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Abstract The Bienenstock–Cooper–Munro (BCM) learning rule provides a simple
setup for synaptic modification that combines a Hebbian product rule with a homeo-
static mechanism that keeps the weights bounded. The homeostatic part of the learn-
ing rule depends on the time average of the post-synaptic activity and provides a
sliding threshold that distinguishes between increasing or decreasing weights. There
are, thus, two essential time scales in the BCM rule: a homeostatic time scale, and a
synaptic modification time scale. When the dynamics of the stimulus is rapid enough,
it is possible to reduce the BCM rule to a simple averaged set of differential equations.
In previous analyses of this model, the time scale of the sliding threshold is usually
faster than that of the synaptic modification. In this paper, we study the dynamical
properties of these averaged equations when the homeostatic time scale is close to
the synaptic modification time scale. We show that instabilities arise leading to os-
cillations and in some cases chaos and other complex dynamics. We consider three
cases: one neuron with two weights and two stimuli, one neuron with two weights
and three stimuli, and finally a weakly interacting network of neurons.
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1 Introduction

For several decades now, the topic of synaptic plasticity has remained relevant. A pi-
oneering theory on this topic is the Hebbian theory of synaptic modification [1, 2],
in which Donald Hebb proposed that when neuron A repeatedly participates in firing
neuron B, the strength of the action of A onto B increases. This implies that changes
in synaptic strengths in a neural network is a function of the pre- and post-synaptic
neural activities. A few decades later, Nass and Cooper [3] developed a Hebbian
synaptic modification theory for the synapses of the visual cortex, which was later
extended to a threshold dependent setup by Cooper et al. [4]. In this setup, the sign
of a weight modification is based on whether the post-synaptic response is below or
above a static threshold. A response above the threshold is meant to strengthen the
active synapse, and a response below the threshold should lead to a weakening of the
active synapse.

One of the widely used models of synaptic plasticity is the Bienenstock–Cooper–
Munro (BCM) learning rule with which Bienenstock et al. [5]—by incorporating
a dynamic threshold that is a function of the average post-synaptic activity over
time—captured the development of stimulus selectivity in the primary visual cor-
tex of higher vertebrates. In corroborating the BCM theory, it has been shown that a
BCM network develops orientation selectivity and ocular dominance in natural scene
environments [6, 7]. Although the BCM rule was developed to model selectivity of
visual cortical neurons, it has been successfully applied to other types of neurons.
For instance, it has been used to explain experience-dependent plasticity in the ma-
ture somatosensory cortex [8]. Furthermore the BCM rule has been reformulated and
adapted to suit various interaction environments of neural networks, including lat-
erally interacting neurons [9, 10] and stimuli generalizing neurons [11]. The BCM
rule has also been in the center of the discussion as regards the relationship between
rate-based plasticity and spike-time dependent plasticity (STDP); it has been shown
that the applicability of the BCM formulation is not limited to rate-based neurons but
under certain conditions extends to STDP-based neurons [12–14].

Based on the BCM learning rule, a few data mining applications of neuronal selec-
tivity have emerged. It has been shown that a BCM neural network can perform pro-
jection pursuit [7, 15, 16], i.e. it can find projections in which a data set departs from
statistical normality. This is an important finding that highlights the feature detecting
property of a BCM neural model. As a result, the BCM neural network has been suc-
cessfully applied to some specific pattern recognition tasks. For example Bachman
et al. [17] incorporated the BCM learning rule in their algorithm for classifying radar
data. Intrator et al. developed an algorithm for recognizing 3D objects from 2D view
by combining existing statistical feature extraction models with the BCM model [18,
19]. There has been a preliminary simulation on how the BCM learning rule has the
potential to identify alpha numeric letters [20].

Mathematically speaking, the BCM learning rule is a system of differential equa-
tions involving the synaptic weights, the stimulus coming into the neuron, the activity
response of the neuron to the stimulus, and the threshold for the activity. Unlike its
predecessors, which use static thresholds to modulate neuronal activity, the BCM
learning rule allows the threshold to be dynamic. This dynamic threshold provides
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stability to the learning rule, and from a biological perspective, provides homeosta-
sis to the system. Treating the BCM learning rule as a dynamical system, this paper
explores the stability properties and shows that the dynamic nature of the threshold
guarantees stability only in a certain regime of homeostatic time scale. This paper also
explores the stability properties as a function of the relationship between homeostasis
time scale and the weight time scale. Indeed, there is no biological reason why the
homeostatic time scale should be dramatically shorter than the synaptic modification
time scale [21], so in this paper, we relax those restrictions. In Sect. 3, we illustrate a
stochastic simulation in the simplest case of a single neuron with two weights and two
different competing stimuli. We derive the averaged mean field equations and show
that there are changes in the stability as the homeostatic time constant changes. In
Sect. 4, we continue the study of a single neuron, but now assume that there are more
inputs than weights. Here, we find rich dynamics including multiple period-doubling
cascades and chaotic dynamics. Finally, in Sect. 5, we study small linearly coupled
networks and prove stability results while uncovering more rich dynamics.

2 Methods

The underlying BCM theory expresses the changes in synaptic weights as a product of
the input stimulus pattern vector, x, and a function, φ. Here, φ is a nonlinear function
of the post-synaptic neuronal activity, v, and a dynamic threshold, θ , of the activity
(see Fig. 1A).

If at any time, the neuron receives a stimulus x from a stimulus set, say
{x(1),x(2), . . . ,x(n)}, the weight vectors, w, evolve according to the BCM rule as

dw
dt

= φ(v; θ)x,

θ = Ep[v],
(1)

θ is sometimes referred to as the “sliding threshold” because, as can be seen from
Eq. (1), it changes with time, and this change depends on the output v, the sum of the
weighted input to the neuron, v = w · x. φ has the following property: for low values
of the post-synaptic activity (v < θ), φ is negative; for v > θ , φ is positive. In the
results presented by Bienenstock et al. [5], φ(v) = v(v − θ) is used, E[v] is a running
temporal average of v and the learning rule is stable for p > 1. Later formulations of
the learning rule (for instance by [7]) have shown that a spatial average can be used in
lieu of a temporal average, and that with p = 2, E[vp] is an excellent approximation
of Ep[v]. We can also replace the moving temporal average of v with first order
low-pass filter. Thus a differential form of the learning rule is

τw

dw
dt

= vx(v − θ),

τθ

dθ

dt
= (

v2 − θ
)
,

(2)

where τw and τθ are time-scale factors, which in simulated environments, can be used
to adjust how fast the system is changing with respect to time. We point out that this
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Fig. 1 (A) A nonlinear function φ of the post-synaptic neuronal activity, v, and a threshold θ , of the
activity. (B) When τθ /τw = 0.25, response converges to a steady state and neuron selects stimulus x(1) .
(Here, the stimuli are x(1) = (cosα, sinα) and x(2) = (sinα, cosα) with α = 0.3926, the stimuli switch
randomly at a rate 5, and τw = 25.) (C) When τθ /τw = 1.7, responses oscillate but the neuron still selects
stimulus x(1) . (D) When τθ /τw = 2.5, neuron is no longer selective

is the version of the model that is found in Dayan and Abbott [22]. We point out that
the vector input, x is changing rapidly compared to θ and w, so that Eq. (2) is actually
a stochastic equation. The stimuli, x are generally taken from a finite set of patterns,
x(k) and are randomly selected and presented to the model.

3 Results I: One Neuron, Two Weights, Two Stimuli

For a single linear neuron that receives a stimulus pattern x = (x1, . . . , xn) with
synaptic weights w = (w1, . . . ,wn), the neuronal response is v = w · x. The results
we present in this section are specific to when n = 2 and when there are two pat-
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terns. In this case, the neuronal response is v = w1x1 + w2x2. In the next section, we
explore a more general setting.

3.1 Stochastic Experiment

A good starting point in studying the dynamical properties of the BCM neuron is to
explore the steady states of v for different time-scale factors of θ . This is equivalent
to varying the ratio τθ/τw in Eq. (2). We start with a BCM neuron that receives a
stimulus input x stochastically from a set {x(1),x(2)} with equal probabilities, that is,
Pr[x(t) = x(1)] = Pr[x(t) = x(2)] = 1

2 . We create a simple hybrid stochastic system
where the value of x switches between the pair {x(1),x(2)} at a rate λ as a two state
Markov process. At steady state, the neuron is said to be selective if it yields a high
response to one stimulus and a low (≈ 0) response to the other.

Figures 1B–D plot the neuronal response v as a function of time. In each case, the
initial conditions of w1, w2 and θ lie in the interval (0,0.3). The stimuli are x(1) =
(cosα, sinα) and x(2) = (sinα, cosα) where α = 0.3926. v1 = w ·x(1) is the response
of the neuron to the stimulus x(1) and v2 = w · x(2) is the response of the neuron to
the stimulus x(2). In each simulation, the presentation of stimulus is a Markov process
with rate λ = 5 presentations per second. When τθ/τw = 0.25, Fig. 1B shows a stable
selective steady state of the neuron. At this state, v1 ≈ 2 while v2 ≈ 0, implying that
the neuron selects x(1). This scenario is equivalent to one of the selective steady states
demonstrated by Bienenstock et al. [5].

When the threshold, θ changes slower than the weights, w, the dynamics of the
BCM neuron take on a different kind of behavior. In Fig. 1C, τθ/τw = 1.7. As can
be seen, there is a difference between this figure and Fig. 1B. Here, the steady state
of the system loses stability and a noisy oscillation appears to emerge. The neuron is
still selective since there is a large enough empty intersection between these ranges
of oscillation.

Setting the time-scale factor of θ to be a little more than twice that of w reveals a
different kind of oscillation from the one seen in Fig. 1C. In Fig. 1D where τθ/τw =
2.5, the oscillation has very sharp maxima and flat minima and can be described as
an alternating combination of spikes and rest states. As can be seen, the neuron is not
selective.

3.2 Mean Field Model

The dynamics of the BCM neuron (Eq. (2)) is stochastic in nature, since at each time
step, the neuron randomly receives one out of a set of stimuli. One way to gain more
insight into the nature of these dynamics is to study a mean field deterministic approx-
imation of the learning rule. If the rate of change of the stimuli is rapid compared to
that of the weights and threshold, then we can average over the fast time scale to
get a mean field or averaged model and then study this through the usual methods of
dynamical systems. Consider a BCM neuron that receives a stimulus input x, stochas-
tically from the set {x(1) = (x11, x12),x(2) = (x21, x22)} such that Pr[x(t) = x(1)] = ρ

and Pr[x(t) = x(2)] = 1 − ρ. A mean field equation for the synaptic weights is

ẇi = ρx1iv1(v1 − θ) + (1 − ρ)x2iv2(v2 − θ), i ∈ {1,2}.
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Now let the responses to the two stimuli be v1 = w · x(1) and v2 = w · x(2). With this,
changes in the responses can be written as

v̇1 = x11ẇ1 + x12ẇ2,

v̇2 = x21ẇ1 + x22ẇ2.
(3)

So a mean field equation in terms of the responses is

τwv̇1 = [
ρx(1) · x(1)v1(v1 − θ) + (1 − ρ)x(1) · x(2)v2(v2 − θ)

]
,

τwv̇2 = [
ρx(1) · x(2)v1(v1 − θ) + (1 − ρ)x(2) · x(2)v2(v2 − θ)

]
,

τθ θ̇ = [
ρv1

2 + (1 − ρ)v2
2 − θ

]
.

(4)

This equation is our starting point for the analysis of the effects of changing the time-
scale factor of θ , τθ . Thus all that matters with regard to the time scales is the ratio,
τ = τθ/τw . We note that we could also write down the averaged equations in terms
of the weights, but the form of the equations is much more cumbersome.

We now look for equilibria and the stability of these fixed points. We note that if
the two stimuli are not collinear and ρ ∈ (0,1), then v̇1,2 = 0 if and only if vj (vj −
θ) = 0. Using the fact that at equilibrium, θ = ρv1

2 + (1 − ρ)v2
2, we find

v1
(
v1 − (

ρv1
2 + (1 − ρ)v2

2)) = 0,

v2
(
v2 − (

ρv1
2 + (1 − ρ)v2

2)) = 0,
(5)

which gives the fixed points

(v1, v2, θ) =
{
(0,0,0),

(
1

ρ
,0,

1

ρ

)
,

(
0,

1

1 − ρ
,

1

1 − ρ

)
, (1,1,1)

}
. (6)

The fixed points ( 1
ρ
,0, 1

ρ
) and (0, 1

1−ρ
, 1

1−ρ
) are stable (as we will see) for small

enough τ and selective, while (0,0,0) and (1,1,1) are neither stable nor selective.
Bienenstock et al. [5] discussed the stability of these fixed points as they pertain
to the original formulation. Castellani et al. [9] and Intrator and Cooper [7] gave a
similar treatment to the objective formulation. In Sect. 3.4, it will be shown that the
stability of ( 1

ρ
,0, 1

ρ
) and (0, 1

1−ρ
, 1

1−ρ
) depends on the angle between the stimuli, the

amplitude of the stimuli, ρ, and the ratio of τθ to τw .

3.3 Oscillatory Properties: Simulations

As seen in the preceding section, the fixed points to the mean field BCM equation are
invariant (with regards to stimuli and synaptic weights) and depend only on the proba-
bilities with which the stimuli are presented. The stability of the selective fixed points,
however, depends on the time-scale parameters, the angular relationship between the
stimuli, and the amplitudes of the stimuli. To get a preliminary understanding of this
property of the system, consider the following simulations of Eq. (4); each with dif-
ferent stimulus set characteristics. We remark that because Eq. (4) depends only on
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Fig. 2 Four simulations of Eq. (4) with initial data (v1, v2, θ) = (0.1,0,0) shown for the last 100
time units. τw = 2, x(1) = (1,0). Equilibria are v2 = 0 and v1 = 1/ρ, shown as the dashed line. (A)
ρ = 0.5, x(2) = (0,1), τθ /τw = 1.1; (B) ρ = 0.5, x(2) = (cos(1), sin(1)), τθ /τw = 1.5; (C) ρ = 0.7,
x(2) = (cos(1), sin(1)), τθ /τw = 1.5; (D) ρ = 0.5, x(2) = 1.5(cos(1), sin(1)), τθ /τw = 0.8

the inner product of stimuli, equal rotation of both has no effect on the equations.
What matters is the magnitude, angle between them, and frequency.

Simulation A: orthogonal, equal magnitudes, equal probabilities
Let ρ = 0.5, x(1) = (1,0), x(2) = (0,1). In this case, the two stimuli have equal

magnitudes, are perpendicular to each other, and are presented with equal probabili-
ties. Figure 2(A) shows the evolution of v1 and v2 in the last 100 time-steps of a 400
time step simulation. The dashed line shows the unstable non-zero equilibrium point.
For τ ≡ τθ/τw = 1.1, there is a stable limit cycle oscillation of v1. Since the stimuli
are orthogonal, v2(t) = 0 is an invariant set.

Simulation B: non-orthogonal, equal magnitudes, equal probabilities
Let ρ = 0.5, x(1) = (1,0), x(2) = (cos(1), sin(1)), τ = 1.5. In this case, the two

stimuli have equal magnitudes, are not perpendicular to each and are presented with
equal probabilities. Figure 2(B) shows an oscillation, but now v2 oscillates as well
since the stimuli are not orthogonal.

Simulation C: non-orthogonal, equal magnitudes, unequal probabilities
Let ρ = 0.7, x(1) = (1,0), x(2) = (cos(1), sin(1)). The only difference between

this case and simulation B is that the stimuli are now presented with unequal proba-
bilities. For τ = 1.5, there is a stable oscillation of both v1, v2 centered around their
unstable equilibrium values.

Simulation D: orthogonal, unequal magnitude, equal probabilities
Let ρ = 0.5, x(1) = (1,0), x(2) = 1.5(cos(1), sin(1)). The only difference between

this case and simulation B is that stimulus 2 has a larger magnitude and τ = 0.8. We
remark that in this case, even when τ < 1, the equilibrium point has become unstable.
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These four examples demonstrate that there are oscillations of various shapes and
frequencies that arise pretty generically no matter what the specifics of the mean field
model are; they can occur in symmetric cases (e.g. simulation A) or with more general
parameters as in B-D. We also note that to get oscillatory behavior in the BCM rule,
we do not even need τθ > τw as seen in example D. We will see shortly that the
oscillations arise from a Hopf bifurcation as the parameter, τ increases beyond a
critical value. To find this value, we perform a stability analysis of the equilibria for
Eq. (4).

3.4 Stability Analysis

We begin with a very general stability theorem that will allow us to compute stability
for an arbitrary pair of vectors and arbitrary probabilities of presentation. Looking
at Eq. (4), we see that by rescaling time, we can assume that x(1) · x(1) = 1 without
loss of generality. To simplify the calculations, we let τ = τθ/τw , b = x(1) · x(2),
a = x(2) · x(2), and c = ρ/(1 − ρ). Note that a > b2 by the Schwartz inequality and
that c ∈ (0,∞) with c = 1 being the case of equal probability.

For completeness, we first dispatch with the two non-selective equilibria, (1,1,1)

and (0,0,0). At (1,1,1), it is easy to see that the characteristic polynomial has a
constant coefficient that is ρ(1 − ρ)(b2 − a)/τ , which means that it is negative since
a > b2. Thus, (1,1,1) is linearly unstable.

Linearization about (0,0,0) yields a matrix that has double zero eigenvalue and a
negative eigenvalue, −1/τ . Since the only linear term in Eq. (4) is −θ/τ , the center
manifold is parameterized by (v1, v2) and first terms in a center manifold calculation
for θ are θ = ρv2

1 + (1 − ρ)v2
2 . This term only contributes cubic terms to the v1, v2

right-hand sides so that to quadratic order:

v′
1 = ρv2

1 + (1 − ρ)bv2
2,

v′
2 = ρbv2

1 + (1 − ρ)av2
2 .

Hence,

dv1

dv2
= c + b(v2/v1)

2

cb + a(v2/v1)2
.

We claim that there exists a solution to this equation of the form, v2 = Kv1 for a
constant K > 0. Plugging in this assumption we see that K satisfies

1

K
= c + bK2

cb + aK2
≡ H(K).

For b > 0, there is a unique K > 0 satisfying this equation. (Note b > 0 means the
vectors form an acute angle with each other. If b < 0 then H(K) has a singularity and
there is still a root to H(K) = 1/K . If b = 0, then there is also a unique solution.)
Plugging v2 = Kv1 into the equation for v′

1 yields

v′
1 = (

ρ + (1 − ρ)bK2)v2
1 .
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If b ≥ 0, then clearly v1(t) goes away from the origin, which implies that (0,0,0) is
unstable. If b < 0, the singularity occurs when K2 = −cb/a and the root to H(K) =
1/K is less than −cb/a. This yields

v′
1 > (1 − ρ)

(
c − cb2/a

)
v2

1 = ρ
(
1 − b2/a

)
v2

1

and, again, using the fact that b2 < a, we see that v1 leaves the origin. Thus, we have
proven that (0,0,0) is unstable.

We now have to look at the stability of the selective equilibria: (v1, v2, θ) =
(1/ρ,0,1/ρ) ≡ z1 and (v1, v2, θ) = (0,1/(1 − ρ),1/(1 − ρ)) ≡ z2, since the lat-
ter has different stability properties if the parameter a > 1. The Jacobian matrix for
the right-hand sides of Eq. (4) around z1 is

J =
⎛

⎝
1 −bc −1
b −ac −b

2/τ 0 −1/τ

⎞

⎠ .

From this we get the characteristic polynomial:

p1
J (λ) = λ3 + A12λ

2 + A11λ + A10,

where

A10 = c
(
a − b2)/τ,

A11 = (1 + ac)/τ + c
(
b2 − a

)
,

A12 = 1/τ + ac − 1.

Equilibria are stable if these three coefficients are positive and from the Routh–
Hurwitz criterion, A11A12 − A10 := R1 > 0. We note that A10 > 0 since c > 0
(unless ρ = 0) and a > b2. This means that no branches of fixed points can bifur-
cate from the equilibrium point; that is there are no zero eigenvalues. For τ small
R1 ∼ (1 + ac)/τ 2 > 0 and the other coefficients are positive, so the rest state is
asymptotically stable. A Hopf bifurcation will occur if R1 = 0 and A10 > 0 and
A12 > 0. Setting R1 = 0 yields the quadratic equation:

τ 2R1 ≡ Q1
R(τ)

= c
(
a − b2)(1 − ac)τ 2 − (

1 + 2ac − a2c2 − 2b2c
)
τ + (1 + ac) = 0. (7)

In the “standard” case (e.g. as in Fig. 2B), we have a = c = 1 and Q1
R(τ) = −2(1 −

b2)τ + 2 = 0 or

τ = 1/
(
1 − b2). (8)

A similar calculation can be done for the fixed point z2. In this case, the coefficients
of the characteristic polynomial are

A20 = c
(
a − b2)/τ,
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A21 = (a + c)/τ + c
(
b2 − a

)
,

A22 = 1/τ + c − a.

As with the equilibrium z1, there can be no zero eigenvalue and A20 is positive except
at the extreme cases where c = 0 or a = b2. The Routh–Hurwitz quantity, R2 :=
A21A22 − A20 vanishes at roots of

τ 2R2 ≡ Q2
R(τ) = c

(
a − b2)(a − c)τ 2 + (

2c
(
b2 − a

) + c2 − a2)τ + a + c = 0. (9)

We note that when a = c = 1, we recover Eq. (8). For τ sufficiently small, z2 is
asymptotically stable.

We now use Eqs. (7) and (9) to explore the stability of the two solutions as a
function of τ . We have already eliminated the possibility of losing stability through a
zero eigenvalue since both A10,A20 are positive. Thus, the only way to lose stability
is through a Hopf bifurcation which occurs when either of Q

1,2
R (τ) vanishes. We can

use the quadratic formula to solve for τ for each of these two cases, but one has to be
careful since the coefficient of τ 2 vanishes when c = a or c = 1/a.

Figure 3 shows stability curves as different parameters vary. In panel A, we use
the standard setup (Fig. 2B) where ρ = 0.5, the stimuli are unit vectors ((1,0) and
(cosα, sinα)), and α denotes the angle between the vectors. The curve is explicitly
obtained from Eq. (8), with b = cosα. For any τ above τc, either of the two selective
equilibria is unstable. In Fig. 3B, we show the dependence of τc on ρ, the frequency of
a given stimulus. All values of τc are greater than or equal to 1, so that in order to get
instability the time-scale factor, τθ , of homeostasis must be more than or equal to that
of the weights, τw . In panel C, we show the dependence on the amplitude, A, where
x(2) = A(cosα, sinα). This figure shows two curves: the red curve give τc for the
equilibrium, (v1, v2, θ) = (2,0,2) while the black curve is for (v1, v2, θ) = (0,2,2).
The latter equilibrium can lose stability at arbitrarily low values of τ if the amplitude
is large enough. Indeed, τc ∼ 1/A2 as A → ∞.

We summarize the results in this section with the following theorem.

Theorem 3.1 Assume that the two stimuli are not collinear and that ρ ∈ (0,1). Then
there are exactly four equilibria to Eq. (4): (v1, v2, θ) = {(0,0,0), (1,1,1), z1 ≡
(1/ρ,0,1/ρ), z2 ≡ (0,1/(1 − ρ),1/(1 − ρ))}. The first two are always unstable. Let
a = |x2|2, b = x1 · x2, c = ρ/(1 − ρ), and τ = τθ/τw . Then

• z1 is linearly asymptotically stable if and only if

c
(
a − b2)(1 − ac)τ 2 − (

1 + 2ac − a2c2 − 2b2c
)
τ + (1 + ac) > 0.

• z2 is linearly asymptotically stable if and only if

c
(
a − b2)(a − c)τ 2 + (

2c
(
b2 − a

) + c2 − a2)τ + a + c > 0.

• If a = 1 (that is, the stimuli have equal amplitude), then z1,2 are linearly asymp-
totically stable if and only if

c(1 − c)
(
1 − b2)τ 2 + (

2c
(
b2 − 1

) + c2 − 1
)
τ + 1 + c > 0.
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Fig. 3 The critical value of τ = τθ /τw for a Hopf bifurcation to equations 4. For τ > τc , the selective
equilibrium point is unstable. (A) Dependence on α, the angle between the stimulus vectors when ρ = 0.5
and the amplitudes of both stimuli are 1. (B) Dependence on ρ when the amplitudes are 1 and α = 1.
(C) Dependence on the amplitude, A, of the second stimulus (a = A2), ρ = 0.5, and α = 1. Note that the
stability depends on the equilibria; red corresponds to (2,0,2) and black to (0,2,2). Horizontal dashed
lines show τ = 1 and the vertical dashed line is the equal amplitude case

• In the simplest case where a = c = 1, then both selective equilibria are stable if
and only if

τ <
1

1 − b2
.

3.5 Bifurcation Analysis

The previous section shows that as the ratio τ increases, the two selective equilibria
lose stability via a Hopf bifurcation. We now use numerical methods to study the
behavior as τ increases. As the stability theorem shows, if the amplitude of the two
stimuli are the same, then the stability is exactly the same for both, no matter what
the other parameters. We will fix ρ = 0.5, and x(1) = (1,0), x(2) = A(cos(1), sin(1))

and let τ vary. In Fig. 4A, we show the case A = 1 so that both stimuli have the same
magnitudes. As τ increases, each of the selective equilibria loses stability at the same
value of τ , here given by τc = 1/(1 − cos(1)2) = 1.412 (cf. Eq. (8)). At this point a
stable limit cycle bifurcates and exists up until τ ≡ τHC ≈ 3.2 where the orbit appears
to be homoclinic to the nonlinear saddle at the origin. (Note that near the homoclinic,
there are some numerical issues with the stability; we believe that the branch is stable
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Fig. 4 Behavior of Eq. (4) as τ = τθ /τw changes. x(1) = (1,0), x(2) = A(cos(1), sin(1)), ρ = 1/2. (A)
A = 1, so that both fixed points have the same stability properties. Curves show maximum and minimum
value of v1 or v2. Red line shows stable equilibrium, black, unstable equilibrium, green circle show stable
limit cycles and blue unstable. Two points are marked by black filled circles and the Hopf bifurcation is
depicted as HB. Apparent homoclinic is labeled HC. (B) Symmetric pairs of limit cycles for two different
values of τ on the curves in (A) projected on the (v1, v2) plane. (C) A = 1.5 so that the stability of the two
equilibria is different. The maximum value of V2 is shown as τ varies. Upper curves (2) bifurcate from
(v1, v2, θ) = (0,2,2) and lower curves (1) from (2,0,2). Colors as in panel A. LP denotes a limit point
and Hs denotes a Hopf bifurcation for the symmetric equilibrium (1,1,1). (D) Orbits taken from the two
bifurcation curves in (C) projected onto the (v1, v2) plane

all the way up to the homoclinic.) We remark that the dynamics for τ slightly larger
than τHC is difficult to analyze; while the origin is unstable, it has stable directions
and it appears that all initial data eventually converge to it. For τ large enough, we
have found that solutions blow up in finite time.

If the amplitude of x(2) is different from that of x(1), then the theorem shows
that the two selective equilibria have different stability properties. Figure 4C shows
the bifurcation diagram for A = 1.5. When we follow the stability of z1 = (2,0,2)

(shown as the lower curve labeled 1), there is a Hopf bifurcation at τ ≈ 1.52 and a sta-
ble branch of periodic orbits bifurcates from it that persists up until τ ≈ 1.94 where
it bends around (LP), becomes unstable, and terminates on the symmetric unstable
equilibrium, (v1, v2, θ) = (1,1,1) at a Hopf bifurcation (τ ≈ 0.79) for this equilib-
rium, labeled Hs. Figure 4D shows the small amplitude periodic orbit at τ = 1.7
projected in the (v1, v2) plane where it is centered around (v1, v2) = (2,0). The up-
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per curve in panel C (labeled 2) shows the stability of z2 = (0,2,2) as τ varies. Here,
there is a Hopf bifurcation at τ ≈ 0,5 and a stable branch of periodic orbits bifur-
cates from the equilibrium. The branch terminates at a homoclinic orbit at τ ≈ 1.35.
Figure 4D shows an orbit for τ = 0.7 that surrounds (v1, v2) = (2,0).

In sum, in this section we have analyzed a very simple BCM model where there are
two stimuli, two weights, and one neuron. We have shown that if the time-scale factor
(τθ ) of the homeostatic threshold, θ is too slow relative to the time-scale factor of the
weights, then, the selective equilibria lose stability via a Hopf bifurcation and limit
cycles emerge. For very large ratios, τ = τθ/τw , solutions become unbounded and
intermediate values of τ , the origin becomes an attractor even though it is unstable.
In the next section, we consider the case when there are more stimuli than there are
weights and, in the subsequent section, we consider small coupled networks.

4 Results II: One Neuron, n Weights, m Stimuli

We next consider the general scenario where a single neuron receives an n-
dimensional input selected from m different possibilities with probability pk , k =
1, . . . ,m. We will label the stimuli xkj with j running from 1, . . . , n, and k as above.
The weights are w1, . . . ,wn and the response of a neuron to stimulus k is

vk =
n∑

j=1

wjxkj . (10)

If the weights and the threshold change slowly compared to the change in the stimulus
presentation, then the differential equations for the BCM rule can be averaged over
the inputs:

τww′
j =

m∑

k=1

pkxkj vk(vk − θ), τθ θ
′ =

m∑

k=1

pkv
2
k − θ,

where vk is given in Eq. (10). We note that, classically, what is of interest is not the
evolution of the weights, but rather the evolution of the responses. Using Eq. (10), we
see that

τwv′
k = τw

n∑

j=1

xkjw
′
j =

n∑

j=1

m∑

l=1

xkj xljplvl(vl − θ)

=
m∑

l=1

pl 
xk · 
xlvl(vl − θ), (11)

where 
xk is the vector whose entries are (xk1, . . . , xkn). It is very clear that using this
formulation, the equations are very simple. Let X denote the matrix whose entries
are xkj ; it is an m × n matrix. If n = m, then X is square, and if it is invertible, then
the two formulations with respect to the weights and the responses are equivalent.
That is, 
v(t) = X 
w(t). However, if n �= m, then there will be some degeneracy with
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respect to the two formulations. Most typically, the dimension of the stimulus space
will be larger than the dimension of the weight space (m > n) and in this case there
will be degeneracy with respect to the responses. As should be clear from the two
formulations, the equations are much simpler in the response space, so that this is the
preferred set of ODEs and thus there will be redundancy in the equations. That is,
there will be m − n linearly independent vectors, 
qi such that 
qT

i X = 0. This implies
that here will be m − n constants of motion in the response space:


qi · 
v(t) = Ci. (12)

Thus, in the case when m > n, we still need only study the n+1-dimensional dynam-
ical system consisting of n choices of the vk along with the m − n linear constraints
(12).

4.1 Example: n = 2,m = 3

As an example of the kinds of dynamics that is possible, we will consider m = 3 and
n = 2 where the three stimuli are (1,0), (cosα, sinα), and (cosβ, sinβ) and these are
distributed with equal probability. In this case, the equations for vk, θ are

τwv′
k = 1

3

3∑

l=1

cklvl(vl − θ), (13)

τθ θ
′ = −θ + 1

3

3∑

l=1

v2
l ,

with cll = 1, clk = ckl , c12 = cosα, c13 = cosβ , and c23 = cos(α−β). Since there are
two weights and three stimuli, we can reduce the dimension by 1 with the constraint:

e1v1 + e2v2 + e3v3 = C,

where e1 = cosα cos(α − β), e2 = − sinα sinβ and e3 = sin(α)2. As long as one of
these is non-zero (which will happen if the vectors are not all collinear), we can solve
for one of the vk and reduce the dimension by 1. In the example that we analyze here,
we fix α = 0.92 and β = 2.5 and eliminate v3. This leaves two parameters, τ ≡ τθ/τw

and C, the constant of integration. Equilibria are independent of τ but the existence
of limit cycles and other complex dynamics obviously depends on τ .

Figure 5 shows the dynamics as C is varied for different values of the ratio τ .
Panel E shows the full range of equilibria as the constant, C varies. For large nega-
tive values of C, there is a unique equilibrium point and for C ∈ (0.235,3.65) there
are two additional equilibria formed by an isola (isolated circle) of equilibria. The
stability of all of these equilibria depends on the values of τ and C. The change in
stability occurs when there is a Hopf bifurcation. Panel A shows a summary in two
parameters of the curves of Hopf bifurcation points. The green curve corresponds to
the stability of the upper branch of equilibria in panels B–E. For τ < 1.293, there are
no Hopf bifurcations on either branch and there appear to be no periodic orbits. For



Journal of Mathematical Neuroscience  (2017) 7:2 Page 15 of 32

Fig. 5 Bifurcation diagrams for Eq. (13) as the constant C varies for different values of the ratio
τ = τθ /τw . (A) Summary of the possible Hopf bifurcations on the principal branch (green) and on the
isola (red). Labels correspond to different branches of Hopf bifurcations on the panels that follow. (B–E)
the maximum value of v1(t) as a function of C for different values of the ratio τ . Thin black lines are
unstable equilibria, red are stable equilibria, green and blue circles are stable and unstable limit cycles. PD
is for period-doubling bifurcation; CH for chaos, HOM for homoclinic. Arrows in C correspond to chaotic
behavior shown in Fig. 6

all τ > 1.293, the upper branch has two Hopf bifurcations (labeled a, b) so that we
can expect the possibility of periodic behavior. The curve of the Hopf bifurcations is
more complicated for the isola. We first note that the upper part of the isola always
has one real positive eigenvalue, so that it is unstable for all τ . The lower part of the
isola has a negative real eigenvalue and its stability depends on τ . Returning to the
Hopf bifurcations on the isola of equilibria (shown in red in panel A), we see that
there can be 1, 2 or 3 Hopf bifurcations as C changes. We label these c, d, e. Since
there are generally two Hopf bifurcations on the main branch of equilibria, there can
be up to five Hopf bifurcations for a given value of τ as C increases. We start with
τ = 1.6 (panel B). For this value of τ , we see it is below the minimum for which
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Fig. 6 (A) Chaos in Eq. (13) for τ = 1.8 and C = 0.18 projected in the v1 − θ plane. (B) Orbit diagram
obtained by taking a Poincaré section at v2 = 2 and plotting successive values of θ as C varies. An arrow
denotes C = 0.18; cf. panel A

there are Hopf bifurcations on the isola, so all the bifurcations appear on the main
branch. Both bifurcations are supercritical and lead to small amplitude stable oscil-
lations that grow in amplitude. The branches of periodic orbits arising from the two
Hopf bifurcations are joined and thus represent a single continuous branch. However,
the branch starting at a loses stability via a period-doubling bifurcation (PD in panel
B) at C ≈ 0.177. There does not appear to be any chaotic behavior that we have been
able to find. For τ = 1.8, shown in panel C, we see that the branch of periodic or-
bits that bifurcated from the main branch (at points a, b), has split into two separate
branches that terminate on Hopf bifurcations of the upper branch of the isola (points
c, d). The left branch that joins a and c also undergoes a period-doubling bifurcation
(PD) and for a limited range of C, there appears to be chaos in the dynamics; specif-
ically around C = 0.18. Two arrows delimit the range of parameters that are shown
in Fig. 6. For τ = 2.3,2.54, there are 5 Hopf bifurations and as with τ = 1.8 the pe-
riodic orbits arising from point a join with those on point c and those arising from b
join with the branch arising from d. The branch of stable periodic orbits arising from
the Hopf bifurcation at e is lost at a homoclinic labeled Hom in panel E. There is a
small regime of chaotic behavior for τ = 2.3 shown in panel D, but we find no chaos
when τ = 2.54, For larger values of τ , there are three Hopf bifurcations (a, b, d).
The bifurcations c,e merge and disappear so that all the equilibria on the isola are un-
stable. The branch of periodic orbits arising from d, becomes disconnected from the
branch arising from b while the branch of orbits arising ftom b joins the branch aris-
ing from a. Other than the unique stable equilibrium when C is large or small, there
is only a principal branch of stable periodic orbits between the Hopf bifurcations a
and b. There are other complex structures, but none of them are stable.

Figure 6 shows some probable chaos for τ = 1.8 and C ∈ [0,0.25]. Panel A shows
a trajectory projected in the v1 − θ plane for C = 0.18. Panel B shows the evolution
of the attracting dynamics as C varies. We take a Poincaré section at v2 = 2 and plot
the successive values of θ after removing transients and letting C vary between 0 and
0.25. As C increases, there is a periodic orbit that undergoes multiple period-doubling
bifurcations before becoming chaotic. There are several regions showing period three



Journal of Mathematical Neuroscience  (2017) 7:2 Page 17 of 32

orbits (C ≈ 0.1, C ≈ 0.175, C ≈ 0.21) as well as many regions with complex behav-
ior. The chaos and periodic dynamics terminates near C = 0.237, which is the value
of C at which the lower stable branch of equilibria in the isola begins. Chaos and
similar complex dynamics occurs for other values of τ .

In this section, we have shown that the degeneracy that occurs when there are more
stimulus patterns than weights can be resolved by finding some simple constants
of motion. The resulting reduced system will always be three-dimensional. In the
simplest case of three patterns and two weights, we have found rich dynamics when
τ = τθ/τw is larger than 1.

5 Results III: Small Coupled Network

To implement a network of coupled BCM neurons receiving stimulus patterns from
a common set, it is important to incorporate a mechanism for competitive selectivity
within the network. A mechanism of this sort, found in visual processes [23] (and also
in tactile [24], auditory [25], and olfactory processing [26]) is called lateral inhibition,
during which an excited neuron reduces the activity of its neighbors by disabling the
spreading of action potentials to neighboring neurons in the lateral direction. This
creates a contrast in stimulation that allows increased sensory perception.

Consider a network of N mutually inhibiting neurons. At any time, let {vi}Ni=1
be the net activities of the neurons. Let {si}Ni=1 be the partial activities induced by a
stimulus x i.e. si = wi · x where wi is the synaptic weight vector for neuron i. At any
given time, the activity, vi of the linear neuron i (where i ∈ {1,2, . . . ,N}) follows the
differential equation:

dvi

dt
= −vi + Ii,

where Ii is the external input to the neuron [27]. Since neuron i is inhibited by its
neighbors

Ii = si − γ
∑

j �=i

vj ,

where γ is the inhibition parameter, measuring the amount of inhibition that i gets.
Therefore

dvi

dt
= −vi + si − γ

∑

j �=i

vj . (14)

At a steady state, this equation becomes

si = vi + γ
∑

j �=i

vj . (15)

Thus, the overall activity of the network can be expressed as

v = G−1s,
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where

G =

⎡

⎢⎢⎢⎢⎢
⎣

1 γ γ . . . γ

γ 1 γ . . . γ

γ γ 1 . . . γ
...

...
...

. . .
...

γ γ γ . . . 1

⎤

⎥⎥⎥⎥⎥
⎦

.

Now let V = ∑N
j=1 vj . Then we can write Eq. (15) as

vi = si − γV + γ vi

or

vi = si − γV

1 − γ
; (16)

thus

V =
N∑

j=1

sj − γV

1 − γ
= 1

1 − γ

(
N∑

j=1

sj − γ

N∑

j=1

V

)

= 1

1 − γ

(
N∑

j=1

sj − γNV

)

,

implying

(
1 + γ (N − 1)

)
V =

N∑

j=1

sj

or

V =
∑N

j=1 sj

1 + γ (N − 1)
.

Substituting V into Eq. (16) we get

vi = 1

1 − γ
si − γ

(1 − γ )(1 + γ (N − 1))

N∑

j=1

sj .

The left-hand side of this equation is undefined when γ = 1 or γ = − 1
N−1 . Thus G

is invertible when 0 < γ < 1.
Linearizing around the steady state solution of Eq. (14), we obtain the Jacobian

M =

⎡

⎢⎢⎢⎢⎢
⎣

−1 −γ −γ . . . −γ

−γ −1 −γ . . . −γ

−γ −γ −1 . . . −γ
...

...
...

. . .
...

−γ −γ −γ . . . −1

⎤

⎥⎥⎥⎥⎥
⎦

.
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Notice that (1,1, . . . ,1)T is an eigenvector of M with corresponding eigenvalue
−(1 +Nγ ). This eigenvalue is negative when γ > −1/N . Also notice that M can be
written as

M = −γ1+ (γ − 1)I,

where 1 is the N − by − N matrix of all 1’s and I is the N − by − N identity
matrix. Note that nullity(1) = 1, since dim(1) = N and rank(1) = 1. null(1) is in
the eigenspace of M because if u ∈ null(1) then

Mu = −γ1u + (γ − 1)Iu

= (γ − 1)u.

Thus u is an eigenvector of M corresponding to the eigenvalue γ −1. This eigenvalue
is negative when 0 < γ < 1. Thus whenever G is invertible, the system is also stable.

Now consider two neurons a and b who mutually inhibit each other and, at any
instant, receive the same stimulus pattern x, with synaptic weight vectors wa (for
neuron a) and wb (for neuron b). Let their responses to x be sa and sb , and their
net responses (after accounting for inhibition) be va and vb. Finally, let the dynamic
threshold to va and vb be θa and θb, respectively. The BCM learning rule of these two
neurons is given by

τwẇa = xva(va − θa),

τθ θ̇a = va
2 − θa,

τwẇb = xvb(vb − θb),

τθ θ̇b = vb
2 − θb,

(17)

where sa = wa · x and sb = wb · x and thus
[
va

vb

]
=

[
1 γ

γ 1

]−1 [
sa
sb

]
(18)

or

va = 1

1 − γ 2
sa − γ

1 − γ 2
sb,

vb = −γ

1 − γ 2
sa + 1

1 − γ 2
sb.

(19)

5.1 Mean Field Model

Consider the general two-dimensional stimulus pattern x = (x1, x2). Let the two neu-
rons, a and b, receive this stimulus with the synaptic weight vectors wa = (wa1,wa2)

and wb = (wb1,wb2). If g = 1/(1 − γ 2) and h = γ /(1 − γ 2), then according to
Eq. (19)

va = ca1x1 + ca2x2,

vb = cb1x1 + cb2x2,
(20)
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where ca1 = gwa1 − hwb1, ca2 = gwa2 − hwb2, cb1 = gwb1 − hwa1 and cb2 =
gwb2 − hwa2.

The rate of change of va is given by

v̇a = ċa1x1 + ċa2x2

= gx1ẇa1 − hx1ẇb1 + gx2ẇa2 − hx2ẇb2

= g(x1ẇa1 + x2ẇa2) − h(x1ẇb1 + x2ẇb2). (21)

A similar expression exists for vb. Assume that x is from the set {x(1) = (x11, x12),

x(2) = (x21, x22)} such that Pr[x(t) = x(1)] = ρ and Pr[x(t) = x(2)] = 1 − ρ. Then
in terms of the responses, the mean field version of the BCM rule for two mutually
inhibiting neurons a and b is derived as follows:

τθ θ̇a = ρv2
a1 + (1 − ρ)v2

a2 − θa,

τwv̇a1 = g
[
ρx(1) · x(1)va1(va1 − θa) + (1 − ρ)x(1) · x(2)va2(va2 − θa)

]

− h
[
ρx(1) · x(1)vb1(vb1 − θb) + (1 − ρ)x(1) · x(2)vb2(vb2 − θb)

]
,

τwv̇a2 = g
[
ρx(2) · x(1)va1(va1 − θa) + (1 − ρ)x(2) · x(2)va2(va2 − θa)

]

− h
[
ρx(2) · x(1)vb1(vb1 − θb) + (1 − ρ)x(2) · x(2)vb2(vb2 − θb)

]
,

τθ θ̇b = ρv2
b1 + (1 − ρ)v2

b2 − θb,

τwv̇b1 = g
[
ρx(1) · x(1)vb1(vb1 − θb) + (1 − ρ)x(1) · x(2)vb2(vb2 − θb)

]

− h
[
ρx(1) · x(1)va1(va1 − θa) + (1 − ρ)x(1) · x(2)va2(va2 − θa)

]
,

τwv̇b2 = g
[
ρx(2) · x(1)vb1(vb1 − θb) + (1 − ρ)x(2) · x(2)vb2(vb2 − θb)

]

− h
[
ρx(2) · x(1)va1(va1 − θa) + (1 − ρ)x(2) · x(2)va2(va2 − θa)

]
.

(22)

Observing that each of ρ, x(1), and x(2) is non-zero, and setting the right-hand side of
Eq. (22) to zero yields

ρv2
a1 + (1 − ρ)v2

a2 − θa = 0,

ρv2
b1 + (1 − ρ)v2

b2 − θb = 0,

va1(va1 − θa) = 0,

va2(va2 − θa) = 0,

vb1(vb1 − θb) = 0,

vb2(vb2 − θb) = 0.

Solving this system of equations gives the set of fixed points (va1, va2, θa, vb1,

vb2, θb) = {(0,0,0,0,0,0), ( 1
ρ
,0, 1

ρ
, 1

ρ
,0, 1

ρ
), (0, 1

1−ρ
, 1

1−ρ
,0, 1

1−ρ
, 1

1−ρ
), ( 1

ρ
,0, 1

ρ
,

0, 1
1−ρ

, 1
1−ρ

), (0, 1
1−ρ

, 1
1−ρ

, 1
ρ
,0, 1

ρ
), (1,1,1,1,1,1), (1,1,1, 1

ρ
,0, 1

ρ
), . . .}. The . . .
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in these fixed points correspond to the symmetric variants of the last equilibrium,
for example swapping the (1,1,1) and the ( 1

ρ
,0, 1

ρ
) or swapping the latter triplet for

(0, 1
1−ρ

, 1
1−ρ

).
Castellani et al. [9] and Intrator and Cooper [7] give a detailed analysis on the

stability of most of these fixed points in the limit of τθ → 0. They showed that
(0,0,0,0,0,0) and (1,1,1,1,1,1) are unstable and the fully selective fixed points
are stable. This leaves the fixed points of the form (1,1,1, 1

ρ
,0, 1

ρ
). We address these

below for our particular choice of stimuli.
We will explore the dynamics of Eq. (22) as τ = τθ/τw changes in a very

simple scenario in which, ρ = 0.5, and x(1) = (1,0) and x(2) = (cosα, sinα).
In this case, there are only two equilibria that need to be studied: the symmet-
ric case (θa, va1, va2, θb, vb1, vb2) = (2,2,0,2,2,0) and the antisymmetric case,
(2,2,0,2,0,2). The other selective equilibria are symmetric to these two. In the sym-
metric case, neurons a and b are both selective to stimulus 1 and in the antisymmetric
case, neuron a selects stimulus 1 and neuron b selects stimulus 2. Fixing α, the angle
between the stimuli leaves two free parameters, τ and γ , the inhibitory coupling.

5.2 Stability of the Selective Equilibria

We now consider the stability of these equilibria in the simplified case of the previous
paragraph (ρ = 0.5, x(1),x(2) are unit vectors with x(1) ·x(2) = β = cos(α) where α is
the angle between them). We exploit the symmetry of the resulting equations to factor
the characteristic polynomial into the product of two cubic polynomials and then use
the Routh–Hurwitz criteria. We have made use of the symbolic capabilities of Maple.
Again, let β = cos(α), g = 1/(1 − γ 2) and h = γ /(1 − γ 2). The linearization of the
symmetric equilibrium (va1, va2, θa, vb1, vb2, θb) = (2,0,2,2,0,2) is

Ms =

⎛

⎜⎜⎜⎜⎜⎜
⎝

g −βg −g −h βh h

βg −g −βg −βh h βh

2/τ 0 −1/τ 0 0 0
−h βh h g −βg −g

−βh h βh βg −g −βg

0 0 0 2/τ 0 −1/τ

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

This matrix is clearly block symmetric with 3 × 3 blocks G,H . The the stability
is thus found by studying M1 = G + H and M2 = G − H . Let a1 = g − h and
a2 = g + h. Then the blocks have the form

Mj =
⎛

⎝
aj −βaj −aj

βaj −aj −βaj

2/τ 0 −1/τ

⎞

⎠ .

The characteristic polynomial of Mj is

λ3 + 1

τ
λ2 + 1

τ

(
aj

(
2 + aj τ

(
β2 − 1

)))
λ + a2

j (1 − β2)

τ
.
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Clearly the λ2 coefficient and the constant coefficient are positive. The λ- coefficient
could become negative if τ > 2/(aj (1 − β2)) ≡ τ s

j1. The Routh–Hurwitz criterion
also requires

2aj

(
1 + aj τ

(
β2 − 1

))
> 0.

This quantity becomes negative for τ > 1/(aj (1 − β2)) ≡ τ s
jH . Clearly τ s

jH < τs
j1,

so as τ increases there will be a Hopf bifurcation. Since 0 < a1 < a2, we see that the
symmetric equilibrium will be stable if and only if

τ < τs
2H = 1 − γ

1 − cos2 α
,

where we have used the definitions of g,h,β . The critical value of τ is a linear
function of γ and this critical value can be arbitrarily small as γ → 1. We also remark
that the critical instability is due to a2, which is associated with G − H . Thus, we
expect a symmetry-breaking Hopf bifurcation to out-of-phase oscillations. We will
numerically confirm this result in the subsequent numerical analysis.

We can do a similar calculation for the antisymmetric equilibrium. Here, we just
state the final result; the approach and calculations are similar. The characteristic
polynomial factors. Each factor has the form

P±(λ) = λ2 + 1

τ
λ2 +

[
2
g ± βh

τ
− (

1 − β2)(g2 − h2)
]
λ + (1 − β2)(g2 − h2)

τ
.

The constant coefficient and the quadratic coefficient are always positive. The linear
coefficient is positive as long as

τ < τ2± = g ± βh

(1 − β2)(g2 − h2)
≡ 2τa±.

The additional Routh–Hurwitz condition is positive if and only if

τ < τA± ,

which is clearly less than τ2±. Applying the definitions of g,h,β , yields

τa± = 1 ± γ cos(α)

1 − cos2(α)
.

Clearly τA− < τa+, so that the antisymmetric solution is stable as long as τ < τa− ≡ τa
H .

We summarize the stability results in the following theorem.

Theorem 5.1 Assume that the two stimuli are unit vectors with an angle α �= 0,π

and are presented with equal probability. Then

1. The symmetric equilibrium, (va1, va2, θa, vb1, vb2, θb) = (2,0,2,2,0,2) is lin-
early asymptotically stable if and only if

τ < τs
H = 1 − γ

1 − cos2(α)
.

Furthermore the unstable direction is antisymmentric.
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2. The antisymmetric equilibrium (va1, va2, θa, vb1, vb2, θb) = (2,0,2,0,2,2) is lin-
early asymptotically stable if and only if

τ < τa
H = 1 − γ cos(α)

1 − cos2(α)
.

Furthermore the unstable direction is symmetric.

We remark that, for acute angles where cos(α) > 0, the symmetric equilibrium
loses stability at lower values of τ than does the antisymmetric equilibrium and for
obtuse angles (cosα < 0) it is vice versa.

Partially selective equilibria. Using the same notation as for the selective equilib-
ria, we consider the partially selective fixed points for ρ = 1/2 (e.g. (1,1,1,2,0,2)

etc.). An elementary evaluation of the constant coefficient of the characteristic poly-
nomial yields a value:

a0 = −(
g2 − h2)2(

β2 − 1
)2

/
(
4τ 2),

which is clearly negative. Since the product of the eigenvalues is a0 this implies that
the eigenvalues have mixed signs and these equilibria are saddle points.

5.3 Numerical Results

In this section, we study the numerical behavior of Eq. (17) for ρ = 0.5, x1,2 unit
vectors with angle α = 0.7709 as τ and γ vary. We will generally set γ = 0.25. The
choice for α is somewhat arbitrary but was found to yield rich dynamics.

We first study the behavior of the symmetric equilibrium (va1, va2, θa, vb1,

vb2, θb) = (2,0,2,2,0,2) as τ increases. In Fig. 7A, we set γ = 0.2. For τ small
enough, the selective symmetric equilibrium is stable, with increasing τ loses sta-
bility and we have a Hopf bifurcation (HB). A branch of periodic solutions emerges
where v∗1 > v∗2 for each neuron, ∗ = {a, b}. At a critical value of τ there is a branch
point (or pitchfork) bifurcation (BP) where this selective periodic solution intersects a
non-selective periodic solution. The selective periodic solutions have either v∗1 > v∗2
(1 > 2, top branch) or (2 > 1, lower branch). The non-selective branch (with a # on it)
loses stability at a torus bifurcation (TR). Beyond the torus, there are, at first, stable
non-selective quasi-periodic solutions, and then some possible chaos. We will look at
chaotic solutions when we describe the antisymmetric behavior. Figures 7B1, 2 show
the V ’s for the selective and non-selective stable oscillations at values of τ denoted
by the �, and the � (τ = 1.55, τ = 2.29, respectively). In Fig. 7C, we set γ = 0.4 and
see a behavior similar to panel A, but the selective branches lose stability at a torus
bifurcation at values of τ less than the branch point and this gives rise to attracting
quasi-periodic selective behavior, and then, for τ a bit larger, selective chaos. For
all γ , when τ is larger than about 3, the solutions produce a “spike” and then return
to 0. We know that the origin is unstable, but there are some stable directions and all
solutions appear1 to approach this stable direction when τ is large enough.

1We have no proof of this, but we have observed it in every choice of parameters.
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Fig. 7 Bifurcation of the symmetric state, (va1, va2, θa, vb1, vb2, θb) = (2,0,2,2,0,2), as τ increases
for two values of γ . (A) γ = 0.2. Red lines represent the stable equilibrium, black lines are unstable.
Green (blue) thick lines are stable (unstable) periodic orbits. HB: Hopf bifurcation; BP: Branch point; TR:
Torus bifurcation; LP: Limit point; HC: Homoclinic orbit. (B1, 2) Representative periodic solutions at the
points labeled with a star and a sharp sign. (C) Same as (A), but γ = 0.4. Note that the upper periodic
orbit is not shown in this diagram

Figure 8 summarizes the behavior of the symmetric branch of solutions as τ and
γ vary. Specific bifurcation points from Fig. 7 are labeled a, b, c, d in this figure.
There are seven regions in the diagram. In R1, the equilibrium is stable; this region
is delineated by the Hopf bifurcation (HB) line that we computed in Theorem 5.1,
τS
HB = (1 − γ )/(1 − cos2 α). Region R2 corresponds to a non-symmetric periodic

orbit such as shown in Fig. 7B1. If γ is small (roughly, less than 0.26), then, as τ

increases, there is a reverse pitchfork bifurcation (BP) to a non-selective periodic
orbit (R3) such as shown in Fig. 7B2. This orbit loses stability at the non-selective
torus bifurcation (NSTR) as we enter R4. In R4, there is quasi-periodic and chaotic
behavior, but the dynamics lies on the four-dimensional space Va1 = Va2,Vb1 = Vb2.
Passing from R2 to R5 also appears to lead to quasi-periodic and chaotic behaviors.
Region R6, delineated below by the curve of limit points (LP) above, by an apparent
homoclinic orbit (HC) consists of large amplitude stable periodic orbits where Va1 =
Va2 and Vb1 = Vb2. This branch of solutions (seen in the one-parameter diagram,
Fig. 7A at the top right) does not connect to the other branches until γ is close to
zero (not shown). As τ increases, the period of these orbits appears to go to infinity
and they spend more and more time near the origin. We find that in R7, the origin is
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Fig. 8 Two-parameter diagram
corresponding to Fig. 7 that
divides (τ, γ ) into different
regions. Labels as in Fig. 7, with
NSTR corresponding to a
non-selective torus bifurcation
and STR, the selective one.
Small letters, a, b, c, d, e
correspond to the letters in
Fig. 7. See text for details

Fig. 9 (va1, va2, vb1, vb2) for
τ in regions 6 and 7;
α = 0.7709, γ = 0.2 (A)
τ = 2.65 (B) τ = 3

a global attractor, even though it is unstable. Figures 9A,B show simulations when
τ is in R6 (panel A) and in R7 (panel B). Initial conditions were chosen with no
special symmetry. In Fig. 9A, we see a brief transient, followed by a gap and then,
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Fig. 10 (A) Bifurcation diagram for the antisymmetric state (va1, va2, θa, vb1, vb2, θb) = (2,0,2,0,2,2)

as τ increases for γ = 0.25. Abbreviations as in Fig. 7 and PD: Period doubling. B(i–iii) Roman numerals
correspond to the solutions shown in (A). In B(i), va1 = vb2 and va2 = vb1

eventually long period activity. In Fig. 9B, we only show the first five time units, but
after t = 20,000, we still saw no return to activity.

We next turn to the behavior of the antisymmetric equilibrium, (va1, va2, θa, vb1,

vb2, θb) = (2,0,2,0,2,2) as τ increases. Figure 10A shows the fate of this branch
of solutions as τ increases for γ = 0.25 and α = 0.7709. As described in Theo-
rem 5.1, there is a Hopf bifurcation at τ = (1 − γ cosα)/(1 − cos2 α) and this gives
rise to a branch of periodic orbits (labeled i). Figure 10B(i) shows a time series of
the va1,b2,a2,b1 which maintains the symmetry of va1 = vb1 and va2 = vb1. At a criti-
cal value of τ there is symmetry-breaking bifurcation and a new branch of solutions
emerges where all the v’s are different. This is shown in Fig. 10B(ii). Further in-
creases in τ lead to a pair of period-doubling bifurcations, PD1, PD2. The branch
emerging from PD1 leads to a stable periodic branch, an example of which is in
Fig. 10B(iii). The second branch, PD2, leads to an unstable branch of solutions and
re-stabilizes the branch labeled ii. This branch and the branch labeled iii then lose
stability at torus bifurcations, labeled TR1 and TR2, respectively. Below, we will
explore what happens after the bifurcation at TR2. Once τ gets large enough, the dy-
namics appears to become symmetric with va1 = va2 and vb1 = vb2 where it is as in
Fig. 9.

Figure 11 shows the behavior of the antisymmetric branch as τ and γ change.
For a fixed value of γ , as τ increases, the selective state (R1) loses stability at the
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Fig. 11 Two-parameter diagram corresponding to Fig. 10. Labels (i–iii) correspond to the three points
shown in Fig. 10. Torus and period-doubling bifurcations are shown. See text for full details

Hopf bifurcation (HB) at τ = (1 − γ cosα)/(1 − cos2 α) as shown in Theorem 5.1.
The branch of periodic orbits such as seen in Fig. 10B(ii) is found in R2 and loses
stability at a pitchfork bifurcation (BP). The HB and BP curves appear sequentially
for all γ < 1 in contrast to Fig. 8. In the region R3, solutions have lost the symmetry
of R2 and resemble the solutions shown in Fig. 10B(ii). Further increases in τ lead
to a periodic doubling and solutions in the region R4 look like Fig. 10B(iii). Region
R4 is bounded by PD1 and the torus bifurcation TR2 for γ < 0.375. For γ > 0.375,
instead of a torus bifurcation, there is a period-doubling cascade to chaos (not shown).
Beyond the torus bifurcation, there seems to be quasi-periodic motion that persists
until PD2 where the branch labeled ii stabilizes again to form a new region R3. This
branch loses stability at a torus bifurcation TR1. For τ beyond TR1, there seems to be
chaos, quasi-periodic behavior, and complex periodic orbits. Eventually, for τ large
enough, the dynamics of Fig. 9 is all that remains.

6 Discussion

We have explored the BCM rule as a dynamical system. Although the literature does
not suggest a homeostatic time-scale range that ensures stability of a biological sys-
tem, we have shown that the selective fixed points of the BCM rule are generally sta-
ble when the homeostatic time scale is faster than synaptic modification time scale,
and that some complex dynamics emerges as the homeostatic time scale varies. The
nature of this complex dynamics also depends on the angular and amplitudinal rela-
tionships between stimuli in the stimulus set. In our analysis, the neuron is presented
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with stimuli that switch rapidly, so it was possible to reduce the learning rule to a
simple averaged set of differential equations. We studied the dynamics and bifurca-
tion structures of these averaged equations when the homeostatic time scale is close
to the synaptic modification time scale, and found that instabilities arise, leading to
oscillations and in some cases chaos and other complex dynamics. Similar results
would hold if the quadratic term v2 in the second line of Eq. (2) were replaced with
vp,p > 2, since the original formulation by Bienenstock et al. [5] suggests that the
fixed point structures are preserved for any positive value of p. Since the onset of the
bifurcations (such as the Hopf bifurcation) depends mainly on the symmetry of these
fixed points, we expect that the main results will be the same and only the particu-
lar values of parameters would change. While this paper has focused on how small
changes in the time scale of a homeostatic threshold can lead to complex dynamics,
there are many other kinds of homeostases [28] which present many time scales and
similar opportunities for analysis.

The model neuron we used in this paper has been assumed to have linear response
properties, which may be seen as oversimplified, and hence a potential problem in
translating our conclusions to actual biological systems. It is well known that plas-
ticity goes beyond synapses, and it is sometimes even a neuron-wide phenomenon
[29], and that there is no unique route to regulating the sliding threshold of the BCM
rule [10, 30]. Thus in addition to synaptic activities, intrinsic neuronal properties may
also play a role in the evolution of responses and linearity may not be able to capture
this scenario. The introduction of a nonlinear transfer function to the BCM learning
rule has been addressed by Intrator and Cooper [7]. In their formulation, the learning
rule is derived as a gradient descent rule on an objective function that is cubic in the
nonlinear response. Our decision to use linear units is motivated by the accessibility
to formal analysis. Biologically, linearity can be justified if we assume that the under-
lying biochemical mechanisms are governed by membrane voltage rather than firing
rate; see, for example Clopath and Gerstner [31].

The theoretical contributions of this paper are based on an analysis that we did
using a mean field model of the BCM learning rule. Similar mean field models have
been made, but in terms of synaptic weights; see, for example Yger and Gilson [32].
With this approach to the mean field, it is difficult to arrive at the fact that the fixed
points—not their stability—of the learning rule depend only on the probabilities with
which each stimulus is presented. In this paper, we have given a derivation of the
mean field model of the BCM learning rule as a rate of change of the activity re-
sponse v, with time. The derived model considers the amplitudes of the stimuli pre-
sented, the pairwise angular relationships between the stimuli, and the probabilities
with which the stimuli are presented. The appeal of this derivation is that it easily
highlights the fact that the fixed points depend on these probabilities. Additionally,
the derivation is important because the dynamics of the BCM learning rule is driven
by the activity response (not the synaptic weights), and many analyses in the literature
rely on this fact; see, for example Castellani et al. [9]. Our analyses considered three
cases: one neuron with two weights and two stimuli, one neuron with two weights
and three stimuli, and lastly a weakly interacting small network of neurons.

In exploring the dynamics of a single neuron, we used Fig. 3 to show the de-
pendence of critical value τc of τ = τθ/τw—which leads to a Hopf bifurcation—
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on the angle, α between the stimuli, the amplitudinal factor, A between the stim-
uli, and the probability distribution, ρ of the stimuli. The role of τ as a bifurca-
tion parameter has been seen in several recent works including Zenke et al. [33],
Toyoizumi et al. [34], and Yger and Gilson [32]. A possible future work, which is
beyond the scope of this paper, is to investigate the dependence of the selectivity
of the neuron on τ . For a single neuron presented with a set of stimuli S, Bienen-
stock et al. [5] defined the selectivity of the neuron as a function of the area under
the tuning curve of the neuronal responses to S. This definition, however, assumes
that the learning rule converges to a stable steady state. To analyze the selectivity
of a neuron as τ varies, one would need a measure of selectivity that addresses
an oscillatory steady state. Thus, it might be more appropriate to talk about rela-
tive selectivity (RS) in this case. If the neuron receives stimulus inputs from the set
S = {x(1) = (x11, x12),x(2) = (x21, x22)} with synaptic weights w = (w1,w2), then at
any point in time, v1(t) = w1(t)x11 + w2(t)x12 and v2(t) = w1(t)x21 + w2(t)x22. If
for given τ , we let to be the point in time at which the dynamics of the neuron achieves
a stable steady state or an oscillatory steady state, and d(τ) = mint≥to |v1(t)− v2(t)|,
then we can define RS as follows:

RS(τ) = d(τ)

max
τ1∈(0,∞)

d(τ1)
.

Note that 0 ≤ RS ≤ 1, since it is defined as a fraction of the maximum selectivity.
For this reason it tends to have the same maximum value and shape for all values
of α ∈ (−π/4,π/4). Preliminary analysis of this formulation allows us to conjecture
that RS stays pretty much at its maximum for τ ∈ (0, τc) decays to 0 as τ increases
on (τc,∞).

In our analysis of a small network (see Sect. 5) we have made the simplifying
assumption that the lateral inhibitory weight is constant in time. The incorporation of
an inhibitory plasticity rule (as in Moldakarimov et al. [35]) would necessitate a third
time-scale parameter, and possibly a fourth if the inhibitory rule were to include a
dynamic modification threshold. This is beyond the scope of the paper and reserved
for future work. Another related possible future direction is to perform an analysis of
a large network of BCM neurons, by observing what happens to the network dynam-
ics at different time-scale parametric regimes. A good starting point is to explore the
dynamics for a fully connected network with equal inhibition, that is, each neuron
is coupled with every other neuron in the network and inhibits each of them equally.
The next step would be to let the amount of inhibition vary according to how far away
the inhibiting neuron is. It may also be interesting to examine how the architecture of
the network is affected. We know, for instance, that spike-time dependent plasticity
(STDP) has the ability to yield a feedforward network out of a fully connected net-
work. The analysis that Kozloski and Cecchi [36] used to demonstrate this finding
centers around the synaptic weights. Thus it will be useful to pay closer attention to
the synaptic weights in future work. Moreover, the oscillatory and chaotic properties
we observed in the small coupled network will also be observed had our mean field
been derived in terms of the weight and the analyses been done with the synaptic
weights.
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The debate about synaptic homeostatic time scales in neurobiology remains vi-
brant. A review of the literature seems to reveal a varied, and somewhat paradoxi-
cal set of findings among experimentalists and theoreticians. While homeostasis of
synapses found in experiments is slow [12, 37], homeostasis of synapses in most
theoretical models needs to be rapid and sometimes even instantaneous to achieve
stability [33, 38, 39]. There are, however, ongoing efforts to shed more lights on the
debate. It has been suggested that both fast and slow homeostatic mechanisms ex-
ist. Zenke and Gerstner [39] suggest that learning and memory use an interplay of
both forms of homeostasis; while fast homeostatic control mechanisms help maintain
the stability of synaptic plasticity, slower ones are important for fine-tuning neural
circuits. In addition to the present work contributing to the debate by demonstrating
the relevance of fast homeostasis to synaptic stability, it also furthers the discussion
as regards the link between STDP and the BCM rule: Zenke et al. [33] found that
homeostasis needs to have a faster rate of change for spike-timing dependent plastic-
ity to achieve stability. Furthermore it is well known that, under certain conditions,
the BCM learning rule follows directly from STDP [13, 14].
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