Skip to main content

TableĀ 3 Existence conditions for CONNECT states in an interval \(R \in \Phi \)

From: Auditory streaming emerges from fast excitation and slow delayed inhibition

\(C_{1}\) \(C_{2}\) \(C_{3}\) \(C_{4}\) \(C_{5}^{1}\) \(C_{5}^{2}\)
\(\begin{array}{l} f(\underline{s}_{B})\geq \theta \\ a+g(\underline{s}_{A})<\theta \\ a+g(\bar{s}_{A})\geq \theta \end{array} \) \(\begin{array}{l} g(\underline{s}_{A})\geq \theta \\ a+f(\underline{s}_{B})<\theta \\ a+f(\bar{s}_{B})\geq \theta \end{array} \) \(\begin{array}{l} g(\underline{s}_{A})<\theta \\ g(\bar{s}_{A})\geq \theta \\ a+f(\bar{s}_{B})<\theta \end{array} \) \(\begin{array}{l} f(\underline{s}_{B})<\theta \\ f(\bar{s}_{B})\geq \theta \\ a+g(\bar{s}_{A})<\theta \end{array} \) \(\begin{array}{l} t^{*}\leq s^{*} \\ f(\underline{s}_{B})<\theta \\ f(\bar{s}_{B})\geq \theta \\ a+g(\bar{s}_{B})\geq \theta \end{array} \) \(\begin{array}{l} t^{*} > s^{*} \\ g(\underline{s}_{A})<\theta \\ g(\bar{s}_{A})\geq \theta \\ a+f(\bar{s}_{A})\geq \theta \end{array} \)