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Abstract Simple-spike synchrony between Purkinje cells projecting to a common
neuron in the deep cerebellar nucleus is emerging as an important factor in the
encoding of output information from cerebellar cortex. A phenomenon known as
stochastic synchronization happens when uncoupled oscillators synchronize due to
correlated inputs. Stochastic synchronization is a viable mechanism through which
simple-spike synchrony could be generated, but it has received scarce attention, per-
haps because the presence of feedforward inhibition in the input to Purkinje cells
makes insights difficult. This paper presents a method to account for feedforward in-
hibition so the usual mathematical approaches to stochastic synchronization can be
applied. The method consists in finding a single Phase Response Curve, called the
equivalent PRC, that accounts for the effects of both excitatory inputs and delayed
feedforward inhibition from molecular layer interneurons. The results suggest that a
theory of stochastic synchronization for the case of feedforward inhibition may not
be necessary, since this case can be approximately reduced to the case of inputs char-
acterized by a single PRC. Moreover, feedforward inhibition could in many situations
increase the level of synchrony experienced by Purkinje cells.

Keywords Stochastic synchrony · Cerebellum · Purkinje cells · Phase-response
curve

1 Introduction

The cerebellum has a striking and relatively clear anatomical organization, which
has brought hope that it could be the first brain system whose function could be
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Fig. 1 Basic connection scheme of the cerebellum. Granule cells (GC) receive afferent and efferent in-
formation from the mossy fibers (MF), and convey that information through their parallel fibers (PF). The
PFs excite both Purkinje Cells (PC) and molecular layer interneurons (MLI); in turn the MLIs send axons
to the PCs. Purkinje cells constitute the only output of the cerebellar cortex, and they send axons that form
GABAergic inhibitory connections on the cells of the deep cerebellar nuclei (DCN). Neurons in the infe-
rior olivary nucleus (IO) send axons known as climbing fibers (CF) which form thousands of synapses on
PCs. Each PC receives excitation from a single CF. An action potential in a CF reliably causes an action
potential in the PCs it innervates; these action potentials are known as complex spikes and are easily distin-
guishable from simple spikes, which are action potentials tonically generated by the PC, and modulated by
the PFs. Not illustrated in the figure is the fact that the ascending axons (AA) of the granule cells can make
multiple connections on the dendritic arbor of PCs [4], the orientation of PC dendritic arbors perpendicular
to parallel fibers, or the organization in parasagittal modules [5]

understood in terms of its structure [1]. There is agreement that the cerebellum may
play a role in a variety of cognitive functions, in addition to its involvement in motor
control [2].

Figure 1 shows the basic anatomical organization of the cerebellar cortex. See [3]
or [1] for reviews. In order to designate specific types of neurons and axons in the
cerebellum the abbreviations of Fig. 1 will be used. Synapses from a source neu-
ron/axon type toward a target neuron type will be denoted by the abbreviation of
the source and target connected by a dash; e.g. PF-PC denotes the synapse between
parallel fibers and Purkinje cells.

Perhaps the most influential set of ideas regarding how the cerebellum works is
the Marr–Albus model [6, 7], which has led to a variety of models in which Purkinje
cells act like a perceptron whose learning signal comes from the climbing fibers (e.g.
[8–14]). The discovery of conjunctive Long-Term Depression (LTD) in the PF-PC
synapses [15–17] has added plausibility to these models. This type of LTD happens
when elevated simple-spike activity occurs concurrently with climbing fiber inputs,
weakening the synapses that caused the simple spikes, as hypothesized in the Albus
model. Over time, however, it has become increasingly clear that conjunctive LTD
alone may not explain learning in the cerebellum.

In most Marr–Albus models conjunctive LTD is the sole form of learning underly-
ing cerebellar function. However, several studies suggest that conjunctive LTD is an
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incomplete explanation. First, it has been shown that cerebellar motor learning can
take place in the absence of PF-PC LTD [18, 19]. Second, the correlation of Purk-
inje cell firing and muscle EMG can show both positive or negative correlations, with
positive correlations being the more prevalent [20, 21]. If the role of Purkinje cells
was to gate motor commands through just inhibition, negative correlations should be
the most common. Third, synaptic inhibition of Purkinje cells, whose complex spike-
elicited plasticity acts to counteract PF-PC conjunctive LTD, seems to play a role in
motor learning [22], which is ignored by models that rely exclusively on PF-PC LTD.
Moreover, other studies suggest that the timing of Purkinje cells’ spikes is important,
not only their firing rate. Tottering mutant (tg) mice have virtually the same firing
rate as that of wild types during spontaneous activity and in response to optokinetic
stimulation; nevertheless, tg mutants show abnormal compensatory eye movements
and severe ataxia [23].

When explaining how the timing of PC simple spikes affect their DCN targets,
and how different types of CF-mediated plasticity affect cerebellar output, it may be
important to pay attention to synchrony among Purkinje cells innervating the same
DCN cell. This synchrony can modulate the response of the target DCN cell [24–27].
It has been observed that there exists simple-spike synchrony among PCs separated
by several hundred micrometers, and that this synchrony seems to depend on affer-
ent input [28–32]. This synchrony does not seem to be fully explained by firing rate
comodulation or PC recurrent collaterals. Firing rate modulation may be insufficient
in this case, because there are cases where the modulation in synchrony is unrelated
to the modulation in firing rate [29, 30]. Purkinje cell recurrent collaterals tend to
generate oscillations whose coherence decays with distance [33], which is inconsis-
tent with the distances across which synchrony is found; moreover, it is unclear how
sensory inputs could modify the functional coupling of Purkinje cells [31] if this cou-
pling depended on a fast oscillatory regime. It is thus appropriate to study stochastic
synchronization as a candidate mechanism to explain how Purkinje cells can activate
synchronously.

The phenomenon of stochastic synchrony happens when several uncoupled oscil-
lators synchronize their phases when receiving correlated inputs [34, 35]. The intu-
ition behind this is that if the oscillators become entrained to the inputs then they will
respond similarly, thus acquiring similar phases. An interesting aspect of stochastic
synchronization is that the degree of synchrony can be controlled by the way that
the oscillators respond to inputs, which opens the possibility of its modulation by
plasticity mechanisms. If synchrony plays a role in shaping the response of cerebel-
lar cortex, it seems feasible that there are plasticity mechanisms capable of creating
synchrony.

One possible reason why stochastic synchrony has not been largely considered in
the case of Purkinje cells is the complication arising from the feedforward inhibition
in the parallel fibers. As shown in Fig. 1, PFs stimulate MLIs, which in turn stimulate
PCs. This inhibition has been observed as IPSPs arising shortly after EPSPs [36], and
seems to be fundamental in understanding the response of PCs [37, 38]. Although
considerable advances have been made in understanding stochastic synchrony [34,
35, 39–50], no study has explored how feedforward inhibition affects this process.

Exploring stochastic synchronization of Purkinje cells requires to represent their
activity in terms of their phase. A neuron that fires periodically can be understood as



Page 4 of 32 S. Verduzco-Flores

a dynamical system whose trajectory in phase space follows an asymptotically stable
limit cycle. Such a dynamical system can be described by a single variable called its
phase; the phase describes how far the current state is along the limit-cycle trajectory.
Perturbations to the system (such as synaptic inputs in the case of a neuron) can be
described by how they shift the phase of the system when they are received [51,
52]. The PRC (Phase Response Curve or Phase Resetting Curve) of the system plots
the shift in phase that an input produces as a function of the system’s phase when
the input is received. PRCs are a standard tool when understanding the behavior of
coupled oscillators, and have been extensively used to describe networks of neurons
[53, 54]. Also, as expected, PRCs are also a standard tool in analytical studies of
stochastic synchronization.

This paper presents a prospective method to understand stochastic synchronization
when feedforward inhibition is present by using an equivalent PRC. To model feed-
forward inhibition, the effect of feedforward excitation coming from the PFs to the
PCs is represented with an excitatory PRC, and the effect of feedforward inhibition
coming to the PCs from the MLIs is represented with an inhibitory PRC. For each
excitatory input, a corresponding inhibitory input arrives after a fixed propagation
delay. The equivalent PRC lumps the effect of both excitatory and delayed inhibitory
PRCs so we only have one type of inputs, and yet the response of the oscillator to a
spike train is similar to that when using both excitation and delayed feedforward inhi-
bition. Studies on stochastic synchronization have not dealt with systems where there
is feedforward inhibition, but the equivalent PRC allows their insights to be applied
in this case.

The equivalent PRC is defined in two different ways. The first definition obtains an
equivalent PRC such that the oscillator with feedforward inhibition, and the oscilla-
tor with the equivalent PRC have the same statistical distribution of their phases (this
is made precise in the text). The equivalent PRC from the second definition is such
that an oscillator using it and the oscillator with feedforward inhibition will have on
average similar phases at particular points in time when they receive the same inputs.
Monte Carlo simulations were performed to verify that oscillators using the equiv-
alent PRCs respond similarly to an oscillator with excitatory and delayed inhibitory
inputs. The results show that the oscillators with feedforward inhibition and those
with equivalent PRCs produce output spike trains with a significant level of coher-
ence, so if stochastic synchronization happens among oscillators with feedforward
inhibition, it will most likely happen in oscillators with the corresponding equivalent
PRCs. Furthermore, in most scenarios the effect of delayed feedforward inhibition
would be a synchronizing one.

2 Models

The equivalent PRCs mentioned above will be developed in the next three subsec-
tions. An equivalent PRC can only emulate the effects of excitation and delayed in-
hibition in an approximate manner, and there are several ways to define it. This paper
presents two different definitions for the equivalent PRC. The first subsection of this
section presents introductory material, and the next two subsections develop the two
different definitions of the equivalent PRC.
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2.1 Reduction to a Phase Equation, and the Stationary Phase PDF

This subsection briefly outlines some basic results from [51, 52] using notation based
on [39]. The results show how N dynamical systems oscillating in a limit cycle and
receiving impulsive inputs can be represented with N phase variables. PRCs, the
phase transition function, and the phase evolution equation are introduced for in-
dividual oscillators, which allows one to find an equation for their stationary phase
Probability Density Function (PDF). If we measure the phase of the oscillator at some
random point in time, the phase PDF can provide the probability that the sampled
phase is in a particular interval.

Consider N oscillators whose dynamics can be expressed as

Ẋi (t) = F
(
Xi (t)

) + Ii (t) (1)

for i = 1, . . . ,N , where the vector Xi (t) denotes the state of oscillator i at time t , F is
the function describing the dynamics of each oscillator, and Ii (t) represents external
random inputs consisting of impulsive displacements in phase space. We assume that
the oscillators have an asymptotically stable limit cycle X0(t). The impulsive inputs
are given by

Ii (t) =
∞∑

n=1

ei
nδ

(
t − t in

)
, (2)

where t in represents the time of the nth input to the ith oscillator, and ei
n provides

the direction of the shift in phase space caused by the corresponding input, so that
at time t in the oscillator i receives an immediate shift in phase space from point Xi

to point Xi + ei
n. Since our oscillator represents a neuron, the value of ei

n should be
determined by the synapse that receives the input. Furthermore, it is assumed that the
inputs will not take the system outside the basin of attraction of X0(t). The inputs
that will be considered in this paper behave as Poisson random point processes. If
an input has a mean firing rate r , then its interimpulse interval T has an exponential
distribution:

P(T ) = re−rT , (3)

where P(T ) is the probability density function for T . Although Poisson point pro-
cesses constitute a reasonable null hypothesis regarding the statistical structure of
inputs to Purkinje cells, this hypothesis may not always be valid [55].

We define a phase variable θ along the limit cycle so that θ(t) = θ(X0(t)), θ has a
constant angular velocity ω, and its range is [0,1). This means that in the absence of
external inputs we will have

θ̇i (t) = ωi. (4)

In the first part of the results section we work with systems where all the oscillators
have the same angular frequency ω. The phase of points not directly on X0 is defined
through the use of isochrons, which are the set of points that asymptotically converge
to a particular trajectory X∗

0 in the periodic orbit. If the points on an isochron converge
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to the trajectory X∗
0, then their phase at time t is θ(X∗

0(t)). For all functions in this
paper whose arguments include a phase value, I assume that this phase value is taken
modulo 1; e.g. phases 0, 1 are the same phase, and the same can be said of phases
−0.1, 0.9, and 2.9. When an oscillator has phase θ at time t , and an input shifts its
state at that moment by an amount e then this state moves to a new isochron, with the
consequent shift in phase denoted by G(θ, e). We define the phase transition function
as

F(θ, e) = θ + G(θ, e), (5)

with its output taken modulo 1. If the phase of an oscillator at time tn right before its
nth input is θn, then the phase right after the input can be written as φn ≡ F(θn, en) =
θn +G(θn, en). The evolution equation of the phase is an iterative equation describing
the phase of the oscillator at the time when the (n + 1)th input arrives:

θn+1 = ωTn + F(θn, en) = θn + ωTn + G(θn, en), (6)

where Tn = tn+1 − tn. The dynamics of the phase in continuous time are described
by the equation

θ̇ (t) = ω +
∞∑

n=1

G(θn, en)δ(t − tn). (7)

Given that the input times tn and the input effects en are random variables, so are the
phases θn. The Probability Density Function (PDF) of the phase θ at time step n is
denoted ρ(θ,n). This PDF can be described by the following generalized Frobenius–
Perron equation [56]:

ρ(θ,n + 1) =
∫ 1

0
W(θ − φ)

∫
Q(e)

∫ 1

0
δ
(
φ − F(ψ, e)

)
ρ(ψ,n)dψ dedφ. (8)

The term W(θ − φ) is a density function for the input interimpulse interval Tn ex-
pressed as a periodized change of phase with magnitude θ − φ (see Eq. (9)). Q(e) is
the probability density function for e. Intuitively, the two innermost integrals produce
the expected phase after the nth input with ψ being the starting phase; this expected
phase, represented by the integration variable φ is taken in the outermost integral in
order to calculate the probability that during the interspike interval the phase transi-
tions from φ to θ . The transition kernel W(θ) can be explicitly obtained in the case
of Poisson inputs, considering that its arguments are taken to be modulo 1:

W(θ) = 1

ω

∞∑

j=0

P

(
θ + j

ω

)
= r

ω

∞∑

j=0

e−(r/ω)θe−(r/ω)j

= Ae−Aθ

1 − e−A
, (9)
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with A = r/ω. In the limit of a large number of transitions the PDFs ρ(θ,n) will
reach a stationary state ρ(θ) obeying:

ρ(θ) =
∫ 1

0
W(θ − φ)

∫
Q(e)

∫ 1

0
δ
(
φ − F(ψ, e)

)
ρ(ψ)dψ dedφ. (10)

I refer to this equation as the phase PDF equation.

2.2 The Equivalent PRC as a Function of the Phase PDF

The first idea to obtain an equivalent PRC, denoted in this subsection as Δ, is to take
the phase PDF ρ(θ) produced by the excitatory and inhibitory inputs, and define Δ

so its phase PDF matches ρ(θ). In practice, the formulas developed in this section
allow one to take a numerically or experimentally measured phase PDF ρ(θ), and
obtain a single PRC Δ so that with a single Poisson input, Δ produces a phase PDF
similar to ρ(θ). The formulas from this section are tested by numerically obtaining
the phase PDF created by an oscillator with feedforward inhibition, and comparing it
with the phase PDF created by an oscillator using the equivalent PRC.

I start by assuming a single oscillator and a single Poisson process that pro-
duces excitatory inputs. Feedforward inhibition is modeled by assuming that for
each excitatory input at time tn there will be a corresponding inhibitory input at
time tn + d , where d represents the feedforward delay. All excitatory inputs will pro-
duce a shift in phase space eexc, whereas inhibitory inputs produce a shift einh. The
excitatory and inhibitory PRCs are defined, respectively, as Δexc(θ) = G(θ, eexc),
Δinh(θ) = G(θ, einh), where the function G maps shifts in phase space to shifts in
phase. An oscillator using instead the equivalent PRC will present a shift in phase
Δ(θ) at the times when the excitatory inputs arrive.

I assume a perturbation from the system where the PRC is zero for all phases
and the phase PDF is uniform. Furthermore, the perturbation is small enough so that
the phase transition function F is still invertible. Let ρ(θ) = 1 + ερ1(θ), where ε is
a scalar that determines the size of the perturbation. Expand the equivalent PRC as
Δ(θ) = εΔ1(θ)+ ε2Δ2(θ)+O(ε3) (using big Oh notation), so that as ε goes to zero
we recover the unperturbed system. Before substituting these terms, the phase PDF
equation (10) is simplified in three steps:

1. The middle integral disappears. There is only one type of input, so the PDF Q is
a delta function that can be integrated out.

2. We perform the innermost integral using the basic formula for performing change
of variables with Dirac δ functions. If g(x) is a real function with a root at x0 the
formula is δ(g(x)) = δ(x−x0)|g′(x0)| .

3. We substitute the transition kernel W for its expression in Eq. (9).

This yields

ρ(θ) =
∫ 1

0

Ae−A(θ−φ)

1 − e−A

ρ(F−1(φ))

|F ′(F−1(φ))| dφ. (11)
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Notice that the argument (θ − φ) of W is still taken modulo 1, so we need separate
integrals for the cases when this argument is positive and negative:

ρ(θ) = Ae−Aθ

1 − e−A

[∫ θ

0
eAφ ρ(F−1(φ))

|F ′(F−1(φ))| dφ

+ e−A

∫ 1

θ

eAφ ρ(F−1(φ))

|F ′(F−1(φ))| dφ

]
. (12)

We now assume F(φ) = φ + εΔ1(φ) + ε2Δ2(φ) + O(ε3). Let F−1(φ) = φ +
εψ1(φ) + ε2ψ2(φ) + O(ε3). Substituting these two previous expressions in the iden-
tity F(F−1(φ)) = φ we obtain

ψ1 = −Δ1,

ψ2 = −Δ2 + Δ1Δ
′
1,

F−1(φ) = φ − εΔ1 + ε2(Δ1Δ
′
1 − Δ2

) + O
(
ε3),

where the argument has been omitted in some functions for brevity of notation. Using
this expression for F−1 we find

ρ(F−1(φ))

|F ′(F−1(φ))| = 1 + ερ1 − ε2Δ1ρ
′
1 + O(ε3)

1 + εΔ′
1 − ε2(Δ′

2 − Δ1Δ
′′
1) + O(ε3)

,

where we use the fact that since F is invertible, F ′ > 0. Using long division to elim-
inate the quotient and substituting into (12) yields

1 + ερ1(θ) = Ae−Aθ

1 − e−A

(∫ θ

0
eAφ

[
1 + ε

(
ρ1 − Δ′

1

)

− ε2(Δ1ρ
′
1 − Δ1Δ

′′
1 + Δ′

1ρ1 − (
Δ′

1

)2 + Δ′
2

)]
dφ

+ e−A

∫ 1

θ

eAφ
[
1 + ε

(
ρ1 − Δ′

1

)

− ε2(Δ1ρ
′
1 − Δ1Δ

′′
1 + Δ′

1ρ1 − (
Δ′

1

)2 + Δ′
2

)]
dφ

)
. (13)

The terms in this equation can be grouped according to the power of ε that they
contain. The zeroth-order terms yield an identity corresponding to the unperturbed
case. The equation corresponding to the first power of ε is

ρ1(θ) = Ae−Aθ

1 − e−A

(∫ θ

0
eAφ

(
ρ1 − Δ′

1

)
dφ + e−A

∫ 1

θ

eAφ
(
ρ1 − Δ′

1

)
dφ

)
. (14)

This equation can be differentiated with respect to θ , and in the resulting equation we
can solve for Δ′

1 to obtain

Δ′
1(θ) = − 1

A
ρ′

1(θ).
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Integrating this provides an expression to evaluate Δ1:

Δ1(θ) = 1

A

(
C1 − ρ1(θ)

)
, (15)

where C1 is an integration constant. Notice that equation (14) only provides con-
straints for the derivative of Δ1, so it cannot be used to determine the value of C1,
reflecting the fact that oscillators with different frequencies can have the same sta-
tionary phase PDF. Since the quantity εC1/A becomes a constant term in Δ, it adds
an extra amount of advance or retardation to the phase whenever an input is received,
and we can adjust its value so that the mean firing rate of the oscillator with two PRCs
matches that of the oscillator with the equivalent PRC.

The equation corresponding to ε2 in Eq. (13) is

∫ θ

0
eAφ

[
Δ1

(
ρ′

1 − Δ′′
1

) + Δ′
1

(
ρ1 − Δ′

1

) + Δ′
2

]
dφ

= −e−A

∫ 1

θ

eAφ
[
Δ1

(
ρ′

1 − Δ′′
1

) + Δ′
1

(
ρ1 − Δ′

1

) + Δ′
2

]
dφ. (16)

As in the previous case we can differentiate with respect to θ and solve for Δ′
2, which

gives

Δ′
2 = 1

A

[
ρ1ρ

′
1 − C1ρ

′
1 − 1

A

(
C1ρ

′′
1 + ρ1ρ

′′
1

) + ρ1ρ
′
1 + 1

A

(
ρ′

1

)2
]
. (17)

We can use the integration by parts formula
∫

ρ1ρ
′′
1 = ρ1ρ

′
1 − ∫

(ρ′
1)

2 to find the
antiderivative of this expression, which is

Δ2 = 1

A

[
ρ1

(
ρ1 + ρ′

1

A
− C1

)
− C1

A
ρ′

1 + C2

]
, (18)

where C2 is an integration constant. Alternatively, we can avoid having another inte-
gration constant by finding the definite integral of Eq. (17) from 0 to θ , obtaining

Δ2 = 1

A

[
ρ1

(
ρ1 + ρ′

1

A
− C1

)
− ρ1(0)

(
ρ1(0) + ρ′

1(0)

A
− C1

)

− C1

A

(
ρ′

1 − ρ′
1(0)

)]
. (19)

Equations (15) and (19) provide the relationship between a phase PDF, and the
PRC that lead to it. Notice that these results are consistent with those of [43], where a
perturbative expansion is used to go from the PRC to the phase PDF, instead of going
from the phase PDF to the PRC, as done here.

Monte Carlo simulations were performed in order to verify that an oscillator using
the Δ approximation from the formulas above would respond similarly to an oscil-
lator using Δexc and Δinh when provided with the same input, which consisted of
a Poisson spike train with a frequency r = 600 Hz. This high rate comes from the
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assumption that the input comes from many homogeneous synapses receiving spike
trains at a lower rate. Notice that the superposition of Poisson spike trains is also a
Poisson spike train, whose rate is the sum of the rates for the superposed trains. The
case of heterogeneous synapses will be treated further ahead. It is assumed that when
the oscillator’s phase transitions from 1 to 0 a spike is emitted; phase is not allowed
to go from 0 to 1 due to inhibition. The shape of Δexc was generated as a scaled
version of the function 1 − cos(2πx), and Δinh is a scaled version of cos(2πx) − 1,
corresponding to type I PRCs [57]. The general shape of Δexc is justified by the
measurements that have been taken of Purkinje cells’ PRCs at high frequencies [58],
indicating that this is a positive, unimodal, type I PRC. The shape of Δinh is justified
by noticing that stimulation of MLIs tends to consistently induce an increase in the
latency of the next spike in Purkinje cells [36, 59]. Although the specific shapes of
Δexc and Δinh used here may be somewhat different from that in real cells, the for-
mulas in this paper can nevertheless be applied when the excitatory and inhibitory
PRCs have any smooth shape. The phase PDF required in Eqs. (15) and (19) were
obtained by sampling the phase whenever an input arrived. The phase histogram cor-
responding to these samples was normalized and smoothed with the Savitzky–Golay
method. The derivative of the phase PDF was obtained using a 2 point rule with the
smoothed phase PDF histogram. The constant C1 of Eq. (15) was adjusted for each
simulation up to two decimal places so that the firing rates of the oscillators with one
and two PRCs would match for an input rate of 600 Hz.

The derivation of the formulas for Δ requires that the amplitudes aexc of Δexc

and ainh of Δinh be moderate. The performance of the formulas gradually deterio-
rates with larger amplitudes. The values of aexc and ainh were chosen to be near the
limit where the agreement obtained from using Δ is still acceptable. The feedforward
delay d is taken to be 5 ms, which is somewhat larger than usual estimations of 1
or 2 ms. This long delay is used to test the limitations of the approaches used here
to obtain an equivalent PRC, particularly the ones to be presented in the next sub-
section. Considering that in the absence of inputs the oscillators have a frequency of
50 Hz, a delay of 5 ms constitutes one quarter of the period, which is a considerable
interval.

Figure 2 presents the results of substituting the two PRCs Δexc and Δinh by the
equivalent PRC Δ. Simulations were performed for three cases, each corresponding
to a column in Fig. 2. The first case is when aexc < ainh, the second case when aexc =
ainh, and the third case is for aexc > ainh. Each of these three cases produces a different
shape for the equivalent PRC (panel b). Panel a shows that there is a good match
between the stationary phase PDFs, as would be expected since the formulas for Δ

were derived with this result in mind. The PDF curves come from 400 seconds of
simulation, which permitted on average 240000 sample points.

It seems reasonable that the output spikes of the oscillators with one and two PRCs
would come at similar times, since they have similar rates and phase PDFs. This is
what is shown in panel c of Fig. 2, which shows the cross-correlograms of the out-
put spike trains for both oscillators. The height of each bin in the cross-correlograms
can be interpreted as the fraction of the spikes in the oscillator with two PRCs that
coincide with a spike of the oscillator with one PRC. For comparison purposes sim-



Journal of Mathematical Neuroscience  (2015) 5:13 Page 11 of 32

Fig. 2 Comparison of oscillators with two and one PRCs when matching phase PDFs. Simulations for
three different amplitude combinations of Δexc and Δinh. For all rows, the figures on the left correspond
to aexc = 1/30, ainh = 2/30, figures on the middle correspond to aexc = 2/30, ainh = 2/30, and figures on
the right correspond to aexc = 2/30, ainh = 1/30. The input rate for all simulations in a–d was r = 600 Hz.
a: Stationary phase PDFs for oscillators with feedforward inhibition (red) and with their equivalent PRC
(blue). b: PRCs used in the simulation. Δexc (black), Δinh (red), Δ (blue). c: Cross-correlograms of the
oscillators’ output spike trains with one and two PRCs. The vertical axis corresponds to normalized spike
count per time bin, and the horizontal axis to time shift. Normalization was done by dividing the bin spike
counts between the total number of spikes in the output of the oscillator with two PRCs. d: Cross-correl-
ograms of the output spike train of the oscillator with two PRCs and a periodic spike train with the same
mean frequency. Normalization was done as in c. e: Firing rate response of the oscillators with two (red)
and one (blue) PRCs to five different levels of input rates. Input rates range from 240 Hz to 1200 Hz in
constant increments of 240 Hz

ilar cross-correlograms were produced in panel d, between the spike trains of the
oscillators with two PRCs and a spike train with the same frequency and constant
interspike intervals. It should be remembered that the parameter C1 was adjusted so
that both oscillators would have the same frequency, but from panel d it is apparent
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that the peaks in the top cross-correlograms are not just a product of periodicity in
the signals.

Finally, I compared the response of both oscillators when the input firing rates
were changed through the simulation. As can be seen in panel e, slight inaccuracies in
the calculation of the C1 parameter were amplified for larger firing rates. Moreover,
in the case of balanced excitatory and inhibitory amplitudes the output firing rate
tended to increase for larger input firing rates. This effect is amplified for larger PRC
amplitudes, reflecting the fact that if the phase shift of Δexc is large, the oscillator
will spike before the inhibition arrives.

So far it has been assumed that all inputs of the same type (excitatory or inhibitory)
will produce the same effect on the oscillator. On the other hand, a real neuron tends to
have heterogeneous synapses. One way to represent this is to have separate excitatory
and inhibitory PRCs for each input, representing different synapses. If an oscillator
has Nsyn different inputs, we will have PRCs Δi

exc, Δi
inh, for i = 1, . . . ,Nsyn. In this

case, for each excitatory/inhibitory pair we may create an equivalent PRC Δi . One
approach to create Δi is to consider the stationary phase PDF ρi and output firing rate
that would be produced if the inputs with Δi

exc, Δi
inh were considered in isolation.

The formulas above could then be used to create Δi . Instead of doing this, in the
next subsection I develop a different way of obtaining Δi , based on a more direct
calculation of the phase-shifting effects produced by feedforward inhibition.

2.3 Obtaining an Equivalent PRC Using the Expected Inhibition

For the purposes of this paper, the ideal result of an equivalent PRC would be to have
identical output spike trains for the oscillator with feedforward inhibition, and for the
oscillator using the equivalent PRC. This would cause all the effects of stochastic
synchronization to be the same for both oscillators. The method presented above to
obtain Δ is based on creating an oscillator with a single PRC that has the same phase
PDF as the one with two PRCs. However, having the same phase PDF and firing rate
as the oscillator with feedforward inhibition does not guarantee that the output spike
trains of the two oscillators will be the same. Indeed, given a phase PDF and a firing
rate, there are many spike trains satisfying these two conditions. The equivalent PRC
Δ defined above is therefore not necessarily optimal, and this raises the question on
whether we can find an alternative definition for an equivalent PRC.

To obtain an equivalent PRC we could take a more direct approach, again trying
to ensure that the phases of the oscillators with one and two PRCs are often the same.
To develop this idea, let us consider two oscillators Oei and Oeq. Oei experiences
delayed feedforward inhibition, with excitatory and inhibitory PRCs Δexc and Δinh.
On the other hand Oeq has only an equivalent PRC Δeq, and receives its inputs at
the times when Oei receives excitatory spikes. At time t we can denote the phase
of Oei by φ(t), and the phase of Oeq by φeq(t). Let us assume that at time t0 an
excitatory input is received by Oei, and the corresponding inhibitory input is received
at time t0 + d . The phase of Oei right before the inhibitory input at time t0 + d can be
denoted as φ(t0 + d), and the phase right after the inhibitory input as φ+(t0 + d), so
that φ+(t0 +d) = φ(t0 +d)+Δinh(φ(t0 +d)). We could define Δeq with the aim that
the input at time t0 creates a phase shift in φeq such that φeq(t0 + d) = φ+(t0 + d).
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A brief consideration of this goal shows that it is impossible to achieve in an ex-
act manner when the inputs are random. In the period between t0 and t0 + d there
may be several inputs shifting the phase φ, and the magnitude of the inhibitory
shift Δinh(φ(t0 + d)) depends on what the phase is in that moment. In other words,
Δinh(φ(t0 + d)) is a random variable, and Δeq must shift the phase φeq(t0) with-
out knowing its value. Another important consideration about this goal is that the
equivalent PRC that we are trying to obtain will generate a phase PDF that should be
somewhat different from the one arising in the oscillator with two PRCs. This comes
from the fact that at time t0 the phase shifts from Δeq and Δexc will be different, so
the time spent in the phases near φ(t0) should be different.

The approach taken in this subsection to obtain Δeq is based on the following idea:

Δeq(φ) ≡ Δexc(φ) + E
[
Δinh

(
φ(t0 + d)

)]
, (20)

where E[Δinh(φ(t0 + d))] is the expected value of the inhibitory shift that will occur
at time t0 + d . Obtaining this expected value is not trivial, so this will be done by
a combination of analytical and numerical methods in two stages. The first stage
provides a very simple version of Δeq, which assumes no inputs between times t0
and t0 + d . The second stage goes through the trouble of finding an approximation
to E[Δinh(φ(t0 + d))] given Poisson inputs, yielding a better version of Δeq, which
approximates Eq. (20). As it turns out, our work is not ready here; this is only the
second of five Δeq versions in this subsection.

The third version of Δeq is required because the equivalent PRC in Eq. (20) is
insufficient to ensure that on average φ+(t0 + d) = φeq(t0 + d). Although Eq. (20)
ensures that the phase shifts resulting from the inputs at t0 and at t0 + d in Oei are on
average the same as the phase shift at t0 in Oeq, we still have to consider the phase
shifts from inputs between t0 and t0 + d . During this period the inputs will shift the
phase of Oei according to Δexc and Δinh; on the other hand Oeq will shift its phase
according to Δeq at the time of excitatory inputs, resulting in different values for
φ+(t0 + d) and φeq(t0 + d). An iterative numerical method will thus be introduced to
solve this deficiency, resulting in the third version of Δeq.

The fourth version of Δeq will be the equivalent of the second version (based on
Eq. (20)), but for the case of heterogeneous inputs (e.g. many different inputs to the
oscillator, each with its own excitatory and inhibitory PRCs). The fifth version of Δeq
will be the analog of the third version for the case of heterogeneous inputs.

We now begin obtaining the five versions of Δeq.

2.3.1 First Δeq Version

Let us first consider the case of an oscillator with a single Poisson input and feedfor-
ward inhibition. As before, it should be remembered that all phases are interpreted to
be modulo 1. If an excitatory input arrives at time tn when the phase is φn, then the
phase will immediately experience a shift Δexc(φn). At time tn + d the phase will be
(φn +Δexc(φn)+ωd), where ω is the angular frequency of the oscillator. At that mo-
ment the inhibitory input will arrive, causing a phase shift Δinh(φn +Δexc(φn)+ωd).
A simple way to define Δeq for this case is

Δeq(φ) ≡ Δexc(φ) + Δinh
(
φ + Δexc(φ) + ωd

)
. (21)
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This constitutes the first of the five versions for the equivalent PRC. One difficulty
that quickly becomes apparent with it, is that in the time interval between tn and
tn + d there will usually be other inputs arriving at the oscillator, so that the phase
when the inhibitory input arrives will generally not be (φ + Δexc(φ) + ωd). Indeed,
this approach only produces reasonable results when inputs are unlikely to arrive
between tn and tn + d , which could happen when the value of d is very small.

2.3.2 Second Δeq Version

One way to improve our equivalent PRC is to substitute Δinh(φ + Δexc(φ) + ωd)

by the expected value of the inhibitory shift given the phase when the excitatory shift
happened, as was done in Eq. (20). Let θ(t) be the function that gives the phase of the
oscillator at time t . Assume that an excitatory input arrives at time t0, when the phase
is φ0, meaning φ0 = θ(t0). Furthermore, assume that between the times t0 and t0 + d

there arrive ke excitatory inputs at the times tej , j = 1, . . . , ke; and ki inhibitory inputs

at the times t im, m = 1, . . . , ki . For these particular initial phase and inputs define the
phase deviation as

D =
ke∑

j=1

Δexc
(
θ
(
tej

)) +
ki∑

m=1

Δinh
(
θ
(
t im

))
. (22)

D is a random variable that tells us how much the phase will change due to inputs
during the interval between t0 and t0 + d . For notational convenience let us define
a ≡ φ + Δexc(φ), and b ≡ φ + Δexc(φ) + ωd . Our goal is to calculate the expected
value of Δinh(φ + Δexc(φ) + ωd + D), which is denoted by E(Δinh(b + D)|φ). This
notation indicates the expected value of the inhibitory shift given that the excitatory
shift happened when the phase was φ. The equivalent PRC can then be defined as:

Δeq(φ) ≡ Δexc(φ) + E
(
Δinh(b + D)|φ)

. (23)

This is the second version of the equivalent PRC in this subsection. The following
paragraphs deal with finding a practical way to calculate E(Δinh(b + D)|φ), cul-
minating with Eq. (27), which can be used in conjunction to Eq. (24) to obtain an
approximation for this expected value.

To calculate E(Δinh(b + D)|φ), we can start by calculating this expected value
when we know exactly how many excitatory and inhibitory inputs arrived during the
delay period. Assume that the inputs are independent Poisson point processes, with
rate re for the excitatory ones, and rate ri for the inhibitory ones. Using the PDF for
the Poisson distribution we can obtain

E
(
Δinh(b + D)|φ) =

∞∑

ke=0

∞∑

ki=0

[
(red)ke

ke! e−red

][
(rid)ki

ki ! e−rid

]

× E
(
Δinh(b + D)|φ, ke, ki

)
, (24)

where E(Δinh(b+D)|φ, ke, ki) is the expected value of the inhibitory shift given that
there were ke excitatory and ki inhibitory inputs during the delay period, making no
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assumptions about the order in which they arrived. The assumption of independence
between excitatory and inhibitory inputs is based on the fact that we are restricted to
a time interval of length d , during which none of the inhibitory inputs is the result
of feedforward inhibition from one of the excitatory inputs. Notice that the first two
factors decay exponentially, so in practice it is only necessary to use a moderate
number of terms.

The strategy to obtain E(Δinh(b + D)|φ, ke, ki) is to first find the PDF of D, so
we can then find the expected value through integration. This calculation can become
involved, so I will first focus on the simpler case when there is only a single exci-
tatory input and no inhibitory inputs during the delay interval. Under these circum-
stances, if the initial excitatory stimulus arrived at phase φ, the PDF of D is denoted
by p(D|φ, ke = 1, ki = 0). What follows is some formal reasoning to arrive at an
expression for E(Δinh(b + D)|a, ke = 1, ki = 0). The reader may just go directly to
Eq. (25), which is intuitive enough.

Let B denote the Borel sets in the interval [0, aexc], where aexc is the largest value
on the range of Δexc, and define a function I e : B → B that maps each set A ∈ B
to its preimage under Δexc. Given the fact that there was only a single input coming
from the Poisson process in the phase interval [a, b], I make the assumption that
the input could have arrived with equal probability at any phase between a and b.
This implies that for an interval H in [0, aexc] the probability of D ∈ H is given by
λ(I e(H) ∩ [a, b])/λ([a, b]), where λ is the standard Lebesgue measure for the real
numbers. Put into words, the probability that the phase advance D produced by the
sole excitatory input is in the set H is the probability of the phases that are mapped
into H by Δexc.

Notice that λ([a, b]) = ωd . If we define a measure μ(H) = λ(I e(H)∩[a, b])/ωd ,
then the PDF of D will be the Radon–Nikodym derivative of μ with respect to λ.
A practical way to calculate this PDF starts by partitioning the interval [0, aexc]
into subintervals were Δexc is invertible or constant, which should be possible for
any reasonable PRC. If Δexc is invertible in the interval [α,β], and x = Δexc(α),
y = Δexc(β), then

μ
([x, y]) = λ

(
I e

([x, y] ∩ [a, b]))/ωd

= |Δ−1
exc(y) − Δ−1

exc(x)|
ωd

= 1

ωd

∫

[Δ−1
exc(y),Δ−1

exc(x)]
dλ.

The change of variables formula shows that
∫

[Δ−1
exc(y),Δ−1

exc(x)]
dλ =

∫ y

x

∣∣∣∣
d

ds
Δ−1

exc(s)

∣∣∣∣ds =
∫ y

x

1

|Δ′
exc(Δ

−1
exc(s))|

ds.

If Δ′
exc 	= 0 in [α,β] in sets other than those of zero measure we can write

P
(
D ∈ [x, y]|φ, ke = 1, ki = 0

) = 1

ωd

∫ y

x

∣∣Δ′
exc

(
Δ−1

exc(s)
)∣∣−1

ds,

which means that |Δ′
exc(Δ

−1
exc(s))|−1/ωd is the PDF of D. If we have an interval

where Δexc is equal to a constant c, the integral becomes undefined due to a zero
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in the denominator. In this case we have P(D = c|φ, ke = 1, ki = 0) = μ(c), and
finding the expected value of the inhibition is trivial. For invertible intervals we can
now write the expected value of the inhibition as

E
(
Δinh(β + D)|α, ke = 1, ki = 0

) = 1

ωd

∫ y

x

∣∣Δ′
exc

(
Δ−1

exc(s)
)∣∣−1

Δinh(β + s) ds.

Using a change of variables this becomes the more intuitive formula

E
(
Δinh(β + D)|α, ke = 1, ki = 0

) = 1

ωd

∫ β

α

Δinh
(
β + Δexc(s)

)
ds.

Notice that after the change of variables the integral can handle the case where Δexc
is constant. Considering that the value of an integral on the interval [a, b] is the sum
of the integral on the subintervals [α,β] where Δexc is invertible or constant, we can
now write

E
(
Δinh(b + D)|a, ke = 1, ki = 0

) = 1

ωd

∫ b

a

Δinh
(
b + Δexc(s)

)
ds. (25)

In a similar manner it can be shown that

E
(
Δinh(b + D)|a, ke = 0, ki = 1

) = 1

ωd

∫ b

a

Δinh
(
b + Δinh(s)

)
ds.

The complexity of these equations increases once we have more than one input, and
once we have both excitatory and inhibitory inputs, because the order in which they
arrive is important. In this case the expected value for the inhibition comes from
averaging over all the possible phases when the first and second stimuli could have
arrived, and over the possible orders for the arrival of stimuli. To illustrate this, let us
look at the formula for ke = 1, ki = 1

E
(
Δinh(b + D)|φ, ke = 1, ki = 1

)

= 1

2ωd

[∫ b

a

1

b − ψ1

∫ b+Δexc(ψ1)

ψ1+Δexc(ψ1)

Δinh
(
b + Δexc(ψ1) + Δinh(ψ2)

)
dψ2 dψ1

+
∫ b

a

1

b − ψ1

∫ b+Δinh(ψ1)

ψ1+Δinh(ψ1)

Δinh
(
b + Δinh(ψ1) + Δexc(ψ2)

)
dψ2 dψ1

]
.

Intuitively, the integration variable ψ1 stands for the phase when the first input ar-
rived, and ψ2 for the phase when the second input arrived. The first pair of nested
integrals are for the case when the excitatory input happened first, and the second
ones for the case when the inhibitory input was the first to arrive. The innermost
integrals obtain the average inhibition given that the first stimulus arrived at phase
ψ1, and in the limit when ψ1 → b, they converge to the Δinh expression with ψ1
substituted by b, and ψ2 substituted by b + Δexc/inh(b).

In order to write the formula for the case with arbitrary values for ke and ki some
preliminary definitions are required. Notice that if we have ke excitatory and ki in-
hibitory inputs, there are C

ke+ki

ke
different input sequences according to whether the
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j th input was excitatory or inhibitory. Let us index those sequences and denote them
by σi . In other words, we create C

ke+ki

ke
functions σi : {1,2, . . . , ki + ke} → {−1,1},

defined by

σi(j) =
{

1, if the j th element of the ith sequence is excitatory;
−1, if the j th element of the ith sequence is inhibitory.

Now define the function Δmix : [0,1] × {1, . . . ,C
ke+ki

ke
} × {1, . . . , ke + ki} → R

(where R stands for the real numbers) by

Δmix(φ, i, j) =
{

Δexc(φ), if σi(j) = 1;
Δinh(φ), if σi(j) = −1.

The general formula can now be written as

E
(
Δinh(b + D)|φ, ke, ki

)

= (
ωdC

ke+ki

ke

)−1

×
C

ke+ki
ke∑

i=1

[∫ b

a

dψ1
1

b − ψ1

∫ b+Δmix(ψ1,i,1)

ψ1+Δmix(ψ1,i,1)

dψ2
1

b + Δmix(ψ1, i,1) − ψ2
· · ·

×
∫ b+∑ke+ki−1

m=1 Δmix(ψm,i,m)

ψ(ke+ki−1)+Δmix(ψ(ke+ki−1),i,ke+ki−1)

dψ(ke+ki )

× Δinh

(

b +
ke+ki∑

j=1

Δmix(ψj , i, j)

)]

. (26)

For this equation I have used the convention of writing the differential sign next to its
corresponding integration sign.

Although Eq. (26) expresses the expected inhibition values that we want to cal-
culate, its complexity makes it virtually useless for practical purposes. Fortunately, a
simple assumption can simplify this expression. Assume that for each input sequence,
the inputs happen at regular time intervals (the time periods between any two inputs
are equal). It is simple to calculate the expected value of the inhibition for this case.
If we have K = ke + ki inputs, define γ = ωd/(K + 1), and for i = 1, . . . ,C

ke+ki

ke
let

θi
0 = a,

θ i
1 = θi

0 + γ + Δmix
(
θi

0 + γ, i,1
)
,

θ i
2 = θi

1 + γ + Δmix
(
θi

1 + γ, i,2
)
,

...

θ i
K = θi

K−1 + γ + Δmix
(
θi
K−1 + γ, i,K

)
.
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We then have

E
(
Δinh(b + D)|φ, ke, ki,RT

) = 1

C
ke+ki

ke

C
ke+ki
ke∑

i=1

Δinh
(
θi
K + γ

)
, (27)

where RT stands for “Regular Times,” meaning that the inputs arrive at regular time
intervals. For a smooth function Δinh and relatively small values of the feedforward
delay d we will have

E
(
Δinh(b + D)

∣∣φ, ke, ki,RT
) ≈ E

(
Δinh(b + D)

∣∣φ, ke, ki

)
.

2.3.3 Third Δeq Version

Even if we now can obtain a good approximation to the expected phase shift caused
by feedforward inhibition, the equivalent PRC from Eq. (23) may still not achieve the
goal of reaching, on average, the same phase as the oscillator with two PRCs after
the feedforward delay. To make this explicit, assume that the function θ(t) provides
the phase of the oscillator with feedforward inhibition at time t , just as it is described
for Eq. (22), and let θeq(t) give the phase of an oscillator using the corresponding
equivalent PRC from Eq. (23) when the input times are the same. Using an equivalent
PRC instead of Δexc and Δinh causes the phase deviation of Eq. (22) to become

Deq =
ke∑

j=1

Δeq
(
θeq

(
tej

))
.

In general, D 	= Deq during the delay period; we can calculate the expected phase
difference that this will cause right after the feedforward delay. If an initial excitatory
input arrives at time t when the phase is φ, the expected value of the phase for the
oscillator with two PRCs at time t + d right after the feedforward inhibition is

b + E
(
Δinh(b + D)|φ) + E(D|φ).

On the other hand, the expected value of the phase for the oscillator with one PRC at
time t + d is

b + E
(
Δinh(b + D)|φ) + E(Deq|φ).

Subtracting the previous two expressions gives us the expected value of the phase
difference between the two oscillators at time t +d given that there was an excitatory
input at time t when the phase was φ, denoted by ξ(φ):

ξ(φ) = E(D|φ) − E(Deq|φ). (28)

If we are capable of calculating E(D|φ) and E(Deq|φ), then we can use ξ(φ) in
order to create an equivalent PRC that produces a smaller value of ξ(φ). A simple
algorithm for doing this is as follows. Let M be an integer, and ε a small real number.
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Define Δ
(0)
eq as the equivalent PRC from Eq. (23), and D0

eq as its corresponding phase
deviation.

for i = 1 to M do

ξ (i)(φ) = E(D|φ) − E(D(i−1)
eq |φ)

Δ(i)
eq (φ) = Δ(i−1)

eq (φ) + εξ (i)(φ)

end for

At each step in this algorithm the functions ξ (i) and Δ
(i)
eq are calculated for all the

values of φ, so it is similar to gradient descent performed for a whole function. The
resulting PRC Δ

(M)
eq constitutes the third version of an equivalent PRC we have ob-

tained, and can already provide very good results for oscillators with a single input,
or with homogeneous excitatory and inhibitory PRCs.

2.3.4 Fourth Δeq Version

The fourth version of an equivalent PRC that I will obtain extends the second version
to the case when there are heterogeneous inputs. The reason why the approach taken
so far to obtain Δeq may fail when we consider several types of inputs, each with
its own excitatory and inhibitory PRCs, is that when Eq. (27) is obtained the phase
is assumed to advance at a steady rate between inputs (the phase would advance an
amount γ between inputs). If there is only one type of input this is justified, since the
oscillator has a constant angular frequency. When we have different types of inputs
we consider each one separately, so even if inputs of one type arrive at regular inter-
vals in time, the phase will be shifted between consecutive times by inputs of other
types. This will become explicit in the following calculation.

Consider an oscillator with feedforward inhibition that receives Nsyn different in-
puts. We consider that for each input there are two “synapses,” one excitatory and
one inhibitory, characterized by the PRCs Δi

exc, and Δi
inh for the ith input. We need

to obtain Nsyn equivalent PRCs, with Δi
eq being used to replace Δi

exc and Δi
inh. The

goal is therefore to obtain a version of Eq. (27) that works for each ith input individ-
ually. In order to model how the oscillator’s phase changes between repetitions of the
ith input I will use the concept of variable phase velocity, which will be explained
next.

Let us say an oscillator has a non-constant phase PDF ρ(φ). We can think that
this oscillator’s phase has a constant rate of change dφ/dt = ω, but its inputs reshape
the phase PDF so it becomes ρ(φ). Alternatively, we could image that the oscillator
receives no inputs, but instead has a phase whose velocity dφ/dt = ω(t) is changing
over time so that ρ(φ) is produced. The idea to be introduced here is to use this
oscillator with no inputs and variable phase velocity in order to model the oscillator
with constant phase velocity and random inputs.

Let T denote the period that we will assign to our oscillator. Assume that at time
t = 0 the oscillator has phase 0, and denote the time it will take to reach phase φ ∈
[0,1] by τ(φ). It is easy to show that when τ(φ) = T

∫ φ

0 ρ(ψ)dψ the phase PDF of
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the oscillator is ρ(φ). Since ρ > 0, τ(φ) is a monotone increasing function, which
implies that it will be invertible on [0,1]. Let P denote this inverse. The function P
provides the phase as a function of the time since phase 0 was crossed. We consider
the argument of P to be modulo T , so it is always in the interval [0, T ]. We are now
ready to create a version of Eq. (27) for the case of heterogeneous inputs.

Let ρ(φ) be the phase of the oscillator with feedforward inhibition and hetero-
geneous PRCs. Assume that during the feedforward delay period the synapses for
input j receive k

j
e excitatory inputs, and k

j
i inhibitory inputs. Let Kj = k

j
e + k

j
i ,

τj = d
Kj +1

. We can now set

θ
i,j

0 = a,

θ
i,j

1 = P
(
τ
(
θ

i,j

0

) + τj

) + Δmix
(
P

(
τ
(
θ

i,j

0

) + τj

)
, i,1

)
,

θ
i,j

2 = P
(
τ
(
θ

i,j

1

) + τj

) + Δmix
(
P

(
τ
(
θ

i,j

1

) + τj

)
, i,2

)
,

...

θ
i,j
K = P

(
τ
(
θ

i,j

K−1

) + τj

) + Δmix
(
P

(
τ
(
θ

i,j

K−1

) + τj

)
, i,K

);
and also

E
(
Δ

j

inh(b + D)|φ, k
j
e , k

j
i ,RT

)∗ = (
C

k
j
e +k

j
i

k
j
e

)−1

C
k
j
e +k

j
i

k
j
e∑

i=1

Δ
j

inh

(
P

(
τ
(
θ

i,j
K

) + τj

))
,

where the ∗ symbol next to the expected value denotes the fact that we used the
variable phase velocity approach. The definition of the phase deviation D in this
equation reflects the case of heterogeneous synapses:

D =
Nsyn∑

j=1

(
k
j
e∑

l=1

Δ
j
exc

(
θ
(
tel,j

)) +
k
j
i∑

m=1

Δ
j

inh

(
θ
(
t im,j

))
)

.

Obtaining the equivalent PRC proceeds as before. Let bj = φ + Δ
j
exc(φ) + ωd ; we

now have

E
(
Δ

j

inh(bj + D)|φ) ≈
∞∑

k
j
e =0

∞∑

k
j
i =0

[
(r

j
e d)k

j
e

k
j
e !

e−r
j
e d

][
(r

j
i d)k

j
i

k
j
i !

e−r
j
i d

]

× E
(
Δ

j

inh(bj + D)|φ, k
j
e , k

j
i ,RT
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,

where r
j
e and r

j
i are the excitatory and inhibitory firing rates of the j th input. Since

we are considering the case of feedforward inhibition, we will have r
j
e = r

j
i . The

fourth version of the equivalent PRC is

Δ
j
eq(φ) = Δ

j
exc(φ) + E

(
Δ

j

inh(bj + D)|φ)
. (29)
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2.3.5 Fifth Δeq Version

As would be expected, the fourth version of Δeq has the same limitations as the
second version, and those limitations can be surmounted using the same approach
that led from the second to the third equivalent PRC. The phase deviation when using
the equivalent synapses from the fourth PRC is

Deq =
Nsyn∑

j=1

k
j
e∑

l=1

Δ
j
eq

(
θeq

(
tel,j

))
.

If at time t an excitatory input is received by the j th synapse, the expected phase for
the oscillator with feedforward inhibition and heterogeneous synapses at time t + d

is

bj + E(D|φ, j) + E
[
Δ

j

inh(bj + D)|φ, j
]
.

The notation E(D|φ, j) indicates the assumption that a shift of magnitude
Δ

j
exc(φ) happens at time t . In the case of the oscillator with the equivalent PRCs

of Eq. (29), the expected phase at time t + d is

bj + E(Deq|φ, j) + E
[
Δ

j

inh(bj + D)|φ, j
]
.

Similarly to Eq. (28), the difference in phase at time t + d is

ξj (φ) = E(D|φ, j) − E(Deq|φ, j).

Let the functions Δ
j,(0)
eq come from Eq. (29), for j = 1, . . . ,Nsyn. The procedure to

obtain the fifth version of the equivalent PRC is as follows:

for i = 1 to M do

for j = 1 to Nsyn do

ξ
(i)
j (φ) = E(D|φ, j) − E(D(i−1)

eq |φ, j)

Δ
j,(i)
eq (φ) = Δ

j,(i−1)
eq (φ) + εξ

j,(i)
j (φ)

end for

end for

The value E(D
(i−1)
eq |φ, j) is the expected phase deviation calculated using the equiva-

lent PRCs Δ
j,(i−1)
eq . This calculation can be time consuming depending on the method

used, so the algorithm can be modified by dividing the Nsyn equivalent PRCs into

Nbatch batches. Then for each batch we use the same ξ
j,(i)
j in order to update the

PRCs.
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Fig. 3 Comparison of the equivalent PRCs for homogeneous inputs. Result of a simulation using four
types of oscillators. The first one has both excitatory and inhibitory PRCs of amplitudes aexc = 2/30 and
ainh = 2/30, respectively, with a feedforward delay of 5 ms. The second one has the equivalent PRC Δ

from the previous subsection (Eqs. (15) and (19)), labeled “phase PDF Eq. PRC.” The third one has the
second equivalent PRC from this subsection (Eq. PRC 2). The fourth one has the third equivalent PRC
from this subsection (Eq. PRC 3). The three oscillators with the equivalent PRCs only get stimulated at the
time of the excitatory inputs, which have a rate of 600 Hz. The other oscillator experiences feedforward
inhibition. a: Shape of the PRCs. The dashed black and red lines show Δexc and Δinh, respectively. The
blue line corresponds to the PRC Δ from the previous subsection. The green line corresponds to Eq.
PRC 2, and the magenta line to Eq. PRC3. b: Phase PDFs for the four oscillators. The red line (partially
occluded by the blue line) shows the phase PDF for the oscillator with feedforward inhibition. The blue
line corresponds to the oscillator with Eq. PRC Δ from the previous subsection. The green line is from the
oscillator with Eq. PRC 2, and the magenta line for the oscillator with Eq. PRC 3. c: Average firing rate for
the four oscillators. d–f: Phase difference density (see text) for the three oscillators with equivalent PRCs.
g–i: Cross-correlograms between the output spike trains of the three oscillators with equivalent PRCs and
the output spike train of the oscillator with feedforward inhibition. j: Cross-correlogram between the output
spike train of the oscillator with feedforward inhibition and a periodic spike train with the same frequency.
k: Circular variance (see text) for the three oscillators with equivalent PRCs

2.3.6 Computational Simulations

As before, I use computational simulations in order to validate the approximations
obtained in this subsection. First, in Fig. 3 I compare the second and third equivalent
PRCs from this subsection with the equivalent PRC Δ obtained from Eqs. (15) and
(19) in the previous subsection. The performance of the first PRC from this subsection
is significantly worse than any of these three and is not shown. We have at this point
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several methods to obtain an equivalent PRC, and the point of Fig. 3 is to see how
those methods measure against each other. To make this comparison, we can simulate
an oscillator with feedforward inhibition, and oscillators with the different equivalent
PRCs, all of these receiving inputs at the times when the excitatory inputs arrive for
the oscillator with feedforward inhibition. We can then see which of the oscillators
with an equivalent PRC had the phases and output spike train that best match those
of the oscillator with feedforward inhibition.

Panel b of Fig. 3 shows that using Δ leads to a much better agreement in phase
PDFs than when using the second or third equivalent PRCs. This is not surprising,
since Δ was defined with this purpose in mind. What is remarkable is that despite
this, the third PRC provides a greater coherence in the output spike trains, as will be
shown below.

In Fig. 3c we can see that Δ and the third equivalent PRC can match the firing rate
of the oscillator with two PRCs. In the case of Δ this is the result of adjusting one
parameter, but in the case of the third Equiv. PRC this is a consequence of the iterative
procedure that leads from the second to the third version of Δeq. The inability of the
second PRC to match firing rates stems largely from the fact that it doesn’t account
for the correct average phase shifts during the feedforward delay period.

We have stated that an ideal result would be for the oscillator with feedforward
delay and the oscillator with the equivalent PRC to produce the same output spike
trains. We should therefore compare the output spike trains between the two oscil-
lators. A graphical way of doing this is with cross-correlograms, as in Fig. 2c, d.
Panels g–i of Fig. 3 show cross-correlograms between the output spike train of the
oscillator with feedforward inhibition and the oscillators with equivalent PRCs. In
addition, Fig. 3j shows the cross-correlogram of the spike train from the oscillator
with feedforward inhibition, and a periodic spike train of the same frequency.

A perhaps simpler way to visualize the coherence between the output spike trains
comes from the phase difference density, shown in Fig. 3d–f. To calculate this, each
time the oscillator with feedforward inhibition spiked, the phase of the other oscilla-
tor was measured. This resulted in a sample of oscillator phases, whose normalized
histogram constitutes the phase difference density plots shown in panels d–f. Notice
that if the two oscillators always spiked at the same time, then the phased difference
density plot would have a single tall and narrow peak at zero, and if the two oscillators
spiked at uncorrelated times the plot would be flat. As with the cross-correlogram, it
can be seen that the largest peaks are obtained with the third equivalent PRC. A way
to quantify this comes from the circular variance measure in panel k.

Circular variance [60] is a procedure used to obtain the variance in a sample whose
data points are periodic. In this case, since the phases 0 and 1 are the same (and
the phases 0.99 and 0.01 are very close), using the normal procedures for averaging
produces unwanted results. To calculate the circular variance we start with a sample
of phases φi , i = 1, . . . ,N , in this case the phases collected to produce the phase
difference density plots. Since the phases are periodic, in order to average them they
are represented as complex numbers with unit norm. If the number corresponding to
φi is si , then R{si} = cos(φi), I{si} = sin(φi), and the average of these numbers is
s̄ = 1

N

∑N
i=1(cos(φi) + i sin(φi)). The circular variance is defined as Z ≡ 1 − ‖s̄‖.

From this definition it can be seen that smaller values of Z indicate a larger degree of
coherence, and taller, narrow peaks in the phase difference density plot.
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Fig. 4 Performance of the second and third equations, PRC versions (homogeneous inputs) with 1 ms
delay. These figures compare the results of simulating an oscillator with feedforward inhibition against
those of an oscillator with the equivalent PRC when the feedforward delay is 1 ms. The amplitudes for the
excitatory and inhibitory PRCs are aexc = 2/30, and ainh = 1/30, respectively. The input rate is 600 Hz.
a: Stationary phase PDFs for the oscillator with feedforward inhibition (red), with the second version of the
equivalent PRC (green), and with the third version of the equivalent PRC (blue). b: Phase resetting curves.
Black = excitatory, red = inhibitory, green = second Equiv. PRC, blue = third Equiv. PRC. c: Expected
value of the inhibition as a function of the phase when the initial excitatory input arrives. The red curve
comes from simulating the oscillator with feedforward inhibition, and the black curve comes from the
approximation in Eq. (27). d: Cross-correlogram between the output spike trains of the oscillators with
feedforward inhibition and with the third equivalent PRC. The horizontal axis indicates time shift, and
the vertical axis the normalized spike count. Normalization was done by dividing the bin spike counts
between the total number of spikes in the output of the oscillator with two PRCs. e: Cross-correlogram
between the output spike train of the oscillator with feedforward inhibition and a spike train with constant
interspike intervals and the same frequency. Normalization was performed as in d. f: Firing rate response
of the oscillators with feedforward inhibition (red), the second version of Equiv. PRC (green), and the
third version of Equiv. PRC (blue) to five different levels of input rates. Input rates range from 240 Hz to
1200 Hz in constant increments of 240 Hz

Figure 3k shows that the circular variance is significantly smaller when using the
third equivalent PRC. This is results shows, at least numerically, that a close match
in the phase PDF of two oscillators does not necessarily entail an optimal match in
their output spike trains, even when their firing rates are very close.

The next result shown is for the second and third versions of Δeq. The third ver-
sion of the equivalent PRC can give accurate results in replicating the response of
an oscillator with feedforward inhibition, especially when the feedforward delay is
small. If this delay is small enough, even the second version of the equivalent PRC
(Eq. (23)) can give reasonable results. This is seen in Fig. 4, where the feedforward
delay is taken to be 1 ms. The simulations used to produce Figs. 4, 5, and 6 were
similar to those presented in the previous subsection, the only difference is in the
equivalent PRCs used, and in the case of Fig. 4, the length of the feedforward de-
lay.

In panel a of Figs. 4, 5, and 6, it is again seen that the matching of stationary phase
PDFs is not as good as in the previous case (shown in Fig. 2), when the formulas
where derived for this purpose. This is to be expected; for each excitatory input the
oscillator with feedforward inhibition advances its phase, whereas the oscillator with
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Fig. 5 Performance of the second and third equation, PRC versions (homogeneous inputs) with 5 ms
delay. Simulations for three different amplitude combinations of Δexc and Δinh. The figures on the left
correspond to aexc = 1/30, ainh = 2/30, figures on the middle correspond to aexc = 2/30, ainh = 2/30,
and the figures on the right correspond to aexc = 2/30, ainh = 1/30. The input rate for all simulations in
a–d was r = 600 Hz. Other than the input amplitudes, the only difference with the simulation of Fig. 4 is
the delay value of 5 ms. a: Stationary phase PDFs for the oscillator with feedforward inhibition (red), with
the second version of the equivalent PRC (green), and with the third version of the equivalent PRC (blue).
b: PRCs used in the simulation. Δexc (black), Δinh (red), second version of Δeq (green), third version of
Δeq (blue). c: Expected value of the inhibition as a function of the phase when the initial excitatory input
arrives. The red curve comes from simulating the oscillator with feedforward inhibition, and the black
curve comes from the approximation in Eq. (27). d: Cross-correlogram between the output spike trains of
the oscillators with feedforward inhibition and with the third equivalent PRC. The horizontal axis indicates
time shift, and the vertical axis the normalized spike count. Normalization was done by dividing the bin
spike counts between the total number of spikes in the output of the oscillator with two PRCs. e: Firing rate
response of the oscillators with feedforward inhibition (red), the second version of Equiv. PRC (green),
and the third version of Equiv. PRC (blue) to five different levels of input rates. Input rates range from
240 Hz to 1200 Hz in constant increments of 240 Hz
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Fig. 6 Performance of the fifth equation, PRC version (heterogeneous inputs) with 5 ms delay. Simula-
tions for three different combinations of mean PRC amplitudes. For each simulation a total of Nsyn = 60

different inputs were used, each with randomly chosen amplitudes a
j
exc and a

j
inh for Δ

j
exc and Δ

j
inh. The

firing rate for all inputs was rj = 10 Hz. The figures on the left correspond to a simulation where the
mean of the PRC amplitudes is 〈aj

exc〉 = 1/30, 〈aj
inh〉 = 2/30, the figures in the middle correspond to

〈aj
exc〉 = 2/30, 〈aj

inh〉 = 2/30, and the figures on the right correspond to 〈aj
exc〉 = 2/30, 〈aj

inh〉 = 1/30.
a: Stationary phase PDFs for the oscillator with feedforward inhibition (red), and with the fifth version of
the equivalent PRCs (blue). Magenta dash-dotted lines indicate the phase PDF corresponding to intermedi-
ate iterations in the iterative procedure used. b: PRCs used in the simulation. Different colored lines show
the equivalent PRCs for the first five synapses. c: Cross-correlogram between the output spike trains of the
oscillators with feedforward inhibition and with the equivalent PRCs. The horizontal axis indicates time
shift, and the vertical axis the normalized spike count. Normalization was done by dividing the bin spike
counts between the total number of spikes in the output of the oscillator with two PRCs. d: Cross-correl-
ograms between the output spike train of the oscillator with feedforward inhibition and a regular spiking
oscillator matching its mean frequency. Normalization of the spike counts per bin was done as in c. e: Fir-
ing rate response of the oscillators with feedforward inhibition (red), and the equivalent PRCs (blue) to
five different levels of input rates. Input rates range from 240 Hz to 1200 Hz in constant increments of
240 Hz
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the second and third equivalent PRCs experience a shift in phase that includes an
estimate of future inhibition. On the other hand, when tracking the timing of output
spikes, the oscillator with the third version of the PRC tends to outperform the os-
cillator with a phase PDF-matching PRC. In panel d of Fig. 4, the normalized cross-
correlogram shows a large similarity between the output spike trains. Simulations
with the first equivalent PRC do not produce such a good cross-correlogram, even
when the feedforward delay is 1 ms (data not shown). As before, to show that the
peaks in the cross-correlogram come from a similar temporal structure in the spikes
from both oscillators, and not just from them having similar periods, I also show in
panel e the cross-correlogram between the spike train with delayed inhibitory inputs,
and a spike train with constant interspike intervals and the same frequency.

Another relevant result is in panel c of Fig. 4. This panel shows a close agreement
between the expected inhibitory shift at time t + d obtained from simulations (red
curve), and from Eq. (27) (black curve), which approximates the expected inhibition
by assuming that during the inhibitory delay all inputs will arrive at regular intervals.

Reported values of delay between an excitatory input and the corresponding feed-
forward inhibition are usually in the 1–2 ms range [36, 59], and have even been
described as non-existent [61]. It is nevertheless relevant to test whether the formulas
of this paper can be still applicable when the feedforward delay is not as short. The
approaches taken here to derive the equivalent PRCs should show their shortcomings
as the delay and the input firing rate are increased. With this in mind the simulations
in this paper—with the exception of the one in Fig. 4—use a delay of 5 ms, larger
than reported values, but still biologically plausible.

Figure 5 illustrates simulations done with the second and third versions of Δeq and
a feedforward delay of 5 ms. It is evident in panel e that the second version of the
PRC becomes incapable of matching the firing rate of the oscillator with feedforward
inhibition as the input rates become larger. On the other hand, the oscillator with the
third version of Δeq still displays similar behavior to the oscillator with feedforward
inhibition. It should be noted that the third PRC version only requires to specify three
parameters: the maximum number of inputs to be considered during the delay period
(limiting the number of terms in Eq. (24)), and for the iterative procedure, the number
of iterations M , and the learning rate ε. In the case shown in Fig. 5, there were up
to seven inputs during the delay period, and M = 10, ε = 0.04. For the case shown
in Fig. 3, up to eight inputs were considered during the delay period, with M = 18,
ε = 0.02.

The fifth version of the equivalent PRC was also tested, using 60 different inputs,
each one with different amplitudes for its excitatory and inhibitory PRCs. The result
of the simulations is illustrated in Fig. 6. As can be seen from this figure, and from
Fig. 5, the performance for oscillators with homogeneous and heterogeneous inputs
is very similar. The fifth PRC version uses the same three parameters as the third
version, and optionally, a batch size for the iterative procedure. For the simulation in
Fig. 6, M = 10, ε = 0.04, and up to three inputs were considered during the delay
period.
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3 Discussion

Experimental results point to the possibility of Purkinje cells synchronizing due to
correlated inputs. Comodulation of firing rates is insufficient to explain this, but we
can resort to the emerging mathematical theory of stochastic synchronization. At the
outset, however, it is unclear that this theory is applicable here due to the presence
of feedforward inhibition. Rather than obtaining a theory of how uncoupled oscil-
lators with feedforward inhibition synchronize, I suggest to define equivalent PRCs
meant to show that the systems with feedforward inhibition, which have excitatory
and inhibitory PRCs, behave in a similar way to a system with only one PRC. The
equivalent PRC is what in practice can be used to study the synchronization prop-
erties of oscillators. The first type of equivalent PRC defined here can be used to
produce any given phase PDF (assuming Poisson inputs), and in particular, can pro-
duce the phase PDF that arises from a system with feedforward inhibition. With the
second type of PRC defined here we can obtain an oscillator that, on average, has the
same phase as the oscillator with feedforward inhibition after receiving the inhibitory
stimulus. Unlike the first type of equivalent PRC, the second one requires knowing
the shape of the excitatory and inhibitory PRCs in order to be computed. The phase
PDF, excitatory PRC, and inhibitory PRC of Purkinje cells can all be experimentally
measured, although the exact methodology is beyond the scope of this paper.

An interesting insight arising from the equivalent PRC is that feedforward inhi-
bition could have the effect of enhancing synchronization. Type II PRCs, which are
positive for late phases and negative for early phases [57], are the best at synchroniz-
ing due to correlated inputs [41, 42, 44, 46, 48]. As can be observed from Figs. 3, 4,
5, 6, feedforward inhibition has the effect of adding a negative region to the equiv-
alent PRC which makes it of type II. Although the shape of inhibitory PRCs is still
unknown, it seems reasonable that this result will hold for most reasonable shapes,
inhibition delays, and ratios of excitatory to inhibitory amplitudes.

A final observation is that comparing the results from the two types of equivalent
PRCs (Fig. 3) leads to the curious conjecture that an optimal equivalent PRC (in
the sense of maximizing coherence with the output spike train of the oscillator with
feedforward inhibition) need not also produce a matching phase PDF.

3.1 Is the PRC Model Adequate?

Purkinje cells are particularly complex, and their computational models tend to
be mathematically intractable. The oscillator representation is a mathematically
tractable model that allows one to construct complicated hypotheses that may then be
addressed by physiological experiments and by detailed models. This extra step in the
modeling process is beneficial in the study of synchronization because the effects of
changing physiological parameters are not straightforward in this case. Still, model-
ing Purkinje cells as oscillators and characterizing their inputs through a PRC entails
a drastic reduction in complexity, which could obscure important details. Purkinje
cells tonically fire simple spikes with frequencies ranging from 30 to 150 Hz; these
frequencies are modulated by afferent and efferent inputs (e.g. [62, 63]), creating a
wide dynamic range. It is likely, however, that Purkinje cells are intrinsically regular,



Journal of Mathematical Neuroscience  (2015) 5:13 Page 29 of 32

and if they show irregular inter-spikes intervals in vivo, this is because of MLI inputs
([37]). Moreover, we may not need to consider the complex morphology of PC den-
dritic trees, as the summation of inputs may happen independently of their location
and distribution ([64]). Indeed, in the dendritic tree there exist voltage-gated calcium
channels that amplify distant focal inputs more than proximal ones, canceling cable
attenuation and making the somatic response largely independent of input location.

Further considerations regarding the general suitability of the PRC representation
are presented in [54]. For the specific case of Purkinje cells, the main concerns when
using the theory of stochastic synchronization may be the variability in firing rates,
and the fact that the PRCs change depending on this firing rate. These issues are not
fully resolved, and a task for the future may be to test possible answers to them.

It is the author’s opinion that the results in this paper will become relevant only
if synchronization by virtue of correlated inputs is found to exist to a significant de-
gree among Purkinje cells projecting to the same nuclear cell. This may be the next
question to be addressed, and it can start by working with more realistic computa-
tional models of Purkinje cells. Realistic modeling of cerebellar cells has been taking
place for decades, and there are several models that could be used for this endeavor
(e.g. [25, 38, 65, 66]). These models can point out possible necessary conditions for
the granule layer inputs, Purkinje cells, and molecular layer interneurons in order to
express stochastic synchronization. These conditions can then be explored experi-
mentally.
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