Skip to main content

Table 1 For convenience, we abbreviate the following quantities. When \(j=k\) in the double integrals of \(\mathcal{M_{F}}\), the bivariate normal distribution \(\varrho_{j,k}\) is replaced with the standard normal distribution \(\varrho_{1}\). Note that order of the arguments matters in \(\mathcal{M_{F}}\): \(\mathcal{M_{F}}(j,k)\neq\mathcal{M_{F}}(k,j)\) in general. The quantities in bottom three rows depend on the statistics of the activity \(\mu(\cdot)\), \(\sigma( \cdot)\)

From: Efficient calculation of heterogeneous non-equilibrium statistics in coupled firing-rate models

Abbreviation

Definition

\(\varrho_{1}(y)\)

\(\frac{1}{\sqrt{2\pi}} e^{-y^{2}/2}\)

\(\varrho_{j,k}(y_{1},y_{2})\)

1 2 π 1 − c j k 2 exp ( − 1 2 y → T ( 1 c j k c j k 1 ) − 1 y → )

\(D_{j,k}\)

\(c_{jk}\frac{\tilde{\sigma}_{j} \tilde{\sigma }_{k}}{\tau_{j}\tau_{k}}\)

\(\mathcal{E}_{1}(k)\)

\(\int F_{k}(\sigma_{k}(t) y+\mu _{k}(t))\varrho_{1}(y)\,dy\)

\(\mathcal{E}_{2}(k)\)

\(\int F_{k}^{2}(\sigma_{k}(t) y+\mu _{k}(t))\varrho_{1}(y)\,dy\)

\(\mathcal{M}_{F}(j,k)\)

\(\iint F_{k}(\sigma_{k}(t) y_{1}+\mu_{k} (t)) y_{2} \varrho_{j,k}(y_{1},y_{2})\,dy_{1}\,dy_{2}\)