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Abstract Background: Physical and physiological invariance laws, in particular time
invariance and local symmetry, are at the outset of an abstract model. Harmonic anal-
ysis and Lie theory are the mathematical prerequisites for its deduction.
Results: The main result is a linear system of partial differential equations (referred to
as the structure equations) that describe the result of signal processing in the cochlea.
It is formulated for phase and for the logarithm of the amplitude. The changes of
these quantities are the essential physiological observables in the description of signal
processing in the auditory pathway.
Conclusions: The structure equations display in a quantitative way the subtle balance
for processing information on the basis of phase versus amplitude. From a mathemat-
ical point of view, the linear system of equations is classified as an inhomogeneous
∂̄-equation. In suitable variables the solutions can be represented as the superposition
of a particular solution (determined by the system) and a holomorphic function (de-
termined by the incoming signal). In this way, a global picture of signal processing
in the cochlea emerges.

Keywords Signal processing · cochlear mechanics · wavelet transform · uncertainty
principle

1 Background

At the outset of this work is the quest to understand signal processing in the cochlea.
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1.1 Linearity and scaling

It has been known since 1992 that cochlear signal processing can be described by a
wavelet transform (Daubechies 1992 [1], Yang, Wang and Shamma, 1992 [2]). There
are two basic principles that lie at the core of this description: Linearity and scaling.

In the cochlea, an incoming acoustical signal f (t) in the form of a pressure fluctu-
ation (t is the time variable) induces a movement u(x, t) of the basilar membrane at
position x along the cochlea. At a fixed level of sound intensity, the relation between
incoming signal and movement of the basilar membrane is surprisingly linear. How-
ever as a whole this process is highly compressive with respect to levels of sound -
and thus cannot be linear.

In the present setting this is taken care of by a ‘quasilinear model’. This is a model
that depends on parameters, for example, in the present situation the level of sound
intensity. For fixed parameters the model is linear. It is interpreted as a linear ap-
proximation to the process at these fixed parameter values. Wavelets give rise to lin-
ear transformations. The description of signal processing in the cochlea by wavelet
transformations, where the wavelets depend on parameters, is compatible with this
approach.

Scaling has its origin in the approximate local scaling symmetry (Zweig 1976 [3],
Siebert 1968 [4]) that was revealed in the first experiments (Békésy 1947 [5], Rhode
1971 [6]).

The scaling law can best be formulated with the basilar membrane transfer func-
tion ĝ(x,ω). This is the transfer function that is defined from the response of the
linear system to pure sounds. To an input signal

cos(ωt) = Re eiωt , ω > 0, (1)

that is, to a pure sound of circular frequency ω there corresponds an output u(x, t) at
the position x along the cochlea that on the basis of linearity has to be of the form

u(x, t) = Re
{
ĝ(x,ω)eiωt

}
. (2)

The basilar membrane transfer function is thus a complex valued function of x and
ω > 0. Its modulus |ĝ(x,ω)| is a measure of amplification and its argument is the
phase shift between input and output signals. The experiments of von Békésy [5]
showed that the graphs of |ĝ(x,ω)| and |ĝ(x, cω)| as functions of the variable x

are translated against each other by a constant multiple of log c. By choosing an
appropriate scale on the x-axis, the multiple can be taken to be 1. The scaling law is
then expressed as ∣∣ĝ(x − log c, cω)

∣∣ = ∣∣ĝ(x,ω)
∣∣. (3)

The scaling law will be extended - with some modifications - to include the argument
of ĝ.

Intimately connected to scaling is the concept of a tonotopic order. It is a central
feature in the structure of the auditory pathway. Frequencies of the acoustic signal
are associated to places, at first in the cochlea and in the following stages in the
various neuronal nuclei. The assignment is monotone, it preserves the order of the
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frequencies. In the cochlea, to each position x along the cochlear duct a circular
frequency σ = ξ(x) is assigned. The function ξ is the position-frequency map. Its
inverse is called the tonotopic axis. At the stand of von Békésy’s results, the frequency
associated to a position x along the cochlea is simply the best frequency (BF), that
is the frequency σ at which |ĝ(x,ω)| attains its maximum. The refined concept takes
care of the fact that the transfer function and with it the BF changes with the level of
sound intensity, at which ĝ is determined. The characteristic frequency (CF) is then
the low level limit of the best frequency. The position-frequency map ξ assigns to the
position x its CF.

Scaling according to von Békésy’s results implies the exponential law

ξ(x) = Ke−x (4)

for the position-frequency map. The constant K is determined by inserting a special
value for x. The scaling law tells us that the function |ĝ(x,ω)| is actually a function
of the ‘scaling variable’

1

K
ωex = ω

ξ(x)
. (5)

At the outset of the present investigation it will be assumed that the transfer func-
tion ĝ is a function of the scaling variable ω

ξ(x)
. This is not strictly true, but it simplifies

the exposition. In subsequent sections a general theory will be developed that incor-
porates quite general scaling behavior. With the availability of advanced experimental
data (Rhode 1971 [6], Kiang and Moxon 1974 [7], Liberman 1978 [8], 1982 [9], El-
dredge et al. 1981 [10], Greenwood 1990 [11]), the position-frequency map is now
known precisely for many species. Shera 2007 [12] gives the formula

CF(x) = [CF(0) +CF1]ex/l −CF1. (6)

The constant l and the ‘transition frequency’ CF1 vary from species to species. The
scaling variable that goes with it is

ν(x,f ) = f +CF1

CF(x) +CF1
. (7)

In the present setting, x is the normalized variable (x instead of x/l) and the precise
position-frequency map is expressed in the form

ξ(x) = Ke−x − S. (8)

ξ denotes circular frequency and K = ξ(0) + S. The constant S is referred to as the
shift.

In the abstract model as it will be developed, much will depend on the definition
of the function σ that specifies the frequency location. In the present treatment the
frequency localization of a function will be defined as an expectation value in the
frequency domain.
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1.2 Wavelets

The response to a general signal f (t) with Fourier representation

f̂ (ω) = 1√
2π

∫ ∞

−∞
f (t)e−iωt dt (9)

is given as

u(x, t) =
√

2

π
Re

∫ ∞

0
f̂ (ω)ĝ(x,ω)eiωt dω. (10)

Note that the Fourier transform of the real valued signal f satisfies f̂ (ω) = f̂ (−ω).
If the definition of ĝ is extended to negative values of ω by ĝ(x,−ω) = ĝ(x,ω) then
u(x, t) can be written as

u(x, t) = 1√
2π

∫ ∞

−∞
f̂ (ω)ĝ(x,ω)eiωt dω. (11)

The transfer function will be described by a function h in the scaling variable:

ĝ(x,ω) = h

(
ω

ξ(x)

)
.

The response of the cochlea to a general signal f can then be expressed as

u(x, t) = 1√
2π

∫ ∞

−∞
f̂ (ω)h

(
ω

ξ(x)

)
eiωt dω.

Setting a = 1
ξ(x)

= 1
K

ex and thus x = k + loga with k = logK , the scaling function
is simply h(aω). This leads to the equivalent formulation

u(k + loga, t) = 1√
2π

∫ ∞

−∞
f̂ (ω)h(aω)eiωt dω. (12)

This is recognized as a wavelet transform. Indeed, with the standardL2-normalization
a wavelet transform Wf with wavelet ψ is defined by

Wf (a, t) =
∫ ∞

−∞
f (s)

1√
a
ψ

(
s − t

a

)
ds

=
∫ ∞

−∞
f̂ (ω)

√
aψ̂(aω)eiωt dω.

If 1√
2π

h(ω) is identified with ψ(ω) then

u(x, t) = u(k + loga, t) = 1√
a
Wf (a, t). (13)

The fact, that the cochlea - in a first approximation - performs a wavelet transform
appears in the literature in 1992, both in [1] and in [2].



Journal of Mathematical Neuroscience (2011) 1:5 Page 5 of 54

1.3 Uncertainty principle

The natural symmetry group for signal processing in the cochlea is built on the affine
group 	. It derives from the scaling symmetry in combination with time-invariance.
In addition, there is the circle group S that is related to phase shifts. Its action com-
mutes with the action of the affine group. The full symmetry group for hearing is thus
	 × S. For this group, the uncertainty principle can be formulated. The functions
for which equality holds in the uncertainty inequalities are called the extremal func-
tions. They play a special role, similar as in quantum physics the coherent states (the
extremals for the Heisenberg uncertainty principle). The starting point in the present
work is the tenet that these functions provide an approximation for the cochlear trans-
fer function.

That the extremal functions should play a special role is not a new idea. In signal
processing the extremal functions first appeared in Gabor’s work (1946) [13] in con-
nection with the Heisenberg uncertainty principle and then in Cohen’s paper (1993)
[14] in the context of the affine group. In a paper by Irino 1995 [15] the idea is taken
up in connection with signal processing in the cochlea. It is further developed by
Irino and Patterson [16] in 1997. The presentation in this paper is based on previous
work (Reimann, 2009 [17]). The concept pursued is to determine the extremals in
the space of real valued signals and to use a setup in the frequency domain, not in
the time domain. Different representations of the affine group give different fami-
lies Ec of extremal functions. The parameter c is used to adjust to the sound level and
hence to provide linear approximations at different levels to the non-linear behavior
of cochlear signal processing.

2 Results and discussion

2.1 Uncertainty principle

This section starts with the specification of the symmetry group 	 × S that under-
lies the hearing process. The basic uncertainty inequalities for this group are then
explicitly derived. The analysis builds on previous results (Reimann [17]). A modifi-
cation is necessary because the treatment of the phase in [17] was not satisfactory. An
improvement can be achieved with the inclusion of the term αĤ in the uncertainty
inequality. This term comes in naturally and it will influence the argument - but not
the modulus - of the extremal functions associated to the uncertainty inequalities. It
is claimed that the extremal functions derived in this section are a first approxima-
tion to the basilar membrane transfer function ĝ. The extremal functions for the basic
uncertainty principle are interpreted as the transfer function at high levels of sound.
This situation corresponds to the parameter value c = 1. With increasing parameter
values the extremal functions for the general uncertainty inequality are then taken as
approximations to the cochlear response at decreasing levels of sound.

2.1.1 The symmetry group

The affine group 	 is the group of affine transformations of the real line R. It is
generated by the transformation group τb(t) = t + b (b ∈ R) and the dilation group
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δa(t) = at (a ∈ R, A �= 0). Under the Fourier transform, the action of the dilation
group on L2(R,C) is intertwined to the action of the inverse dilation group δ̂. This
group also acts directly in frequency space:

δ̂a(ω) = ω

a
. (14)

The induced unitary action on L2(R,C) is

δ̂ah(ω) = √
ah

(
δ̂−1
a (ω)

) = √
ah(aω). (15)

(With this convention, the group action and the induced action are denoted with the
same symbol.) Clearly, the invariance property of the basilar membrane transfer func-
tion directly reflects this group action.

The action

τb(f ) = f (t − b)

of the translation group intertwines under the Fourier transform to the unitary action

τ̂bh(ω) = e−ibωh(ω). (16)

Of relevance to our considerations is the space L2(R,R) of real valued signals of
finite energy. Under the Fourier transform it is mapped onto

L2
sym(R,C) = {

h ∈ L2(R,C) : h(ω) = h(−ω)
}
. (17)

Both δ̂ and τ̂b act on L2
sym. The only action that commutes with both of them is the

action

ε̂ϕh(ω) = e−iϕ sgn(ω)h(ω) (18)

of the circle group S. This is the third distinguished group action.
The infinitesimal operators associated with the unitary actions of δ̂, τ̂b and ε̂ are

the skew hermitian operators

Âf̂ (ω) = d

ds

∣∣∣∣
s=0

δ̂
(
es

)
f̂ (ω) = d

ds

∣∣∣∣
s=0

es/2f̂
(
esω

)
(19)

= 1

2
f̂ (ω) + ω

df̂

dω
(ω), (20)

B̂f̂ (ω) = d

db

∣∣∣∣
b=0

e−ibωf̂ (ω) = −iωf̂ (ω), (21)

Ĥ f̂ (ω) = d

dϕ

∣∣∣∣
ϕ=0

e−iϕ sgn(ω)f̂ (ω) = −i sgn(ω)f̂ (ω). (22)

The commutator relations are

[Â, B̂] = B̂, (23)
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[Â, Ĥ ] = [B̂, Ĥ ] = 0. (24)

The operators Â, B̂ and Ĥ span the Lie algebra of the ‘hearing group’ 	 × S, with 	

the affine group and S the circle group. The basic variables in cochlear signal pro-
cessing are time t and position x along the cochlea. Clearly B̂ is related to time,
whereas Â - as will be shown presently - is related to the position. In our approach
the tonotopic axis is given by the exponential law

ξ(x) = Ke−x.

Under the tonotopic axis dilations δ̂a are conjugated to translations (by loga) in x:

τloga = ξ−1 ◦ δ̂a ◦ ξ.

Here, ξ−1(ω) = − log ω
K

is the inverse function with respect to the composition law.
The intertwining action

ξh(ω) = 1√
ω

h
(
ξ−1ω

)
, ω > 0,

is an isometry in the sense that for all h ∈ L2(R,C)∫ ∞

0

∣∣ξh(ω)
∣∣2 dω =

∫ ∞

0

∣∣h(
ξ−1ω

)∣∣2 dω

ω
=

∫ ∞

−∞
∣∣h(x)

∣∣2 dx.

It intertwines Â with − d
dx
:

Âξ = −ξ
d

dx
(25)

as the following calculation shows:

Âξh(ω) = 1

2
ξh(ω) + ω

d

dω

(
1√
ω

h
(
ξ−1ω

))

= 1

2
ξh(ω) − 1

2
ξh(ω) + ω√

ω

dh

dx

(
ξ−1ω

)dξ−1

dω

= − 1√
ω

dh

dx

(
ξ−1ω

) = −ξ

(
dh

dx

)
(ω).

The uncertainty principle that goes with the group 	 × S can thus been seen as an
uncertainty for the determination of time and position.

2.1.2 The basic uncertainty inequality

The commutator relation

[Â, B̂] = B̂ (26)

is at the basis of the uncertainty principle for the affine group. From the inequality



Page 8 of 54 Reimann

0 ≤ ‖Âh + κĤ B̂h‖2
= ‖Âh‖2 + κ(Âh, Ĥ B̂h) + κ(Ĥ B̂h, Âh) + κ2‖Ĥ B̂h‖2
= ‖Âh‖2 + κ

(
h, [Ĥ B̂, Âh]h) + κ2‖Ĥ B̂h‖2,

that has to hold for all κ ∈ R, it follows that∣∣(h, Ĥ B̂h)
∣∣ ≤ 2‖Âh‖‖Ĥ B̂h‖.

In this calculation, the operators Â and B̂ can be replaced by Â − αĤ − βB̂ and
B̂ − νĤ respectively. This leads to the new inequality∣∣(h, Ĥ B̂h)

∣∣ ≤ 2
∥∥(Â − αĤ − βB̂)h

∥∥∥∥(Ĥ B̂ + ν)h
∥∥. (27)

This inequality is of the same nature as the previous inequality. It can be consid-
ered as a more precise inequality, because it holds for all parameter values of α, β

and ν. The expression ‖(Ĥ B̂ + ν)h‖ is minimal for

ν = ν(h) = − (h, Ĥ B̂h)

‖h‖2 = 1

‖h‖2
∫ ∞

−∞
|ω|∣∣h(ω)

∣∣2 dω. (28)

This ν is the decisive parameter. It has the interpretation of an expectation value for
the frequency. Later it will be associated with the place along the cochlea.

The uncertainty inequality can thus be stated as

ν‖h‖2 ≤ 2
∥∥(Â − αĤ − βB̂)h

∥∥∥∥(Ĥ B̂ + ν)h
∥∥. (29)

The minimality condition for the parameters α and β in the expression∥∥(Â − αĤ )h − βB̂
∥∥

is given by the linear system

α‖h‖2 − β(h, Ĥ B̂h) + (h, Ĥ Âh) = 0, (30)

−α(h, Ĥ B̂h) + β‖B̂h‖2 −Re(Âh, B̂h) = 0. (31)

The coefficients are

(h, Ĥ B̂h) = −ν‖h‖2,
(h, Ĥ Âh) = −(Âh, Ĥh)

= −
∫ ∞

−∞

(
h

2
+ ω

dh

dω

)
i sgn(ω)hdω

= Re
∫ ∞

−∞
i|ω|h′h̄ dω = 1

2

∫ ∞

−∞
i|ω|(hh̄′ − h̄h′) dω

=
∫ ∞

−∞
|h|2|ω| d

dω
arghdω.
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In this calculation, the fact that

d

dω
argh = 1

2i

d

dω
(logh − log h̄) = 1

2i

(
h′

h
− h̄′

h̄

)

has been used.
The remaining coefficient is

Re(Âh, B̂h) =
∫ ∞

−∞

(
h

2
+ ωh′

)
iωh̄ dω =

∫ ∞

−∞
|ω|2 i

2

(
h′

h
− h̄′

h̄

)
dω

=
∫ ∞

−∞
|h|2|ω|2 d

dω
arghdω.

With h = f̂ a different meaning can be given to it:

Re(Âf̂ , B̂f̂ ) = Re
∫ ∞

−∞

(
−f (t)

2
− t

df

dt
(t)

)(
−df̄

dt
(t)

)
dt

=
∫ ∞

−∞
t

∣∣∣∣dfdt
(t)

∣∣∣∣
2

dt.

The integrals
∫ ∞
−∞ |h|2|ω| d

dω
arghdω and

∫ ∞
−∞ t | df

dt
(t)|2 dt can be interpreted as ex-

pectation values of |h|2 d
dω

argh in the frequency space and for | df
dt

(t)|2 in the time

space. Roughly, in combination with Ĥ the operator Â controls d
dω

argh and B̂ the
time derivative.

We will assume that the parameters α, β and ν are always chosen such that the
right hand side in the uncertainty inequality is minimal, that is, the inequality is for-
mulated in its sharpest form.

The mean deviation from the expectation value ν for the modulus of the frequency
is

τ 2 = ‖(HB + νI)f̂ ‖2
‖f̂ ‖2 = 1

‖f ‖2
∫ ∞

−∞
(|ω| − ν

)2∣∣f̂ (ω)
∣∣2 dω. (32)

The factor ∥∥(Â − αĤ − βB̂)h
∥∥

does not have such a simple interpretation except in the special case α = 0. This is
treated in [17].

A function h is called extremal, if equality holds for it in the uncertainty relation.
The extremal functions are expected to play a special role in the signal processing
of the cochlea. In the context of the classical Heisenberg uncertainty relation, the
extremal functions are translates of the Gaussian function e−x2 under the action of
the Heisenberg group. They are called ‘coherent states’. Their significance in signal
processing is well established since the appearance of Gabor’s work in 1946 [13]. At
the outset of the present discussion is however the fact that the cochlea performs a
wavelet transform - and not a Fourier transform. The invariance group is 	 × S and
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not the Heisenberg group. It should therefore be expected that the extremal functions
as discussed below play the crucial role in the hearing process.

The extremal functions h (in frequency space) satisfy the equation

(Â − αĤ − βB̂)h + κ(Ĥ B̂ + ν)h = 0. (33)

This is in fact a differential equation:(
1

2
+ ω

d

dω

)
h = (−iα sgn(ω) − iβω − κ|ω| + κν

)
h. (34)

The solutions are

h(ω) = keiε sgn(ω)−iα sgn(ω) log |ω|−iβωe−κ|ω||ω|κν− 1
2 , (35)

with real constants k, ε, α, β , κ and ν. Square integrability implies κ > 0 and ν is the
positive frequency expectation value.

From the explicit form it is clear that the space of solutions is invariant under the
action of 	 × S. The tenet is now:

2.2 The basilar membrane transfer function is given by extremal functions

To be more precise, there exist an extremal function h, normalized by the condition
ν(h) = 1, such that h(ω

ξ
) adequately describes the basilar membrane transfer func-

tion ĝ:

ĝ(x,ω) = h

(
ω

ξ

)
= ke

iε sgn(ω)−iα sgn(ω) log | ω
ξ
|−iβ ω

ξ e
−κ| ω

ξ
|
∣∣∣∣ωξ

∣∣∣∣
κ− 1

2

. (36)

In this formula, ξ = ξ(x) is the position-frequency map. Note further that

h

(
ω

ξ

)
= h ◦ δ̂ξ (ω) = √

ξ δ̂−1
ξ h(ω)

such that

ν(h ◦ δ̂ξ ) = ν
(
δ̂−1
ξ h

) = δ̂−1
ξ

(
ν(h)

) = ξ. (37)

The frequency expectation of ĝ(x,ω) at x is thus ξ(x). The question then arises
whether the experiments confirm the tenet. To arrive at a preliminary conclusion,
graphs of the modulus and of the real part of the function h are displayed in Figure 1.
The parameters are α = −π , β = 2π and κ = 4.

The classical results by von Békésy (1947) [5] seem to be in favor of such a state-
ment. However the situation is of course not so simple. The basic problem is the
non-linearity of the process that associates the movement u(x, t) of the basilar mem-
brane to the input signal f (t). This process is highly compressive and therefore its
description by a transfer function can at best be looked at as an approximation.

Von Békésy’s result stem from experiments on dead animals. The outcome can be
compared to the experimental results obtained with life animals, yet at high intensities
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Fig. 1 The extremal function on a relative scale. The real part and the modulus of the extremal function h

to the basic uncertainty principle (c = 1). In the drawings, the parameters are distance d in mm from the
stapes (x = d

l
= d

6.6 ) and frequency f = ω
2π in Hz. The extremal function is shown for a fixed frequency

f as a function of the distance d (in mm) to the stapes. The parameters are: ε = 2π , α = −π , β = 2π ,
κ = 4.

of sound pressure. The above description of the basilar membrane transfer function
is therefore taken to be a linear approximation at high levels of sound pressure. In
the following section the approach will be modified with the aim of obtaining linear
approximations at all levels of sound pressure.

2.2.1 General uncertainty inequality for 	 × S

There are various ways that the abstract group 	 ×S can act on the space L2
sym. Apart

from the natural representation that associates to the corresponding basis elements in
the Lie algebra of 	 the operators Â and B̂ , the general representation considered
below is built on the operators 1

c
Â and B̂c = −i|ω|c sgn(ω). The representation of 	

induced by this algebra representation retains the crucial scaling behavior known
from the experimental results. It seems to be suitable in the present context, despite
the fact that the operator B̂c does not stand for the time derivative any more.

The general representation of 	 × S on the space L2
sym that will be considered is

determined by the representation of its Lie algebra and as such by the operators 1
c
Â,

B̂c = −i|ω|c sgn(ω) and Ĥ . There is the single non trivial commutator relation:[
1

c
Â, B̂c

]
= B̂c. (38)

The uncertainty inequality that goes with it is

∣∣(h, Ĥ B̂ch)
∣∣ ≤ 2

c

∥∥(Â − αĤ − βB̂)h
∥∥∥∥(Ĥ B̂c + ν)h

∥∥. (39)



Page 12 of 54 Reimann

At this point it is not clear whether the term 1
c
(Â − αĤ − βB̂) should rather be

1
c
(Â − αĤ − βB̂c). In fact the inequality is true for both variants and in both cases,

families of inequalities depending on the parameters are obtained. The question is
how the extremal functions that are associated to these inequalities vary with the
parameters. Yet by choosing the present version one finds that the set of extremal
functions is invariant under the action of 	 × S. The expression αĤ + βB̂ should
been seen as the linear approximation of the skew hermitian operator Â. As a result
of using both B̂c and B̂ , the first as an operator and the latter as an approximation
term, this has the effect, that the argument of the extremal function appears in a
slightly different context than the modulus. The extremal functions are obtained from
the relation

λ
1

c
(Â − αĤ − βB̂)h + μ(Ĥ B̂c + ν)h = 0.

They satisfy the differential equation

(
1

2
+ ω

d

dω

)
h = (−iα sgn(ω) − iβω − κ|ω|c + κν

)
h. (40)

The proportionality factor is κ = − cμ
λ
. Its choice is arbitrary. All the constants α, β ,

and κ can in fact be chosen in dependence of the parameter c. This gives a possibility
for fine adjustment of the extremal function hc that describes the linear approximation
at level c of the basilar membrane filter.

The solutions of the equation are

hc(ω) = keiε sgn(ω)−iα sgn(ω) log |ω|−iβωe− κ
c
|ω|c |ω|κν− 1

2 , (41)

with real constants k, ε, α, β , κ and ν. These solutions are in L2 if both κ > 0 and
ν > 0.

The parameter in the uncertainty inequality is

ν = νc(h) = − (h, Ĥ B̂ch)

‖h‖2 = 1

‖h‖2
∫ ∞

−∞
|ω|c∣∣h(ω)

∣∣2 dω. (42)

This time, the frequency localization of the function h is

ν
1
c (h) =

(
1

‖h‖2
∫ ∞

−∞
|ω|∣∣h(ω)

∣∣2dω

) 1
c

(43)

and

ν
1
c (h ◦ δ̂a) = aν

1
c (h). (44)

In accordance with our tenet, the basilar membrane filter is described as

ĝ(x,ω) = hc ◦ δ̂ξ (ω), (45)



Journal of Mathematical Neuroscience (2011) 1:5 Page 13 of 54

with an extremal function hc, normalized by the condition ν(hc) = 1.

ĝ(x,ω) = hc

(
ω

ξ

)
= ke

iε sgn(ω)−iα sgn(ω) log | ω
ξ
|−iβ ω

ξ e
− κ

c
| ω
ξ
|c
∣∣∣∣ωξ

∣∣∣∣
κ− 1

2

. (46)

As before, ξ = ξ(x) is the tonotopic axis. The frequency localization of ĝ(x,ω) as a
function of ω is ξ :

ν
1
c
(
ĝ(x, ·)) = ξ(x). (47)

The parameter c allows to express at which level of sound intensity the lineariza-
tion is specified. Parameters c ∼ 1 indicate high levels and parameters c � 1 small
levels of intensity.

Experimental results on the basilar membrane transfer function are reviewed in
Robles and Rugggero, 2001 [18]. As already pointed out in the previous paper
2009 [17], the shape of the modulus of the transfer function determined at various
intensities as given by Rhode and Recio (2000 [19], Figure 1C) is approximately
described by the modulus of the extremal functions at the corresponding parameter
values. In particular, at a fixed position, the modulus of the transfer function has its
peak below the position of the frequency localization and with decreasing intensity of
sound level it approaches this position. Similarly, for fixed x, the extremal functions
|ĝc(x,ω)| attain their maxima at

ω = ξ(x)

(
1− 1

2κ

) 1
c

. (48)

With increasing values of c this approaches the frequency localization ξ(x).
With the present setup the argument of the basilar membrane filter is independent

of c. The experimental results by Rhode and Recio (2000) show minor changes of
phase in dependence of the intensity level. With increasing intensity there is a small
phase lag below the characteristic frequency and an equally small phase lead for
frequencies above the characteristic frequency. Studies of the impulse response also
confirm that the phase is almost invariant under changes in sound level (Recio and
Rhode (2000) [20], Shera (2001) [21]). In order to obtain a fine adjustment of the
phase data, the parameters α and β would have to be chosen in dependence of c.

In any case, the phase function has to be a decreasing function both when consid-
ered as a function of the frequency ω and as a function of the place x. The phase of the
extremal function does not satisfy this requirement because of the logarithmic term.
Yet still, the phase of the extremal function serves as an approximation of the physi-
ological phase function on the interval in which the the absolute value is relevant. At
places at which the absolute value is close to zero, the argument is of no significance.
In Figure 2 the phase function is pictured for the fixed circular frequency ω = 1,000
as a function of the distance d to the stapes, on the interval that is of physiological
relevance. In Figure 3 the phase is pictured as a function of frequency (in Hz). In
this figure, the characteristic frequency is 7,000 Hz. The part above about 3,000 Hz
is of physiological relevance. The approximation holds in this range. It should be
compared with the experimental results by Rhode and Recio (2000 [19], Figure 2E).
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Fig. 2 Phase as a function of d . The phase (in cycles) of the extremal function h as a function of the
distance d (in mm) to the stapes. The frequency is 500 Hz. Under the tonotopic axis this value corresponds
to d = 24.4 mm. The parameters are: ε = 16π , α = −7.8π , β = 24π .

The part below 3,000 Hz is the mathematical expression for the phase function. It is
physiologically not correct, but this is of no significance.

The factor e−iβω in the extremal functions hc stands for a pure time delay by β .
Dividing the extremal functions by this factor, one is left with the extremal func-
tions as they would appear if β had been set equal to zero in the general uncertainty

Fig. 3 Phase as a function of f . The phase (in cycles) of the extremal function h as a function of frequency
f = ω

2π at the distance d = 10.6 mm to the stapes. The solid line is the phase as determined by the
extremal function. The dashed line is the physiologically correct substitute at low frequencies. Note that
the phase values in this region are practically irrelevant for signal processing, because the amplitude values
in this region are negligible. Under the tonotopic axis d corresponds to the frequency f = 4,000 Hz. The
parameters are the same as in Figure 2.
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inequality. They are the extremal functions for the uncertainty inequality

νc‖h‖2 ≤ 2

c

∥∥(Â − αĤ )h
∥∥∥∥(Ĥ B̂c + νc)h

∥∥. (49)

2.3 The structure equations

Extremals for the uncertainty principle satisfy differential equations. Since the mem-
brane transfer function is described by an extremal function and its transforms under
the symmetry group and since the extremal functions are preserved under this action,
it is possible to derive differential equations for the output of the signal. The resulting
equations are called the structure equations.

The derivation starts with the simple case c = 1. In this situation differentiation
of the wavelet transform Wf (a, t) with respect to the parameters of the symmetry
group directly leads to a differential equation. In the case c > 0 however, the re-
sulting equation is actually a pseudo differential equation. A linearization process
for the kernel brings it back to a differential equation that is then satisfied approxi-
mately.

The quantities in the equation at first are derivatives of the output function
Wf (a, t) and its Hilbert transform. A further calculation then shows that the result
can be formulated as an inhomogeneous system of linear partial differential equa-
tions for the phase and for the logarithm of the amplitude of the output signal. This
is particularly satisfying because these are exactly the physiologically relevant quan-
tities.

The point of departure is the tenet that the basilar membrane transfer function is
given as

ĝ(x,ω) = hc ◦ δ̂ξ (ω)

(
= hc

(
ω

ξ

))
,

with an extremal function hc (normalized by the condition ν(hc) = 1).

ĝ(x,ω) = hc

(
ω

ξ

)
= ke

iε sgn(ω)−iα sgn(ω) log | ω
ξ
|−iβ ω

ξ e
− κ

c
| ω
ξ
|c
∣∣∣∣ωξ

∣∣∣∣
κ− 1

2

.

As mentioned in the section ‘background’ the response to a general signal is inter-
preted as a wavelet transform:

u(x, t) = 1√
2π

∫ ∞

−∞
f̂ (ω)ĝ(x,ω)eiωt dω = 1√

2π

∫ ∞

−∞
f̂ (ω)hc

(
ω

ξ(x)

)
eiωt dω,

with

ξ(x) = Ke−x.

The parameter in the wavelet transform can be normalized such that a = 1
ξ(x)

. The
wavelet transform is then

Wf (a, t) =
∫ ∞

−∞
f̂ (ω)

√
ahc(aω)eiωt dω. (50)



Page 16 of 54 Reimann

The considerations in this section start from the formula

u(x, t) = 1√
a
Wf (a, t). (51)

First the case c = 1 is treated. It leads to exact results whereas in the case c > 1 an
approximation procedure will be applied.

Differentiation with respect to the variable a gives

a
∂

∂a
Wf (a, t) =

∫ ∞

−∞
f̂ (ω)a

d

da
δ̂ah(ω)eiωt dω

=
∫ ∞

−∞
f̂ (ω)δ̂aÂh(ω)eiωt dω.

Note that Â commutes with δ̂a . The normalized extremal function h satisfies the
differential equation

Âh = (αĤ + βB̂ + κĤ B̂ + κ)h.

It follows that

a
∂

∂a
Wf (a, t) =

∫ ∞

−∞
f̂ (ω)δ̂a(αĤ + βB̂ + κĤ B̂ + κ)h(ω)eiωt dω

=
∫ ∞

−∞
f̂ (ω)(αĤ + aβB̂ + aκĤ B̂ + κ)δ̂ah(ω)eiωt dω.

Under the Fourier transform, − d
dt

is mapped into B̂ and the Hilbert transform H is

mapped into Ĥ . This gives the basic equation

a
∂

∂a
Wf (a, t) =κWf (a, t) + αHWf (a, t) − aβ

∂

∂t
Wf (a, t)

− aκ
∂

∂t
HWf (a, t).

(52)

It is quite remarkable that the differentiation a ∂
∂a

(this essentially is differentiation
with respect to x) brings in the Hilbert transform H . This transform is a unitary
operator on L2(R,C). Its square is the negative of the identity operator: H 2 = −I .
It extends to a bigger class of functions (to all temperate distributions). On the basic
trigonometric functions it operates very simply:

H cos(ωt) = sin(ωt).

Experimentally, the basilar membrane function is - at least in many studies - deter-
mined in terms of the input signals cos(ωt). It immediately follows that

WHf (a, t) = HWf (a, t) (53)

holds for the functions f = cos(ωt). The linearity assumption then implies that this
holds for arbitrary input signals f .
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Since Ĥ commutes with both Â and B̂ , the basic equation tells us that

a
∂

∂a
HWf (a, t) =κHWf (a, t) − αWf (a, t) − aβ

∂

∂t
HWf (a, t)

+ aκ
∂

∂t
Wf (a, t).

(54)

The Hilbert transform thus appears naturally in this setting. This is the justification to
study the ‘analytic wavelet transform’. Taking the factor

√
a into account this is

Zf (a, t) = 1√
a
Wf (a, t) + iH

1√
a
Wf (a, t) = u(x, t) + iHu(x, t). (55)

The complex valued function Zf then satisfies

a
∂

∂a
Zf (a, t) =

(
κ − 1

2

)
Zf (a, t) + αHZf (a, t) − aβ

∂

∂t
Zf (a, t)

− aκ
∂

∂t
HZf (a, t).

(56)

Notice the shift by 1
2 that has its origin in the factor 1√

a
.

The basic equation can now be reformulated as a system of equations in the polar
coordinates

r(a, t) = ∣∣Zf (a, t)
∣∣ =

(
1

a

∣∣Wf (a, t)
∣∣2 + 1

a

∣∣HWf (a, t)
∣∣2) 1

2

,

ϕ(a, t) = argZf (a, t) = arc tg
HWf (a, t)

Wf (a, t)
.

The calculation in real terms starts with the observation that on one hand

Re

(
a

∂

∂a
Zf Zf

)
= 1

2
a

∂

∂a
r2,

whereas on the on the other hand

aRe

(
a

∂

∂a
Zf Zf

)

= Wf

(
αHWf +

(
κ − 1

2

)
Wf − aβ

∂

∂t
Wf − aκ

∂

∂t
HWf

)

+ HWf

(
−αWf +

(
κ − 1

2

)
HWf − aβ

∂

∂t
HWf + aκ

∂

∂t
Wf

)

= a

(
κ − 1

2

)
r2 − a

(
Wf

∂

∂t
Wf + HWf

∂

∂t
HWf

)

− aκ

(
Wf

∂

∂t
HWf − HWf

∂

∂t
Wf

)
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= a

(
κ − 1

2

)
r2 − a2β

2

∂

∂t
r2 − a2κr2

∂ϕ

∂t
.

This gives the first equation

a
∂

∂a
log r =

(
κ − 1

2

)
− aβ

∂

∂t
log r − aκ

∂ϕ

∂t
. (57)

Similarly, on one hand

Im

(
a

∂

∂a
Zf Zf

)
= ReZa

∂

∂a
ImZ − ImZa

∂

∂a
ReZ

= r2a
∂

∂a
arc tg

ImZ

Re z
= r2a

∂ϕ

∂a
.

On the other hand

a Im

(
a

∂

∂a
Zf Zf

)

= Wf

(
−αWf +

(
κ − 1

2

)
HWf − aβ

∂

∂t
HWf − aκ

∂

∂t
Wf

)

− HWf

(
−αHWf +

(
κ − 1

2

)
Wf − aβ

∂

∂t
Wf − aκ

∂

∂t
HWf

)

= −αar2 − aβ

(
Wf

∂

∂t
HWf − HWf

∂

∂t
Wf

)

+ aκ

(
Wf

∂

∂t
Wf + HWf

∂

∂t
HWf

)

= −αr2 − a2βr2
∂ϕ

∂t
+ a2κ

2

∂

∂t
r2.

This gives the second equation

a
∂ϕ

∂a
= −α + aκ

∂

∂t
log r − aβ

∂ϕ

∂t
. (58)

The calculation in complex notation makes use of the fact that

HZf = Hu(x, t) + iH 2u(x, t) = −i
(
u(x, t) + iHu(x, t)

) = −iZf.

The basic equation is then

a
∂

∂a
Zf =

(
κ − 1

2

)
Zf + αHZf − aβ

∂

∂t
Zf − aκ

∂

∂t
HZf (59)

=
(

κ − 1

2
− iα

)
Zf − a(β − iκ)

∂

∂t
Zf. (60)
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Dividing by Zf it follows immediately that

∂

∂a
logZf = κ − 1

2
− iα − a(β − iκ)

∂

∂t
logZf. (61)

The case c �= 1 is now being treated in a similar spirit. Recall that the normalized
extremal functions (ν = 1) satisfy the differential equation

Âhc = (αĤ + βB̂ + κĤ B̂c + κ)hc

and that the basic equation derives from

a
∂

∂a
Wf (a, t) =

∫ ∞

−∞
f̂ (ω)δ̂aÂhc(ω)eiωt dω

=
∫ ∞

−∞
f̂ (ω)δ̂a(αĤ + βB̂ + κĤ B̂c + κ)hc(ω)eiωt dω.

The case c �= 1 will not directly lead to a differential operator, because the operator B̂c

is not the Fourier transform of a differential operator (unless c is an odd natural num-
ber). It is however possible to use a linear approximation for B̂c near the frequency
expectation value of hc , that is, at the point ω = 1:

−i sgn(ω)|ω|c = −i sgn(ω) − ic
(
ω − sgn(ω)

) + O
(
ω − sgn(ω)

)2
, (62)

B̂c
∼= Ĥ + c(B̂ − Ĥ ). (63)

The above equation is then approximated by

a
∂

∂a
Wf (a, t)

∼=
∫ ∞

−∞
f̂ (ω)δ̂a

(
αĤ + βB̂ + κĤ (1− c)Ĥ + cκĤ B̂ + κ

)
hc(ω)eiωt dω

=
∫ ∞

−∞
f̂ (ω)(αĤ + aβB̂ + acκĤ B̂ + cκ)δ̂ahc(ω)eiωt dω.

With the consequence that

a
∂

∂a
Wf ∼= cκWf + αHWf − aβ

∂

∂t
Wf − acκ

∂

∂t
HWf. (64)

The calculation for the analytic wavelet transform Zf = u + iHu then proceeds
as above. Only the constants are slightly different. In the sequel the notation γ = cκ

will be used. Recall that in prospective refined adjustments the parameters α, β and γ

may vary with c.
The structure equations are

a
∂

∂a
log r ∼=

(
γ − 1

2

)
− aβ

∂

∂t
log r − aγ

∂ϕ

∂t
, (65)
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a
∂ϕ

∂a
∼= −α + aγ

∂

∂t
log r − aβ

∂ϕ

∂t
. (66)

They combine to the complex equation

a
∂

∂a
logZf ∼= γ − 1

2
− iα − a(β − iγ )

∂

∂t
logZf. (67)

Equality holds if c = 1.
Under the tonotopic axis ξ(x) = Ke−x , x = k + loga, the derivative a ∂

∂a
trans-

forms into ∂
∂x
:

∂

∂x
(u + iHu)(x, t) = a

∂

∂a
logZf (a, t). (68)

The structure equations can be written in x, t-coordinates:

∂

∂x
log(u + iHu)(x, t) ∼= γ − 1

2
− iα − 1

ξ(x)
(β − iγ )

∂

∂t
log(u + iHu)(x, t). (69)

2.4 Consequences of the structure equations

Signal processing in the cochlea is non-linear. The main - but certainly not the only -
source of non-linearity is the compressive nature inherent in the hearing process. In
the abstract model pursued here this is taken care of with a single parameter that
represents the level of sound intensity. The model then describes the linear approxi-
mations at these levels. The structure equations are at the core of this abstract model,
in fact they comprise all the essential features. First of all, they are linear (as would
be expected from a linear approximation). From a mathematical point of view, the
equations therefore are very simple. On top, the system is quite special. With respect
to suitable variables it represents an inhomogeneous ∂̄-equation. Its solutions can be
realized in complex form as products of two factors, the first of which is entirely
determined by the system and the second is a holomorphic function that can be cal-
culated from the signal. At every level c it is thus possible to associate to an input
signal in a unique way a holomorphic function that describes the output signal in
terms of the physiological parameters.

The phase and the logarithm of the amplitude are used in the description of the ex-
periments and they are omnipresent in all the representations of the auditory pathway.
In themselves they are of limited significance, because they are not coded as such.
What really is essential in any cochlear or in any neural model are the changes of
these quantities, both with respect to time and with respect to the place. The structure
equations precisely relate the local and temporal derivatives of phase and (logarithm
of) amplitude. The geometry of the cochlea implicitly is inherent in the extremality
property of the basilar membrane filter. But in the structure equations this only shows
in terms of the constants. The implicit appearance of the tonotopic axis is an expres-
sion of the basic invariance principle that stands at the outset of all considerations.

The structure equations clearly exhibit the dichotomy in cochlear signal process-
ing. The signals can either be analyzed in terms of their phase or in terms of their
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amplitudes. Assume that there is complete information on phase changes, that is, the
quantities ∂ϕ

∂t
and ∂ϕ

∂a
are known. Then the second equation

a
∂ϕ

∂a
∼= −α + aγ

∂

∂t
log r − aβ

∂ϕ

∂t

can be solved for ∂
∂t
log r . Inserted in the first equation

a
∂

∂a
log r ∼=

(
γ − 1

2

)
− aβ

∂

∂t
log r − aγ

∂ϕ

∂t

this then determines ∂
∂a

log r . Conversely, the complete knowledge of amplitude in-
formation determines the phase information. From an abstract point of view, phase
information and amplitude information each individually contain the full information
of the signal. In the auditory pathway both phase and amplitude information is be-
ing processed. It is commonly assumed that phase information dominates in the low
frequency range and amplitude information in the regions that process high frequen-
cies. The equations tell us that phase processing and amplitude processing are equally
significant.

The complex equation

∂

∂x
log(u + iHu)(x, t) ∼= γ − 1

2
− iα − 1

ξ(x)
(β − iγ )

∂

∂t
log(u + iHu)(x, t)

shows that there is also a twofold way of data processing with respect to time and
with respect to the place. Complete information on derivatives with respect to the
position gives complete information on time derivatives - and vice versa.

The structure equations are so simple that they can be solved in explicit mathe-
matical terms. In its complex form the structure equation is the linear inhomogeneous
equation

a
∂

∂a
logY(a, t) = γ − 1

2
− iα − a(β − iγ )

∂

∂t
logY(a, t). (70)

The general solution of an inhomogeneous linear differential equation can be pre-
sented as the linear combination of a particular solution (any chosen solution of the
equation) and the general solution of the associated homogeneous differential equa-
tion.

A particular solution logYp of the above complex equation is the function

logYp =
(

γ − 1

2
− iα

)
loga := Pγ (a). (71)

Its distinguished feature is the time independence. It follows that the general solution
logY is of the form

logY(a, t) = Pγ (a) + logX(a, t) (72)
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for some function X satisfying the homogeneous equation

∂

∂a
X(a, t) = −(β − iγ )

∂

∂t
X(a, t). (73)

This leads to the product representation

Y(a, t) = ePγ (a)X(a, t). (74)

(As a side remark, observe that the complex structure equation is obtained from
the basic equation

a
∂

∂a
Zf =

(
γ − 1

2
− iα

)
Zf − a(β − iγ )

∂

∂t
Zf (75)

after division by Zf . Writing

Zf (a, t) = ePγ (a)X(a, t),

it is then clear that the homogeneous differential equation for X also holds at the
zeros of X.) With the variable change

z = t − aβ + iaγ,

z̄ = t − aβ − iaγ

the homogeneous equation turns into a ∂-equation for the transformed function

G(z, z̄) = X(a, t). (76)

0 = ∂

∂a
X(a, t) + (β − iγ )

∂

∂t
X(a, t)

= ∂G

∂z
(−β + iγ ) + ∂G

∂z̄
(−β − iγ ) + (β − iγ )

(
∂G

∂z
+ ∂G

∂z̄

)

= −2iγ
∂G

∂z̄
.

This then shows that the solutions of the linear inhomogeneous equation have the
representation

Y(a, t) = aγ− 1
2−iαG(z), (77)

with G a holomorphic function in the variable z = t − aβ + iaγ . Since a > 0 (and
γ > 0) it is defined in the upper half space {z ∈ C : Im z > 0}. The function G(z) is
uniquely defined up to a constant.

The situation can now be summarized as follows: An incoming signal f (t) gives
rise to a family of analytic wavelet transforms

Zf = 1√
a
(Wf + iHWf ) (78)
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depending on the parameter γ = cκ . The functions Zf approximately satisfy the
complex structure equation. The solutions

Y(a, t) = aγ− 1
2−iαG(t − aβ + iaγ ) (79)

of the equation

a
∂

∂a
logY = γ − 1

2
− iα − a(β − iγ )

∂

∂t
logY (80)

are then expected to provide approximations for Zf (with equality for c = 1).
The functions G are holomorphic and depend on the parameter γ . They can in fact

be determined directly from the Fourier transform of the incoming signal f (t). Since
the system is linear, the superposition principle holds:

If f = f1 + f2 is the superposition of two incoming signals f1 and f2 to which
the holomorphic functions G1(z) and G2(z) are associated, then the holomorphic
function for f is

G(z) = G1(z) + G2(z). (81)

All that has to be done is to calculate the holomorphic functions that correspond
to to the basic functions f (t) = A cos(νt + ϑ). In the following section these are
identified as the functions

G(z) = keiεAeiϑνγ− 1
2−iαeiνz. (82)

The Fourier representation

f (t) =
√

2

π
Re

∫ ∞

0
f̂ (ω)eiωt dω (83)

then tells us that the holomorphic function associated to f is

G(z) = keiε

√
2

π

∫ ∞

0
f̂ (ω)ωγ− 1

2−iαeiωz dω. (84)

The conclusion is that the holomorphic functions G(z) with z = t − aβ + iaγ

provide approximate solutions to the structure equation

Zf (a, t) ∼= ePγ (a)G(z) (85)

= aγ− 1
2−iαG(t − aβ + iaγ ). (86)

The relevant expressions in the structure equations can then be calculated from the
derivative of F(z) := logG(z):

∂

∂t
log r = ∂

∂t
ReF(z) = Re

∂

∂t
F (z) = Re

{
F ′(z)∂z

∂t

}
= ReF ′(z), (87)

∂

∂t
ϕ = ImF ′(z), (88)
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a
∂

∂a
log r = γ − 1

2
+Re

{
F ′(z)(−aβ + iaγ )

}
, (89)

a
∂

∂a
φ = α + Im

{
F ′(z)(−aβ + iaγ )

}
. (90)

2.5 Examples

2.5.1 Pure sounds

For the input signal

f (t) = Re eiνt = cosνt, ν > 0,

the quantities log r(a, t) and ϕ(a, t) can be calculated explicitly from the formula

1√
a
Wf (a, t) = Re

{
ĝ(k + loga, ν)eiνt

}
= Re

{
keiε sgn(ν)−iα log |aν|−iβaν+iνt e− κ

c
|aν|c |aν|κ− 1

2
}
.

This is

log r(a, t) = log k − κ

c
|aν|c +

(
κ − 1

2

)
logaν,

ϕ(a, t) = iε − α logaν − βaν + νt,

and for the derivatives

a
∂

∂a
log r = −κ|aν|c + κ − 1

2
,

∂

∂t
log r = 0,

a
∂

∂a
ϕ = −α − βaν,

∂

∂t
ϕ = ν.

The first structure equation gives

−κ|aν|c + κ − 1

2
∼=

(
cκ − 1

2

)
− acκν.

This is in fact the correct linear approximation. It is equivalent with the linear ap-
proximation of |aν|c at aν = 1:

|aν|c ∼= 1+ c(aν − 1).

The second structure equation is satisfied as an equality.
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From the complex structure equation the holomorphic function associated to
f (t) = cosνt can be determined:

logZf = logk + iεν − iα log |aν| − iβaν + iνt

− κ

c
|aν|c +

(
κ − 1

2

)
log |aν|,

a
∂

∂a
logZf = −κ|aν|c +

(
κ − 1

2

)
− i(α + βaν).

With the above approximation this is

a
∂

∂a
logZf ∼= −cκaν +

(
cκ − 1

2

)
− i(α + βaν) = γ aν +

(
γ − 1

2

)
− i(α + βaν)

(with the abbreviation cκ = γ ). Observe that for c > 1

|aν|c > 1+ c(aν − 1),

unless aν = 1. The approximate value for log |Zf | therefore is an over estimation.
Together with

a
∂

∂t
logZf = iν

the result leads to

logk + iε +
(

γ − 1

2
− iα

)
log |aν| − γ aν − iaβν + iνt

= logk + iε + Pγ (a) + Pγ (ν) + iνz

as the approximate value of logZf .
The associated holomorphic function is thus

G(z) = keiνz+Pγ (ν)+iε,

with

z = t − aβ + iaγ,

ePγ (ν) = νγ− 1
2−iα.

Note that the holomorphic function G associated to the input signal

f (t) = ReAeiνt+iϑ = A cos(νt + ϑ), ν > 0,A > 0, ϑ ∈R,

is

G(z) = keiεAeiϑ (ν)γ− 1
2−iαeiνz. (91)

The constants k and ε are of little importance and do not show in the structure equa-
tions. In the following calculations we set keiε = 1.
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2.5.2 Amplitude modulation

The amplitude modulated signal

f (t) = (1+ A cosμt) cosνt

= Re

{
eiνt + A

2
ei(ν+μt) + A

2
ei(ν−μt)

}
(0 < A < 1)

with 0 < μ � ν is described by the holomorphic function

G(z) = eP (ν)+iνz + A

2
eP (ν+μ)+iνz+iμz + A

2
eP (ν−μ)+iνz−iμz

= eP (ν)+iνz

(
1+ A

2
eP (ν+μ)−P(ν)+iμz + A

2
eP (ν−μ)−P(ν)−iμz

)
.

The outcome depends on the ratio between the amplitudes of the coefficients. The
frequency ν is dominant as long as∣∣∣∣A2 eP (ν+μ)−P(ν)+iμz

∣∣∣∣ <
1

2
,

∣∣∣∣A2 eP (ν−μ)−P(ν)−iμz

∣∣∣∣ <
1

2
.

With

Re
{
P(ν ± μ) − P(ν)

} =
(

γ − 1

2

)
log

ν ± μ

ν
∼= ±μ

ν

(
γ − 1

2

)
,

Re iμz = −μaγ

this gives the estimates

a >
1

ν

(
1− 1

2γ
+ ν

μγ
logA

)
,

a <
1

ν

(
1− 1

2γ
− ν

μγ
logA

)
.

The frequency interval covered is[
ν

1− 1
2γ + k

,
ν

1− 1
2γ − k

]

with

k = − ν

μγ
logA.

For sufficiently small values of A and μ � ν it includes the entire range along the
cochlea that is involved in the processing of the amplitude modulated signal. The
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function F describing this signal in the relevant range can then be estimated by using
the approximation log(1+ x) ∼= x for small |x|:

P(ν ± μ) − P(ν) =
(

γ − 1

2
− iα

)
log

(
1± μ

ν

)
∼= ±

(
γ − 1

2
− iα

)
μ

ν

and

F(z) = P(ν) + iνz + log

{
1+ A

2

(
eiμz+ μ

ν
(γ− 1

2−iα) + e−iμz− μ
ν
(γ− 1

2−iα)
)}

(92)

∼= P(ν) + iνz + A cos

(
μz − α − i

μ

ν

(
γ − 1

2

))
. (93)

The result exhibits the basic frequency ν as the carrier frequency. But it should be
warned that the approximation is valid only in the frequency interval specified above.

The relevant expressions in the structure equation can be calculated from F ′(z):

F ′(z) ∼= iν − μA sin

(
μz − α − i

μ

ν

(
γ − 1

2

))
.

It can clearly be seen that there is the constant contribution from the carrier frequency
and - as the interesting part - a slow oscillation of angular frequencyμ that stems from
sin(μz + const). Both the amplitude and the phase derivatives show this oscillation.

2.5.3 The sound of a violin

No doubt, the distinguished feature of a violin sound is the extraordinary big num-
ber of harmonics in the frequency spectrum. It is not uncommon to observe around
twenty harmonics at an intensity level at which the sounds can still be detected. Ex-
cept possibly for the first few, the harmonics show a gradual decrease in amplitude
with some oscillation. It is conjectured that these properties are in fact characteristic
for violins of good quality. Figure 4 shows the amplitudes of the individual harmon-
ics of the violin sounds a, e′ and d ′′. The program ‘Prisma-Realtime’ by Bachmann
et al. (2007) [22] uses windowed Fourier transform for this spectrogram. The ampli-
tudes are determined at short intervals and marked with a point. The intensity of these
points is fading with the time.

The violin sound has the representation

f (t) = Re

{ ∞∑
m=1

cmeimνt

}
.

Figure 4 indicates that |cm| decreases exponentially in m. In the dB-scale the decrease
is roughly linear with slope −2:

20 log10 |cm| ∼= const. − 2m,

|cm| ∼= const.e−0.23m
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Fig. 4 Spectrograms of three sounds on a new violin. Spectrograms of the three sounds a, e′ and d ′′ on
a new violin. The amplitudes of the higher harmonics are determined at short intervals and marked with
a point. The intensity of these points is fading with the time. Amplitudes of the harmonics are shown on
a relative scale (in dB). More than 20 higher harmonics can be identified. In the first example the level
differences of the first 20 harmonics are within a limit of 20 dB.

(with the approximation 10 ∼= e2.3).
The associated holomorphic function is

G(z) =
∞∑

m=1

cmeimνz+P(mν).

It is a Fourier series
∑∞

m=1 dmeimνt with coefficients

dm = cme−aγmν−iaβmν+P(mν)
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depending on the position (represented by the variable a). The amplitudes

|dm| = |cm|e−aγmν(mν)γ− 1
2 ∼= e0.2m−aγmν(mν)γ− 1

2

are maximal for

m = γ − 1
2

aγ ν + 0.23
∼= 1

aν
.

At the place along the cochlea that codes for the angular frequency nν, that is, for
ξ(x) = 1

a
= nν, the coefficient dn is thus dominant. In a neighborhood of this nth

harmonic (near a = 1
nν
) the function F can be described locally. The calculation

exhibits apart from the contribution by the carrier frequency a substantial oscillatory
part of angular frequency ν. In a first calculation only the influence of the two closest
harmonics is taken into account. The partial signal

f (t) = Re
{
cne

inνt + cn+1e
i(n+1)νt + cn−1e

i(n−1)νt
}

:= Re
{
Aeinνt+iϑ + A+ei((n+1)νt+iθ+) + A−ei((n−1)νt+iθ−)

}
= Re

{
Aeinνt+iϑ

(
1+ A+

A
ei(ϑ+−ϑ)ei(n+1)νt + A−

A
ei(ϑ−−ϑ)ei(n−1)νt

)}

corresponds to the function

F(z) = log
{
Aeinνz+P(nν)+iϑ + A+e(i(n+1)νz+P((n+1)ν)+iθ+)

+ A−e(i(n−1)νz+P((n−1)ν)+iθ−)
}

= inνz + P(nν) + logA + iϑ

+ log

(
1+ A+

A
ei(ϑ+−ϑ)eiνz+P( n+1

n
) + A−

A
ei(ϑ−−ϑ)e−iνz+P( n−1

n
)

)
.

As before, the approximation

P

(
n + 1

n

)
∼= ±1

n

(
γ − 1

2
− iα

)

is used. The coefficients

c± = A±
A

ei(ϑ±−ϑ)± 1
n
(γ− 1

2−iα)

are decomposed as

c+ = s + d

2
,

c− = s − d

2
,

with s = c+ + c− and d = c+ − c−. This gives the approximation

F(z) ∼= inνz + P(nν) + logA + iθ + s cos(νz) + id sin(νz)
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near the nth harmonic. The carrier frequency accounts for the part inνz + P(nν) +
logA+ iθ . In the structure equation it only participates with time independent terms.
But the significant part is the contribution that varies in time with angular frequency ν

(recall that z = t − aβ + iaγ ).
The qualitative picture remains unchanged, if several neighboring harmonics are

considered. Near the nth harmonic the dominant term in the function F(z) is expected
to be inνz + P(nν) + log cn.

F(z) = log

{ ∞∑
m=1

cmeimνz+P(mν)

}

= inνz + P(nν) + log cn + log

{
1+

∑
m �=n

cm

cn

ei(m−n)νz+P( m
n

)

}
.

This shows the presence of the carrier frequency. The remainder term is approximated
by

Rn(z) =
∑
m �=n

cm

cn

ei(m−n)νz+P( m
n

)

= eiνz
∑
m>n

cm

cn

ei(m−n−1)νz+P( m
n

) + e−iνz
∑
m<n

cm

cn

ei(m−n+1)νz+P( m
n

).

This function is 2π
ν
-periodic in time, with leading term

eiνz cn+1

cn

eP ( n+1
n

) + e−iνz cn−1

cn

eP ( n−1
n

).

In conclusion it can be said that locally around a = 1
nν

the function F(z) is of the
form

F(z) = inνz + P(nν) + log cn + Rn(z), (94)

with a well defined remainder term that is 2π
ν
-periodic in time. The term inνz +

P(nν)+ log cn shows the presence of the carrier frequency. The relevant information
about the violin sound is however contained in the fact that the 2π

ν
-periodicity extends

over an interval along the cochlea that comprises more than three octaves in the tonal
range. The nature of this contribution is similar all along the interval covered by
the frequency spectrum of the violin sound. The exceptions are the low harmonics
(essentially the first and second) at which the influence of the neighboring harmonics
is very small. Furthermore, the amplitude spectrum of a violin sound very often fails
to display monotonicity for the first few harmonics.

With regard to the violins, it should be mentioned that there are considerable dif-
ferences between different (good quality) instruments. It is believed that the distri-
bution in the first few harmonics very much contributes to the individuality of the
violin.
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2.6 The impulse response

The response to the impulse function (the dirac function at the origin) is up to rescal-
ing the inverse Fourier transform ȟc of the extremal function

hc(ω) = keiε sgn(ω)−iα sgn(ω) log |ω|−iβωe− κ
c
|ω|c |ω|κ− 1

2 .

For simplicity it is assumed that keiε sgn(ω) = 1. Since the Fourier transform of the
dirac function is the constant function 1√

2π
, the impulse response is

u(x, t) = u(logK + loga, t) = 1√
a

∫ ∞

∞
1√
2π

δ̂ahc(ω)eiωt dω (95)

= 1√
2π

∫ ∞

∞
hc(aω)eiωt dω (96)

= 1

a
ȟc

(
t

a

)
. (97)

Therefore au(logK + loga, t) = ȟc(
t
a
) is a function of the single variable s = t

a
. This

could also be expressed by saying that tu(x, t) only depends on the single variable
s - the usual way to formulate the invariance statement.

Figure 5 shows the impulse response for different values of c. The impulse re-
sponse must have its support on the positive half of the time axis. The membrane
cannot show a reaction before the impulse arrives. The numerical calculations show
that this is almost satisfied. At this point attention should be drawn to a deficiency of
the approach. The basic difficulty lies in the concept of using the uncertainty princi-
ple. The appropriate thing would be to restrict the class of functions in the uncertainty
principle to functions that in the time domain are supported on the positive half axis.
However, in the restricted class there are no extremal functions. This can be seen

Fig. 5 Impulse response. The
impulse response on a relative
scale as a function of time (in
seconds), for κ = 12 and for
various values of c. The position
along the cochlea corresponds to
the frequency 200 Hz.
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from the fact that the class of extremal functions is translation invariant in the time
domain. With the present setting it is not strictly true that the impulse response has its
support on the positive half axis. The extremal functions have to be interpreted as a
first approximation. They have to be modified slightly such that they really vanish for
negative values of t . The numerical calculations show that only small modifications
are necessary.

The invariance property of the impulse response mentioned above in combination
with the structure equations allow for an explicit approximate calculation of ȟc. In
the case c = 1 this procedure gives the precise value up to a multiplicative constant.

Recall that

Zf (a, t) = u(k + loga, t) + iHu(k + loga, t) = r(a, t)eiϕ(a,t)

was the analytic response. The functions f and g are then defined starting from
au(k + loga, t) as

g(s) = g

(
t

a

)
= loga + log r(a, t),

f (s) = f

(
t

a

)
= ϕ(a, t).

The derivatives appearing in the structure equations can be expressed in terms of f ′
and g′:

a
∂

∂a
log r(a, t) = a

∂

∂a

(
− loga + g

(
t

a

))
= − t

a
g′

(
t

a

)
− 1,

∂

∂t
log r(a, t) = ∂

∂t
g

(
t

a

)
= 1

a
g′

(
t

a

)
,

a
∂

∂a
ϕ(a, t) = − t

a
f ′

(
t

a

)
,

∂

∂t
ϕ(a, t) = 1

a
f ′

(
t

a

)
.

They are inserted in the structure equations. The result is a system of differential
equations for the functions f ′ and g′ of the variable s.

−sg′(s) − 1 ∼=
(

γ − 1

2

)
− βg′(s) − γf ′(s),

−sf ′(s) ∼= −α + γg′(s) − βf ′(s)

or equivalently

(s − β)g′(s) − γf ′(s) ∼= −
(

γ + 1

2

)
,

γg′(s) + (s − β)f ′(s) ∼= α.
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The complex calculation is quickly done.

(s − β + iγ )
(
g′(s) + if ′(s)

) ∼= −
(

γ + 1

2

)
+ iα,

g(s) + if (s) ∼=
(

−γ − 1

2
+ iα

)
log(s − β + iγ ) + const.,

eg(s)+if (s) ∼= K(s − β + iγ )(−γ− 1
2+iα).

All that remains is to determine the integration constant K . The inverse Fourier trans-
form ȟc of hc is then approximated as

ȟc(s) ∼= Re
{
K(s − β + iγ )(−γ− 1

2+iα)
}
.

This is an exact result if c = 1.
The function log(s − β + iγ ) is well defined and holomorphic for Im s > −γ . In

this range

ϑ = arg(s − β + iγ )

can be chosen in the interval (0,π). The modulus of the holomorphic function

(s − β + iγ )(−γ− 1
2+iα) = e(−γ− 1

2+iα) log(s−β+iγ )

is then bounded in the upper half plane. Therefore the function F(z) associated to
the impulse response is holomorphic and can be calculated from it. Since z and s are
related by z = t − aβ + iaγ = a(s − β + iγ ), it follows that

log r(a, t)eiϕ(a,t) = logK − loga +
(

−γ − 1

2
+ iα

)
log(s − β + iγ )

= logK +
(

γ − 1

2
− iα

)
loga −

(
γ + 1

2
− iα

)
log z

= logK + Pγ (a) −
(

γ + 1

2
− iα

)
log z.

Therefore

F(z) = logK −
(

γ + 1

2
− iα

)
log z, (98)

and this function is indeed holomorphic in the upper half plane.
The determination of the integration constant is left open. There is however some

information that can be obtained directly from the differential equations for f and g.
The above system is solved for f ′ and g′:

g′(s) ∼= αγ − (s − β)(γ + 1
2 )

(s − β)2 + γ 2
,
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f ′(s) ∼= γ 2 + γ
2 + α(s − β)

(s − β)2 + γ 2
:= N

D
.

From the equation ∂
∂t

g( t
a
) = 1

a
g′( t

a
) an estimate for the peak of log r at the po-

sition given by the angular frequency 1
a
can be obtained. The peak is determined

by g′(s) = 0:

0 = αγ − (s − β)

(
γ + 1

2

)
,

t = a

(
β + α − α

2γ + 1

)
.

This equation tells us how the peak arising from a click travels along the cochlea.
Information on the derivative of the phase is obtained from ∂

∂t
ϕ(a, t) = 1

a
f ′( t

a
).

For this the second derivative of f is calculated:

f ′′(s) ∼= αD − 2(s − β)N

D2
.

Near the peak of log r the second derivative is small and it changes sign between
β + α and β (recall that α < 0):

f ′′(β + α) ∼= −α
γ 2 + γ + α2

(γ 2 + α2)2
,

f ′′(β) ∼= α

γ 2
.

Therefore f ′ is a slightly increasing function at s = (α +β) and it is slightly decreas-
ing at s = β . The function f ′ itself takes values close to 1:

f ′(β + α) ∼= γ 2 + γ
2 + α2

γ 2 + α2
= 1+ γ

2(γ 2 + α2)
,

f ′(β) ∼= 1+ 1

2γ
.

The graph of f ′(s) is shown in Figure 6. The parameter values are α = −5.3π ,
β = 16π , furthermore, γ = 32π .

According to Shera [23] frequency glides in click responses of the basilar mem-
brane have their origin in the dispersion properties of the slow traveling wave. The
variable s = t

a
= tξ(x) is the scale invariant variable denoted by 2πτ = t2πfCF(x) in

[23], p. 2025. Above, the frequency is expressed in the variable s as ϕ(a, t) = f (s).
This gives

1

2π

∂ϕ

∂t
(a, t) = 1

2πa
f ′(s)

for the instantaneous frequency and hence f ′(s) = 1
ξ(x)

∂ϕ
∂t

(a, t) for the normalized
instantaneous frequency. In [23], p. 2025, Shera denotes it by βin(τ ) and pictures its
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Fig. 6 Frequency glides. The ratio of momentaneous frequency versus CF as a function of time, measured
in periods of CF. The parameters are α = −5.3π , β = 16π and c = 32π .

graph in Figure 2b. The above calculations show that f ′(s) is increasing for values
below α + β . This can be interpreted as a frequency glide. Note that f ′(s) starts to
decrease near β . Hence Figure 2b in [23] would roughly confirm the present calcu-
lations provided that α + β ≈ 12π . There is however a difference in that the present
calculation exhibits a dependence of f ′ on the sound level (as represented by c) with
maximal values for f ′ that are slightly bigger than one.

2.7 General invariance groups

Scale invariance as considered in the previous sections is based on the dilation
group δa and on the assumption that the tonotopic axis is given by the exponential
law ξ(x) = Ke−x . From the experimental data it should however rather be concluded
that the symmetry hypotheses are satisfied only locally and in a first approximation.
The question therefore arises whether the results subsist qualitatively when these ba-
sic assumptions are modified. To answer this question the setup of an abstract model
is being presented.

The basic hypothesis is still that the symmetry in cochlear mechanics is given by
a one parameter transformation group λ̂a acting in phase space. This action can be
taken in a quite general form. Ideally it should be possible to adapt it individually to
each species. The specific form of the tonotopic axis is to a certain extent independent
of the action of the one parameter group. It will be discussed as a separate issue and
for the time being the exponential law will be retained.

The transformation group λ̂a thus stands at the outset of a general framework
for an abstract description of cochlear mechanics. The one parameter group will be
enlarged to a bigger group. At first this will be done on the infinitesimal level by
defining a multiplier operator M̂ that plays the role of B̂ = −iω in the previous sec-
tions. Together with the infinitesimal generator L̂ for the one parameter group λ̂a and
together with Ĥ , the action of the Lie algebra of the abstract symmetry group is then
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completely determined. As an abstract group, the symmetry group is still 	 × S, yet
the action in phase space will have changed. It will in fact be conjugate to the stan-
dard action. The conjugation mapping typically maps a bounded symmetric range in
frequency space onto the whole frequency axis. In the application the bounded range
will be the interval (−R,R). The upper bound R appears as an absolute frequency
bound. In such a model, the inner ear is completely indifferent to signals whose fre-
quency content lies beyond this limit.

As a first issue the wavelet transform for general one parameter groups is being
discussed. Next the action of the one parameter group is determined in dependence
of the parameter c that relates to the overall sound level of the signal. This action
will then be extended on the infinitesimal level to all of 	 × S. Along with this, the
conjugation mapping will be defined.

2.7.1 The wavelet transform for general one parameter groups

One parameter transformation groups on R+ = (0,∞) are generated by vector fields
v : R+ → R. Assume that v extends to a continuous odd function on R and that the
solutions τt (ω) to the differential equation

dx

dt
= v(x) (99)

with initial condition τ0(ω) = ω are uniquely determined and depend smoothly on the
initial condition ω. Then τt is a one parameter transformation group of R+. It extends
in an antisymmetric way to all of R. At the point x = 0 the vector field vanishes and
x = 0 is a stationary solution of the differential equation. Let us transform the time
parameter t and set

a = et ,

λa = λet = τt .

The one parameter group {λa} is then written with a multiplicative parameter a ∈R+
(the multiplicative group of positive real numbers). It then follows that

dλa

da
(ω) = dτt

da
(ω) = dτt

dt
(ω)

1

a
= v(τtω)

1

a

= 1

a
v(λaω).

Example

v(x) = x log
|x|
R

.

The differential equation has the solutions

τt (ω) = sgn(ω)R

∣∣∣∣ωR
∣∣∣∣
et

,
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λa(ω) = sgn(ω)R

∣∣∣∣ωR
∣∣∣∣
a

.

Assume that the vector field v has a finite number of zeroes ±xi , labeled in as-
cending order

x0 = 0 < x1 < x2 < · · · < xk = ∞
(the point xk = ∞ is included though this is not necessarily a zero of v). If

ω ∈ (xi−1, xi) := Ii,

then λaω stays in Ii for all a ∈ R∗. If in addition v > 0 in Ii , then

lim
a→∞λaω = xi

and

lim
a→0

λaω = xi−1.

The variable transform ζ = λaω,

dζ

da
= d

da
(λaω) = 1

a
v(λaω) = 1

a
v(ζ ) (100)

gives ∫ ∞

0
g(λaω)

da

a
=

∫ xi

xi−1

g(ζ )
dζ

v(ζ )

whenever the integrals exist. If however v < 0 in Ii then the sign changes. Hence in
both cases ∫ ∞

0
g(λaω)

da

a
=

∫
Ii

g(ζ )
dζ

|v(ζ )| .

If τt (ω) is the solution of the differential equation dx
dt

= v(x) with initial condition
τ0(ω) = ω then the variational equation is

d

dt

dτt

dω
= v′(τtω)

dτt

dω
.

Integrating with respect to t gives

ln

∣∣∣∣dτt

dω

∣∣∣∣ − ln

∣∣∣∣dτ0

dω

∣∣∣∣ =
∫ t

0

d

dt
ln

∣∣∣∣dτt

dω

∣∣∣∣dt

=
∫ t

0
v′(τtω)dt =

∫ τtω

ω

v′(x)

v(x)
dx

= ln

∣∣∣∣v(τtω)

v(ω)

∣∣∣∣,
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dω

∣∣∣∣ = |v(τtω)|
|v(ω)| = v(τtω)

v(ω)
.

This can be written as
|dω|

|v(ω)| = |dλa|
|v(λaω)| . (101)

The formula expresses that |dω|
|v(ω)| is the invariant measure for the group action.

The transformation group {λa} induces a unitary representation λ on L2(R,C):

λah(ω) =
∣∣∣∣dλ−1

a

dω
(ω)

∣∣∣∣
1
2

h
(
λ−1

a (ω)
)
,

‖λah‖2 =
∫
R

∣∣∣∣dλ−1
a

dω
(ω)

∣∣∣∣∣∣h(
λ−1

a (ω)
)∣∣2 dω = ‖h‖2.

(102)

(The same notation λa is used for both the group and its unitary representation. To
be consistent with the previous notation the group should actually be denoted by λ̂a ,
since it will be taken as a group that acts in phase space.)

Note that ∣∣∣∣dλa

dω
(ω)

∣∣∣∣ = |v(λaω)|
|v(ω)|

is a cocycle for the transformation group {λa}.
Given the transformation group {λa} in phase space and a function ψ ∈ L2(R,C),

define the one parameter family of wavelets by

ψ(a, t) = 1√
2π

∫ ∞

−∞
λaψ̂(ω)eitω dω. (103)

The wavelet transform with wavelet ψ and transformation group {λa} is

Wψf (a, b) =
∫ ∞

−∞
f (t)ψ̄(a, t − b)dt (104)

=
∫ ∞

−∞
f̂ (ω)λaψ̂(ω)eibω dω. (105)

The isometry properties of the wavelet transform have their origin in the isometry
property of the Fourier transform. Applied to Wψ they give

1

2π

∫ ∞

−∞
∣∣Wψf (a, b)

∣∣2 db =
∫ ∞

−∞
∣∣f̂ (ω)

∣∣2∣∣λaψ̂(ω)
∣∣2 dω.

This equality is integrated with respect to the measure da
a
and the order of integration

is interchanged:

1

2π

∫ ∞

0

∫ ∞

−∞
∣∣Wψf (a, b)

∣∣2 da db

a
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=
∫ ∞

−∞
∣∣f̂ (ω)

∣∣2(∫ ∞

0

da

a

∣∣λaψ̂(ω)
∣∣2)dω

=
∫ ∞

−∞
∣∣f̂ (ω)

∣∣2(∫ ∞

0

da

a

∣∣∣∣v(λ−1
a ω)

v(ω)

∣∣∣∣∣∣ψ̂(λ−1
a ω)

∣∣2)dω.

With the change of variables ω = λa(σ ) the integration with respect to da
a

can be
transformed into an integration over the interval Ii = (xi, xi+1) that contains ω:∫ ∞

0

da

a

∣∣v(
λ−1

a ω
)∣∣∣∣ψ̂(

λ−1
a ω

)∣∣2 =
∫

Ii

∣∣ψ̂(σ )
∣∣2 dσ := Ci.

Assume now that ψ is a real valued wavelet. Then

1

2π

∫ ∞

0

∫ ∞

−∞
∣∣Wψf (a, b)

∣∣2 da db

a
=

∑
i

Ci

∫
−Ii∪Ii

∣∣f̂ (ω)
∣∣2 dω

|v(ω)| . (106)

From the formula it can be concluded that the full information on f is contained in
the wavelet transform, provided the integrals are finite and the constants Ci different
from zero for all indices. A formal reconstruction can be obtained in terms of the
wavelets

χ(a, t) := 1

Ci

√
2π

∫ ∞

−∞

∣∣∣∣dλ−1
a ω

dω

∣∣∣∣
− 1

2

ψ̂
(
λ−1

a ω
)
eitω dω.

(Notice the negative sign in the exponent!)
The corresponding wavelet transform is

Vχg(a, b) =
∫ ∞

−∞
g(t)χ̄(a, t − b)dt.

A similar calculation as before then gives

1

2π

∫ ∞

0

∫ ∞

−∞
Wψf (a, b)Vχg(a, b)

da db

a
=

∫ ∞

−∞
f̂ (ω) ¯̂g(ω)dω =

∫ ∞

−∞
f (t) ¯g(t) dt.

The function is thus recovered weakly in the sense of L2-duality by

1

2π

∫ ∞

0

∫ ∞

−∞
Wψf (a, b)χ(a, t − b)

da db

a
= f (t). (107)

For the description of cochlear mechanics the reconstruction of the signal from its
output at the cochlear level (that is, from its wavelet transform) is not an issue. No
reconstruction is taking place in the auditory pathway. However from the point of
information processing it is of relevance to know whether the wavelet transform con-
tains the full information of the original signal.

In the application the wavelet transform will be described by a wavelet with fre-
quency support in [−R,R]. The above reconstruction process would then give the
projection of the signal onto the subspace of band limited signals.
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2.7.2 Extension of the group action

In the case of the dilation group when λa is δ̂a and the generating vector field is
v(x) = −x, the operator B̂ = −iω together with the infinitesimal generator Â = 1

2 +
ω d

dω
for the action of the dilation group satisfy the commutator relation

[Â, B̂] = B̂

of the Lie algebra of the affine group 	. For general vector fields v, the infinitesimal
generator for the group action is

Lh(ω) = d

da

∣∣∣∣
a=1

λah(ω) (108)

= −1

2
v′(ω)h(ω) − v(ω)

d

dω
h(ω). (109)

Together with B̂ it will in general fail to span a finite dimensional Lie algebra of
operators. However there exists a skew hermitian multiplier operator M such that

[L,M] = M. (110)

The multiplier of M can be taken in the form

M = −i sgn(ω)s(ω). (111)

The symmetric real valued function s(ω) is then determined by the differential equa-
tions that results by applying the commutator relation

−v
d

dω
s = s. (112)

In any interval void of zeros of the vector field, the function s is determined up to a
multiplicative factor by

s(ω) = e
− ∫

dω
v(ω) .

If v is a smooth vector field with zeros at ±xi then s(ω) will map any interval
Ii = (xi−1, xi) onto the positive real half axis R+. Furthermore, it will conjugate the
action of the transformation group λa (restricted to Ii ) with the action of the dilation
group δ̂a :

λa = s−1 ◦ δ̂a ◦ s. (113)

This can be verified by calculating the infinitesimal generator of the conjugate group:

d

da

∣∣∣∣
a=1

s−1 ◦ δ̂a ◦ s(ω) = −(
s−1)′(

s(ω)
)
s(ω) = − s(ω)

s′(ω)

= v(ω).



Journal of Mathematical Neuroscience (2011) 1:5 Page 41 of 54

The conjugation map s induces an isometry s∗ between L2 and the subspace L2
I of

L2-functions restricted to −Ii ∪ Ii :

s∗h(ω) :=
∣∣∣∣ ds

dω

∣∣∣∣
1
2

h
(
s(ω)

) =
∣∣∣∣ s(ω)

v(ω)

∣∣∣∣
1
2

h
(
s(ω)

)
. (114)

In the application, the interval on which λa acts will be I = (0,R) and the vector
field will take negative values. The function sgn(ω)s(ω) then maps (−R,R) onto R
and conjugates λa to δ̂a .

The operators L and M satisfy the commutator relation of the Lie algebra of the
affine group 	. The action of the group λa is thus extended on the infinitesimal level
to a Lie algebra action of the affine group.

It can be lifted to 	 = {(a, t) : a > 0, t ∈ R} by setting
μth(ω) = e−it sgn(ω)s(ω)h(ω).

The circle group action ε̂ϕ with infinitesimal generator Ĥ remains unchanged and
commutes with the 	-action

[L, Ĥ ] = [M,Ĥ ] = 0. (115)

The operators corresponding to B̂c are

Mc = −i sgn(ω)sc(ω), a > 0.

The only non trivial commutator relation is[
1

c
L,Mc

]
= Mc. (116)

For later use note that λa commutes with L, whereas

λaM = aMλa,

λaMc = acMcλa.

2.7.3 The uncertainty inequality

For a given vector field generating the transformation group λa , an interval Ii =
(xi−1, xi) is fixed. The signal space L2(R,R) is then restricted to the subspace L2

I of
band limited signals with frequencies in−Ii ∪Ii . In this space, the general uncertainty
inequality for 	 × S can be stated as

ν‖h‖2 ≤ 2

c

∥∥(L − αĤ − βM)h
∥∥∥∥(ĤMc + ν)h

∥∥, (117)

with

ν = νc = − (h, ĤMch)

‖h‖2 = 1

‖h‖2
∫ ∞

−∞
∣∣s(ω)

∣∣c∣∣h(ω)
∣∣2 dω (118)
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and

α‖h‖2 − β(h, ĤMh) + (h, ĤLh) = 0,

−α(h, ĤMh) + β‖Mh‖2 −Re(Lh,Mh) = 0.

The quantities ν(h), α(h) and β(h) are defined for all functions in L2
I with Lh and

Mch in L2. Under λa they transform as

ν(λah) = − (λah, ĤMcλah)

‖h‖2 = −a−c (λah, ĤMcλah)

‖h‖2 = a−cν(h), (119)

α(λah) = α(h), (120)

β(λah) = aβ(h). (121)

For every parameter c > 0 define the frequency localization of h by

σc(h) = s−1(∣∣νc(h)
∣∣ 1c ). (122)

Since s conjugates λa to δ̂a , it follows that

σc(λah) = λa

(
σc(h)

)
. (123)

Similarly, the phase expectation can be defined by

�(h) = s−1(β(h)
)
.

It satisfies

�(λah) = λ−1
a

(
�(h)

)
.

The equation for the extremal functions is

(L − αĤ − βM)h = κ(ĤMc + ν)h. (124)

It has explicit solutions in terms of s = s(ω):

hc(ω) = ∣∣v(ω)
∣∣− 1

2 keiε sgn(ω)−iα sgn(ω) log |s(ω)|−iβs(ω)e− κ
c
|s(ω)|c ∣∣s(ω)

∣∣κν
. (125)

These solutions can either be calculated directly from the differential equation for
the extremal solutions or they can be determined from hc by applying the conjugation
mapping s∗.

For later purpose note the explicit formula for λahc(ω). Since s conjugates δ̂a

to λa , one has s(λ−1
a (ω)) = as(ω) and therefore

λahc(ω) =
∣∣∣∣dλ−1

a

dω
(ω)

∣∣∣∣
1
2

hc

(
λ−1

a (ω)
)

(126)

= ∣∣v(ω)
∣∣− 1

2 keiε sgn(ω)−iα sgn(ω) log |as(ω)|−iβas(ω)e− κ
c
|as(ω)|c ∣∣as(ω)

∣∣κν
. (127)

Apart from the factor |v(ω)|− 1
2 this is a function of the single variable as(ω).
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2.7.4 Structure equations in the general setting

As in the previous section, assume that v is a vector field with zeros at ±xi that
generates a one parameter group λa of transformations on −I ∪ I = (−xi,−xi−1) ∪
(xi−1, xi). Signals f ∈ L2

I with frequency content in −I ∪ I can then be analyzed
with the group wavelet transform

Wψf (a, t) =
∫ ∞

−∞
f̂ (ω)λaψ̂(ω)eitω dω.

The Fourier transform ψ̂ of the wavelet with frequency support in −I ∪ I is taken to
be a normalized (with ν = 1) extremal function for the uncertainty inequality for the
group 	 × S. The Lie algebra action is determined by the operators L, Mc and Ĥ .
If h is an extremal function with coefficients α, β and ν, then h̄ is also an extremal

function. Its coefficients are −α, −β and ν. It is thus possible to take ¯̂
ψ = hc:

Wf (a, t) =
∫ ∞

−∞
f̂ (ω)λahc(ω)eitω dω. (128)

The structure equations have their origin in the differential equations

(L − αĤ − βM)h = κ(ĤMc + ν)h (129)

for the extremal functions. In combination with the differentiated form of the wavelet
transform

a
d

da
Wf (a, b) =

∫ ∞

−∞
f̂ (ω)Lλahc(ω)eibω dω

this gives the basic formula

a
d

da
Wf (a, t) =

∫ ∞

−∞
f̂ (ω)λa(αĤ + βM + κĤMc + κ)hc(ω)eitω dω (130)

=
∫ ∞

−∞
f̂ (ω)

(
αĤ + aβM + acκĤMc + κ

)
λahc(ω)eitω dω. (131)

In this situation, a linear approximation for the multiplier operator Mc is inserted. The
frequency localization of λahc is at σ = σc(λahc). At this position sc is approximated
by

sc(ω) ∼= sc(σ ) + csc−1(σ )s′(σ )(ω − σ) (132)

= sc(σ ) − c
sc(σ )

v(σ )
(ω − σ). (133)

Note that

sc(σ ) = sc
(
σc(λahc)

) = νc(λahc) = a−cνc(hc) = a−c (134)
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with the chosen normalization. Therefore the multiplier operators M and Mc - when
applied to λahc - are approximated by

Mc
∼= a−c

(
1+ cσ

v(σ )

)
Ĥ − a−c c

v(σ )
B̂, (135)

M ∼= a−1
(
1+ σ

v(σ )

)
Ĥ − a−1 1

v(σ )
B̂. (136)

Altogether, when applied to λahc , the expression in brackets in the basic formula
above is replaced by(

α + β

(
1+ σ

v(σ )

))
Ĥ − β

v(σ )
B̂ − cκσ

v(σ )
− cκ

v(σ )
Ĥ B̂.

The derivative of the wavelet transform is then expressed in terms of Wf , d
dt

Wf

and their Hilbert transforms

a
d

da
Wf ∼= − γ σ

v(σ )
Wf +

(
α + β

(
1+ σ

v(σ )

))
ĤWf

+ β

v(σ )

d

dt
Wf + γ

v(σ )

d

dt
WĤf

(137)

(again, the notation cκ = γ has been used).
In order to identify the Fourier transform of the wavelet with the cochlear fil-

ter, it must be suitably normalized. In case of the dilation group, the normalization
1√
a
δ̂ah(ω) has been used. The function δ̂ah is localized at ξ(x) = 1

a
. The appropri-

ate normalization for λah is thus
√

σ(λah)λah. Note that d
da

σ (λah) = d
da

λa(σ (h)) =
v(σ (λah)). As in the section on the structure equation, the analytic wavelet transform
of f is then defined by

Zf (a, t) = √
σWf (a, t) + i

√
σHWf (a, t), (138)

with σ = σ(λah). The polar coordinates of Zf are

r(a, t) = ∣∣Zf (a, t)
∣∣ = (

σ
∣∣Wf (a, t)

∣∣2 + σ
∣∣HWf (a, t)

∣∣2) 1
2 ,

ϕ(a, t) = argZf (a, t) = arc tg
HWf (a, t)

Wf (a, t)
.

The calculation of the general structure equations now proceeds as before. Taken
the shift v(σ )

2σ into account that is caused by the normalizing factor
√

σ , the coeffi-
cients in the above equation are abbreviated by

A = − γ σ

v(σ )
+ v(σ )

2σ
, (139)

B = α + β

(
1+ σ

v(σ )

)
, (140)
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C = β

v(σ )
, (141)

D = γ

v(σ )
. (142)

The general structure equations are

a
∂

∂a
log r ∼= A + C

∂

∂t
log r + D

∂ϕ

∂t
, (143)

a
∂ϕ

∂a
∼= −B − D

∂

∂t
log r + C

∂ϕ

∂t
(144)

and in their complex form

a
∂

∂a
logZf ∼= A − iB + (C − iD)

∂

∂t
logZf. (145)

In the special case that v(x) = −x the coefficients reduce to A = γ − 1
2 , B = α,

C = −aβ and D = −aγ .
The previous structure equations are thus recovered.
The solutions of the complex equation can again be determined. The t-independent

particular solution P , giving rise to the multiplicative factor eP , is obtained by solv-
ing the equation

a
∂

∂a
P = A − iB. (146)

If the variable is changed:

σ = σ(λah) = λa

(
σ(h)

) := λa(σ1),

dσ

da
= 1

a
v(σ ),

then

P̃ (σ ) := P(a) =
∫

(A − iB)
da

a
=

∫
(A − iB)

dσ

v(σ )
(147)

gives the t-independent factor as a function of the variable σ .
Similarly, the homogeneous equation

a
∂

∂a
X(a, t) = (C − iD)

∂

∂t
X(a, t) (148)

can be formulated in the variables σ and t :

X(a, t) := X̃(σ, t),

a
∂

∂a
X(a, t) = a

dσ

da

∂

∂σ
X̃(σ, t) = v(σ )

∂

∂σ
X̃(σ, t).
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The result is the ∂̄-equation

v(σ )
∂

∂σ
X̃(σ, t) = (C − iD)

∂

∂t
X̃(σ, t) (149)

for the complex variable

z = t +
∫

(C − iD)
dσ

v(σ )
. (150)

Expressed in the variables σ and t , the solutions of the complex structure equation
are thus of the form P̃ + logG with G(z) = X̃(σ, t) a holomorphic function in the
variable z.

2.7.5 The abstract models

An abstract model for the cochlea is a model for the cochlea that is based on a one
parameter group λa . Its cochlear filter g(x,ω) is described by the translates λah of a
normalized function h. This function is an extremal for the uncertainty relation that
goes with the action of the symmetry group 	 × S that is determined from the one
parameter group λa . The frequency localization σ(g(x, ·)) will be used in place of
the CF. It is independent of the parameter c that stands for the level of sound intensity
and it satisfies

σ(λah) = λa

(
σ(h)

)
. (151)

Assume that the extremal function λah with frequency location σ(λah) represents
the cochlear filter at x:

σ(λah) = ξ(x). (152)

Then the point x′ at which λa′h represents the cochlear filter is given by

x′ = ξ−1(σ(λa′h)
) = ξ−1(λa′σ(h)

) = ξ−1 ◦ λa′ ◦ ξ(x). (153)

The position-frequency map ξ conjugates the group λa to the transformation group
λ̃a = ξ−1 ◦ λa ◦ ξ along the x-axis. Observe that the generating vector fields v and ṽ

for the group λa and its conjugate λ̃a are related by

ṽ(x) =
(

dξ

dx
(x)

)−1

v
(
ξ(x)

)
. (154)

At the outset of the present studies the group action was given by the dilation
group δ̂a and the tonotopic axis was defined by

x = logK − logω, ω > 0. (155)

As a result, the group parameter was related to the position by

x = logK + loga (156)
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and the group conjugate to δ̂a under the tonotopic axis was the translation group,
generated by the vector field ṽ = 1.

Basically there are now two different ways in which the tonotopic axis can be built
into the abstract model:

1. The starting point is the translation group along the x-axis (generated by the
constant vector field). Under the tonotopic axis, this group is conjugated to the
group λa in phase space. As the prime example, take the experimentally deter-
mined tonotopic axis

x = logK − log(ω + S) (157)

with ‘shift’ S (the inverse to the position-frequency map, see the section ‘Back-
ground’).

2. The preassigned group λa in phase space is the point of departure. The position-
frequency map ξ then conjugates this group to a group λ̃a = ξ ◦ λa ◦ ξ along the
x-axis. In general, λ̃a will not be the translation group.

Examples for the two variants will be given in the next subsection. Here is an
illustration, how the choice of the one parameter group λa can be motivated. There is
a graduation of the physiological and geometrical properties along the cochlear duct.
The cochlea is arranged in a spiral and the geometric quantities like, for example,
the width of the cochlear duct change gradually. The gradation of the physiological
data manifests itself, for example, in the change of the elasticity properties of the
basilar membrane and in the increase in length of the hair cells and their cilia. The
proposition is to take this into account by replacing the translation group along the
x-axis (generated by the constant vector field ṽ = 1) by the group λ̃a generated by
an affine vector field ṽ = 1 + kx (k constant). This group is then conjugated under
the ‘rough’ position-frequency map ω = ξ(x) = Ke−x to the scaling group λa . The
generating vector field for this group is then

v(ω) = dξ

dx

(
ξ−1ω

)
ṽ
(
ξ−1(ω)

) = −ω

(
1+ k log

K

ω

)
= kω log

ω

R
, ω > 0, (158)

with

R = Ke
1
k . (159)

2.7.6 Two examples

In this section the procedure of setting up a model according to invariance principles
is summarized by explicitly calculating two specific models from the data derived
in the previous sections. At the core is the one parameter transformation group λa

acting in phase space. This action is extended to a group action of the affine group 	,
compatible with the natural action of the circle group S in phase space. The general
uncertainty principle for 	 × S leads to families Ec of extremal functions that are
invariant under the action of λa .

In the cochlea, incoming signals are transformed into neuronal impulses. This
process is non linear - in particular with respect to changes in the level of sound
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pressure of the incoming signal. The parameter c stands for an unspecified average
level of sound pressure. The action of the cochlea can then be described in its linear
approximation at the sound level captured by the parameter c. Linear actions are
completely determined by the cochlear transfer function gc(x,ω).

The models thus obtained will be called abstract models, since they are based on
general principles. There are very few parameters in such a model, and these will
have to be estimated on the basis of experimental results. Some flexibility lies in the
choice of the one parameter group action that stands at the outset of all considerations.
Yet the experimental results restrict the choice to group actions that are close to the
action of the dilation group. Abstract models vary smoothly in dependence on the one
parameter group λa . It can be said that the qualitative behavior of abstract models - in
particular with respect to the structure equations - is affected very little by the choice
of the group λa .

In the first example, the underlying one parameter group is the transformation
group in phase space generated by the vector field

v(ω) = ω log
|ω|
R

(160)

with flow

λa(ω) = sgn(ω)R

∣∣∣∣ωR
∣∣∣∣
a

(161)

that has already been discussed as an example in the section on general invariance
groups. This vector field is conjugate via the tonotopic axis to an affine vector field
along the x-axis. The heuristic motivation for this choice is the gradation of all physi-
cal quantities along the cochlea. The affine vector field should take care of this aspect.
The infinitesimal generator for the L2-action is

Lh(ω) = −1

2
v′(ω)h(ω) − v(ω)

d

dω
h(ω)

= −1

2

(
1+ log

|ω|
R

)
h(ω) − ω log

|ω|
R

d

dω
h(ω)

and the multiplier operator M that satisfies [L,M] = M is given by

M = −i sgn(ω)s(ω). (162)

The symmetric real valued function s(ω) is determined up to a multiplicative constant
by

s(ω) = −1

log ω
R

. (163)

It maps the interval (−R,R) onto the real axis. (The zeroes of the vector field are
at 0 and at ±R.) The value R appears as an absolute upper bound for the frequency
range that is relevant in the hearing process. The extremal functions hc ∈ Ec for the
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uncertainty relation have been calculated above (formula (125)). For the normalized
function (ν = 1)

hc(ω) = ∣∣v(ω)
∣∣− 1

2 keiε sgn(ω)−iα sgn(ω) log |s(ω)|−iβs(ω)e− κ
c
|s(ω)|c ∣∣s(ω)

∣∣κ (164)

the frequency localization is given by

σc(hc) = s−1(∣∣νc(hc)
∣∣ 1c ) = s−1(1) = Re−1, (165)

since the inverse function to τ = s(ω) is

ω = s−1(τ ) = Re− 1
τ . (166)

The frequency localization of λahc is then

σ(a) := σc(λahc) = λa

(
σc(hc)

) = λa

(
Re−1) = Re−a. (167)

Under the ‘rough’ position-frequency map ξ(x) = Ke−x the parameter a is related
to the position x by the equation

Re−a = σc(λahc) = ξ(x) = Ke−x (168)

and hence

a = x + log
R

K
. (169)

A parametric view of the modulus of the basilar membrane filter is shown in Fig-
ures 7 and 8. The first figure gives it as a function of the distance to the stapes and the
second as a function of frequency (on a relative scale). The shape of the amplitude
curves changes with CF from wide shallow tunings to sharp tunings at high CF. This
is consistent with neuronal tuning curves (Kiang et al. 1965 [24]) and with basilar
membrane data (Robles and Ruggero 2001 [18]). Nonlinear analysis techniques that
build on Wiener kernels (Temchin et al. 2005 [25], Recio-Spinoso et al. 2005 [26]) or
on ‘zwuis-analysis’ (van der Heijden and Joris 2003 [27], 2006 [28]) allow to recover

Fig. 7 The cochlear filter for an abstract model. The amplitude (on a relative scale) of the cochlear filter
calculated for the invariance group λ generated by the vector field v(ω) = ω log ω

R
. This is a panoramic

view, showing the amplitude on a relative scale as a function of the distance d to the stapes for the fre-
quencies f = 200, 400, 800, 1,600, 3,200 and 6,400 Hz.
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Fig. 8 The cochlear filter as a function of frequency. The amplitude (on a relative scale) of the same
cochlear filter as in the previous figure, but as a function of frequency on a logarithmic scale. The places
are taken at distances d = 5, 10, 15, 20, 25, 30 and 35 mm from the stapes.

the basilar membrane motion from measurements in the auditory nerve. The result-
ing panoramic graphs (for example, [28], Figure 5 or [25], Figures 1 and 2) should be
compared with Figures 7 and 8. That the basilar movement in the apical region of the
cochlea is difficult to come by with experimental techniques is discussed by Temchin
and Ruggero 2010 [29].

The wavelet transform in the cochlea is given by

Wf (a, b) =
∫ ∞

−∞
f̂ (ω)λahc(ω)eibω dω. (170)

The function λahc is given by formula (127). The expressions for v and s have to be
inserted.

The structure equations are approximate differential equations, which are satisfied
by

r(a, t)eϕ(a,t) = Zf (a, t) = √
σ(a)Wf (a, t) + iH

√
σ(a)Wf (a, t). (171)

The equations are

a
∂

∂a
log r ∼= A + C

∂

∂t
log r + D

∂ϕ

∂t
,

a
∂ϕ

∂a
∼= −B − D

∂

∂t
log r + C

∂ϕ

∂t
.

The functions A, B , C and D of the parameter a are:

A = γ

a
− a

2
,

B = α + β

(
1− 1

a

)
,

C = − β

aR
ea,

D = − γ

aR
ea.
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The function logZf (a, t) = log r(a, t) + iϕ(a, t) is of the form

logZf (a, t) ∼= P(a)+ logG(z) = −γ

a
− a

2
+ iβ

a
+ i(α+β) loga+ logG(z), (172)

with G(z) a holomorphic function of the variable

z = t +
∫

(C − iD)
da

a
= −β + iγ

R

∫
ea da

a
. (173)

The second example is based on the ‘physiological’ tonotopic axis

x = logK − log(ω + S) (174)

(see section ‘Background’) with inverse

ξ(x) = Ke−x − S. (175)

The one parameter group λa is taken to be conjugate to δ̂a under the shift mapping

s(ω) = ω + S (176)

with shift S. Unfortunately, this mapping does not map R+ to itself. Hence it has
to be modified near ω = 0 such that the modified mapping s̃ is monotone, maps R+
onto itself and agrees with s for values ω ≥ ε. The positive constant ε can be chosen
to be arbitrarily small. This difficulty will be suppressed and the notation s instead
of s̃ will be used for the modified mapping. The vector field for the conjugate one
parameter group λa = s−1 ◦ δ̂a ◦ s is

v(ω) = −ω − S. (177)

The frequency localization of the extremal function λah is

σ(λah) = λa

(
σ(h)

) = s−1
(
1

a

)
= 1

a
− S. (178)

The parameter a is related to the position by

1

a
= σ(λah) + S = ξ(x) + S. (179)

The normalized function

1√
a
λahc =

√
ξ(x) + S

ω + S
keiε sgn(ω)−iα sgn(ω) log |as(ω)|−iβas(ω)

× e− κ
c
|as(ω)|c ∣∣as(ω)

∣∣κν

(180)

is thus a function of the ‘scaling variable’

as(ω) = ω + S

ξ(x) + S
. (181)
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Fig. 9 Adjusting for the position-frequency map. The amplitude (on a relative scale) of the cochlear

filter shown for the physiological position-frequency map f (d) = Ke
− d

l − S with K = 20,000, S = 200,
l = 6.6 and parameter c = 4. The amplitude is drawn as function of the distance to the stapes for the
frequencies f = 250, 500, 1,000, 2,000, 4,000, 8,000 and 16,000 Hz.

This is in accordance with the generalized scaling variable defined by Shera (2007,
[12], formula 5, p. 2740).

Note that the normalization slightly differs from the normalization
√

ξ(x)λahc

that was used above for the general setting.
In Figure 9 the effect of the physiological tonotopic axis is illustrated with a

panoramic view of the modulus of the basilar membrane transfer function.

3 Conclusions

Signal processing in the cochlea is investigated from an abstract point of view. The
time variable t and the place variable x along the cochlea provide the basic oper-
ators d

dt
and d

dx
. These are translated into frequency space. For the place variable

the tonotopic axis is used and for the time variable it is the Fourier transform that
accomplishes the transfer. The corresponding operators Â and B̂ in frequency space
do not commute. They satisfy the commutator relation [A,B] = B that displays the
relation for the Lie algebra of the affine group 	. The image under the Fourier trans-
form of the space of acoustic signals is identified as the subspace Lsym of the complex
Hilbert space L2(R,C). The only one-parameter group of transformations S on Lsym

that commutes with the action of the affine group is generated by the (Fourier trans-
form Ĥ of the) Hilbert transform H . The invariance group for the hearing process in
the cochlea is thus the product 	 × S of the affine group 	 with the circle group S.

Signal processing in the cochlea is highly compressive and thus non-linear. The
approach pursued here is to fix a parameter c for the general level of sound intensity
and to specify a linear approximation at this level.

From a mathematical point of view this is done by choosing a different repre-
sentation of 	 × S for every parameter c. The non-commutativity of the associated
infinitesimal operators gives rise to a family of uncertainty inequalities depending on
the parameter c. The extremal functions - the coherent states - for these uncertainty
relations are expected to play a special role. It is known from the work of Daubechies
(1992) and Yang, Wang and Shamma (1992) that the cochlea performs a wavelet
transform. The wavelet is defined by the cochlear filter. In the present approach, the
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linear approximation and with it the cochlear filter depend on the parameter c. Com-
parison with experimental results now suggests that the wavelet that determines the
cochlear filter is an extremal function for the uncertainty relation with parameter c.

The abstract model as it is derived here from general mathematical concepts has
very few parameters and thus gives a very concise picture of signal processing in
the cochlea. On the other hand, with just a few parameters at diposition, it will be
impossible to capture all the fine structure that has been established experimentally.

With the model at hand, signal processing in the cochlea can be understood in a
global way. At the core of the analysis is a system of differential equations - called
the structure equations - that hold for the processed signals, that is, for the wavelet
transforms of the acoustic signals. The equations are formulated for physiological
observables. In this context these are the derivatives of amplitude and phase. The
equations provide us with qualitative and quantitative information on the structure
of signal processing in the cochlea. Specifically they give insight into the delicate
balance of phase versus amplitude. A global picture emerges since it is possible to
present the solutions to the structure equations in terms of holomophic functions.

As examples, pure sounds, amplitude modulated sounds, clicks and sounds of the
violin are subject to special scrutiny. The click response exhibits the wavelet in the
time variable (Figure 5). A deficiency of the mathematical model becomes apparent,
since the impulse response should have its support in the positive time axis. This
would imply that the Fourier transform of the wavelet has a holomophic continuation
to the half space - and this is not the case. In order to remedy this deficiency, the
extremals for the uncertainty inequality should be determined within the class of these
functions. Yet this class is not compact and such extremals do not exist. However
looking at the impulse response, it is clear that the values for t < 0 are quite close
to zero. The impulse responses at various intensities are thus close to functions with
support in the positive time axis.

The analysis of violin sounds tells us that the pitch frequency is present in the
movement of the cochlea on a range that covers several octaves. The symmetries
observed experimentally are the most important constituents of the abstract model.

On a closer look, these symmetries are only local, that is they hold approximately
on bounded time and frequency intervals. The question then arises whether the theory
can be adapted to a wider concept of symmetry. In the last section such a theory is
developed and it is argued that the principal features of the model can be preserved
in this enlarged framework. In particular, the structure equations still remain approx-
imately satisfied. It thus appears that there is some inherent stability in this model.
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