cortex [13, 30, 39]; at some points we find sharp orientation
tuning and under others (pinwheels) a less clear behaviour. In short, two different
points on the cortical surface usually have different parts to play in the processing of
visual information. But experimental evidence [7, 42] suggests very clearly that no
particular point on this plane should have any distinguished part to play in the general
design of the orientation map (e.g. be an organizational center for the development of
the map, or have a systematic tendency to exhibit a particular orientation preference
in the end).

These two facts are not incompatible: we may use this homogeneity condition as
a constraint on the ensemble properties of the Gaussian field we are trying to obtain
realistic maps from. In other words, given a possible outcome x �→ z(x) for z, we
may require that

x �→ z(x + u)
(
where u is any vector in R

2)

and

x �→ z(Rx) (where R is any 2 × 2 rotation matrix)

have the same occurrence probability as x �→ z(x). Rotations and translations come
together in the Euclidean group SE(2), which is the set of transformations of the plane
that preserve Euclidean distance and the orientedness of bases [43–45]; an element g

of this group is easily shown to be uniquely specified by a couple (R,u) where R is
a rotation matrix and u a vector, and it is readily checked that elements g1 = (R1, u1)

and g2 = (R2, u2) compose as g1g2 = (R1R2, u1 + R1u2).
The above assumption is then that the probability distribution of z is invariant

under the action of E(2) on the set of maps [26].
This implies that C(x, y) depends only on ‖x − y‖, and in the case of a Gaussian

field this apparently weaker form of invariance is actually equivalent to the invariance
of the full probability distribution. Let us write Γ : R2 → C for the radial function
such that C(x, y) = Γ (x − y) for all x and y, and note that up to a global rescaling
of the modulus used to measure orientation selectivity, we may (and will) assume
Γ (0) = 1.

Further discussion of correlations may be conducted using Γ , and there is an im-
portant remark to be made here: the high-frequency components of its Fourier trans-
form record local correlations, while low-frequency components in Γ̂ (the Fourier
transform of Γ ) point to long-range correlations. If z is to produce a quasi-periodic
layout of orientation preferences with characteristic distance Λ, this seems to leave
no room for systematic correlations at a much longer or much shorter distance than Λ.
So it seems reasonable to expect that Gaussian fields generating plausible maps have
Γ̂ supported on the neighbourhood of a circle with radius 2π

Λ
. Following Niebur and

Worgotter, Wolf and Geisel and others, we note that this further hypothesis on Γ̂ is
all that is needed to generate realistic-looking maps.
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Fig. 2 Computer-generated
map, sampled from a
monochromatic field. This figure
shows an orientation map which
we have drawn from a simulated
invariant Gaussian random field
with circular power spectrum.
This figure was generated using
a superposition of 30 plane
waves with frequency vectors at
the vertices of a random polygon
inscribed in a circle, and random
Gaussian weights (see the
Appendix); what is plotted is the
argument. In the unit of length
displayed on the x- and y-axes,
the wavelength is 1/3 here

The simplest way to test this claim is to use what we shall call a monochromatic
invariant random field, a field in which Γ̂ actually has support in a single circle, and

consequently is the Dirac distribution on this circle:3 Γ (�r) = ∫
S1 ei 2π

Λ
�u·�r d �u.

This determines a unique GRF z (see the Appendix for details on how to construct
it from Γ ), so let us draw an orientation map from this z: the result is shown on Fig. 2.

This looks realistic enough. Now, what is truly remarkable is that it is not only
on a first, qualitative look that this map, which has been computer-generated from
simple principles, has the right features: it also exhibits a pinwheel density of π ,
which Kaschube et al. have observed in real maps with 2 % precision [11].

Indeed, if NA is the random variable recording the number of pinwheels in a region
A with area |A|, it may be shown (using a formula of Kac–Rice type, see [38, 46] for
background on the Kac–Rice formula) that

E

{NA

|A|
}

= π

Λ2
.

This result appeared in physics [12, 26, 47] and is now supported by full math-
ematical rigor (see [48], Chap. 6, for the general setting and [49], Sect. 4 for the
full proof); we shall use the same methods to derive non-Euclidean pinwheel densi-
ties in Sect. 3. We should note here that as translation-invariant random fields of our
type have ergodicity properties (see [38], Sect. 6.5), it is quite reasonable to compare
ensemble expectations for Gaussian fields and pinwheel densities which, in experi-
ments, are measured on individual orientation maps.

Of course the correlation spectra measured in real V1 maps are not concentrated
on an infinitely thin annulus (for precise measurements, see Schnabel [31], p. 103).

3Recall that Γ̂ is rotation-invariant.
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But upon closer examination (see for instance [34]), one can see that maps sampled
from invariant Gaussian fields whose spectra are not quite monochromatic, but con-
centrated on thin annuli, do not only look the same as that of Fig. 2, but that many
interesting quantitative properties (such as pinwheel density or a low variance for the
spacing between iso-orientation domains) have vanishing first-order terms as func-
tions of spectral thickness. In other words, it is reasonable to say that monochromatic
invariant random fields provide as good a description for the layout of orientation
preferences as invariant fields with more realistic spectra do (perhaps even better; see
[34]). As we shall see presently, neglecting details in the power spectrum and going
for maximum simplicity allows for a generalization that will lead us to pinwheel-like
arrangements in non-Euclidean settings. We shall take this step now and start looking
for non-Euclidean analogues of monochromatic fields.

But to sum up, let us insist that three hypotheses introduced in [12] gave map
ensembles with realistic qualitative and quantitative properties:

(1) a randomness structure, that of a smooth Gaussian field;
(2) an assumption of Euclidean invariance;
(3) and a monochromaticity, or near-to-monochromaticity condition out of which

quasi-periodicity in the map arose.

When we go over to non-Euclidean settings, these are the three properties that we
shall look for. The first only needs the surface on which we draw orientation maps to
be smooth. For analogues of the last two conditions in non-Euclidean geometries we
need group actions, of course, and a non-Euclidean notion of monochromatic random
field. In the next two subsections, we shall describe the appropriate tool.

Before we embark on our program, let us note that in spite of the close resem-
blance between maps sampled from monochromatic Gaussian fields and real mature
maps, there are notable differences. As we remarked above, real correlation spectra
are not infinitely thin, and the precise measurements by Schnabel make it possible
to give quantitative arguments for the difference between an invariant Gaussian field
with the measured spectrum (see for instance a discussion in [34]). In the success-
ful long-range interaction model of Wolf, Geisel, Kaschube and coworkers, Gaussian
fields turn out to be a better description of the initial stage of cortical map develop-
ment than they are of the mature stage. We have two reasons for sticking to Gaussian
fields in this paper: the first is that they are ideally suited to discussing and general-
izing the concepts crucial to producing realistic maps, and the second is that a non-
Euclidean version of the long-range interaction model can easily be written down in
the upcoming Discussion.

2.3 Klein Geometries

What is a space M in which conditions (1) and (2) have a meaning? Condition (1)
says we should look for Gaussian fields whose trajectories yield smooth maps, so
M should be a smooth manifold. To generalize condition (2), we need a group of
transformations acting on M , with respect to which the invariance condition is to
be formulated. Felix Klein famously insisted [50] that the geometry of a smooth
manifold M on which there is a transitive group action is completely determined by
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a pair (G,K) in which G is a Lie group and K a closed subgroup of G. We shall
recall here some aspects of Klein’s view, focusing for the two-dimensional examples
which we will use in the rest of this paper. This is famous and standard material; see
the beautiful book by Sharpe [51], Chap. 4.

First, let us examine the previous construction and note that every geometrical
entity we met can be defined in terms of the Euclidean group SE(2). write K for
the subgroup of rotations around a given point, say o. If g = (R, �x) is any element
of G, the conjugate subgroup gKg−1 = {(A, �x − A�x),A ∈ K} is the set of rotations
around o + �x. Now, the set gK = {(A,x),A ∈ K} remembers x and only x, so we
can recover the Euclidean plane by considering the family of all such cosets, that is,
the set G/K = {gK,g ∈ G}.

Now when G is a general Lie group and K is a closed subgroup, the smooth
manifold M = G/K comes with a natural transitive G-action, and K is but the subset
of transformations which do not move the point {K} of M . This is summarized by
saying that M is a G-homogeneous space.

With this in mind, we can rephrase our main objective in this paper: it is to show
that some Klein pairs (G,K) allow for a construction of V1-like maps on the homo-
geneous space M = G/K , and a calculation of pinwheel densities in these V1-like
maps. We shall keep M two-dimensional here, and stick to the three maximally sym-
metric spaces [52]—the Euclidean plane, the round sphere and the hyperbolic plane.

To recover the usual geometry of the round sphere S
2 from a Klein pair, we

need the group of rotations around the origin in R
3, that is, G = SO(3) = {A ∈

M3(R)|tAA = I3 and det(A) = 1}, and the closed subgroup K = {( R 0
0 1

)
,R ∈

SO(2)}—of course K is the group of rotations fixing (0,0,1).
Let us now briefly give some details of how the hyperbolic plane can be defined

from a Klein pair. Here G is the group of linear transformations of C2 that have unit
determinant and preserve the quadratic form (z, z′) �→ |z|2 − |z′|2, that is,

G = SU(1,1) =
{(

α β

β̄ ᾱ

)∣∣∣α,β ∈C, |α|2 − |β|2 = 1

}
.

Elements of G operate on the complex plane C via conformal (but nonlinear) trans-

formations: any element g = (
α β̄

β ᾱ

)
of G gives rise to a homography z �→ g · z :=

αz+β

β̄z+ᾱ
of the complex plane. It is easy to see that the origin can be sent anywhere on

the (open) unit disk, but nowhere outside. Now the subgroup K of transformations
that leave 0 invariant is obviously K = {( eiϕ 0

0 e−iϕ

)
, φ ∈ R}; note that its elements in-

duce the ordinary rotations of the unit disk. So the unit disk D in C comes with a
Klein pair (G,K), and looking for a G-invariant metric on D famously produces the
negatively-curved Poincaré metric (see [43, 53] and the Appendix for details). Re-
call that the formula for the square of the length of a vector tangent to D at (x, y) is
summarized by

ds2 = 4

(1 − (x2 + y2)2)2

(
dx2 + dy2).

We shall write η(p) for the numerical function p = (x, y) �→ 4
(1−(x2+y2)2)2 , and η for

the abstract G-invariant metric we have just defined. Of course group theory allows
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for a simple description of all its geodesics and of many other things geometrical, and
we shall need those: to keep the size of the present section reasonable, we delay this
description to Sect. 2.1.

But now let us go forward to meet one of the many reasons why Klein’s description
of spherical and hyperbolic geometries, far from being a matter of aesthetics, shows
our concrete tools of map engineering the way to non-Euclidean places.

2.4 Group Representations and Noncommutative Harmonic Analysis

2.4.1 Unitary Representations

Assume we are given one of the two non-Euclidean Klein pairs (G,K) above and
we wish to build an orientation map with properties (1), (2), and (3) from Sect. 2.2.
Conditions (1) and (2) say we should use a smooth complex-valued Gaussian random
field that is invariant under the action of G. We shall come back to exploiting con-
dition (2) in time. But condition (3) depends on classical Fourier analysis, which is
based using plane waves and thus seems tied to R

n.
Fortunately there is a completely group-theoretical description of classical Fourier

analysis too: for details, we refer to the beautiful survey by Mackey [54]. One of its
starting points is the fact that for functions defined on R

n, the Fourier transform
turns a global translation of the variable (that is, passage from a function f to the
function x �→ f (x − x0)) into multiplication by a universal (nonconstant) factor (the
Fourier transform f̂ is turned into k �→ eikx0 f̂ (k)). From this behaviour of the Fourier
transform under the action of the group of translations, some of those properties
in Fourier analysis which are wonderful for engineering—like the formula for the
Fourier transform of a derivative—follow immediately.

For many groups, including SO(3) and SU(1,1) which we will use in this paper,
there is a “generalized Fourier transform” which gives rise to analogues of the prop-
erty we just emphasized, although it is technically more sophisticated than classical
Fourier analysis. It is best suited to analyzing functions defined on spaces with a
G-action, yielding concepts of “generalized frequencies” appropriate to the group G

[55, 56].
It will then come as no surprise that the vocabulary of noncommutative harmonic

analysis is well suited to describing the invariant Gaussian field model for orientation
preference maps in V1, since the key features of this model rest on the action of SE(2)

on the function space of orientation maps. As soon as we give details, it will also be
apparent that an analogue of the monochromaticity condition (3) can be formulated
in terms of these “generalized frequencies”.

Before we discuss its significance and its relevance to Euclidean (and non-
Euclidean) orientation maps, we must set up the stage for harmonic analysis; so we
beg our reader for a little mathematical patience until Sect. 2.4.3 brings us back to
orientation maps.

Let G be a Lie group. Representation theory starts with two definitions: a uni-
tary representation of G is a continuous homomorphism, say T , from G to the group
U(H) of linear isometries of a Hilbert space; we write (H, T ) for it. This representa-
tion is irreducible when there is no T (G)-invariant closed subspace of H except {0}
and H.
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We need to give two essential examples, the second of which is crucial to the
strategy of this paper:

1. If p is a vector in R
n, define Tp(x) = eip·x for each x ∈ G = R

n; this defines a
continuous morphism from G = R

n to the unit circle S
1 in C; by identifying this

unit circle with the set of rotations of the complex line C, we may say that (C, Tp)

is an irreducible, unitary representation of Rn. In fact, every irreducible unitary
representation of Rn reads (C, Tp) where p is a vector. Thus, the set of irreducible
representations of the group of translations on the real line or of an n-dimensional
vector space is nothing else than the set of “time” or “space” frequencies in the
usual sense of the word.4

2. Suppose M is the real line, the Euclidean plane, the sphere or the hyperbolic plane,
and G the corresponding isometry group. If f is a complex-valued function on M ,
define L(g)f := x �→ f (g−1 · x). Then for every g ∈ G, L(g) defines a unitary
operator acting in the Hilbert space L2(M) (here integration is with respect to the
measure determined by the metric we chose on M); so we get a canonical unitary
representation (L2(M),L) of G. It is very important to note that this representa-
tion is reducible in our four cases; we discuss its invariant subspaces in the next
subsection.

A word of caution: our first example, although it is crucial to understanding
how representation theory generalizes Fourier analysis, is much too simple to give
an idea of what irreducible representations of nonabelian groups are like; for in-
stance, the space H of an irreducible representation very often happens to be infinite-
dimensional (the first and most famous examples are in [57]), and this will be crucial
in our discussion of hyperbolic geometry.

2.4.2 Plancherel Decomposition

Suppose M is the Euclidean plane, the hyperbolic plane or the sphere. We shall now
give an outline of the Plancherel decomposition of L2(M), which is crucial to our
strategy for producing non-Euclidean orientation maps. This is standard material: for
details, we refer to [53], Chap. 0.

Let us consider the representation L of example 2 above, acting on H = L
2(M).

Since is not irreducible, we may write H = Ha ⊕Hb where Ha and Hb are mutually
orthogonal, stable subspaces of H (note that for this to be so, they must be closed),
and try to decompose Ha further. We may hope to come to a decomposition into
irreducibles, and hope to eventually be able to write

H =
⊕

γ

( mγ⊕

i=1

Hγ,i

)
,

4Likewise, if n is an integer, define T (u) = un = einϑ for every element u = eiϑ ∈ S
1; the circle S

1 is a

group under complex multiplication and (C, T ) provides an irreducible unitary representation of S1.
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a direct sum of invariant, mutually orthogonal subspaces Hγ,i which inherit irre-
ducible representations of G from L, with Hγ,i equivalent5 to Hγ ′,i′ if and only if
γ = γ ′.

When G is the rotation group SO(3) and M is the sphere, or more generally when
G is compact, this is actually what happens, and it is a part of the Peter–Weyl theorem
that the above direct sum decomposition holds. In the case of the sphere, all the mγ s
will be equal to 1 and we will describe the Hγ in Sect. 3.2.1. But for the noncompact
groups SE(2) and SU(1,1), the decomposition process turns out to degenerate.

A simpler example will help us understand the situation: consider the repre-
sentation L of R on L

2(R) (example 2 above). Since a change of origin induces
but a (nonconstant) phase shift in the Fourier transform, the subspace FI of func-
tions whose Fourier transform has support in interval I , is invariant by each of
the R(x), x ∈ R. But now it is true also that, say, F[0,1] = F[2,2.5] ⊕ F[2.5,3] =
F[2,2.25] ⊕ F[2.25,2.5] ⊕ F[2.5,2.75] ⊕ F[2.75,3], and so on. Since we can proceed to
make the intervals smaller and smaller, we see that an irreducible subspace should
be a one-dimensional space of functions which have only one nonzero Fourier coef-
ficient, in other words, each member of the irreducible subspaces should be a plane
wave. . . which is not a square-integrable function! So in this case, there is no in-
variant subspace of L2(R) that inherits an irreducible representation from R, and it
is only by getting out of the original Hilbert space that we can identify irreducible
“constituents” for L2(R).

When M is the Euclidean plane or the hyperbolic plane, this is what will happen:
starting from L

2(M), we shall meet spaces Eω of smooth (and a priori not square-
integrable) functions which

• are invariant under the canonical operators L(g), g ∈ G,
• carry irreducible unitary representations of G,
• and together give rise to the following version of the Plancherel formula: for each

f ∈ L
2(M) and for almost every x in M ,

f (x) =
∫

ω∈F
fω(x)dΠ(ω),

where F is some set of equivalence classes of representations of G (the “frequen-
cies”), Π is a measure on F (the “power spectrum”), and for each ω ∈ F , fω is a
member of Eω (a smooth function, then).

Recall that our aim in introducing noncommutative harmonic analysis is to find
an analogue of the monochromaticity condition (3), Sect. 2.2, in spherical and hy-
perbolic geometry. As we shall see presently, the situation in the Euclidean plane
makes it reasonable to call an element of Eω or Hγ a monochromatic map. Belong-
ing to one of the Eω, resp. one of the Hγ , will be our non-Euclidean analogue of
the monochromaticity condition (3) in hyperbolic geometry, resp. spherical geome-
try. We shall see that a Gaussian random field providing orientation-preference-like

5Two given irreducible unitary representations (H1, T1) and (H2, T2) are equivalent if there is a unitary
map U from H1 to H2 such that UT1(g) and T2(g)U coincide for every g ∈ G. In example 1, it is very
easy to check that there is no such unitary map intertwining Tp and Tq if p 	= q .
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maps may be associated to each of these spaces of monochromatic maps, and that it
yields quasi-periodic tilings of M with Euclidean-like pinwheel structures.

2.4.3 Relationship with Euclidean Symmetry in V1

Let us now proceed to relate the Plancherel decomposition of L
2(R2) to the

monochromaticity condition (3) in Sect. 2.2. In the notations of Sect. 2.2, (3) means
that the correlation function Γ of a monochromatic field should have its support on
the circle of radius 2π

Λ
, hence satisfy the Helmholz equation

(3′) �Γ = −( 2π
Λ

)2Γ

and we already pointed out that adding rotation invariance (and normalizing Γ (0) to
be 1) determines Γ to be the Dirac distribution on the circle of radius 2π

Λ
. Now

the space EΛ of all smooth maps ϕ satisfying �ϕ = −( 2π
Λ

)2ϕ has the following
properties:

• if ϕ is in EΛ, then g · ϕ : x �→ ϕ(g−1x) is in EΛ for any g ∈ E(2); this means EΛ is
an invariant subspace of the set of smooth maps;

• EΛ has itself no closed invariant subspace if one uses the usual smooth topology
for it: indeed if ϕ is any nonzero element in EΛ, it may be shown that the family
of maps g ·ϕ, g ∈ G, generates a dense subspace of EΛ. Perhaps a word of caution
is useful here: while Γ is rotation-invariant and determines a G-invariant random
field, it is certainly not itself invariant under the full group G of motions.

Let us insist that condition (3′) may now be rewritten as:

(3′′) Γ belongs to one of the elementary invariant subspaces EΛ.

Now, suppose we start with any square-integrable map f from R2 to C with con-
tinuous Fourier transform; for each K > 0, we may restrict f̂ to the circle of radius
K to produce the map

fK = �x �→
∫

S1
f̂ (K �u)eiK �u·�x d �u

which is automatically smooth, but not square-integrable;6 see [58] for details. And
then for almost every x,

f (x) =
∫

R+
fK(x)K dK.

This shows that the EΛ do provide the factors in the Plancherel decomposition of
L

2(R2) described at the end of Sect. 2.4.2, and the equivalence between conditions
(3) and (3′′) shows how the spectral thinness condition found in models is related
to the Plancherel decomposition of L2(R2). In Sect. 2.2, we saw how each of this

6To be precise, we can multiply f̂ with the Dirac distribution on the circle of radius K , obtaining a

tempered distribution on R2, and define fK as the inverse Fourier transform of this multiplication: it is
automatically a smooth function.
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factors determines a unique Gaussian random field which provides realistic V1-like
maps.

We now have gathered all the ingredients for building two-dimensional V1-like
maps with non-Euclidean symmetries. But before we leave the Euclidean setting, let
us remark that the irreducible representation of SE(2) carried by the EΛ has been
used in [39], although the presentation there is rather different.7 While the approach
of [39], which brings the horizontal connectivity to the fore and uses Heisenberg’s un-
certainty principle to exploit the noncommutativity of SE(2), has notable differences
with using Gaussian random fields, it is very interesting and defines real-valued ran-
dom fields which are good candidates for the maps aϑ of Sect. 2.1. To the author’s
knowledge this is the first time irreducible representations of SE(2) were explicitly
used to study V1, and reading this paper was the starting point for the present study.

3 Results

3.1 Hyperbolic Geometry

Let us now turn to plane hyperbolic geometry. The relevant groups for capturing
the global properties of the hyperbolic plane assemble in the Klein pair (G,K) =
(SU(1,1),SO(2)) as described in Sect. 2.

If we are to look for pinwheel-like arrangements lurking in the representation
theory of SU(1,1), we need a familiarity with some irreducible representations. We
shall use the next paragraph to give the necessary details on the geometry of the unit
disk; the description of all unitary representations of SU(1,1), however, we shall skip
over8 in order to focus on the Plancherel decomposition of L2(G/K).

We should note at this point that hyperbolic geometry and SL2-invariance9 have
been used by Chossat and Faugeras for a different purpose [59]; the same basic in-
gredients will appear here.

3.1.1 Geometrical Preliminaries

In this subsection, we must ask again for a little mathematical patience from our
reader while we introduce some geometrical notions which we shall need for building

7Since Fourier transforms of all maps in EΛ are supported on a circle, we may see a function in any of the
EΛ as a complex-valued function on the unit circle; but the G-action depends on Λ. In this picture, any
element g = (R, �x) of the Euclidean group gives an operator TΛ(g) on L

2(S1):

TΛ(g)Φ = �u �→ e
i 2π

Λ
�u·�x

Φ
(
R−1 �u);

and the Poisson transform Φ ∈ L
2(S1) �→ ∫

S1 f̂ (K �u)eK �u·�x d �u ∈ EΛ is a continuous bijection that inter-
twines the representation TΛ of SE(2) with the natural representation on EΛ .
8For completeness we recall that there are unitary irreducible representations of SU(1,1) which do not

enter the Plancherel decomposition of L2(G/K); the deep and beautiful work by Bargmann and Harish-
Chandra on these representations will not appear in this paper.
9The groups SU(1,1) and SL2(R) are famously isomorphic; see for instance [59].



Journal of Mathematical Neuroscience  (2015) 5:12 Page 17 of 45

hyperbolic maps (this is very standard material again; see [53], Sect. 0.4, and the pa-
per by Chossat and Faugeras). So let us first describe some further interplay between
the algebraic structure of G = SU(1,1) and hyperbolic geometry in the unit disk.
Geodesics in D are easily described in terms of groups: since the action of G leaves
the metric η invariant, the energy functional whose extremal paths are the geodesics
of D is G-invariant as well; so any element g ∈ G sends geodesics to geodesics. What
is more, the horizontal path t �→ γ (t) = (tanh(t),0) has hyperbolic unit speed and it
is not difficult to show that it is a geodesic of D (see [53], p. 29). Now, the interplay
between group theory and Riemannian geometry makes it easy to find all geodesics
of D. Since γ (t) is where the origin is sent by the element

( cosh(t) sinh(t)

sinh(t) cosh(t)

)
of G, there

is a subgroup of G to tell the story of the point 0 along this path: it is the subgroup

A =
{(

cosh(t) sinh(t)

sinh(t) cosh(t)

)∣∣∣t ∈R

}
.

From conjugates of this subgroup we may describe all geodesics in D: if we start with
a point x0 of D and a tangent vector v0 at x0, there is an element g of G which sends
both x0 to the origin and v0 to the right-pointing horizontal unit vector. But now the
geodesic emanating from x0 with speed v0 is none other than the orbit of x0 under
the subgroup g−1Ag; as g acts through a homography on D, it is easy to see that this
orbit draws on D a circle that is tangent to x0 +Rv0 and orthogonal to the boundary
of D (this “circle” might be a line, which we can think of as a circle of infinite radius
here).

Just as a family of parallel lines in R2 has an associated family of parallel hy-
perplanes that are orthogonal to each line in the family, the set of A-orbits has an
associated family of parallel horocycles: writing b0 for the point of the boundary ∂D

that is in the closure of every A-orbit (i.e. the point 1 + 0i in B = ∂D), a circle that is
tangent to ∂D at b0 meets every A-orbit orthogonally. What is more, given two such
circles, there is on any A-orbit a unique segment that meets them both orthogonally;
the length of this hyperbolic geodesic segment does not depend on the A-orbit cho-
sen, so it is very reasonable indeed to call our two circles parallel. Circles tangent
to ∂D were named horocycles by Poincaré, so we have been looking at the (parallel)
family of those horocycles that are tangent to ∂D at b0.

Now these horocycles too come with a group to tell their tale: they are the orbits
in D of

N =
{(

is 1 − is

−is is

)∣∣∣s ∈R

}
.

To describe the families of parallel horocycles associated to other families of
geodesics it is a conjugate of N that should be used: for this we should first note
that if g is any element of the group, the family of g−1Ng-orbits consists of horo-
cycles tangent to ∂D at the same point, and then that each of these horocycles meets
every g−1Ag-orbit orthogonally.

There is one more definition that we shall need: it is closely linked to an important
theorem in the structure of semisimple Lie groups [52, 60].
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Theorem Every element g ∈ G = SU(1,1) may be written uniquely as a product10

kan, where k ∈ K , a ∈ A, and n ∈ N . This is known as an Iwasawa decomposition
for G.

Note that K , A, and N are one-dimensional subgroups of G, but that the existence
of a unique factorization G = KAN does not mean at all that G is isomorphic with
the direct product of K , A, and N .

Even if this is a very famous result, an idea of the proof will be useful for us. Note
first that any point x ∈ D may be reached from O by following the horizontal geodesic
for a while (forwards or backwards) until one reaches the point of the horizontal axis
which is on the same horocycle in the family of N -orbits, then going for x along this
circle; this means that we can write x = n ·(a ·O), where n ∈ N and a ∈ A; now if g is
any element of G, we may consider x = g · O and write it x = n · (a · O) = (na) · O;
then (na)−1g sends O to O , so it is an element of K . This proves the existence
statement; uniqueness is easy but more technical.

Now if b is a point of the boundary D that has principal argument θ , we may view
it as an element of K by assigning to it the element

(
eiθ 0
0 e−iθ

)
; note that this element

acts on D as a rotation of angle 2θ ! So beware, diametrally opposite elements b and
−b of the boundary define the same rotation.

If x is any point of D and b is any boundary point, we can now define a real
number 〈x, b〉 as follows: start with any element x̃ of G that sends x to O , then
choose a representative b̃ of b in K and consider the Iwasawa decomposition of the
element x̃ · b̃ of G: it reads

x̃ · b̃ = kan.

Now look at a, and consider the real number t such that a = ( cosh(t) sinh(t)

sinh(t) cosh(t)

)
. Write

〈x, b〉 for this number t ; it is not difficult to check that this does not depend on any of
the choices one has to make to select x̃ or b̃.

The indications we gave for the proof of the Iwasawa decomposition led Helgason
to call 〈x, b〉 a (signed) composite distance; the definition and its relationship with
the hyperbolic distance are illustrated on Fig. 3.

3.1.2 Helgason Waves and Harmonic Analysis

At first sight, there is no reason why harmonic analysis on the hyperbolic plane should
“look like” Euclidean harmonic analysis: their invariance groups are apparently quite
different and there is nothing like an abelian “hyperbolic translation group” whose
characters may obviously be taken as a basis for building representation theory. So it
may come as a surprise that there are analogues of plane waves in hyperbolic space,
and (more importantly) that these enjoy much the same relationship to hyperbolic
harmonic analysis as Fourier components do to Euclidean analysis. The discovery of
these plane waves can be traced back to the seminal work of Harish-Chandra [61]
on spherical functions of semi simple Lie groups (we shall come back to this in
a moment), and their systematic use in non-Euclidean harmonic analysis is due to

10This is a product of matrices!
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Fig. 3 The “composite
distance” to a point of the
boundary. Definition of the
quantity 〈x, b〉 if x is a point of
D and b a point of its boundary:
ξ(b, x) is the horocycle through
x which is tangent to the
boundary at b, and �(b,x) is
the segment joining the origin O

to the point on ξ(b, x) which is
diametrically opposite b; the
number 〈x, b〉 is, up to a sign,
the hyperbolic length of this
segment

Helgason [53, 62]. Since they will be a key ingredient in the rest of this section, let
us now describe these waves.

Start with a point b of the boundary B := ∂D and a real number ω. For z ∈D, set

eω,b(z) := e(iω+1)〈z,b〉.

This is a complex-valued function on D; note that as z draws close to b, 〈z, b〉 goes
to infinity, so eω,b(z) grows exponentially; on the other hand it decreases exponen-
tially as z draws close to −b. This growth factor in the modulus is there for technical
reasons, but has important consequences for representation theory and in the case
of our orientation maps, it will have a clear influence on the pinwheel density we
shall calculate later; we shall discuss this at the end of the present section. For a plot
indicating the argument of eω,b; see Fig. 4.

Just as plane waves are generalized eigenvectors for the Euclidean Laplacian on
R

2, Helgason waves are “eigenvectors” for the relevant Laplacian. Define, for C2 f ,

�Df := p �→ 1

η(p)
(�R2f )(p).

This is indeed the Laplace operator for D: it can be defined from group-theoretical
analysis alone, in much the same way we obtained the Poincaré metric in Sect. 2.3
and the Appendix. Theoretical questions aside, the reader may check easily that this
new Laplacian is G-invariant, that is, �D[f (g−1·)] = [�Df ](g−1·).

Now, a crucial observation is that eλ,b is an eigenfunction for this operator, with a
real eigenvalue:11

�Deλ,b = −(
ω2 + 1

)
eλ,b.

As a consequence, any finite combination of the eω,b with ω fixed is an “eigenvec-
tor” for �D. Now let us go for continuous combinations: if μ : B → R is a continuous

11That the eigenvalue should be real is the technical reason why the growth factor in the modulus is needed.



Page 20 of 45 A. Afgoustidis

Fig. 4 Plot of the real part of a
Helgason wave, with the
exponential growth factor
deleted: in the darkest regions
the real part of the scaled wave
vanishes, and in the brightest
regions it is equal to one. Given
the formula for eω,b , this plot
also gives an idea of the
argument as a function of z;
notice that the argument is
periodic when restricted to any
geodesic whose closure in C

contains the point of −1 of B

function, then

Pω(μ) := z �→
∫

B

eω,b(z)μ(b)db

(the Poisson transform of μ) is another eigenfunction with eigenvalue −(ω2 + 1):

�D

[
Pω(μ)

] = −(
ω2 + 1

)[
Pω(μ)

]
.

We shall write Eω(D) for the space of all such smooth eigenfunctions:

Eω(D) := {
f ∈ C∞(D,C)|�Df = −(

ω2 + 1
)
f

}
.

For each continuous function μ : B → R, we then know that Pω(μ) belongs to
Eω(D), and in fact the image of Pω is dense in Eω(D) for several natural topolo-
gies (see [53], Chap. 0, Theorem 4.3, Lemma 4.20). Since �D is G-invariant, Eω(D)

is a stable subspace of C∞(D); by studying Pω , Helgason was able to prove that
the Eω(D) is irreducible ([53], Chap. 0, Theorem 4.4). The following theorem then
achieves the Plancherel decomposition of L2(D) in the sense of Sect. 2.4.2, and is a
cornerstone of harmonic analysis on the unit disk (see [53], Chap. 0, Theorem 4.2;
the extension to L

2 is proved there also):

Theorem (Harish-Chandra, Helgason) For each f ∈ C∞(D), write fω(z) =∫
B
(
∫
D

f (y)e−ω,b(y) dy)eω,b(z) db, and set Π(ω) = ω
2 tanh(πω

2 ) for each positive
ω; then the following equality holds as soon as all terms are defined by converging
integrals:

f (z) =
∫

R+
fω(z)Π(ω)dω.
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When we build our hyperbolic maps in the next section, the Eω(D) are the only
representations we shall need. We will come back to this shortly.

3.1.3 Hyperbolic Orientation Maps

It is time to build our hyperbolic analogue of Orientation Preference Maps. Suppose
we wish to arrange sensors on D so that each point of D is equipped with a receptive
profile which has an orientation preference and a selectivity. This may be local model
for an arrangement of V1-like receptive profiles on a negatively curved region of the
cortical surface, and though its primary interest is probably in clarifying the role of
symmetries in discussions, the construction to come can be thought of in this way.

We shall require that this arrangement have the same randomness structure (con-
dition (1)) as the Euclidean model of Sect. 2, that is, be a “typical” realization of a
standard complex-valued Gaussian random field on the space D, say z. If it is to have
an analogous invariance structure (conditions (2) and (3)), it should, first, be assumed
to be G-invariant; what is more, we should look for a field that probes an irreducible
factor of the representation of G on L

2(D) (see Sect. 2.4.2); as a consequence, any
realization of z should be an eigenfunction of �D, with the eigenvalue determined by
z. Remembering the Euclidean terminology we used in Sect. 2, let us introduce the
following notion.

Definition A monochromatic Gaussian field on D is a complex-valued Gaussian ran-
dom field on D whose probability distribution is SU(1,1)-invariant and which takes
values in one of the Eω, ω > 0. If z is such a field, the positive number ω will be
called the spectral parameter of z.

To see how to build such a monochromatic field, we should translate our re-
quirements into a statement about its covariance function; luckily there is a theorem
here ([63], see the discussion surrounding Theorem 6′ and Theorem 7, in particular
Eq. (3.20) there) that says our conditions on z are fulfilled if, and only if, the covari-
ance function of z, when turned thanks to the G-invariance of z into a function from
D to C, is an elementary spherical function for D (a radial function on D which is an
eigenfunction �D). What does this mean?

First, note that the covariance function C : D2 → C of our field may be seen as a
function C̃ = G2 → C: we need only set C̃(g1, g2) = C(g1 · O,g2 · O). Now, that z
should be G-invariant means that for every g0 ∈ G, C̃(gg1, gg2) should be equal to
C(g1, g2); in particular, writing Γ (g) for C̃(g,1G), we get C̃(g1, g2) = Γ (g−1

2 · g1).
The whole of the correlation structure of the field is summed up in this Γ , which is a
function from G to C.

Now, not every function from G to C can be obtained in this way: since it should
come from a function C which is defined on D

2 and thus satisfies C(g1k1, g2k2) =
C(g1, g2) when k1, k2 is in K , it should certainly satisfy Γ (k1gk2) = Γ (g) for
k1, k2 ∈ K ; so Γ does in fact define a function on D and this function is left-K-
invariant, that is, radial in the usual sense of the word (property (A)). What is more,
since the field is assumed to have variance 1 everywhere, it should also satisfy (B)
Γ (IdG) = 1 (property (B)).
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Let us now add that monochromaticity for z is equivalent to Γ being an eigen-
function of �D (property (C)).

Functions on D with properties (A), (B), and (C) are called elementary spherical
functions for D.

Now, we stumbled upon these (following Yaglom) while looking for pinwheel-like
structures, but spherical functions (and their generalizations to semisimple symmetric
spaces) have been intensely studied in the last half of a century. In fact, they were
defined by Elie Cartan as early as 1929 with the explicit objective of determining
the irreducible components of L2(G/K) for a large class of Klein pairs (G,K). The
following theorem will look like an easy consequence of everything we discussed
earlier, but history went the other way and it is in looking for spherical functions that
Harish-Chandra discovered what we called Helgason waves.

Theorem (Harish-Chandra 1958, [61]) In each of the irreducible components Eω(D),
there is a unique spherical function; it is the map

ϕω := x �→
∫

B

eω,b(x) db.

If we plot ϕω it will resemble the Euclidean Bessel-kind covariance functions; only
there is a marked difficulty in dealing with the growth at infinity of these functions,
which accounts for some (not all, of course) of the many difficulties Harish-Chandra
and Helgason had to overcome in developing harmonic analysis on D.

The properties of elementary spherical functions include the conditions which
guarantee, thanks to the existence theorem by Kolmogorov mentioned in Sect. 2,
that each of the ϕω really is the covariance function of a Gaussian field on D. So we
can summarize the preceding discussion with the following statement.

Proposition A For each ω > 0, there is exactly one monochromatic Gaussian field
on D with spectral parameter ω.

These are our candidates for providing V1-like maps on D. We now need to see,
by plotting one, whether a “typical” sample of a monochromatic field looks like a hy-
perbolic V1-like map, hence we need to go from the covariance function to a plot of
the field itself. All technical details aside, Euclidean and hyperbolic spherical func-
tions are close enough for the transition from a spherical function to the associated
Gaussian field to be exactly the same in both cases. We said nothing of this step in
Sect. 2, so let us come back to the Euclidean setting for a second.

Spherical functions there we already described: they are Fourier transforms of the
Dirac distribution on a circle, so they read

ψR := x �→
∫

B

eiRb·x db.

Now, this builds ψR out of a constructive interference between plane waves eR,b,
b ∈ B . In order to obtain a Gaussian random field while keeping the eigenfunction
property, we need only attribute a random Gaussian weight (which is a complex num-
ber, this includes phase) to each of our plane waves. This needs some care since we
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are dealing with a continuum of weights to attribute, but there is a standard random
measure Z on the circle, the standard Gaussian white noise, which is meant to achieve
this (see the Appendix for details, and also [36]): this produces an invariant random
field

zR := x �→
∫

B

eiRb·x dZ(b)

whose covariance is ψR as desired. We give further details of the transition from ψR

to zR in the Appendix.
This construction depends only on properties which are common to the Euclidean

and hyperbolic plane; thus, it transfers unimpaired to the hyperbolic plane.
We know finally what an orientation preference-like map should look like in hy-

perbolic geometry: pick a positive number ω; out of the stochastic integral

x �→
∫

S1
eω,b(x) dZ(b)

there will arise orientation maps. Just as in the Euclidean case, they are readily ap-
proximated by picking a number of regularly spaced points b1, . . . , bn on the bound-
ary circle, assigning them independent reduced Gaussian weights ζ1, . . . , ζn in C

(so the ζi are complex-valued reduced Gaussian random variables, independent from
each other) and considering

x �→ 1

n

n∑

k=1

ζieω,bi
(x).

A computer-generated sample is shown on Fig. 5; comparison with Escher’s cele-
brated drawings of periodic tilings of D [64] might be telling.

So there does appear a quasi-periodic tiling of the unit disk; it should not of course
be forgotten that this quasi-periodicity holds only when the area of an “elementary
cell” is measured in the appropriate hyperbolic units (see the previous section and the
next).

3.1.4 Hyperbolic Pinwheel Density

What is this area σ of an elementary cell, by the way, and can we estimate the density
of pinwheels per area σ ?

In the Euclidean case, we used results from physics that originally dealt with su-
perpositions of Euclidean waves. Of course singularities in superpositions of random
waves do occur in many interesting physical problems: interest first came from the
study of waves traveling through the (irregular) arctic surface [65]; quantum physics
has naturally been providing many interesting random superpositions: they occur in
laser optics [66], superfluids [67]. . . . This has prompted recent mathematical devel-
opments. In this section, we would like to point out that these are now sharp enough
to allow for calculations outside Euclidean geometry.

Consider an invariant monochromatic random field z, and write ω for the corre-
sponding “wavenumber” (so that z belongs to Eω). We would like to evaluate the
expectation for the number of pinwheels (zeroes of z) in a given domain A of the unit
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Fig. 5 Plot of a monochromatic
“orientation map” on the
hyperbolic plane. We used the
spectral parameter ω = 18 in
units of the disk’s radius.
Because of the growth factor in
the modulus of the eω,b ,
drawing a picture in which
discretization effects do not
appear calls for using more
propagation directions than it
did in the Euclidean case: 200
directions were used to generate
the drawn picture

disk. Let us write NA for the random variable recording the number of pinwheels
in A. We will now evaluate the expectation of this random variable, and the result
will be summarized as Theorem A below.

Since z is G-invariant, it is to be expected that E{NA} depends only on the hy-
perbolic area of A: our first claim is that this is indeed the case: writing |A|h for the
hyperbolic area of A, let us show that

E{NA}
|A|h = V0

π
,

where V0 stands for the variance of the real-valued random variable ∂x Re(z)(0). For
this we shall use Azaïs and Wschebor’s version of the Kac–Rice formula for random
fields, which in our setting says the following.

Theorem (see [48], Theorem 6.2) Assume z is a smooth, reduced12 Gaussian ran-
dom field from D, which almost surely has no degenerate zero13 in A; then

E{NA} = 1

2π

∫

A
E

{∣∣detdz(p)
∣∣|z(p) = 0

}
dp

(here the integral is Lebesgue integral, and the integrand is a conditional expecta-
tion).

To use this theorem, we should note (see [38]) that in a field with constant vari-
ance, at each point p the value any derivative of any component of the field is inde-
pendent (as a random variable) from the value of the field at p; so the two variables

12This means each z(x) is a complex-valued Gaussian random variable with zero mean and variance one.
13A degenerate zero is a point at which both z and dz are zero.
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Det[dz](p) and z(p) are independent too; thus for invariant fields on D we know
that the hypotheses in the theorem are satisfied, and that in addition we may remove
the conditioning in the expectation formula. So we are left with evaluating the mean
determinant of a matrix whose columns are independent Gaussian vectors, with zero
mean and the same variance Vp as ∂x Re(z)(p). We are left with evaluating the Eu-
clidean area of the random parallelogram generated by these random vectors, and
using the “base times height” formula it is easy to prove this mean area is 2Vp .

So we need to see that
∫
A

Vp

π
dp is equal to |A|h V0

π
. But this is easy: when the

real-valued Gaussian field ζ = Re z is G-invariant, we can define a G-invariant Rie-
mannian metric on D by setting g

ζ
ij (p) = E{∂iζ(p)∂j ζ(p)}; as we said in Sect. 2,

this must be a constant multiple of the Poincaré metric. It follows that Vp is equal
to η(p)V0, while η(p) is the hyperbolic surface element. This proves the announced
formula E{NA} = |A|h V0

π
.

Now, evaluating the variance of the first derivative ∂x Re(z)(0) is easy: it is ob-
tained from the second derivative with respect to the x-coordinate14 of the covariance
function Γ of the random field Re(z),

E
{(

∂1 Re(z)(0)
)2} = ∂1,x1∂1,x2E

{
Re(z)(x1)Re(z)(x2)

}|x1=x2=x

= ∂1,x∂1,yΓ
(
α(x)α(y)−1)|x=y=0,

where α is a smooth section of the projection from G to D induced by the ac-
tion of the origin (such a smooth section does exist). For a G-invariant field
∂1,x∂1,yΓ (α(x)α(y)−1)|x=y=0 = ∂2,x∂2,yΓ (α(x)α(y)−1)|x=y=0; as a consequence
V0 is half the value of −�Γ at zero. Now �Γ = −(ω2 + 1)Γ and Γ (0) = 1/2 (the
value of the covariance function of all of z at zero is one, but here we are dealing only
with the real part), so we have obtained the following result.

Theorem A Suppose z is the only complex-valued, centered Gaussian random field
on D whose probability distribution is SU(1,1)-invariant, and whose correlation
function, when turned into a function on SU(1,1), is Harish-Chandra’s spherical
function ϕω. Consider a Borel subset A of D, write |A|h for its area w.r.t. the Poincaré
metric, and NA for the random variable recording the number of zeroes of z in A.
Then

E{NA}
|A|h = π

ω2 + 1
.

It is worth pointing out that the proof above no longer features any reference to
wave propagation; we just needed the invariance properties of our covariance func-
tion and a nice property of our new Laplacian. This means that calculations should
travel unimpaired to geometries where nothing like wave propagation is available for
building spherical functions and representation theory. We shall see this at work on
the sphere in the next section.

14For legibility we rewrote the derivative in the horizontal direction as ∂1 in the next formula: so if ϕ is
a function of two variables x1, x2 ∈ D, ∂1,x1 denotes the derivative in the horizontal direction of x1 �→
ϕ(x1, x2).
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But let us linger a moment in the hyperbolic plane, for our new monochromatic
maps do exhibit a rather unexpected feature: while same-phase wavefronts in eω,b line
up at hyperbolic distance 2π

|ω| , it seems like the right hyperbolic area for a “hyperbolic
hypercolumn”, that area which we called σ at the beginning of this subsection, should

be 4π2

ω2+1
. In fact, we claim that the typical hyperbolic distance between two points in

the map that have the same orientation preference is not 2π
|ω| as we would guess by

thinking in Euclidean terms, but 2π√
ω2+1

. There is something of course to support of

this claim: we can evaluate the typical spacing by selecting a portion of a geodesic and
evaluate the mean number of points with a given orientation preference. To motivate
the statement of our result, see the discussion preceding Theorem C below, and also
[34].

Theorem B Suppose z is the only complex-valued, centered Gaussian random field
on D whose probability distribution is SU(1,1)-invariant, and whose correlation
function, when turned into a function on SU(1,1), is Harish-Chandra’s spherical
function ϕω. Select a geodesic δ on D, consider a segment Σ on δ, and write |Σ |h
for its hyperbolic length. Write Ψ for the real-valued random field on Σ obtained
by projecting the values of z|Σ onto an arbitrary axis in C, and NΣ for the random
variable recording the number of zeroes of Ψ on Σ . Define Λ as the only positive
number such that �Dz = −( 2π

Λ
)2z. Then

E[NΣ ]
|Σ |h = 1

Λ
.

Note that the zeroes considered here are points on Σ where the preferred orien-
tation is the vertical, and have nothing to do with pinwheel centers (which were the
zeroes considered in Theorem A).

Let us give a summarized proof of this result here (see also the discussion lead-
ing to Theorem C, where the arguments are similar but the idea appears perhaps
more clearly). Set u := Re(z|δ); this is a real-valued random field on the geodesic δ.
Since δ is an orbit on D of a one-parameter subgroup of SU(1,1), we can view it
as a real-valued, stationary random field on the real line and apply the classical one-
dimensional Kac–Rice formula. Using the one-parameter subgroup to transfer the
result back to δ, and using the shift-invariance of z, we get the following formula:

E[NΣ ]
|Σ |h =

√
λ2

π
,

where λ2 = E[u′(0)2] is the second spectral moment of the field u. But we actually

evaluated
√

λ2 while proving Theorem A: it is equal to ω2+1
π

. This completes the
proof of Theorem B.

3.2 Spherical Geometry

Let us now examine the positively-curved case, viz. the sphere S2. Recall from Sect. 2
that the geometry of the sphere is captured by the Klein pair (SO(3),SO(2)).
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We will start by looking for an orientation preference-like map on the sphere. Let
us therefore look for an arrangement z with our usual randomness structure, that is,
for a complex-valued standard Gaussian random field on the space S

2; let us further
assume that the field z is G-invariant and probes an irreducible factor of the natural
representation of SO(3) on L

2(S2) (see Sect. 2.4.2). The arguments we used for the
hyperbolic plane go through, so we are now looking for a Gaussian random field
whose covariance function is an elementary spherical function for S2.

In the last section, we built these out of hyperbolic analogues of Euclidean plane
waves; here there is no obvious “plane wave” candidate for carrying the torch. How-
ever, it is quite easy to find alternative building-blocks for the irreducible factors of
the representation of G on L

2(S2): these are the familiar spherical harmonics; since
there will be a significant difference between the maps we shall describe and those
we encountered on nonpositively curved spaces of the preceding sections, we shall
use the next paragraph to examine their rôle in representation theory even if this is
famous textbook material; see [68], Chap. 7.

3.2.1 Preliminaries on the Spherical Harmonics and the Plancherel Decomposition
of L2(S2)

The sphere has its own Laplace operator, just as the Euclidean plane and the hyper-
bolic plane do. To define it, regard S

2 as isometrically embedded in R
3 as the unit

sphere centered at the origin O . If f is a smooth function on the sphere, we may
extend it to a smooth function f̃ on R

3 − O that is constant on every ray issued from
the origin: f̃ (x) = f (x/‖x‖). Define now

�S2f = (�R3 f̃ )|S2 .

Since �R3 is rotation-invariant, �S2 is rotation-invariant also; so every “eigenspace”
of �S2 on L

2(S2) is a G-invariant subspace. To get eigenfunctions for �S2 , we need
only remark that if Y is a homogeneous function of degree � + 1 on R

3,

(�R3Y)|S2 = �(� + 1)Y |S2 + �s2(Y |S2)

(here � is a nonnegative integer).
If we start with a homogeneous function Φ : R3 → C of degree � + 1 that is in ad-

dition harmonic, which means that it satisfies �R3Φ = 0, and restrict it to the sphere,
we get an eigenfunction for �S2 , with eigenvalue �(� + 1). Actually, any member
of the corresponding eigenspace can be extended to a harmonic homogeneous func-
tion of degree � + 1, so this describes the whole eigenspace. Now, it turns out that
every member of this eigenspace extends to a harmonic homogeneous polynomial
function of degree � + 1! If we write H� for the �(� + 1)-eigenspace of �S2 , this
space is then finite-dimensional, and its dimension is readily seen to be 2�+ 1. Being
finite-dimensional, H� is a closed subspace of L2(S2), so the usual scalar product on
L

2(S2) restricts to a scalar product on H�. Here Laplace’s spherical harmonics come
into play, for they give an orthonormal basis for H�: if we use spherical coordinates
(θ,φ) on S

2 and define, for � ∈ N
� and m ∈ {−�, �},

Y�,m(θ,φ) := eimφP�(cos θ),
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where P� is the �th Legendre polynomial, then {Y�,−�, . . . , Y�,0, . . . , Y�,�} is an or-
thonormal basis for H�.

We should add at this point that the natural representation of SO(3) on H� is
indeed irreducible; in the next section we shall associate an orientation preference
map to each of the H�. But before we close this section, let us see how this relates to
the decomposition of L2(S2).

Starting from an element f ∈ L
2(S2), we may produce a countable set of coeffi-

cients by setting, for each � ∈ N
� and each m ∈ {−�, . . . , �},

f̂ (�,m) :=
∫

S2
f (x)Y�,m(x) dx.

For each value of �, this yields an eigenfunction of � related to f , namely f� := x �→∑
m f̂ (�,m)Y�,m(x). We are thus defining a projection operator P� : L2(S2) → H�

(note that P2
� = P�).

Now, it is a very famous theorem of Hermann Weyl that the initial map f can be
reconstructed from this generalized Fourier series:

f =
∑

�≥0

f�.

Here, convergence of the right-hand side is to be understood in the mean-quadratic
sense; but if f is smooth, uniform convergence does hold.

Notice that if f were to be an eigenfunction of �S2 but were to belong to none of
the H�, P�f would be zero for every �, and so would f : Weyl’s theorem thus indi-
cates that there is no other eigenvalue of �S2 (thus the Peter–Weyl theorem reduces
to the spectral theorem for the hermitian operator �S2 in the special case considered
here). Of course it also achieves the Plancherel decomposition of Sect. 2.4.2,

L
2(
S

2) =
⊕

�≥0

H�.

Notice that all analytic difficulties in the decomposition have vanished (the irre-
ducible factors H� are really spaces of square-integrable functions), and that Fourier
series are enough to reconstruct a function, which means here that a countable set of
irreducible representations is enough to decompose L

2(S2). Recall from Sect. 2.4.2.
that there is a simple reason for the marked differences between what happens on
the sphere and what happens in our previous examples: Hermann Weyl proved that
when the group G is compact, there is but a countable set of equivalence classes of
irreducible representations.

3.2.2 Spherical Orientation Maps

We have now at our disposal everything that is needed for orientation preference-like
maps on the sphere, and on top of it, one important observation: our set of spherical
maps, unlike the set of its Euclidean or Hyperbolic analogues, is discrete in nature.
Out of the spherical harmonics Y�m arises one irreducible factor of L2(S2) per �; we
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feel it is appropriate to name the corresponding invariant Gaussian random field a
spin � monochromatic field.

In the Euclidean and hyperbolic cases, we got all the information from the co-
variance function of the field; here we can dispense with the covariance function and
describe such a field, say Φ�, a bit more explicitly than we could do for the previous
invariance structures. Since the representation space H� is finite-dimensional, speci-
fying an orthonormal basis (Y�,m)m for H� easily yields a Gaussian probability law
on H�: we need only consider

�∑

m=−�

ζmY�,m,

where the ζm are reduced complex-valued Gaussian random variables independent
from each other. Now H� may be seen as a function space on S

2, with the corre-
sponding functions readily written

Φ� : x �→
�∑

m=−�

ζmY�,m(x).

Thus, a standard Gaussian probability law on H� defines a Gaussian random field.
Now G acts on H� by unitary operators, and the probability density

∑
ζmY�,m is

G-invariant; this means that

x �→
�∑

m=−�

ζmY�,m(x)

is an invariant Gaussian field that spans the “spin �”-irreducible subspace of L2(S2).
This is precisely our spin � monochromatic field; it is the only G-invariant standard
Gaussian field with values in H�.

We have plotted a map sampled from this field on Fig. 6.

3.2.3 Spherical Pinwheel Density

Expectation values for pinwheel densities in spherical maps may be evaluated with
the same methods we used in the previous sections. Here, however, there appears a
significant difference with the Euclidean and Hyperbolic cases: while monochromatic
fields in those cases were indexed by a continuous parameter that is easily interpreted
as a wavelength, there is apparently no natural scale for writing pinwheel densities.

In this subsection, we shall answer the following two questions:

(a) What is the mean (spherical) distance Λ between iso-orientation domains in a
field that probes H�?

(b) What is the mean number of pinwheels within a given subset of the sphere, rela-
tive to the (spherical) area of this subset? Is it π

Λ2 ?

To answer the first question, let us select a geodesic segment on S
2, that is, a

portion of a great circle. What is, on this segment, the mean number of points where
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Fig. 6 An orientation map on
the sphere sampled from the
argument of a monochromatic
SO(3)-invariant Gaussian
random field on the sphere with
spin 7. We plotted the restriction
to a hemisphere; we used a
superposition of spherical
harmonics with spin seven and
random, reduced independent
Gaussian weights

Φ� exhibits a given orientation? Since standard Gaussian fields are shift-invariant, we
can consider a fixed value of the orientation, say the vertical. Points where Φ� exhibits
this orientation are points where Re(Φ�) vanishes; so let us define Ψ� = Re(Φ�) and
look for its zeroes on the given great circle.

Now, Ψ� is a Gaussian field on our great circle that is invariant under any rota-
tion around this circle. This may be thought of as a stationary (translation-invariant)
random field on R—an instance where the classical Kac–Rice formula [38] applies
(think of what happens if one rolls this circle around on a Euclidean plane at constant
speed). So we may assert that if NΣ is the random variable recording the number of
zeroes of Ψ� on Σ ,

E[NΣ ]
|Σ | =

√
λ2

π
,

where λ2 = E[Ψ ′′
� (0)2] is the second spectral moment of the field Ψ�. But now λ2 =

�(�+1)
4 ; if we set

Λ := 2π√
�(� + 1)

we have then obtained the following result.

Theorem C suppose Φ� is the only complex-valued, centered Gaussian random field
on S

2 whose probability distribution is rotation-invariant, and whose samples belong
to the irreducible subspace of L2(S2) spanned by the spherical harmonics Y�m, m =
−�, . . . , �. Consider a geodesic segment Σ on S

2, write NΣ for the random variable
recording the number of points on Σ where Φ� takes real values, and write Λ for the
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positive number 2π√
�(�+1)

. Then

E[NΣ ]
|Σ | = 1

Λ
.

Thus, if the mean number of points on Σ to which Φ� attributes a given orientation
preference is to be no less or no more than one, the length of Σ must be Λ. This
answers question (a).

Now, if A is a subset of the sphere, denote by |A|s its spherical area and by NA
the random variable recording the number of pinwheels of Φ� in A. Then, as in the
previous cases, we observe a scaled density of π :

Theorem D Suppose Φ� is the only complex-valued, centered Gaussian random field
on S

2 whose probability distribution is rotation-invariant, and whose samples belong
to the irreducible subspace of L2(S2) spanned by the spherical harmonics Y�m, m =
−�, . . . , �. Consider a Borel subset A of S2, write |A|s for its area w.r.t. the round
metric, and NA for the random variable recording the number of zeroes of z in A.
Set Λ = 2π√

�(�+1)
as above. Then

E{NA}
|A|s = π

Λ2
.

Let us give a sketch of proof of Theorem D: since the only difference with the
hyperbolic case is the lack of global coordinates which simplified the presentation
there, we think it is better to keep this proof short and refer to our upcoming Ph.D.
thesis for full details. A first step is to adapt the formula by Azais and Wschebor (the
version in Sect. 3.1.4 holds when the field is defined on an open subset of R

n) to
prove that E{NA} = |A|s V0

π
, where V0 is the variance of any derivative of Re(z) at a

point p0 on S
2. Now to evaluate V0, we use the fact that it is equal to the expectation

for the second partial derivative (in any direction) at p0 of the covariance function Γ

of Re(z). This expectation does not depend on the chosen direction, and to adapt the
arguments in the proof of Theorem A we can use the group-theoretical interpretation
of �S2 as the Casimir operator associated to the action of SO(3) on S

2 (see [43],
Sect. 5.7.7). As in the proof of Theorem A, we can then evaluate V0 as half the value
of �S2(Γ ) at p0, but because �S2z = ( 2π

Λ
)2z this half-value turns out to be π

Λ
2,

proving Theorem D.

3.2.4 An Alternative Orientation Map, with Shift-Twist Symmetry

We have so far been looking for arrangements of V1-like receptive profiles on curved
(homogeneous) surfaces; for this we used complex-valued random fields. We shall
now look for a pinwheel-like structure on the sphere which is of a slightly different
kind, perhaps more likely to be of use in discussions which include horizontal con-
nectivity, or which relate to the vestibular system and its interaction with vision. We
will also provide a simple criterion on pinwheel densities to distinguish between our
two types of spherical maps.



Page 32 of 45 A. Afgoustidis

In this subsection S
2 sits as the unit sphere in R

3, and we try to arrange three-
dimensional abelian Fourier coefficients on the sphere: in other words, we assume
each point �u on S

2 is equipped with a sensor whose receptive profile depends on a
plane wave x ∈ R

3 �→ exp〈ω(�u) · x〉 (this profile could be a three-dimensional Ga-
bor wavelet). Here ω(�u) ∈ R

3 is a linear form on R
3 (so it may be thought of as a

vector). Let us assume further that at each point �u, the corresponding sensor neglects
everything that happens in directions collinear to �u, so that ω(�u) · v = 0 as soon as
�v ⊥ �u.

This kind of arrangement does not seem very interesting if (a part of) the sphere
is thought of as a piece of cortical surface, and we do not set it forth as a model for a
visual area; yet it would not be completely unreasonable to think of an arrangement
like this if �u were to stand for gaze direction, and it makes sense (not to say that it
is useful) to consider a remapping of this structure across the cortical surface (this
would displace the interpretation of the pinwheel-like layout, which would only exist
at a functional level).

Now, there is a natural operation of the rotation group SO(3) on such arrange-
ments: if R is a rotation and ω is a map as above, then the natural “rotated ω”, viz.

�u R�ω�−→ R · ω(
R−1 �u)

is an arrangement of the same kind. Notice that if R is a rotation of axis �u, it shifts
the “orientation preference” in ω(�u).

This formula is familiar from differential geometry; in fact, our set of maps is
precisely the set Ω1(S2) of (vector fields or, more accurately) differential 1-forms on
the sphere. Now, let us come back to Ω1(S2): we can add two such maps, so Ω1(S2)

is a vector space. After a suitable completion, we may consider the Hilbert space
Ω1

L2(S
2) of forms which are square-integrable, and since rotations are unitary maps,

and writing P(g) for the map ω �→ g�ω whenever g is a rotation, we get a unitary
representation (Ω1

L2(S
2),P ) of the rotation group.

Using this representation may look rather unnatural in biology; but corresponding
transformations have been discussed in the flat case, though with a very different
language: in [27, 31] they are called Shift-twist transformations. Indeed, differential
forms on R

2 can be identified with functions from R
2 to C, and the natural action

on differential forms of a rotation around the origin15 (A,0) ∈ SE(2) is turned in
this way into the operation f �→ Af (A−1·) on complex-valued functions, which is
exactly the shift-twist transformation considered in [27, 31] (compare Sect. 2.3 in
[27]).

Bringing the horizontal connectivity and notions like the association field into the
picture ([13, 30], Chap. 4), it seems natural to introduce the (co-)tangent bundle of
the surface on which orientation maps are to be developed.

Now, the unitary representation (Ω1
L2(S

2),P ) is of course not irreducible; so in
order to get “elementary arrangements”, we may look for its irreducible constituents
as we did for L2(S2) and hope that pinwheel-like structures are to be found there.

15Because translations have zero derivative, a general element (A,v) of SE(2) then acts on complex-valued

functions on R
2 as f �→ (x �→ Af (−A−1v + A−1x)).
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Fig. 7 An orientation map on
the sphere sampled from a
random vector field which has
SO(3)-shift-twist symmetry. We
plotted the restriction to a
hemisphere of the random map
exploring Hexact

10 ; beware that
the color coding has a different
meaning than in Figs. 1, 2, 5,
and 6. Here, the sample map is a
vector field on the sphere, and
there is no complex number; to
visualize the direction of the
emerging vector at each point,
we apply the orthogonal
projection from the drawn
hemisphere to the “paper” plane,
thus getting a vector field on the
unit ball of the Euclidean plane,
and plot the resulting orientation
map using the same color code
as in Figs. 1, 2, 5, and 6

There is a useful remark here: if f is a real-valued smooth function on the sphere,
its derivative df provides us with an element of Ω1

L2(S
2). What is more, if g is a

rotation, then P(g)df = d[�u �→ f (g−1 �u)]. So any G-invariant irreducible subspace
H� of L2(S2) yields a G-invariant irreducible subspace Hexact

� of Ω1
L2(S

2): we need
only consider the derivatives of real parts of elements of H�.

All in all, if we start with one of the monochromatic random fields Φ�, � ≥ 1 and
consider the derivative of its real part, we get a random differential form �� on S

2

which probes one irreducible factor of Ω1(S2). What kind of “orientation map” does
this correspond to? Plotting this needs a warning: when ω is a differential form the
ω(�u) appear in different tangent planes as �u varies, so a picture may be misleading;
luckily it is orientation maps we wish to plot, and the projections of the ω(�u) on
a plane through zero give a fine idea of the layout of orientations on each of the
hemispheres it cleaves S2 into. A plot of a projection of � exact

� for � = 10 is displayed
on Fig. 7.

Is there more to fields probing other irreducible factors of Ω1
L2(S

2) than what we

see on the Hexact
� ? There is not, for there is a duality operation on Ω1

L2(S
2) which

will allow us to describe all the other irreducible factors. This is the Hodge star: to
define it in our very particular case, notice first that if �u is a unit vector, we get an
notion of oriented bases on the plane �u⊥ from “the” usual notion of oriented basis
in the ambient space. Then, start with a differential form ω, and shift each of the
(co)-vectors ω(�u) with a rotation of angle +π

2 in each (co) tangent space; this gives
a new form ✩ω. Obviously it is orthogonal to ω, and what is more, it commutes with
rotations: g�(✩ω) = ✩(g�ω) for any rotation g.

Let us write Hcoexact
� for the image of Hexact

� under the Hodge star; since the Hodge
star is a G-invariant isometry of Ω1

L2(S
2), it is a G-invariant irreducible subspace

too. Now, using a fundamental result of differential geometry (the Hodge–de Rham
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theorem), we can deduce from this the decomposition

Ω1
L2

(
S

2) =
⊕

�>0

(
Hexact

� ⊕Hcoexact
�

)
,

where the direct sum is orthogonal.
Random differential forms probing the Hcoexact

� have exactly the same orientation
preference layout as those we have already met, except for a difference of “chirality”
that corresponds to a global shift of the orientations. We should note here that (the
probability distributions for) our nontwisted fields Φ� were unchanged under a global
shift of the orientations.

While our new maps do resemble the nontwisted orientation maps of the previous
paragraph, looking at pinwheel densities will reveal a notable difference. Indeed, al-
though there is a formula of Kac–Rice type for the mean number of critical points of
an invariant monochromatic field like Re(Φ�), it involves a Hessian determinant at
the place where we earlier met the Jacobian determinant of Φ�—this was the deter-
minant of a random matrix with independent coefficients, which is not the case for
any Hessian (symmetric!) matrix.

We now need to deal with the mean determinant of a random matrix whose coef-
ficients have Gaussian distributions but exhibit nontrivial correlations. This seems
intractable in full generality; fortunately, our specific spherical problem has been
solved recently: in ref. [69], the author proves that the mean total number of criti-
cal points of a monochromatic Gaussian invariant field, that is, the expectation for
the total number of pinwheels (beware this is not a density) in � exact

� , is equivalent to

�2

√
3

as � goes to infinity. Actually, for “finite” �, the total number is given by an explicit
but complicated expression.

Note that in our nontwisted, complex-valued random fields Φ�, the expectation for
the total number of pinwheels is equivalent to

�2

as � goes to infinity. So it is easy, at least in principle, to distinguish the two kinds of
orientation maps: one needs only a single quantitative measurement.

4 Discussion

In this paper, we started from a reformulation of existing work by Wolf, Geisel and
colleagues, with the aim to understand the crucial symmetry arguments used in mod-
els with the help of noncommutative harmonic analysis, which is often a very well-
suited tool for using symmetry arguments in analysis and probability. Understanding
these Euclidean symmetry arguments from a conceptual standpoint showed us that
Euclidean geometry at the cortical level is a way to enforce conditions that are not
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specific to Euclidean geometry but have a meaning on every “symmetric enough”
space, and we thus saw how a unique Gaussian random field providing V1-like maps
can be associated to each irreducible “factor” in the Plancherel decomposition of the
Hilbert space of square-integrable functions on the Euclidean plane, the hyperbolic
plane and the sphere. We proved that in these three settings, when scaled with the
typical value of column spacing, monochromatic invariant fields exhibit a pinwheel
density of π . Theorems A′ and D′ in the Appendix prove that the same result holds
when the monochromaticity condition is dropped: in other words, a pinwheel den-
sity of π appears as a signature of (shift) symmetry. Since pinwheel densities can be
measured in individual sample maps thanks to the ergodicity properties of invariant
Gaussian fields (see [38], Sect. 6.5), this yields a criterion to see whether an individ-
ual map (which cannot be itself invariant!) is likely to be a sample from a field with
an invariance property, whether the map be drawn on a flat region or on a curved,
homogeneous enough region. In the spherical case, also we saw that the number of
pinwheels in the map can in principle distinguish between rotation-invariance and
shift-twist symmetry; to see whether this observation can be turned into a precise
criterion distinguishing the various kinds of invariance from actual measurements on
individual sample maps, it would probably be interesting to see whether there is any-
thing to be said of pinwheel densities in Euclidean or hyperbolic maps with shift-twist
symmetry, and of the mean column spacing in shift-twist symmetric maps.

Since our aim was to understand the role of symmetry arguments, one aspect re-
stricting the scope of our constructions in a fundamental way is our focusing on ho-
mogeneous spaces rather than spaces with variable curvature. Of course, we have
good technical reasons for this: the way symmetry arguments are used in existing
discussions made it natural to focus on those two-dimensional spaces which have a
large enough symmetry group, and our constructions are entirely based on exploit-
ing the presence of this symmetry group. One might wish to make the setting less
restrictive, especially since the places where the surface of real brains is closest to a
homogeneous space are likely to be the flat parts. But using analogues of symmetry
arguments on nonsymmetric spaces is a major challenge in (quantum) field theory,
and if one wished to start from the reformulation we gave of Wolf and Geisel’s work
in Sect. 2.4, generalizing the arguments of this paper to find V1-like maps on Rie-
mannian manifolds on nonconstant curvature would be formally analogous to adapt-
ing Wigner’s description of elementary particles on Minkowski spacetime to a gen-
eral curved spacetime—a challenge indeed! Answering this challenge would bring us
close to the two-dimensional models from quantum field theory or statistical mechan-
ics, and make us jump to infinite-dimensional “phase spaces” (and would-be groups).
This is a step the author is not ready to take, and it is likely that simpler ways to study
the nonhomogeneous case would come with shifting the focus from mature maps
back to development models.

Indeed, readers familiar with development models have perhaps been puzzled by
another aspect of our paper, which is the fact that we used Gaussian random fields
as the setting for our constructions: Gaussian fields provide sample maps which look
very much like orientation maps, and as we emphasized the statistical properties of
their zero set are very strikingly reminiscent of what is to be found in real maps,
but there are appreciable and measurable differences between the output of invari-
ant Gaussian fields and real orientation maps (see for instance a discussion in [34]).
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As we recalled in the Introduction, it is likely that Gaussian fields provide a better
description for the early stage of cortical map development, but that the Gaussian de-
scription later acquires drawbacks because it is not compatible with the nonlinearities
essential to realistic development scenarii.

To our knowledge, many of the most successful models for describing the ma-
ture stage of orientation preference maps are variations on the long-range interaction
model of Wolf, Kaschube et al. [11, 70, 71], the mature map z evolves from an unde-
termined (random) initial stage (not assumed to be Gaussian) through

∂tz = LΛ(z) + Nγ,σ (z).

Here LΛ is a Swift–Hohenberg operator

z �→ rz −
((

2π

Λ

)2

+ ∇2
)2

z,

γ is a real number between zero and two, σ is a positive number and Nγ,σ is the
following nonlinear operator:

N [z] := x �→ (1 − γ )
∣∣z(x)

∣∣2z(x)

− (2 − γ )

∫

R2
Kσ (x − y)

(
z(x)

∣∣z(y)
∣∣2 + 1

2
z̄(x)z(y)2

)
dy.

Allowing z to evolve from an initial fluctuation, when γ < 1 and when σ/Λ is
large enough Eq. (1) leads first to an invariant, approximately Gaussian field (thanks
to an application of the central limit theorem to a linearized version of Eq. (1); see
[26]), then to non-Gaussian quasiperiodic V1-like random fields.

This interaction model can easily be adapted to define a nonlinear partial differen-
tial equation on any Riemannian manifold: a Riemannian metric, say on M , comes
with a natural Laplacian �M and a volume form dVolM , so we can define LM

Λ as

z �→ rz −
((

2π

Λ

)2

+ �M

)2

z,

and use the geodesic distance dM(x, y) between any two points x, y of M to define

NM
γ [z] := x �→ (1 − γ )

∣∣z(x)
∣∣2z(x)

− (2 − γ )

∫

M

e
− dM (x,y)2

2σ2

(
z(x)

∣∣z(y)
∣∣2 + 1

2
z̄(x)z(y)2

)
dVolM(y).

A non-Euclidean version of the long-range interaction model on M would then
simply be

∂tz = LM
Λ (z) + NM

γ,σ (z). (1)

As Wolf and coworkers point out (see for instance the supplementary material
in [11], Sect. 2), this partial differential equation is the Euler–Lagrange equation of a
variational problem, so solutions are guaranteed to converge to stable stationary states
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as time wears on. Wolf and colleagues showed (using numerical studies) that when
σ/Λ is large enough, V1-like maps are among the stable solutions in the Euclidean
case. On arbitrary Riemannian manifolds, however, there is no way to guarantee that
structure-rich stable solutions of the above PDE exist; it would certainly be worth ex-
amining, at least with numerical simulations, but this is beyond the author’s strengths
at present. It is perhaps natural to imagine that given the analogy between maps ob-
tained by truncation from invariant GRFs and the output of the long-range interac-
tion model, the constructions in this paper are a strong indication that on symmetric
spaces, the stable solutions of (1) include maps which look like those of Figs. 5–7,
and that the difference between those and the monochromatic invariant fields studied
in this paper is analogous to the difference between experimental maps, or at least the
output of (1) in the Euclidean case, and maps sampled from invariant Gaussian fields
on R

2.
In adult animals measurements seem to indicate that the structure of mature maps

departs from that of maps sampled from invariant Gaussian fields; remarkably, there
is experimental evidence for the fact that a pinwheel density of π , which in a Gaussian
initial stage appears as a signature of Euclidean symmetry as we saw, is maintained
during development in spite of the important refinements in cortical circuitry and the
departure from Gaussianity that they induce [11]. Independently of modeling details,
we see that geometrical invariance can be measured in principle, even on individ-
ual maps: upon evaluating local column spacings (with respect to geodesic length in
the curved case) and performing space averaging, one gets a length scale Λ; when
scaling pinwheel density with respect to Λ, observing a value of π is a strong indica-
tion that geometrical invariance on the cortical surface is an important ingredient in
development.

In addition to this, one might think that arranging neurons and their receptive
profiles on a homogeneous enough space has benefits from the point of view of infor-
mation processing: by allowing the conditions of homogeneity and isotropy to make
sense, a constant curvature could help distribute the information about the stimulus
in a more uniform way (note that as the eyes move constantly, a given image is pro-
cessed by many different areas in V1 in a relatively short time). Neurons receiving
inputs from several adjacent regions of V1 could then handle spike statistics which
vary little as the sensors move and have a more stable worldview.
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Appendix A: Riemannian Metrics on Homogeneous Spaces

We tried to make the mathematical prolegomena to the main text lighter by delaying
to this Appendix a simple (and well-known) detail on the way to recover the usual
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metrics on the sphere and the hyperbolic plane from the relevant groups. We will
rephrase in a general setting what we said for the hyperbolic plane, and it will be
enough to fill the gap.

• Let us start with a group G and a compact subgroup K , and consider the ho-
mogeneous space X = G/K . If we are given a scalar product 〈·, ·〉o on the tangent
space T{K}X to X at the identity coset o = {K}, and if the action of K on this tangent
space is isometric for this scalar product, we can define a scalar product at each point
p of X: since there is an element g of G which takes p to o, when we consider two
vectors �X and �Y in TpX we can look at

〈 �X, �Y 〉p := 〈
dg(p) · �X,dg(p) · �Y 〉

o
.

Then 〈 �X, �Y 〉p does not depend on the choice of the element G; we have thus
defined a Riemannian metric on X = G/K , and of course it is G-invariant.

• Now there are many important examples of pairs (G,K) for which, up to mul-
tiplication by a positive constant, there is only one K-invariant scalar product on
T{K}X: this is the case in the two situations considered in our manuscript (in both
cases, K is the rotation group of an Euclidean plane with a chosen origin, and there
is only one rotation-invariant scalar product on the plane).

• Since the usual round metric on S
2 is obviously rotation-invariant, what precedes

justifies our claim that it can be recovered from group theory (and the global scale
factor amounts to choosing a radius for the sphere when we want to embed it in R

3

in the usual way).
• In the hyperbolic case, a simple calculation is enough to prove that invariant

metrics on D are constant multiples of the Poincaré metric. It is then simple, as we
did in the main text, to describe all geodesics of D from a single one among them
(see ref. [53], p. 29).

Appendix B: Sampling from Monochromatic Fields in the Euclidean
and Hyperbolic Planes

In the main text, we defined monochromatic invariant Gaussian random fields on
homogeneous spaces through their correlation functions, relying on an existence the-
orem by Kolmogorov to pass from the correlation function to the actual field. On
Figs. 2 and 6 we display maps sampled from monochromatic invariant Gaussian
fields, but we did not say precisely how the drawn object was built from its corre-
lation function. We provide some details in this section.

Let us focus on the Euclidean case to simplify notation; as we saw in Sect. 3.2.2,
this actually covers the hyperbolic case as well.

Recall that the covariance function of a monochromatic invariant Gaussian random
field with correlation wavelength Λ is provided by the inverse Fourier transform of
the Dirac distribution on a circle, that is,

E
[
z(x)z(y)�

] = Γ (x − y) =
∫

S1
eiRu·(x−y) du
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with R = 2π
Λ

. Now, the condition on the support of Γ means that it satisfies the
Helmholtz equation �Γ = −R2Γ ; an easy consequence is that

E
[∣∣�z + R2z

∣∣2]

is identically zero. This means that any (strictly speaking, almost any) orientation
map drawn from z satisfies itself the Helmholz equation; thus maps drawn from z are
superpositions of plane waves with wavenumber R and various propagation direc-
tions.

As we mentioned at the end of Sect. 2.4.3, each map drawn from z thus reads f =∫
S1 eiRu·xTf (u), where Tf is a complex-valued measure on S

1 (the inverse Poisson
transform of f ). As a consequence, we know that there is a random, complex-valued
Gaussian measure dZ on the circle which allows for describing z as a stochastic
integral:

z(x) =
∫

S1
eiRu·x dZ(u).

Now, thanks to the Gaussian nature of z and the Euclidean invariance condition,
there is a simple way to describe Z, which we used for numerical simulations: the
rotation invariance of z means that Z should be rotation-invariant, so it defines a sta-
tionary Gaussian process on the circle and is thus related to the Brownian bridge [36];
it has been identified by Yaglom as its mean-square derivative ([63], Eq. (3.27) to
(3.30)), usually called white noise (so it is a generalized process, whose sample maps
are distributions rather than continuous functions on the circle; see [72], Sect. 11.6):
the Fourier expansion of Z is but

Z = θ �→
∑

n∈Z
ξne

inθ .

Here is a way to simulate Z. If (ζk)k∈N� is a sequence of independent standard
Gaussian complex random variables, and if u1, . . . , un are the complex numbers cod-
ing for the vertices of a regular n-gon inscribed in the unit circle, then

zn : x �→ 1

n

n∑

i=1

ζie
iRui ·x

is a Gaussian random field. As n grows to infinity, we get random fields which are
closer and closer to being a monochromatic invariant Gaussian random field, and our
field z is but the limiting field.

Appendix C: Some Results on Gaussian Random Fields
on Homogeneous Spaces

C.1 Generalization of Theorems A–D to Nonmonochromatic Fields

In the proof of Theorem B, the monochromaticity condition, which in the statement
seems to be crucial, comes in at the last moment—it provides a simple expression
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for the quantity called λ2 above. But now that we have the proof in hand it is easy
to see how it can be adapted to evaluate the column spacing and pinwheel densities
in nonmonochromatic fields also. Suppose now that z is a complex-valued, centered
Gaussian random field on D whose probability distribution is SU(1,1)-invariant. Se-
lect a geodesic δ on D, consider a segment Σ on δ, write |Σ |h for its hyperbolic
length, Ψ for the real-valued random field on Σ obtained by projecting the values of
z|Σ onto an arbitrary axis in C, and NΣ for the random variable recording the num-
ber of zeroes of Ψ on Σ . Motivated by the discussion around Theorem C (see also
[34]), let us define the typical spacing Λ as the inverse of the positive number E[NΣ ]

|Σ |h .
Because z is SU(1,1)-invariant, it is then independent of δ, Σ , and the choice of Ψ .

Recall from Sect. 3.1.3 that the covariance function of z can be seen as a func-
tion Γ : D → C which is rotation-invariant, and for which we can assume Γ (1) = 1.
Using the notations of Sect. 3.1, recall from the theorem by Harish-Chandra men-
tioned at the end of Sect. 3.1.2 that we can write Γ as

∫
R+ ΓωΠ(λ)dω, where

Γλ = ∫
B
(
∫
D

Γ (y)e−ω,b(y) dy)eω,b(z) db is an element of Eω. Because Γ is rotation-
invariant, Γω turns out to be rotation-invariant too, and as a consequence it is propor-
tional to Harish-Chandra’s spherical function ϕω. But the constant depends on Γ , so
gathering the constants and the Plancherel measure Π into a single measure we can
write

Γ =
∫

R+
ϕω dP (ω),

where P is a measure on R
+. This is the spectral decomposition of the field Γ . Now,

the following statement is what the proof of Theorem B reveals in the nonmonochro-
matic case.

Theorem B′ Suppose z is a complex-valued, centered Gaussian random field on
D whose probability distribution is SU(1,1)-invariant. Select a geodesic δ on D,
consider a segment Σ on δ, write |Σ |h for its hyperbolic length, Ψ for the real-
valued random field on Σ obtained by projecting the values of z|Σ onto an arbitrary
axis in C, and NΣ for the random variable recording the number of zeroes of Ψ

on Σ . Define the typical spacing Λ as the inverse of the positive number E[NΣ ]
|Σ |h . It is

then independent of δ, Σ , and the choice of Ψ . In fact, in terms of the power spectrum
measure P above,

Λ = 2π

(∫

R+

(
ω2 + 1

)
dP (λ)

)−1/2

.

Since the evaluation of the quantity called λ2 in Sect. 3.1.4 was a common ingredi-
ent of both Theorems A and B, we also obtain the following analogue of Theorem A
for nonmonochromatic fields.

Theorem A′ Suppose z is a complex-valued, centered Gaussian random field on D

whose probability distribution is SU(1,1)-invariant. Define the typical spacing Λ

through Theorem B′. Consider a Borel subset A of D, write |A|h for its area w.r.t. the
Poincaré metric, and NA for the random variable recording the number of zeroes of
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z in A. Then

E{NA}
|A|h = π

Λ2
.

Theorem A′ is the full justification for our claim that for maps sampled from in-
variant Gaussian fields on the hyperbolic plane, just as in the Euclidean case (see for
instance [34], Result 2), a pinwheel density of π is a signature of symmetry.

In the spherical case, the same arguments provide analogues of Theorems C–D in
the nonmonochromatic case. To give precise statements, suppose z is a complex-
valued, centered Gaussian random field on S2 whose probability distribution is
SO(3)-invariant. By taking the scalar product of z with the complex conjugates of
spherical harmonics we obtain for each � a Gaussian field

z� :=
�∑

m=−�

(∫

S2
z(x)Ȳ�,m(x) dx

)
Y�,m

on the sphere. Because of the Schur–Weyl orthogonality relations, each z� is rotation-
invariant and

z =
∑

�≥0

z�.

But z� is proportional to the field we called Φ� in Sect. 3.2.3, so there are real numbers
p� such that

z =
∑

�≥0

Φ�p�.

The power spectrum of the map in this case is the sequence (p�)�, and here is the
evaluation of the typical spacing.

Theorem C′ Suppose z is a complex-valued, centered Gaussian random field on
S

2 whose probability distribution is rotation-invariant. Select a geodesic δ on S
2,

consider a segment Σ on δ, write |Σ |s for its length, Ψ for the real-valued random
field on Σ obtained by projecting the values of z|Σ onto an arbitrary axis in C, and
NΣ for the random variable recording the number of zeroes of Ψ on Σ . Define the
typical spacing Λ as the positive number E[NΣ ]

|Σ |s . It is then independent of δ, Σ , and
the choice of Ψ . In fact, in terms of the power spectrum sequence (p�),

Λ = 2π

(∑

�≥0

�(� + 1)pλ

)−1/2

.

Here is the theorem that identifies a pinwheel density of π as a signature of sym-
metry.

Theorem D′ Suppose z is a complex-valued, centered Gaussian random field on
S

2 whose probability distribution is rotation-invariant. Define the typical spacing Λ
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through Theorem C′. Consider a Borel subset A of S2, write |A|s for its area w.r.t.
the round metric, and NA for the random variable recording the number of zeroes of
z in A. Then

E{NA}
|A|s = π

Λ2
.

C.2 Invariant Fields on Symmetric Spaces of Higher Dimension

In this subsection, we give the statements of some theorems which make the role of
symmetry in the existence of a well-defined pinwheel density even clearer by show-
ing what Theorems A–D become when they are generalized to higher-dimensional
symmetric spaces.

Of course this has mainly a mathematical interest; higher-dimensional cortical
maps are not absurd to think of (even if the cortex is a three-dimensional object,
a special kind of connectivity could induce higher-dimensional maps which would
exist only at a functional level; it is rather tempting to imagine that this could be
the case for other senses than vision), but we only wish to clarify our mathematical
conclusions here.

Recall that the symmetric spaces can be of the compact type, of the noncompact
type (with negative curvature) or of flat type [52]. In the compact and noncompact
type, the group acting on these spaces is semisimple; in the flat type, it is the semidi-
rect product of a compact group with a vector group.

Theorem E Suppose z is a G-invariant, monochromatic random field on a symmetric
space G/K with values in R

dim(G/K). Assume G/K is equipped with the natural
Riemannian metric built from the Killing form of G. Select a geodesic δ on G/K ,
consider a segment Σ on δ, and write |Σ | for its length. Write Ψ for the real-valued
random field on Σ obtained by projecting the values of z|Σ onto an arbitrary axis
in R

dim(G/K), and NΣ for the random variable recording the number of zeroes of Ψ

on Σ .
Now, let us define Λ as the only positive number such that �G/Kz = ±( 4π2

d·Λ2 )z.
Then

E[NΣ ]
|Σ | = 1

Λ
.

The ± sign in the previous formula is a plus sign if G/K is of the compact type, a
minus sign in the other cases.

The proof of this theorem is essentially the same as that which we sketched for
the case of the sphere S

2: Ψ is a Gaussian field on the geodesic δ which can be seen
(using a one-parameter subgroup of G) as a stationary field on the real line; to use
the classical Kac–Rice formula we need only evaluate the second spectral moment of
this field, and this is where the invariant Laplacian comes in.

This theorem says that the typical spacing between iso-orientation domains is, up
to a simple dimensional factor, the wavelength which corresponds to the Φ-induced
eigenvalue of the Laplacian. We stated what this gives for the sphere in the main text,
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and remarked that there is but a countable set of possible spacings. In the hyperbolic
case, a continuum of spacings is possible, but there is a curvature-induced shift (the
wavenumber has to be shifted by a “half-sum of positive roots”, as often happens in
representation theory) which makes the typical spacing of a monochromatic field dif-
ferent from the (hyperbolic) distance between same-phase horocycles which appears
in Helgason waves.

As in Theorem A′ and Theorem B′, there is a counterpart to Theorem E for non-
monochromatic fields. It is a bit less easy to write down because the Plancherel de-
composition of L

2(G/K) features more than one real parameter; the extension is,
however, straightforward and will appear in the Ph.D. thesis of the author.

Here is the promised extension of Theorems B and C to higher dimensions.

Theorem F With the notations of the previous theorem, write NA for the random
variable recording the number of zeroes of Φ in a Borel region A of the symmetric
space X, |A|G/K for its volume as determined by the chosen metric on X = G/K .
Then

E[NA]
|A|G/K

= πdim(X)/2

Λd
.

This theorem says that when scaled with respect to the natural quasiperiod of a
monochromatic map, the pinwheel density in a monochromatic invariant Gaussian
field is always a power of π , and since the result is not limited to monochromatic
fields, it still appears as a signature of symmetry.

We gave a full proof of this theorem for the hyperbolic case; there we could con-
veniently use the fact that D is naturally a subset of the complex plane, and that the
invariant Laplacian �D has a simple expression in the usual (x, y) coordinates. The
ingredients for the general case are the same as those of the spherical case, namely
a version of Azais and Wschebor’s theorem that travels unimpaired to general sym-
metric spaces, and in the compact and noncompact cases (the flat one is easy), the
group-theoretical, coordinate-independent interpretation of �G/K with the Casimir
operator of the Lie algebra of G.
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