
Journal of Mathematical Neuroscience (2015) 5:14
DOI 10.1186/s13408-015-0027-4

R E S E A R C H Open Access

The Minimal k-Core Problem for Modeling
k-Assemblies

Cynthia I. Wood1 · Illya V. Hicks1

Received: 10 October 2014 / Accepted: 8 June 2015 /
© 2015 Wood and Hicks. This article is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made.

Abstract The concept of cell assembly was introduced by Hebb and formalized
mathematically by Palm in the framework of graph theory. In the study of associative
memory, a cell assembly is a group of neurons that are strongly connected and rep-
resent a “concept” of our knowledge. This group is wired in a specific manner such
that only a fraction of its neurons will excite the entire assembly. We link the concept
of cell assembly to the closure of a minimal k-core and study a particular type of cell
assembly called k-assembly. The goal of this paper is to find all substructures within
a network that must be excited in order to activate a k-assembly. Through numerical
experiments, we confirm that fractions of these important subgroups overlap. To ex-
plore the problem, we present a backtracking algorithm to find all minimal k-cores
of a given undirected graph, which belongs to the class of NP-hard problems. The
proposed method is a modification of the Bron and Kerbosch algorithm for finding
all cliques of an undirected graph. The results in the tested graphs offer insight in
analyzing graph structure and help better understand how concepts are stored.

Keywords Cell assembly · Memory · Graph theory · k-Assembly · Complexity ·
k-Core

1 Introduction

The brain’s complex networks of neurons have been studied in an effort to understand
human cognition and behavior. In parallel, graph theory and combinatorial optimiza-
tion have focused in understanding the structure and dynamics of networks that arise

B C.I. Wood
cynthia.i.wood@rice.edu

I.V. Hicks
ivhicks@rice.edu

1 Department of Computational and Applied Mathematics, Rice University, 6100 Main st,
Houston, TX 77005, USA

http://crossmark.crossref.org/dialog/?doi=10.1186/s13408-015-0027-4&domain=pdf
mailto:cynthia.i.wood@rice.edu
mailto:ivhicks@rice.edu

Page 2 of 19 C.I. Wood, I.V. Hicks

from a wide spectrum of applications. In this work, we present mathematical tech-
niques that provide insights in network structure. This is important to the study of
the brain since it allows us to recognize structures that play key roles in certain fun-
damental mental processes. In particular, we focus on the relationship between the
study of networks and memory.

Network structure and architecture has been studied to understand sociological
and biological problems, mostly to identify cohesive subgroups within social and
biological networks. The analysis of subgroups within a network serves to identify
the most influential elements in a group; and to understand the interactions between
members. Although brain networks are extremely complex, they share certain char-
acteristics with social and biological networks. For further discussion, see [1, 2] and
[3]. In particular, the study of interactions within a group is important to the study of
neuronal networks, since brain connectivity is crucial to process information. For a
more detailed discussion as regards the relationship between networks and its appli-
cability to the study of the brain, see [4] and [5]. In this article, we study two specific
network structures, namely a clique and a k-core, and their potential applications to
the study of associative memory.

A clique is a subnetwork in which the actors are more tied to one another than to
other members of the network. In terms of the brain, the actors are neurons and the
ties between them represent synapses between these neurons. A clique can be seen
as a group of neurons that collectively respond to a particular stimuli. The Hebbian
theory of learning is often paraphrased as “Cells that fire together wire together” and
refers to groups of neurons that fire in synchrony [6]. In other words, events that occur
simultaneously are associated in memory. For instance, in a clique it is only neces-
sary to give excitatory input to a fraction of the clique in order to make the entire
network fire. In 1949 Luce and Perry introduced the clique model to analyze experi-
mental data [7]. In addition, this model was used to develop a non-rigorous approach
toward the study of network cohesion [8]. The clique model has gained popularity
for being the perfect cohesive subgroup due to the existing relationship between each
one of its members [1]. As a consequence, neural cliques have been used to model
computation in the visual cortex [9], differential memory consolidation [10] and to
understand episodic experiences in the hippocampus [11]. Nonetheless, the clique
model has limitations and leaves out structures that still respond collectively to cer-
tain stimuli if there is not a connection between each pair of neurons. Consequently, it
is important to consider structures with properties similar to cliques, even if they are
not maximally connected, such as the ones introduced by Seidman and Foster [12].
One of these structures is a k-core, which is a subgraph with minimum degree greater
than or equal to k. For more details on models to overcome limitations of cliques see
[13] and [14]. Throughout this work we focus on the relationship between k-cores
and the insights they provide in the study of associative memory.

Memory is a fundamental mental process in the brain. Some of its attributes are
to represent concepts and objects in the brain and recall information. In addition,
memory is closely connected to the perceptual and learning processes. Donald Hebb
in an effort to understand the behavior of the human brain introduced the term “cell
assembly”. He defined it as a group of neurons that are strongly connected and rep-
resent a “concept” of our knowledge [6]. It refers to a memorized pattern in the auto-
associative memory scheme, and according to Hebb’s definition it plays an important

Journal of Mathematical Neuroscience (2015) 5:14 Page 3 of 19

role in the structural change of long-term memory. For more details on associative
memories as brain models and its storage capacities see [15]. The aforementioned
definition can easily describe features of memory and its relations with other pro-
cesses. Nevertheless, it is not known if the relations described by cell assemblies
exist. If they were to be real, then the nodes of a given network could represent por-
tions of a cell assembly, and its connections will describe the flow of activity in the
cortex. For further discussion, see [16].

Hebb’s definition of a cell assembly created a gateway to research involving neu-
roscience and advanced mathematical techniques. Topology has been used to study
stimulus reconstruction, and the used representation is close in spirit to Hebb’s cell
assembly [17]. Although the mathematical techniques utilized are different, stimulus
reconstruction is related to the work presented in this paper since it helps to describe
activity patterns of neuronal population during cognition. In addition, dynamical sys-
tems have been used to understand how knowledge and events are represented and
processed in the brain [18]. This type of work studies the dynamics of cell assem-
blies and gives mathematical expressions of the hypothetical dynamics of neuronal
populations in the cortex.

Until today, there does not exist enough evidence to contradict Hebb’s definition
of a cell assembly. From the physiological point of view, the idea requires variable ex-
citatory synapses that obey Hebb’s rule. In other words, the connectivity is enhanced
by coincident pre- and postsynaptic activity [19]. However, this specific point of view
is difficult to test due to the unavailability of experimental data. Valentino Braiten-
berg was the first one to give interpretation to the theory of cell assemblies in terms
of neuroanatomy and neurophysiology [20]. Most of the ideas presented on Braiten-
berg’s work have been thoroughly explored and served as the basis of cell assembly
theory. For a detailed discussion of the current state of cell assembly theory see [21].
According to Hebb’s definition, a cell assembly represents only one concept in our
brain. This implies that there must exist a large number of cell assemblies in order to
store all the concepts in the brain, and it is still not possible to identify all of them.
For an efficient and reliable statistical method to detect and identify members of an
active cell assembly directly as significant spike synchrony patterns see [22]. In an
effort to investigate if the cortical network is sufficient to contain all of our concepts
Palm formulated the main problem of the theory of cell assemblies. The problem
asked for the total number of assemblies of a given network. In theory, it is possible
to find all cell assemblies and determine the solution to the problem. However, due
to the complexity of the definition; the number of neurons on a brain-sized neuronal
network; and the number of connections per neuron, it still may not be possible, in
practice, to solve the problem of finding all cell assemblies. Therefore, let us focus
on a particular type of cell assembly called a k-assembly.

In this work we extend Palm’s graph theoretical approach toward understanding
memory. We show a connection between the concept of a cell assembly and the def-
inition of a k-core, which allowed us to define a k-assembly. We go beyond Palm’s
main problem of the theory of cell assemblies that asks for the total number of as-
semblies at a fixed threshold, to ask for all the substructures whose excitations cause
the activation of an entire assembly for a given threshold. We solve the aforemen-
tioned problem by finding all minimal k-cores of a given undirected graph via a

Page 4 of 19 C.I. Wood, I.V. Hicks

backtracking algorithm. We present complexity results related to k-cores to highlight
the mathematical difficulty of the problem and provide numerical results to validate
the proposed algorithm.

The following section provides the necessary background to understand the math-
ematical definition of a cell assembly and a k-assembly as well as a brief overview of
backtracking algorithms. In particular, we discuss the Bron and Kerbosch algorithm
whose backtracking structure is the essence of the algorithm proposed to solve our
desired problem. The proposed algorithm to find all minimal k-cores and its com-
plexity are discussed in the methods section followed by numerical results. Lastly,
a discussion of the work introduced in this paper is given.

2 Formulation of the Main Problem, Basic Terminology and
Background

The goal of this paper is to find all substructures within a graph G = (V ,E) that
must be excited in order to activate a particular type of cell assembly that will be
defined in this section, the k-assembly. In the graph G, each vertex v in the vertex
set V represents a neuron, and each edge e in the edge set E represents a connection
between two neurons, the threshold is denoted as the minimum number of inputs each
node receives in order to become excited. Throughout this paper, the threshold value
will be fixed to a particular given integer k. However, it is of high interest to study
the behavior of networks as the value of k changes with respect to time.

In this section, the reader will be introduced to basic terminology necessary to link
the concepts of cell assembly and k-assembly. The purpose of this section is to state
definitions that will be referred throughout this article. For a detailed discussion of
cell assemblies see [6].

2.1 The Cell Assembly: A Graph Theoretical Approach

In 1981, Palm proposed a mathematical interpretation of Hebbian theory in the frame-
work of graph theory. He gave a mathematical interpretation to the cell assembly. In
order to understand Palm’s mathematical definition of a cell assembly, the reader
must be introduced to some background definitions.

Given a simple graph G = (V ,E) in which each vertex v in the vertex set V rep-
resents a neuron, and each edge e in the edge set E represents a connection between
two neurons, the threshold is denoted as the minimum number of inputs each node
receives in order to become excited. Throughout this paper, the threshold value will
be fixed to a particular given integer k. However, it is of high interest to study the
behavior of networks as the value of k changes with respect to time.

Given a weighted graph (G, c), where the weight c(u, v) represents the strength
of the synapses from neuron u to neuron v for all edges uv ∈ E. For the rest of this
paper, we fix the value of c(u, v) = 1 ∀uv ∈ E.

Definition 1 Given S ⊆ V and an integer k, a threshold function fk is described by

fk(S) =
{
v ∈ V

∣∣∣ ∑
u∈S

c(u, v) ≥ k

}
.

Journal of Mathematical Neuroscience (2015) 5:14 Page 5 of 19

Fig. 1 Threshold function fk for k = 2. On the left, we see the original graph with only the given set
S = {1,2,6} excited, fk(S) in the middle, and f 2

k
(S) in the right

The resulting active set of nodes of S ⊆ V at a threshold k is obtained when S is
given as an input to the threshold function fk . That is, given a subset S of activated
nodes, other nodes in the graph will become activated if they satisfy the threshold
inequality, for simplicity we denote f i

k (S) = fk(f
i−1
k (S)) for i ≥ 2 and f 1

k = fk .
Figure 1 illustrates this process for k = 2.

Definition 2 A subset of vertices S is called invariant if fk(S) = S.

Definition 3 The closure of S, denoted clk(S), is the invariant set generated when
f n

k (S) = f n−1
k (S) for some n ≥ 1.

In Fig. 1, the closure of the set S = {1,2,6} is achieved when n = 3, and it is the
entire vertex set V .

Definition 4 A subset S is called persistent if fk(S) ⊇ S, and it is called minimal
persistent if no proper subset of it is persistent.

In Fig. 1, the set S′ = {1,2,3,6} is persistent when k = 2. However, S = {1,2,6}
is a persistent subset of S′, which implies S′ is not minimal.

Definition 5 A subset S is called weak if there exists an n ≥ 1 such that f n
k (S) = ∅.

In Fig. 1, the set S′ = {1,2} is weak, since fk(S
′) = {6} and f 2

k (S′) = ∅.

Definition 6 A tight set is a persistent set P in which every persistent subset of P

whose complement in P is not weak and excites the whole of P .

Finally, the reader has the necessary background concepts to understand Palm’s
mathematical definition of a cell assembly.

Definition 7 A cell assembly (at a threshold k) is the closure of the tight set.

Page 6 of 19 C.I. Wood, I.V. Hicks

The mathematical definition of a cell assembly encompasses a variety of tight sets.
For instance, in Fig. 1, S is a tight set and any superset of S is also a tight set. Yet,
Palm proposed that a minimal persistent set is a tight set [19]. Therefore, we focus on
the study of cell assemblies generated by minimal persistent sets.

2.2 k-Assembly

Seidman introduced k-cores to study network structure, and demonstrate that k-core
cohesion increases as k increases [23]. He defined a k-core as a maximal connected
induced subgraph with degree greater than or equal to k. The maximal property of
Seidman’s definition will not be considered for the topic presented in this paper. In
other words, we define a k-core to only be a subgraph with minimum degree at least k.

Definition 8 A subgraph K ⊆ G is a k-core if |N(v) ∩ V (K)| ≥ k ∀v ∈ V (K).

Definition 9 A k-core is minimal if no proper subset of its vertices induces a k-core.

It is clear by the definition that the subgraph generated by fk(Ṽ), for some Ṽ ⊆ V

is a k-core if and only if Ṽ is a persistent set. That is, if fk(Ṽ) is a k-core, then
for all ṽ ∈ Ṽ |N(ṽ) ∩ fk(Ṽ)| ≥ k, which implies Ṽ ⊆ fk(Ṽ). Likewise, if Ṽ is a
persistent set, then Ṽ ⊆ fk(Ṽ), which implies fk(Ṽ) is a k-core. In addition, note that
for an unweighted graph, the threshold function definition of a tight set S becomes
fk(S) = {v ∈ V | |N(v) ∩ S| ≥ k}, that is cl(S) generates a k-core. By definition, a k-
core is tight as long as its complement is not weak, since every subset of its vertex set
is persistent. Hence, the closure of any k-core generates a cell assembly.

The definition of a cell assembly tells us that it only takes a fraction of the assem-
bly to get excited in order to excite the entire assembly. However, the motivation and
focus of our work comes from the study of cell assemblies generated by tight sets
that are minimal, that is, the deletion of any node from the set generates a subset that
is not tight. In addition, the mathematical definition of a cell assembly for its study
on simple graphs follows the definition of a k-core. According to Palm’s definition of
a tight set, a particular type of tight set is a minimal k-core. Hence, the vertex set of
a minimal k-core generates a particular type of cell assembly called k-assembly.

Definition 10 A k-assembly is the closure of a minimal k-core.

Recall this definition only holds for cases in which the G has c(u, v) = 1 for all
e = uv ∈ E. In Fig. 2, we observe on the left that any two adjacent vertices satisfy
the definition of a cell assembly for k = 3, since the edges have weights with value
greater than one. Nevertheless, a set with less than k +1 vertices cannot be a minimal
k-core, and its closure is not a k-assembly. In contrast, the graph on the right has every
edge with weight equal to one, and the entire vertex set constitutes a 3-assembly.

The definition of a k-assembly and a cell assembly served as motivation to solve
the problem of finding all cell assemblies and tight sets that generate them, in partic-
ular minimal k-cores. The remainder of this paper focuses on solving the problem of

Journal of Mathematical Neuroscience (2015) 5:14 Page 7 of 19

Fig. 2 Cell assembly vs.
k-assembly for k = 3. The graph
on the left satisfies the definition
of a cell assembly, but not of
k-assembly. The graph on the
right is a 3-assembly with
c(u, v) = 1 for all e = uv ∈ E

finding all minimal k-cores for a given simple undirected graph. Nevertheless, find-
ing k-cores is not an easy task, and we briefly discuss some complexity properties of
problems that deal with k-cores in the rest of this section.

Theorem 1 The k-core containment problem is NP-complete.

Proof of Theorem 1 The decision version of the problem is the following:
Instance: Given a graph G and integers s ≤ |V |.
Question: Does G have a k-core of size s?
Clearly, the k-core problem belongs to NP since given a solution of the problem,

a nondeterministic Turing Machine checks if the choice is true in polynomial time.
Furthermore, If we restrict the k-core problem by considering only instances in which
the cardinality of the k-core s = k + 1, then we get the clique problem [24]. Hence,
the k-core containment problem is NP-complete. �

The problem of finding all minimal k-cores also requires graphical enumeration
which refers to the art of counting the number of graphs with a specific property.
Note that for some problems to count the number of graphs with a given property
is harder than to determine if there exists a graph that satisfies such a property. For
instance, “Given a graph G and a fixed value k > 0, how many distinct k-cores are
there for G?” is not a trivial problem and it empirically depends on the density of the
graph. Enumeration problems associated with NP-complete problems are NP-hard
[24]. This is true since the enumeration version of the problem must be at least as
hard as the decision version of the problem. Hence the enumeration of k-cores is
NP-hard.

To study in depth enumeration problems the class #P was introduced [25].

Definition 11 The class #P contains all problems computed by nondeterministic
polynomial time Turing machines that have the additional facility of outputting the
number of accepting computations.

Moreover, #P -complete is the analog definition of NP-complete for P . The class
#P asks for the number of solutions rather than their existence. For NP-complete
problems counting the number of solutions is #P -complete. Therefore enumeration
of k-cores belongs to the class of #P -complete problems.

The detection of minimal k-cores is important since they denote the structural
motifs (i.e. building blocks of more complex networks) that must be excited in order
to propagate the excitation in the graph. The idea of k-assembly is related to motif

Page 8 of 19 C.I. Wood, I.V. Hicks

detection [26]. However, instead of restricting it to the study of motifs of certain size,
it focuses on the study of subgraphs that pass a certain threshold.

3 Previous Work on Solving the Minimal k-Core Enumeration Problem

The fact that a clique with vertex set cardinality k + 1 is a minimal k-core allows us
to say that algorithms performing clique enumeration were the first ones to attack a
subset of the problem we present in this paper.

The Maximal Clique Enumeration Problem (MCEP) asks to compile a list of all
maximal cliques in a given undirected graph G. Besides its applications in sociolog-
ical problems, it is also useful in the study of biological networks [27]. MCEP in the
worst case scenario runs exponential with respect to the number of vertices. More
specifically, the maximum number of maximal cliques in an n vertex graph is 3

n
3

[28]. In other words, it has been proved that there may be a graph with an exponential
number of maximal cliques, which implies that any algorithm that solves MCEP for
an arbitrary given graph would be exponential.

Bron and Kerbosch (B&K) developed a backtracking algorithm to solve MCEP in
1973 [29]. Although other algorithms to solve the problem were developed around the
same period [30], the B&K approach is still one of the most widely known to solve
this problem and it is used as a basis for other algorithms that solve MCEP. For further
discussion of modifications of B&K, see [31]. The B&K algorithm depends on the
number of nodes in the graph, and numerical experiments show it runs in O(3.14

n
3)

on Moon–Mooser graphs with a theoretical limit of 3
n
3 . The B&K Algorithm will be

discussed in more detail in the following section.
As MCEP, the Minimal k-core Enumeration Problem (MKEP) asks to create a list

of all minimal k-cores in a given undirected graph. There is not a known bound for
the maximum number of minimal k-cores on a given graph. However, the fact that a
clique with vertex set cardinality k + 1 is a minimal k-core, intuitively tells us that
the number of minimal k-cores grows exponentially in the worst case scenario.

A solution to MKEP through exhaustive search has been proposed, it follows the
structure of a branching algorithm [32]. Their algorithm, as well as the one we pro-
pose in our methods section initially obtain the maximum k-core. The following
greedy algorithm obtains the maximum k-core in polynomial time [13]:

Algorithm 1 (Maximum k-core)

MaximumKcore(G)

if G is empty

0. End

else

1. Choose a vertex v

of minimum degree δ(v)

if δ(v) ≥ k

2. The minimum k-core is found
3. End

Journal of Mathematical Neuroscience (2015) 5:14 Page 9 of 19

if δ(v) < k

4. MaximumKcore(G := G \ v)

A description of the algorithm proposed by [32] is the following:

Algorithm 2 (k-Core enumeration of G)

Given an undirected graph G = (V ,E)

0. if G is a minimal k-core
End

else

1. Find the maximum k-core, call it H

for each v ∈ V (H)

2. V (G) := V (H) \ v

3. Go to step 1

The algorithm described above finds all minimal k-cores of a given graph. How-
ever, a major disadvantage is the fact that it may return the same minimal k-core
multiple times. It initially checks if the given graph G is a minimal k-core, and stops
in the case it is in fact a minimal k-core. Otherwise, it proceeds to find the maxi-
mum k-core, and then minimal k-cores. No numerical results are given for the k-core
enumeration approach performance. Yet, it is mentioned that it takes minutes to enu-
merate the k-cores of a graph with a vertex set of 10 nodes. The algorithm we devel-
oped to solve MKEP will be discussed in our methods section and its performance is
analyzed in the numerical results section.

4 Methods: Backtracking Algorithm Techniques

Backtracking is a type of recursive strategy commonly used to find all the solutions
of some problem. It incrementally builds a tree in a such a way that it faces a number
of options at each level, and tries all of them. In a problem with N possible solu-
tions, exhaustive search techniques evaluate all the options in N trials. In contrast,
a backtracking algorithm yields the solution with less than N trials, and its solution
space is organized as a tree. Initially, it starts at the root of the tree and proceeds to
make a choice between one of its children, then it continues to make a choice among
the children of each node until it reaches a leaf. Each leaf is either a solution of the
problem or does not lead to a solution, and at that point the algorithm backtracks. For
more details on backtracking algorithms, see [33] and [34].

In the remaining of this section, we discuss two backtracking algorithms. The first
one solves the problem of finding all maximal cliques in a given graph. The second
one offers a solution to the problem of listing all minimal k-cores of a graph. In
addition, an example of a backtracking tree is shown to illustrate the second presented
algorithm.

Page 10 of 19 C.I. Wood, I.V. Hicks

4.1 The Bron and Kerbosch Algorithm for Finding All Cliques of an
Undirected Graph

The B&K algorithm utilizes a recursively defined extension operator that is applied to
three sets: compsub, not, and candidates. The set compsub contains the nodes already
defined as part of the clique and it is initially empty. The set candidates is the set of
nodes adjacent to all nodes in the set compsub. The set not stores the nodes that had
already been processed, leading to a valid extension of the set compsub and should
remain ignored. In addition to these three sets, there are nodes that are not considered
at each step.

In order to obtain all maximal cliques, a backtrack search tree is constructed
through recursive calls to the extension operator. Every time the recursion is called
the three main sets are modified. The sets not and candidates are given to the exten-
sion operator as input parameters and are locally defined. In contrast, the set compsub
is globally defined and behaves like a stack. It is important to point out that if at some
point the set not contains a vertex that is adjacent to all vertices in compsub, then
the algorithm backtracks since no further selection of candidates will lead to obtain-
ing a maximal clique from the current configuration of the set compsub. The basic
mechanism can be described in the following pseudocode:

Algorithm 3 (Bron and Kerbosch)

Extension(compsub, candidates,not)
if candidates = ∅ and not = ∅

1. Report compsub as a maximal clique

else For each vertex v ∈ candidates:

2. Select a candidate s

3. Add s to compsub such that
new compsub := compsub ∪ s

4. Create new sets candidates and not
by removing all points not connected
to s and store old sets, that is,
candidates := candidates ∩ N(s)

not := not ∪ N(s)

5. Extension(compsub, candidates,not)
6. Upon return, remove s from compsub

and add it to not
compsub := compsub \ s

not := not ∪ s

End

A clique is found if and only if the sets candidates and not are empty. If not
is not empty then the current configuration of the set compsub is not maximal. The
algorithm terminates if there is no candidates left or if there is an element in not that is

Journal of Mathematical Neuroscience (2015) 5:14 Page 11 of 19

connected to all elements in the set candidates. If the second condition for termination
is met, then the addition of any candidate to compsub will not be maximal.

To optimize the algorithm and make it terminate as early as possible, the number
of times the extension operator is called must be minimized. To do this, every node in
not is assigned a counter that indicates to how many candidates a node is not adjacent
(or disconnected). We then proceed to pick the node with the smallest number of
disconnections and on each step select a candidate not adjacent to this node.

4.2 Algorithm for Finding All Minimal k-Cores of an Undirected Graph

The problem of finding all minimal k-cores of a given graph is computationally ex-
pensive. There exists a variety of algorithms to find all cliques in a given undirected
graph. However, the B&K algorithm is commonly used to find all maximal cliques,
since numerical experiments support its efficiency. We propose a modification of the
B&K algorithm to find all minimal k-cores on a given graph.

As in B&K, the algorithm presents a backtracking technique to find all minimal k-
cores. Three sets are utilized to obtain all minimal k-cores recursively, namely kcore,
not, and candidates. However, since a k-core is a generalization of a clique, and every
clique on k + 1 or more nodes contains a minimal k-core, but not every minimal
k-core is a clique, there are some subtle changes in the definition of our sets. For
example, we take into account that, given a connected simple undirected graph, all
minimal k-cores must be contained in the maximum k-core, which can be found in
polynomial time (for more details see [13]).

The set kcore stores the nodes that are part of a k-core and is initially the entire
vertex set. The set candidates contains the nodes that can be deleted to obtain a min-
imal k-core. The set not represents the nodes that had already been processed and
cannot be deleted from kcore. As in B&K, these three sets are modified by a recur-
sively defined extension operator. The set kcore is globally defined, whereas the sets
not and candidates are locally defined and handed as parameters to the extension
operator.

We construct our backtracking search tree by recursively calling the extension
operator. At the root of the search tree, the number of branches generated is equal to
the cardinality of the set candidates. Each branch corresponds to removing one vertex
from our configuration of the set kcore, and creating new sets candidates and not.
The algorithm always selects the vertex of smallest degree one at a time. It continues
traversing the search tree on a depth first search approach if there is at least one vertex
in the set candidates whose deletion leads to obtaining a k-core of smaller cardinality
and backtracks if the configuration of kcore cannot lead to returning a minimal k-
core. That is, if the set not contains vertices that must be deleted in order to obtain
a minimal k-core then no further calls to the extension operator will lead to a valid
configuration of the set kcore. Hence, such a branch must not be extended. The basic
idea behind the algorithm is the following:

Algorithm 4

0. Obtain maximum k-core
Extension(kcore,not, candidates)

Page 12 of 19 C.I. Wood, I.V. Hicks

if candidates = ∅ and kcore \ vi

does not induce a k-core ∀vi ∈ not

1. Report kcore as a minimal k-core

else For each vertex v ∈ candidates:

2. Select a candidate s of smallest degree
3. Remove s from kcore such that

kcore := kcore \ s and
candidates := candidates \ s

4. Create new sets candidates and not
and store old sets, that is,
candidates := set of all candidates
v ∈ V \ not that still leave a k-core

5. Extension(kcore,not, candidates)
6. not := not ∪ s

kcore := kcore ∪ s

candidates := candidates \ s

The majority of the steps described above are straightforward to implement. How-
ever, there are several different options on how to implement step 2, which is how to
select a well-chosen candidate to minimize the number of times the extension opera-
tor is called. At the moment, it is impossible to give a good theoretical explanation on
why one way to choose a candidate is better than another. They vary on a case by case
basis, and its efficiency is determined by observations on numerical experiments. We
chose to select a candidate of minimum degree because this way ensures that the set
not is filled in correctly. However, modifying the original given set of candidates to
be in the form required to be a candidate and selecting the candidate of maximum de-
gree will also yield a solution to our problem. Figure 3 displays the backtrack search
tree of our algorithm for a given graph G.

Now, we have to show that our proposed algorithm terminates and performs cor-
rectly. Clearly, for a given graph G with finite vertex and edge sets the algorithm
terminates since the number of subgraphs to enumerate is finite. However, the num-
ber of subgraphs in a given graph G depends on its structure, and it may be very large
for dense graphs. The next theorem is of extreme importance in showing correctness
of Algorithm 4, since it guarantees that for every subgraph that contains a k-core all
its minimal k-cores are generated without duplication.

Theorem 2 The extension of the backtracking search tree for a given configuration
of the set kcore by applying the extension operator generates all minimal k-cores
without repetition that contain kcore \ vi ∀vi ∈ candidates

Proof of Theorem 2 This proof is by strong induction on the cardinality of the set
kcore.

For our base case, we consider |kcore| = k + 1 ∀k > 0. If |candidates| = 0 then k-
core is minimal. Since we start with the largest k-core of the graph and our algorithm
only allows one to remove a vertex v ∈ V \ not such that the subgraph obtain by the

Journal of Mathematical Neuroscience (2015) 5:14 Page 13 of 19

F
ig

.3
B

ac
kt

ra
ck

se
ar

ch
tr

ee
fo

r
a

gi
ve

n
gr

ap
h

G
.T

he
ro

ot
of

th
e

tr
ee

co
nt

ai
ns

th
e

en
tir

e
gr

ap
h

an
d

th
e

le
av

es
co

nt
ai

n
m

in
im

al
k

-c
or

es
or

ex
te

ns
io

ns
th

at
m

ad
e

th
e

al
go

ri
th

m
ba

ck
tr

ac
k.

T
he

se
ts

kc
or

e,
no

t,
an

d
ca

nd
id

at
es

fo
llo

w
th

e
de

fin
iti

on
s

of
A

lg
or

ith
m

4

Page 14 of 19 C.I. Wood, I.V. Hicks

deletion of this vertex contains a k-core. The case |candidates| > 0 is not possible,
since it implies that there exists a k-core of cardinality less than or equal to k, which
is false by the definition of a k-core.

Now suppose that the statement is true for all l > k ∈ Z such that l ≤ N , and
that all minimal k-cores obtained by removing an element of not from the current
configuration of the set kcore have been previously generated. We can suppose the
later since it is guaranteed by our definition of the set candidates.

Consider a configuration of kcore with cardinality N + 1. Let {v1, . . . , vc} repre-
sent the set of candidates for c ≥ 0. If |candidates \ vi | = 0 for some 0 ≤ i ≤ c then
we see that kcore is a minimal k-core.

If |candidates \ vi | > 0, then we have the following two cases:
Choose ṽ as in step 2 of our algorithm and create a new set of candidates :=

candidates\ ṽ, proceed to call extension(kcore\ ṽ, candidates,not). If the cardinality
of the new set of candidates is greater than 0, then by the inductive hypothesis the
statement is true for l = N + 1. If it is zero then kcore \ ṽ is not minimal, and ṽ is
added to not. Which completes our proof and we see that Theorem 2 is true ∀n ∈ Z.

�

Since Theorem 2 is true for any subgraph of any given finite cardinality, we see
that Algorithm 4 finds all minimal k-cores of a given undirected graph without rep-
etition. In the following section, the results from running the backtracking algorithm
for several test instances are presented.

5 Numerical Results

Algorithm 4 was implemented using C++ and tested in workstation with a AMD
Opteron(tm) Processor 148. Results of numerical experiments are run to test the
backtracking algorithm on random graphs. More specifically, we utilized graphs that
follow a Bernoulli process in the generation of edges and are known as Bernoulli ran-
dom graphs, as well as regular graphs. The existence of an edge in Bernoulli random
graphs occur independently between each pair of nodes. For instance, given some
probability p and the number of vertices n, there exists an edge (i, j), where i �= j

and 0 < i, j ≤ n. In contrast, regular graphs have the property that each vertex has
the same degree.

A summary of the obtained results is presented at the end of this section, where
100 Bernoulli random graphs were generated for each test instance, then the average
time and number of k-cores were computed among the number of graphs that in fact
contained at least one k-core for k = 2,3 and 5.

The average number of minimal k-cores is displayed to highlight the fact that the
number of minimal k-cores depends on the density of the graph, and not on the value
of k. Even though every k-core is a k − 1-core, the fact that we restrict our solution
set to k-cores that are minimal give us cases in which the number of k-cores is greater
that the number of k − 1-cores.

The tables below illustrate the performance of Algorithm 4 when the number of
vertices n = 10,15,20 and 25, the probability for generating an edge p = 0.1,0.5

Journal of Mathematical Neuroscience (2015) 5:14 Page 15 of 19

Table 1 Algorithm 4
performance for n = 10 and
p = 0.1,0.5 and 0.7

k p # of k-cores Average time # of graphs

2 0.1 1.1764 ≈ 0 s 17

3 0.1 0 ≈ 0 s 0

5 0.1 0 ≈ 0 s 0

2 0.5 27.72 ≈ 0 s 100

3 0.5 12.2041 ≈ 0 s 98

5 0.5 1 ≈ 0 s 6

2 0.7 57.14 0.0001 s 100

3 0.7 54.02 ≈ 0 s 100

5 0.7 5.4634 ≈ 0 s 82

Table 2 Algorithm 4
performance for n = 15 and
p = 0.1, 0.5 and 0.7

k p # of k-cores Average time # of graphs

2 0.1 1.9108 ≈ 0 s 56

3 0.1 0 0 s 0

5 0.1 0 0 s 0

2 0.5 166.54 0.0636 s 100

3 0.5 303.01 0.059 s 100

5 0.5 25.22 0.0029 s 90

2 0.7 258.46 0.0577 s 100

3 0.7 630.02 0.0604 s 100

5 0.7 619.09 0.0457 s 100

and 0.7 and the value of k = 2,3 and 5. # of k-cores denotes the average number of
k-cores on the tested graphs, and # of graphs is the number of graphs that at least
contained one k-core.

In Table 1, we observed the results for graphs with 10 vertices. The graphs gener-
ated with probability 0.1 only had a few 2-cores, since they are not dense enough to
even contain k-cores for larger values of k. As the probability increased, we observed
that more minimal 3-cores and 5-cores were part of the random graphs. However,
the average number of minimal 2-cores is always greater than 3-cores and 5-cores.
It is important to point out that we observe this behavior only because the vertex set
cardinality is small. But it is not always the case that we have more minimal 2-cores
than minimal 3-cores as we will see in the later results.

In Table 2, the results for graphs with 15 vertices are displayed. We still observe
a low existence of minimal k-cores for sparse graphs with p = 0.1. However, graphs
generated with probabilities 0.5 and 0.7 show a different behavior and contain a larger
number of k-cores. Note that in contrast to graphs on 10 vertices, on these cases
the number of minimal 3-cores is larger than the number of minimal 2-cores and
decreases again for the number of 5-cores.

Table 3 displays the results obtained for random graphs with 20 vertices. In the set
of graphs generated with p = 0.7, we observe that the average number of minimal 5-
cores exceeds the average number of minimal 3-cores and 2-cores. The same behavior

Page 16 of 19 C.I. Wood, I.V. Hicks

Table 3 Algorithm 4
performance for n = 20 and
p = 0.1,0.5 and 0.7

k p # of k-cores Average time # of graphs

2 0.1 6.8370 1.8583 s 92

3 0.1 2 0.485 s 2

5 0.1 0 0 s 0

2 0.5 635.11 2.3256 s 100

3 0.5 3511.19 1.4819 s 100

5 0.5 2661.11 0.0029 s 100

2 0.7 791.66 2.0905 s 100

3 0.7 3902.45 2.3057 s 100

5 0.7 17010.33 2.9131 s 100

Table 4 Algorithm 4
performance for n = 25 and
p = 0.1, 0.5 and 0.7

k p # of k-cores Average time # of graphs

2 0.1 25.13 122.0613 s 99

3 0.1 1.833 2.905 s 6

5 0.1 0 0 s 0

2 0.5 1990.34 85.1718 s 100

3 0.5 25318.58 101.519 s 100

5 0.5 84110.96 117.7972 s 90

2 0.7 1900.64 80.9009 s 100

3 0.7 16796.83 83.4447 s 100

5 0.7 211859.96 109.2354 s 100

is observed in Table 4 for random graphs on 25 vertices with p = 0.5 and 0.7. In
terms of k-assemblies, we observe that at a fixed threshold the number of minimal
sets that generate a k-assembly increase as k increases. This tells us that the number
of minimal 2-cores is smaller than the number of minimal 3-cores and 5-cores, which
is not true in general if the k-cores are not minimal.

In Table 4, we observe an interesting phenomenon, which is that Algorithm 4
finds all minimal k-cores of a random graph faster when the graph is dense for the
three values of k utilized to test it. Although this result may seem counterintuitive,
observations showed that the algorithm backtracks faster whenever it is dealing with
a dense graph. Algorithm 4 initially takes longer to output the first minimal k-core for
a dense graph than for a sparse one. However, after the first minimal k-core is found;
it backtracks to deal with more cases in which minimal k-cores in fact exist and with
less configurations of the set compsub that do not lead to obtaining a minimal k-core.

In addition to Bernoulli random graphs, random 5-regular graphs with n = 30
were tested to check if we observe the same behavior as in random graphs, see Ta-
ble 5. As expected they only had one minimal 5-core. However, they also contain a
greater number of 3-cores than 2-cores.

The results for the 5-regular graphs are very similar regardless of the probability
of their generation. This is due to the fact that they share the same structure. Nonethe-

Journal of Mathematical Neuroscience (2015) 5:14 Page 17 of 19

Table 5 Algorithm 4
performance for 5-regular
graphs with n = 30 and
p = 0.1,0.5 and 0.7

k p # of k-cores Average time # of graphs

2 0.1 29229.97 2512.11 s 100

3 0.1 31860.98 398.71 s 100

5 0.1 1 ≈ 0 s 100

2 0.5 29302.06 2512.46 s 100

3 0.5 31907.16 402.9 s 100

5 0.5 1 ≈ 0 s 100

2 0.7 29217.7 2511.61 s 100

3 0.7 32036.35 392.18 s 100

5 0.7 1 ≈ 0 s 100

less, it is still necessary to check if these types of graphs follow the same behavior as
Bernoulli random graphs, since the brain is neither completely random nor regular.

6 Discussion

In this paper, we proposed a backtracking algorithm to find all minimal k-cores whose
excitation can activate a k-assembly. The motivation to study this problem emerges
from the urge to understand memory. Palm formulated the main problem of the theory
of cell assemblies by asking the total number of cell assemblies at a given threshold k.
The proposed algorithm is closely related to this problem since it allows us to find
the total number of subsets that generate k-assemblies on a given graph. Through
numerical experiments we confirm that fractions of these important subsets overlap.
These overlappings tell us that concepts are organized in groups and certain triggers
activate associated memories.

An extension to the graph theoretical approach for the analysis of associative
memory introduced by Palm is presented along with details on the derivation of the
k-assembly from the cell assembly model. Although Algorithm 4 is not fast enough
to solve the problem in a brain-sized neuronal network, it does offer a solution to
the problem, permits us to analyze the structure of a given random graph and gain
insight on understanding k-assemblies and cell assemblies. For instance, the fact that
for some graphs there may be a larger number of minimal 5-cores than 3-cores al-
lowed us to observe how the structures overlap. If we look at it in terms of memory,
we can tell that certain nodes are members of several k-assemblies, and the absence
of one of them may change the structure of the network completely. If larger data sets
become available we could use standard techniques for network clustering or k-core
decomposition that would allows us to partition the graph and find minimal k-cores
within the partitions.

One of the limitations of our algorithm is that it only finds minimal k-cores in
undirected graphs and directed graphs are more realistic for real-world applications.
However, we can extend the definition of a k-core to directed graphs by considering
the in and out degree of a given graph. Then we proceed to find minimal k-cores in
the undirected version of the graph utilizing Algorithm 4. Finally, we check if each

Page 18 of 19 C.I. Wood, I.V. Hicks

of the k-cores obtained from the undirected graph is still a k-core in terms of in or
out degree.

The objective of this project was to gain understanding about the k-assembly
model and to solve the problem of finding all minimal k-cores of an undirected graph.
There is still much to explore in the model of the k-assembly. In particular, it would
be interesting to study the k-assembly for a non-fixed value of k. For this approach,
it would be necessary to analyze the change in the value of k with respect to time
and design a dynamical system on the graph. In terms of the algorithm, a promising
research direction is to explore the structure of the graph to minimize the number of
times the extension operator is called; this would be extremely helpful for solving
the problem on sparse graphs. In general, the problem of finding all minimal k-cores
continues to be difficult to solve due to the fact the number of minimal k-cores in
a graph grows with the number of vertices and edges. Therefore, any condition that
makes Algorithm 4 backtrack faster or that minimizes the number of times the ex-
tension operator is called would be a significant contribution to the solution of the
problem.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

CW contributed in the design and implementation of the algorithm, generation of data and prepared this
manuscript. IH contributed in the design and implementation of the algorithm, carefully reviewed and
improved the contents of this manuscript.

Acknowledgements This work is made possible by the National Science Foundation Grants Number
0940902 and CMMI-1300477.

References

1. Wasserman S, Faust K. Social network analysis methods and applications. Cambridge: Cambridge
University Press; 1994.

2. Borgatti SP, Mehra A, Brass DJ, Labianca G. Network analysis in the social sciences. Science.
2009;323(5916):892–5. doi:10.1126/science.1165821.

3. Proulx SR, Promislow DEL, Phillips PC. Network thinking in ecology and evolution. Trends Ecol
Evol. 2005;20(6):345–53. doi:10.1016/j.tree.2005.04.004.

4. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations.
NeuroImage. 2010;52(3):1059–69. doi:10.1016/j.neuroimage.2009.10.003.

5. Sporns O. Networks of the brain. Cambridge: MIT Press; 2011.
6. Hebb DO. The organization of behavior. New York: Wiley; 1949.
7. Luce RD, Perry AD. A method of matrix analysis of group structure. Psychometrika. 1949;14(2):95–

116.
8. Festinger L. The analysis of sociograms using matrix algebra. Hum Relat. 1949;2(2):153–8.
9. Miller DA, Zucker SW. Computing with self-excitatory cliques: a model and an application to

hyperacuity-scale computation in visual cortex. Neural Comput. 1999;11(1):21–66.

http://dx.doi.org/10.1126/science.1165821
http://dx.doi.org/10.1016/j.tree.2005.04.004
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003

Journal of Mathematical Neuroscience (2015) 5:14 Page 19 of 19

10. Oşan R, Chen G, Feng R, Tsien JZ. Differential consolidation and pattern reverberations
within episodic cell assemblies in the mouse hippocampus. PLoS ONE. 2011;6(2):16507.
doi:10.1371/journal.pone.0016507.

11. Lin L, Osan R, Shoham S, Jin W, Zuo W, Tsien JZ. Identification of network-level coding units
for real-time representation of episodic experiences in the hippocampus. Proc Natl Acad Sci USA.
2005;102(17):6125–30. doi:10.1073/pnas.0408233102.

12. Seidman SB, Foster BL. A graph theoretic generalization of the clique concept. J Math Sociol.
1978;6:139–54.

13. Balasundaram B, Butenko S, Hicks IV, Sachdeva S. Clique relaxations in social network analysis: the
maximum k-plex problem. Oper Res. 2011;59(1):133–42.

14. Thai MT, Pardalos PM, editors. Handbook of optimization in complex networks: communication and
social networks. Berlin: Springer; 2012.

15. Palm G. On associative memory. Biol Cybern. 1980;36:19–32.
16. Collins AM, Loftus EF. A spreading-activation theory of semantic processing. Psychol Rev.

1975;82(6):407–28.
17. Curto C, Itskov V. Cell groups reveal structure of stimulus space. PLoS Comput Biol.

2008;4(10):1000205. doi:10.1371/journal.pcbi.1000205.
18. Tsukada M, Ichinose N, Aihara K, Ito H, Fujii H. Dynamical cell assembly hypothesis—theoretical

possibility of spatio-temporal coding in the cortex. Neural Netw. 1996;9(8):1303–50.
19. Palm G. Towards a theory of cell assemblies. Biol Cybern. 1981;39:181–94.
20. Braitenberg V. Cell assemblies in the cerebral cortex. In: Theoretical approaches to complex systems.

Berlin: Springer; 1978. p. 171–88.
21. Palm G, Knoblauch A, Hauser F, Schüz A. Cell assemblies in the cerebral cortex. Biol Cybern.

2014;108(5):559–72.
22. Picado-Muiño D, Borgelt C, Berger D, Gerstein G, Grün S. Finding neural assemblies with frequent

item set mining. Front Neuroinform. 2013;7: 9.
23. Seidman SB. Network structure and minimum degree. Soc Netw. 1983;5:269–87.
24. Garey MR, Johnson DS. Computers and intractability: a guide to the theory of NP-completeness. New

York: W.H. Freeman and Company; 1979.
25. Valiant LG. The complexity of computing the permanent. Theor Comput Sci. 1979;8:189–201.
26. Sporns O, Kötter R. Motifs in brain networks. PLoS Biol. 2004;2(11):369.
27. Bron C, Kerbosch J, Schell HJ. Finding cliques in an undirected graph. Technological University of

Eindhoven; 1972 Feb. Technical report.
28. Moon J, Mooser L. On cliques in graphs. Isr J Math. 1965;3(1):23–8.
29. Bron C, Kerbosch J. Finding all cliques of an undirected graph. Commun ACM. 1973;16:575–7.
30. Akkoyunlu EA. The enumeration of maximal cliques of large graphs. SIAM J Comput.

1973;2(1):1–6.
31. Cazals F, Karande C. A note on the problem of reporting maximal cliques. Theor Comput Sci.

2008;407(1–3):564–8.
32. Cox SJ, Cavazos J, Halani K, Rubenstein Z. Cell assembly enumeration in random graphs. Rice

University; 2010. Technical report.
33. Knuth DE. The art of computing programming. vol. 2. Reading: Addison-Wesley; 1968. p. 198–213.
34. Leiserson CE, Rivest RL, Stein C, Cormen TH. Introduction to algorithms. Cambridge: MIT Press;

2001.

http://dx.doi.org/10.1371/journal.pone.0016507
http://dx.doi.org/10.1073/pnas.0408233102
http://dx.doi.org/10.1371/journal.pcbi.1000205

	The Minimal k-Core Problem for Modeling k-Assemblies
	Abstract
	Introduction
	Formulation of the Main Problem, Basic Terminology and Background
	The Cell Assembly: A Graph Theoretical Approach
	k-Assembly

	Previous Work on Solving the Minimal k-Core Enumeration Problem
	Methods: Backtracking Algorithm Techniques
	The Bron and Kerbosch Algorithm for Finding All Cliques of an Undirected Graph
	Algorithm for Finding All Minimal k-Cores of an Undirected Graph

	Numerical Results
	Discussion
	Competing Interests
	Authors' Contributions
	Acknowledgements
	References

