From: The uncoupling limit of identical Hopf bifurcations with an application to perceptual bistability

\(b_{\mathrm{sp}}\) | |||
---|---|---|---|

−0.03 | 0.03 | 0 | |

\(\alpha _{01R}\) | −21.94 | −21.94 | −21.94 |

\(\alpha _{01I}\) | −20.94 | −20.94 | −20.94 |

\(\alpha _{\epsilon 0R}\) | 0 | 0 | 0 |

\(\alpha _{\epsilon 0I}\) | 0 | 0 | 0 |

\(\alpha _{\epsilon 1R}\) | 0 | 0 | 0 |

\(\alpha _{\epsilon 1I}\) | 0 | 0 | 0 |

\(\alpha _{\epsilon 2R}\) | 8.4 | 9.02 | 8.72 |

\(\alpha _{\epsilon 2I}\) | 6.34 | 6.8 | 6.57 |

\(\alpha _{\epsilon 3R}\) | −24.02 | −22.3 | −23.2 |

\(\alpha _{\epsilon 3I}\) | −46.36 | −44.92 | −45.46 |

ω
| 1.073 | 1.073 | 1.073 |

\(\beta _{\epsilon 0R}\) | 0.0047 | −0.0047 | 0 |

\(\beta _{\epsilon 0I}\) | 0.252 | 0.241 | 0.246 |

\(\beta _{\epsilon 1R}\) | −12.91 | −13.18 | −13.05 |

\(\beta _{\epsilon 1I}\) | 19.36 | 16.76 | 18.06 |

\(\beta _{\epsilon 2R}\) | 7.16 | 6.46 | 6.52 |

\(\beta _{\epsilon 2I}\) | −5.56 | −5.47 | −5.52 |

\(\beta _{\epsilon 3R}\) | 14.29 | 13.33 | 13.81 |

\(\beta _{\epsilon 3I}\) | 10.02 | 10.3 | 10.16 |