Skip to main content

Advertisement

Table 2 Coefficients of the normal form (3) for the three considered cases, namely \(b_{\mathrm{sp}} = -0.03, 0.03\) and 0. These coefficients have been computed using the procedure described in Appendix B

From: The uncoupling limit of identical Hopf bifurcations with an application to perceptual bistability

  \(b_{\mathrm{sp}}\)
  −0.03 0.03 0
\(\alpha _{01R}\) −21.94 −21.94 −21.94
\(\alpha _{01I}\) −20.94 −20.94 −20.94
\(\alpha _{\epsilon 0R}\) 0 0 0
\(\alpha _{\epsilon 0I}\) 0 0 0
\(\alpha _{\epsilon 1R}\) 0 0 0
\(\alpha _{\epsilon 1I}\) 0 0 0
\(\alpha _{\epsilon 2R}\) 8.4 9.02 8.72
\(\alpha _{\epsilon 2I}\) 6.34 6.8 6.57
\(\alpha _{\epsilon 3R}\) −24.02 −22.3 −23.2
\(\alpha _{\epsilon 3I}\) −46.36 −44.92 −45.46
ω 1.073 1.073 1.073
\(\beta _{\epsilon 0R}\) 0.0047 −0.0047 0
\(\beta _{\epsilon 0I}\) 0.252 0.241 0.246
\(\beta _{\epsilon 1R}\) −12.91 −13.18 −13.05
\(\beta _{\epsilon 1I}\) 19.36 16.76 18.06
\(\beta _{\epsilon 2R}\) 7.16 6.46 6.52
\(\beta _{\epsilon 2I}\) −5.56 −5.47 −5.52
\(\beta _{\epsilon 3R}\) 14.29 13.33 13.81
\(\beta _{\epsilon 3I}\) 10.02 10.3 10.16