Skip to main content

Table A.2 Expressions for infinity and τ functions in Eq. (1)

From: M-Current Expands the Range of Gamma Frequency Inputs to Which a Neuronal Target Entrains

\(m_{\infty}(V)=\frac{\alpha_{m}(V)}{\alpha_{m}(V)+\beta_{m}(V)}\)

\(\alpha_{m}(V)=\frac{0.1(V+35)}{1-e^{-\frac{V+35}{10}}}\)

\(\beta _{m}(V)=4e^{-\frac{V+60}{18}}\)

\(n_{\infty}(V)=\frac{\alpha_{n}(V)}{\alpha_{n}(V)+\beta_{n}(V)}\)

\(\alpha_{n}(V)=\frac{-0.01(V+34)}{e^{-0.1(V+34)}-1}\)

\(\beta _{n}(V)=0.125e^{-\frac{V+44}{80}}\)

\(h_{\infty}(V)=\frac{\alpha_{h}(V)}{\alpha_{h}(V)+\beta_{h}(V)}\)

\(\alpha_{h}(V)=0.07e^{-\frac{V+58}{20}}\)

\(\beta_{h}(V)=\frac {1}{e^{-0.1(V+28)}+1}\)

\(w_{\infty}(V)=\frac{1}{1+e^{-\frac{V+35}{10}}}\)

\(\tau_{M}(V)=\frac {400}{3.3e^{\frac{v+35}{20}}+e^{-\frac{v+35}{20}}}\)

ϕ = 5

\(\tau_{n}(V)=\frac{1}{\alpha_{n}(V)+\beta_{n}(V)}\cdot\frac{1}{\phi }\)

\(\tau_{h}(V)=\frac{1}{\alpha_{h}(V)+\beta_{h}(V)}\cdot\frac {1}{\phi}\)