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Abstract We present a novel extension of fast-slow analysis of clustered solutions
to coupled networks of three cells, allowing for heterogeneity in the cells’ intrinsic
dynamics. In the model on which we focus, each cell is described by a pair of first-
order differential equations, which are based on recent reduced neuronal network
models for respiratory rhythmogenesis. Within each pair of equations, one dependent
variable evolves on a fast time scale and one on a slow scale. The cells are coupled
with inhibitory synapses that turn on and off on the fast time scale. In this context, we
analyze solutions in which cells take turns activating, allowing any activation order,
including multiple activations of two of the cells between successive activations of
the third. Our analysis proceeds via the derivation of a set of explicit maps between
the pairs of slow variables corresponding to the non-active cells on each cycle. We
show how these maps can be used to determine the order in which cells will activate
for a given initial condition and how evaluation of these maps on a few key curves
in their domains can be used to constrain the possible activation orders that will be
observed in network solutions. Moreover, under a small set of additional simplifying
assumptions, we collapse the collection of maps into a single 2D map that can be
computed explicitly. From this unified map, we analytically obtain boundary curves
between all regions of initial conditions producing different activation patterns.
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1 Introduction

The methods of fast-slow decomposition have been harnessed for the analysis of
rhythmic activity patterns in many mathematical models of single excitable or os-
cillatory elements featuring two or more time scales. In the analysis of relaxation
oscillations, for example, singular solutions can be formed by concatenating slow
trajectories associated with silent and active phases and fast jumps between these
phases, and these can guide the study of true solutions. These methods can be pro-
ductively extended to interacting pairs of elements, particularly when the coupling
between them takes certain forms. The synaptic coupling that arises in many neu-
ronal contexts is well suited for the use of this theory. In the case of synapses that
turn on and off on the fast time scale, for example, analysis can be performed through
the use of separate phase spaces for each neuron, with synaptic inputs modifying the
nullsurfaces and other relevant structures in each phase space. This method has been
used to treat pairs of neurons with slow synaptic dynamics as well, although higher-
dimensional phase spaces arise. Similarly, synchronized and clustered solutions can
be analyzed in model networks consisting of multiple identical neurons if these neu-
rons are visualized as multiple particles in one phase space or in two phase spaces,
one for active neurons and one for silent, the membership of which will change over
time. Reviews of how fast-slow decompositions have been used to analyze neuronal
networks can be found in, for example, [1, 2].

This form of analysis becomes significantly more challenging when networks of
three or more nonidentical neurons are considered. The number of variables in each
slow subsystem can become prohibitive, and if variables associated with different
neurons are considered in separate phase spaces, then some method is still needed for
the efficient analysis of their interactions. In this study, we introduce such a method,
based on mappings on slow variables, for networks in which each element is modeled
with one fast variable and one slow variable, plus a coupling variable. A strength of
this method is that, by numerically computing the locations of a few key curves in
phase space, we can obtain information about model trajectories generated by arbi-
trary initial conditions and determine how complex changes in stable firing patterns
occur as parameters are varied. Moreover, the formulas defining approximations to
these curves, valid under a small number of simplifying assumptions, can be ex-
pressed in an elegant analytical form. These methods are particularly tractable within
networks consisting of three reciprocally coupled units, so we focus on such networks
here; also, we use intrinsic dynamics arising in neuronal models, although the theory
would work identically for any qualitatively similar dynamics with two time scales.

Although three-component models arise in many applications, in neuroscience and
beyond, our original motivation for this work comes from the study of networks in
the mammalian brain stem that generate respiratory rhythms [3]. A brief description
of modeling work related to these rhythms is given in the following section. This
description is followed by the equations for a particular reduced model for the respi-
ratory network that we consider. In Section 3, we present examples of complex firing
patterns that arise as solutions to the model to motivate the analysis that follows.
We next demonstrate how fast-slow analysis can be used to derive reduced equations
for the evolution of solutions during both the silent and active phases. In particular,
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we derive formulas for the times when each cell jumps up and down, and determine
how these times depend on parameters and initial conditions. To derive these explicit
formulas, we will make some simplifying assumptions on the equations; a similar
analysis could be performed numerically if such explicit formulas could not be ob-
tained. In Section 4, we make some further simplifying assumptions that allow us
to reduce the full dynamics to a piecewise continuous two-dimensional map. Analy-
sis of this map helps to explain how complex transitions in stable firing patterns take
place as parameters are varied. We conclude the article with a discussion in Section 5.

2 Model system

2.1 Modeling respiratory rhythms

Recent work, based on experimental observations, has modeled the respiratory
rhythm generating network in the brain stem as a collection of four or five neuronal
populations. Three of these groups are inhibitory and are arranged in a ring, with
each population inhibiting the other two. A fourth group, a relatively well-studied
collection of neurons in the pre-Bötzinger Complex (pre-BötC), excites one of the
inhibitory populations, also associated with the pre-BötC, and is inhibited by the
other two. Finally, some studies have included a fifth, excitatory population, linked
to certain other populations and likely becoming active only under certain strong per-
turbations to environmental or metabolic conditions [4–8]. In addition to the synaptic
inputs from other populations in the network, each neuronal group receives excita-
tory synaptic drives from one or more additional sources, possibly related to feedback
control of respiration (e.g., [9]). Under baseline conditions, the four core populations
encompassed in this model generate a rhythmic output, in which the inhibitory groups
take turns firing and the activity of the excitatory pre-BötC neurons slightly leads but
largely overlaps that of the inhibitory pre-BötC cells.

In some of this work, a model respiratory network in which each population con-
sists of a heterogeneous collection of fifty Hodgkin-Huxley neurons was constructed
and tuned to reproduce a range of experimental observations in simulations [4, 5, 7].
Achieving this data fitting presumably required a major effort to select values for the
many unknown parameters in the model. A reduced version of this model network,
in which each population was modeled by a single coupled pair of ordinary differ-
ential equations, was also developed and, after parameter tuning, some analysis was
performed to describe its activity in terms of fast and slow dynamics and transitions
by escape and release [6, 8]. Although the reduced population model involves far
fewer free parameters than the Hodgkin-Huxley type model, it still includes coupling
strengths between all the synaptically connected populations, drive strengths, and
adaptation time scales, among others, amounting collectively to a many-dimensional
parameter space. Thus, selecting parameter values for which model behavior matches
experimental findings and determining which parameter values produce what forms
of dynamics represent burdensome numerical tasks. These challenges are signifi-
cantly complicated by the possibility of multistability, as different initial conditions
could lead to different solutions for each parameter set.
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The method that we present in this study has been developed to aid in the analyti-
cal study of solutions of networks like the reduced respiratory population model. To
make the presentation concrete, we present our results in terms of this model. Since
two of the four active populations relevant to the normal respiratory rhythm, those in
the pre-BötC, activate in near-synchrony, we will treat these as a single population
and consider a three population network. The activity of one of the key respiratory
brain stem populations depends on a persistent sodium current [10–13], while the
other active populations feature an adaptation current instead [5, 6]. In the three pop-
ulation model that we use, we include this heterogeneity to illustrate that the theory
handles heterogeneity easily, to distinguish one of the populations from the other two
for ease of presentation of part of the theory, and to maintain a strong connection with
the respiratory application.

2.2 The equations

The model equations we consider are

v′
1 = F1(v1, h) − gI

(
b21S∞(v2) + b31S∞(v3)

)
(v1 − VI ) − gEd1(v1 − VE),

v′
2 = F2(v2,m2) − gI

(
b12S∞(v1) + b32S∞(v3)

)
(v2 − VI ) − gEd2(v2 − VE),

v′
3 = F3(v3,m3) − gI

(
b13S∞(v1) + b23S∞(v2)

)
(v3 − VI ) − gEd3(v3 − VE),

h′ = ε
(
h∞(v1) − h

)
/τh(v1),

m′
2 = ε

(
m∞(v2) − m2

)
/τ2(v2), (1)

m′
3 = ε

(
m∞(v3) − m3

)
/τ3(v3).

Differentiation is with respect to time t , and ε is a small, positive parameter that we
have introduced for notational convenience. In [6, 8], each v variable denotes the
average voltage over a synchronized neuronal population, h is the inactivation of a
persistent sodium current for members of the inspiratory pre-BötC population, and
the mi represent the activation levels of an adaptation current for two other respi-
ratory populations; however, each variable could just as easily represent analogous
quantities for a single neuron.

The functions Fi in (1) are given by:

F1(v1, h) = −(
INaP (v1, h) + IKdr(v1) + IL(v1)

)
/C,

F2(v2,m2) = −(
Iad(v2,m2) + IL(v2)

)
/C, (2)

F3(v3,m3) = −(
Iad(v3,m3) + IL(v3)

)
/C,

where C is membrane capacitance and INaP (v,h) = gNaP mp∞(v)h(v − VNa),
IKdr(v) = gKdrn

4∞(v)(v − VK), IL(v) = gL(v − VL), and Iad(v,m) = gadm(v −
VK) represent persistent sodium, potassium, leak and adaptation currents, respec-
tively. In each of these currents, the g parameter denotes conductance and the V

parameter is the current’s reversal potential. We use the standard convention of rep-
resenting INaP and IKdr activation as sigmoidal functions of voltage v, mp∞(v)

and n∞(v), respectively. The coupling function in system (1) is given by S∞(v) =
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Fig. 1 A typical solution of system (1). There is always one and only one cell active at each time. When
an active cell’s voltage reaches the synaptic threshold θI , it jumps down releasing the other two cells from
inhibition. There is then a race among these two cells to see which one crosses the synaptic threshold first.
The winning cell becomes active and the other two cells return to the silent phase.

1//{1 + exp[(v − θI )/σI ]}, which closely approximates a Heaviside step function
due to the small size of σI and which is multiplied by a strength factor b each time
it appears. The final term, gEdi(vi − VE), in each voltage equation represents a tonic
synaptic drive from a feedback population; the strength factors di could change with
changing metabolic or environmental conditions, but we treat them as constants in
this article. Additional details about the functions in (1) and (2), as well as parame-
ter values used, are given in Appendix 1. Appendix 2 also presents a general list of
assumptions, satisfied by (1), (2) with the parameter values used, under which our
theoretical methods will work.

3 Fast-slow analysis

3.1 Introduction

A typical solution of system (1) is shown in Figure 1. Each of the cells lies in one
of four states, which we denote as: (i) the silent phase; (ii) the active phase; (iii) the
jump-up; and (iv) the jump-down. For example, in Figure 1, at t = 0, cell 1 is active,
while cells 2 and 3 are silent. At this time, cell 1 inhibits both of the other cells. This
configuration is maintained until v1(t) crosses the synaptic threshold θI , at which
point the inhibitory input to cells 2 and 3 is turned off. Both cells 2 and 3 will then
begin to jump up to the active phase (due to post-inhibitory rebound, which will be
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Fig. 2 The projections of the solution shown in Figure 1 onto the phase planes corresponding to the three
cells. A cell lies on the left branch of its v-nullcline while in the silent phase and on the right branch during
the active phase. Jumps up and down between these branches are initiated when an active cell reaches the
synaptic threshold θI , which occurs at h = h∗, m2 = m∗

2, or m3 = m∗
3, respectively.

discussed shortly). There is then a race to see which of the voltages, v2(t) or v3(t),
crosses the threshold θI first. Suppose that v2 crosses θI first, as in the first transition
that occurs in Figure 1. When this happens, cell 2 sends inhibition to both cells 1 and
3, so both of these cells must return to the silent phase. Hence, cell 2 is now active,
while the other two cells are silent. These roles persist until v2(t) crosses the synaptic
threshold θI and releases cells 1 and 3 from inhibition, at which time there is another
race to see whether cell 1 or cell 3 crosses threshold first. This process continues,
with one of the cells always lying in the active phase until its membrane potential
crosses threshold and releases the other two cells from inhibition. The projections
of this solution onto the phase planes corresponding to the three cells are shown in
Figure 2.

We analyze solutions using fast-slow analysis. The basic idea is that the solu-
tion evolves on two different time scales: During the jumps up and down, the so-
lution evolves on a fast time scale, while during the silent and active phases, the
solution evolves on a slow time scale. The fast-slow analysis allows us to derive re-
duced equations that determine the evolution of the solution during each of these
phases. In particular, we derive explicit formulas for the times when each cell jumps
up and down and use these to determine the outcomes of the races to threshold, de-
pending on parameters and initial conditions. To derive these formulas, we will make
some simplifying assumptions on the equations; in situations in which such formulas
cannot be obtained, then a similar analysis can be done numerically.

3.2 Slow and fast equations

We first consider equations for the slow variables h, m1 and m2. These equations are
obtained by introducing the slow time scale, τ = εt , and then setting ε = 0 in the
resulting equations. These steps give:

0 = F1(v1, h) − gI

(
b21S∞(v2) + b31S∞(v3)

)
(v1 − VI ) − gEd1(v1 − VE),

0 = F2(v2,m2) − gI

(
b12S∞(v1) + b32S∞(v3)

)
(v2 − VI ) − gEd2(v2 − VE),

0 = F3(v3,m3) − gI

(
b13S∞(v1) + b23S∞(v2)

)
(v3 − VI ) − gEd3(v3 − VE),
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h′ = (
h∞(v1) − h

)
/τh(v1),

m′
2 = (

m∞(v2) − m2
)
/τ2(v2), (3)

m′
3 = (

m∞(v3) − m3
)
/τ3(v3),

where differentiation is with respect to τ . To simplify the analysis, we take the ex-
treme (v → ±∞) values of each of the functions h∞, m∞, τh, τ2, and τ3 and replace
each function with a step function that jumps abruptly between these values. That is,
we assume that there are positive constants σL, σR , λL, λR , μL and μR (see Tables 1
and 2 in Appendix 1, singular limit parameter values) such that the slow variables
satisfy equations of the form:

h′(t) =
{

σL(1 − h) if cell 1 is silent,
−σRh if cell 1 is active,

m′
2(t) =

{−λLm2 if cell 2 is silent,
λR(1 − m2) if cell 2 is active,

m′
3(t) =

{−μLm3 if cell 3 is silent,
μR(1 − m3) if cell 3 is active.

We solve these equations explicitly to obtain:

h(τ) =
{

1 + (
h(0) − 1

)
e−σLτ if cell 1 is silent,

h(0)e−σRτ if cell 1 is active,
(4)

m2(τ ) =
{

m2(0)e−λLτ if cell 2 is silent,
1 + (

m2(0) − 1
)
e−λRτ if cell 2 is active,

(5)

m3(τ ) =
{

m3(0)e−μLτ if cell 3 is silent,
1 + (

m3(0) − 1
)
e−μRτ if cell 3 is active.

(6)

We next consider the fast time scale, which is simply t . Let ε = 0 in (1) to obtain
the fast equations:

v′
1 = F1(v1, h) − gI

(
b21S∞(v2) + b31S∞(v3)

)
(v1 − VI ) − gEd1(v1 − VE),

v′
2 = F2(v2,m2) − gI

(
b12S∞(v1) + b32S∞(v3)

)
(v2 − VI ) − gEd2(v2 − VE),

v′
3 = F3(v3,m3) − gI

(
b13S∞(v1) + b23S∞(v2)

)
(v3 − VI ) − gEd3(v3 − VE),

h′ = m′
2 = m′

3 = 0. (7)

Note that the slow variables are constant on the fast time scale. We will only explicitly
solve the fast equations when there is no inhibition; that is, we will solve these equa-
tions to determine what happens when the cells are released from inhibition (which
we take to be at t = 0) and jump up, competing to become active next. In this case,
each S∞ = 0. We note that the fast equations for v2 and v3 are both linear and can be
solved explicitly. If there is no inhibitory input then, for k = 2 or 3,

vk(t) = Ak + (
vk(0) − Ak

)
e−Bkt . (8)
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Since VE = 0 (see Tables 1 and 2 in Appendix 1), this gives

Ak = gadmkVK + gLVL

gadmk + gL + gEdk

and Bk = gadmk + gL + gEdk.

To obtain an explicit formula for v1(t), we will make some simplifying assumptions.
First, since the voltage values for cell 1 during the silent phase and most of the jump
up lie in a range where the potassium activation function n∞(v) is quite small, we
assume that n∞(v1) is negligible throughout these phases. Moreover, we assume that
the sodium gating variable mp∞(v) is a step function. That is, there is a threshold
value, Vmp < θI , so that mp∞(v) = 0 if v < Vmp and mp∞(v) = 1 if v > Vmp . In this
case, the fast equation for v1 is piecewise linear, and we can write its solution as

v1(t) =
{

A1 + (
v1(0) − A1

)
e−B1t , 0 ≤ t < tmp,

Â1 + (Vmp − Â1)e
−B̂1(t−tmp), tmp ≤ t,

(9)

where

A1 = gLVL/B1, B1 = gL + gEd1,

Â1 = (gNaP hVNa + gLVL)/B̂1, and B̂1 = gNaP h + gL + gEd1,

with

tmp = 1

B1
ln

B1v1(0) − gLVL

B1Vmp − gLVL

.

3.3 The race

As described above, when one of the cells jumps down, there is a race to see which of
the other cells reaches threshold first and then inhibits the other cells. Here we derive
formulas that determine which cell wins the race to threshold.

First suppose that cell 1 jumps down from the active phase and releases cells 2
and 3 from inhibition. We need to determine the times it takes for the membrane
potentials of these two cells to reach the synaptic threshold. While jumping up, these
membrane potentials satisfy (8), so once we determine the initial conditions vk(0),
k = 2,3, we can solve for the jump-up times.

While cells 2 and 3 are in the silent phase, they lie on the slow nullclines given
by the second and third equations in (3) with S∞(v1) = 1 and S∞(v2) = S∞(v3) = 0.
Given any values of m2 and m3, we can solve these equations explicitly for v2 and v3
to conclude that at the moment that cells 2 and 3 begin to jump up,

vk(0) = gadmkVK + gLVL + gI b1kVI

gadmk + gL + gI b1k + gEdk

≡ Vk1, (10)

where k = 2 or 3. Substituting this expression into (8) and setting vk(tk1) = θI , we
find that the jump-up times are given by

tk1(mk) = 1

Ck1
ln

(
Dk1

Ek1

)
, (11)
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Fig. 3 Jumping regions in the slow phase planes. (A) (m2,m3) plane. (B) (h,m2) plane. (C) (h,m3)

plane. Curves and color codes are described in detail in the text.

where

Ck1 = gadmk + gL + gEdk,

Dk1 = gadmk(Vk1 − VK) + gL(Vk1 − VL) + dkgEVk1

and

Ek1 = gadmk(θI − VK) + gL(θI − VL) + dkgEθI .

Now, either cell 2 or cell 3 will win the race, if either t21(m2) < t31(m3) or
t21(m2) > t31(m3), respectively. The equation t21(m2) = t31(m3) defines a curve in
the (m2,m3) plane, which we denote as C23. An example of this curve is shown in
Figure 3A, where we numerically solved for C23 for parameter values given in Table 1
in the Appendix. Points above this curve correspond to cell 2 winning the race and
points below this curve correspond to cell 3 winning the race.

Next suppose that cell k, k = 2 or 3, wins the race. When cell k jumps down from
the active phase, cells 1 and j , j = 2 or 3 and j �= k, are released from inhibition.
We repeat our calculation for the race that ensues. Specifically, we obtain the initial
condition vj (0) from Equation (10) and compute v1(0) analogously, by considering
the first equation in (3) with S∞(vk) = 1, S∞(v1) = S∞(vj ) = 0 and mp∞(v1) =
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n∞(v1) = 0. These steps give

vj (0) = gadmjVK + gLVL + gI bkjVI

gadmj + gL + gI bkj + gEdj

≡ Vjk, (12)

v1(0) = gLVL + gI bk1VI

gL + gI bk1 + gEd1
≡ V1k. (13)

As with the derivation of (11), substituting vj (0) into (8) yields

tjk(mj ) = 1

Cjk

ln

(
Djk

Ejk

)
, (14)

where

Cjk = gadmj + gL + gEdj ,

Djk = gadmj (Vjk − VK) + gL(Vjk − VL) + djgEVjk

and

Ejk = gadmj (θI − VK) + gL(θI − VL) + djgEθI .

To compute t1k(h), we plug V1k into (9) and solve for v1(τ ) = θI . Recall that
mp∞(v) = 0 if v < Vmp and mp∞(v) = 1 if v > Vmp , as reflected in the piecewise
formulation of (9). Thus, this calculation yields two terms, one corresponding to the
time before v reaches Vmp and one to the time after, namely

t1k(h) = 1

C1ka

ln

(
D1ka

E1ka

)
+ 1

C1kb

ln

(
D1kb

E1kb

)
, (15)

where

C1ka = gL + gEd1,

D1ka = gL(V1k − VL) + gEd1V1k,

E1ka = gL(Vmp − VL) + gEd1Vmp,

C1kb = gNaph + gL + gEd1,

D1kb = gNaph(Vmp − VNa) + gL(Vmp − VL) + gEd1Vmp,

E1kb = gNaph(θI − VNa) + gL(θI − VL) + gEd1θI .

Now, cell 1 will either win or lose the race, if either t1k(h) < tjk(mj ) or t1k(h) >

tjk(mj ), respectively. Each equation t1k(h) = tjk(mj ) defines a curve in the (h,mj )

plane, which we denote as C1j . These curves are also shown in Figure 3, where we
numerically solved for C12 and C13. Note that points above the curve C1j correspond
to cell 1 winning the race and points below this curve correspond to cell j winning
the race.
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3.4 Predicting jumping sequences

We now construct six 2D maps, �ij , that allow us to predict the order in which the
cells jump up and down, to and from the active phase. To explain what these maps
are, suppose that i,j and k are the cells’ distinct indices and, for convenience, tem-
porarily let s1 = h, s2 = m2, s3 = m3 denote the slow variables for the three cells.
If, at some time, cell i jumps down and cell k jumps up, then we will define a map
�ik from the (sj , sk) phase plane to the (si , sj ) phase plane that gives the position of
(si , sj ) when cell k jumps down. We can determine the next cell to jump up, once cell
k jumps down, by comparing the position of �ik(sj , sk) to that of Cij . For example,
suppose that cell 1 jumps down. Then either cell 2 or cell 3 will jump up depend-
ing on whether (m2,m3) lies above or below the curve C23, respectively. If cell 2
jumps up, then the map �12(m2,m3) gives the position of (h,m3) when cell 2 jumps
down. This position, in turn, determines whether cell 1 or cell 3 is the next cell to
jump up; that is, cell 1 or cell 3 is the next cell to jump up if (h,m3) = �12(m2,m3)

lies above or below C13, respectively. Continuing in this way - comparing the out-
put of the maps to the location of curves Cij - we can determine the cells’ jumping
sequences.

We derive explicit formulas for the six maps �ij . The first step is to determine
the value of the slow variable for cell i when cell i jumps down. We claim that
there exist unique constants s∗

i so that cell i jumps down when si = s∗
i ; see Figure 2,

where s∗
1 = h∗, s∗

2 = m∗
2 and s∗

3 = m∗
3. These constants exist and are unique because:

(i) cell i jumps down when it is in the active phase with vi = θI ; (ii) while cell i is
in the active phase, (vi, si) lies along the right branch of the vi -nullcline, {(vi, si) :
Fi(vi, si) − gEdi(vi − VE) = 0}; and (iii) each of these right branches is monotone
increasing or decreasing. This last statement can be verified for the concrete model
(1) given in Section 2 by explicitly solving for each si in terms of vi . However, this
monotonicity is also present in most reduced models for neuronal activity.

We now resume using h, m2, m3 to denote the slow variables for the three cells.
First suppose that cell 1 is active; it will jump down when h = h∗. Let us say that
this occurs at time τ = 0, with mj = mj(0) for j = 2,3, and that cell k, k = 2 or 3,
wins the race and jumps up next; note that since τ is the slow time, τ = 0 continues
to hold throughout the jump. While cell k is up, h will increase, mk will increase,
and mj , j �= k, will decrease, governed by Equation (3). This state will persist until
mk reaches m∗

k . From the active component of Equation (5) or (6), we can solve
mk(τ) = m∗

k to compute the slow time T A
k for which cell k remains active,

T A
k = 1

νR

ln

(
1 − mk(0)

1 − m∗
k

)
,

where νR ∈ {λR,μR} as appropriate. While cell k is active, h is given by the silent
part of Equation (4) with h(0) = h∗ and mj , j �= k, is given by the silent part of
Equation (5) or (6). From these equations, we can evaluate h(T A

k ), mj(T
A
k ), and we

define the map �1k by

�1k

(
mj(0),mk(0)

) = (
h
(
T A

k

)
,mj

(
T A

k

))
.
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Specifically,

�12
(
m2(0),m3(0)

) = (
h
(
T A

2

)
,m3

(
T A

2

))
= (

1 + (
h∗ − 1

)
	

σL/λR

2 ,m3(0)	
μL/λR

2

)
(16)

and

�13
(
m2(0),m3(0)

) = (
h
(
T A

3

)
,m2

(
T A

3

))
= (

1 + (
h∗ − 1

)
	

σL/μR

3 ,m2(0)	
λL/μR

3

)
, (17)

where

	j = (
1 − m∗

j

)
/
(
1 − mj(0)

)
(18)

for j ∈ {2,3}.
If the output of �1k in the (h,mj ) plane is above or below the curve C1j , then

cell 1 or cell j jumps up after cell k, respectively. Similarly, if we apply �1k to the
entire region in the positive (j, k) quadrant lying below curve Cjk , corresponding to
cell k jumping after cell 1, then we can determine which, if any, initial (mj ,mk) cause
cell j to jump after cell k and which, if any, lead to cell 1 jumping after cell k. Note
that for analyzing possible repetitive solutions, we really only need to consider inputs
to �1k that satisfy

0 ≤ m2 ≤ m∗
2, 0 ≤ m3 ≤ m∗

3. (19)

This constraint is appropriate because if, for example, m2 > m∗
2, then once cell 2 is

released from inhibition and jumps up, it can never reach the threshold v2 = θI .
Using a similar approach, based on computing an active time from the active com-

ponent of one of the Equations (4), (5), and (6) and tracking the evolution of the
slow variables of the two silent cells with the silent parts of the remaining two equa-
tions from this set, the maps �ij can be defined for each combination of i �= j from
{1,2,3}. The map �ij takes values of the slow variables of cells j and k, i �= j �= k, as
inputs, and gives values of the slow variables of cells i and k as outputs. In particular,
for each pair j, k ∈ {2,3} with j �= k, we have

�jk

(
h(0),mk(0)

) = (
h
(
T A

k

)
,mj

(
T A

k

))
= (

1 + (
h(0) − 1

)
	

σL/νR

k ,m∗
j	

ωL/νR

k

)
(20)

and

�j1
(
h(0),mk(0)

) = (
mj

(
T A

1

)
,mk

(
T A

1

))
=

(
m∗

j

[
h∗

h(0)

]ωL/σR

,mk(0)

[
h∗

h(0)

]νL/σR
)

, (21)

where 	k is defined in (18) and where (ν,ω) = (λ,μ) if k = 2 while (ν,ω) = (μ,λ)

if k = 3. As previously, we can bound the ranges of the slow variables that are relevant
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for repeated states, using (19) and

h∗ ≤ h ≤ 1. (22)

If cell i jumps down at time 0 and the inputs to the map specify that cell j jumps
next, then the location of the coordinate determined by the outputs of �ij , relative
to the curve Cik , determines whether cell i or cell k will follow cell j into the active
phase.

Taken collectively, the curves and maps defined in this section gives us a complete
view of the possible jump sequences that system (1) can generate, at least if ε is
small enough to justify the fast-slow decomposition that we have used. Consider
the regions in the (m2,m3), (h,m2), and (h,m3) phase planes that satisfy (19) and
(22). Within the (m2,m3) plane, assume that the curve C23 intersects the relevant
region; otherwise, cell 1 will always be followed by the same other cell. The map
�12 takes the region above the curve to a set in the (h,m3) plane and the map �13

takes the region below the curve to a set in the (h,m2) plane, with similar actions
for �21, �23, �31, �32 on the other planes. Since the solutions to the ODEs we
consider are continuous in initial conditions, the maps take connected regions into
connected regions, and thus we only need to consider the actions of the maps on the
regions’ boundaries in order to determine the possible next outcomes from a given
starting point. For a particular parameter set, repeated iteration of the maps may show
convergence to a single attracting jump sequence or may otherwise constrain the jump
orders that are possible. Alternatively, inverses of the maps can be easily defined
using the backwards flow of the ODEs, and repeated iterations of the inverses of the
maps, applied to some selected region in one of the phase planes, show which sets
contain initial conditions that could end up in the selected region.

3.5 Numerical examples

We now use numerical computations, performed with MATLAB and XPPAUT
(http://www.pitt.edu/~phase), to illustrate the theory from the previous subsections.
Figure 3 shows curves and regions in each of the 2D phase planes associated with
pairs of slow variables of model (1). These structures were generated by starting
from the full model, with function and parameter values given in the Appendix (see
Table 1), and making the simplifying assumptions described above for the ε = 0 limit
(including adjusting θm to −54 mV from −50 mV to compensate for the switch from
a smooth function to a Heaviside in the singular limit). In each panel, the relevant
region can be defined using (19), (22), and the dashed straight line segments are
boundaries of this region, each corresponding to h∗, m∗

2, or m∗
3. Within each region,

there is a curve Cij that separates initial conditions that lead to different jumping out-
comes, as discussed above. These curves are drawn in the same color as the boundary
lines. For example, in Figure 3A, the solid blue curve in the (m2,m3) plane is C23.
If (m2,m3) lies in the region R12, bounded below by C23, above by the dashed blue
line, and to the left by the m3-axis, at the moment when cell 1 jumps down, then cell
2 jumps up next and �12(m2,m3) is defined, while a value of (m2,m3) in the anal-
ogous region R13 below C23 yields a jump by cell 3, characterized by �13(m2,m3).

http://www.pitt.edu/~phase
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Similar regions are indicated in black in the (h,m2) plane in Figure 3B and in red in
the (h,m3) plane in Figure 3C.

Consider again the (m2,m3) plane shown in Figure 3A. The region R12 is mapped
by �12 to a connected region in the (h,m3) plane. In Figure 3C, we represent part of
the boundary of �12(R12) := {�12(m2,m3) : (m2,m3) ∈ R12} with blue curves, car-
rying over the coloring of R12 from Figure 3A. Similarly, a region R32 below C12 in
the (h,m2) plane in Figure 3B also yields jumping by cell 2 and is mapped by �32 to
a connected region in the (h,m3) plane. We indicate this region with black boundary
curves in Figure 3C, carrying over the coloring from Figure 3B. The regions outlined
in black and blue in the (h,m3) plane share a common boundary, corresponding to
the condition that (h,m3) = (h∗,m∗

3) when cell 2 jumps up. We use a dashed black
line to denote this common boundary in Figure 3C (by arbitrary convention, we color
the dashed line to match the upper set). Now, the entire regions outlined in blue and
black in the (h,m3) plane lie below the red curve C13 (Figure 3C). Thus, we imme-
diately know that, no matter what happened before, cell 3 will win the race and jump
up when cell 2 jumps down. Similarly, in the (m2,m3) plane shown in Figure 3A, the
black-bounded region �31(R31) and the red-bounded region �21(R21) lie entirely
below C23, and therefore cell 3 will always jump up after cell 1 as well.

The interesting case in this example arises in the (h,m2) plane. There, �13(R13),
outlined in solid blue and dashed red, and �23(R23), outlined in solid and dashed red,
are both intersected by C12. Hence, there are initial conditions in our relevant regions
for which the jump sequence 1,3,1 occurs and others for which the jump sequence
1,3,2 occurs, and similarly, there are initial conditions leading to jump sequences
2,3,1 and 2,3,2 as well. We can now summarize all possible jump sequences for the
parameter set used in this example:

1
→
←3

→
←2,

possibly discarding a brief transient.
We selected various values of (m2,m3) constrained by (19) and we used each

as an initial condition, assuming that cell 1 jumped down from the active phase at
time 0. From each starting point, we repeatedly solved for the times involved in the
race to jump up, using Equations (11), (14), and (15). We found that the trajectory
emerging from each initial condition converged to the same attractor, with a jump
sequence 13231323. . . . This attractor is illustrated with filled circles in Figure 3; the
black circle in Figure 3A is mapped by �13 to the blue circle in Figure 3B, which
is mapped by �32 to the black circle in Figure 3C, which is mapped by �23 to the
red circle in Figure 3B, which is mapped by �31 back to the original black circle in
Figure 3A. Note that the next jump predicted by the location of each circle matches
that which actually occurs. Also, a subtle point arises because the h coordinate of the
red circle is large. From this starting point, when cell 1 jumps up, it spends a long time
in the active phase (large T A

1 ), almost as long as if it started from h = 1. During this
time, trajectories in the (m2,m3) plane with m3(0) = m∗

3 and different initial values
of m2 get compressed; see Equation (5). Thus, the black circle in Figure 3A ends up
very close to the corner of the black region, which corresponds to �31(1,m∗

2).
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We also performed direct numerical simulations of system (1), using steep but
smooth sigmoidal functions instead of Heaviside functions for m∞(v), n∞(v), and
S∞(v), as described in the Appendix. These simulations also gave a 13231323. . . fir-
ing pattern, as predicted by the analysis. We defined firing transitions in these simu-
lations using voltage decreases through −33 mV (the half-activation of the synaptic
function S∞(v) was set to −32 mV to agree with θI ). We allowed the system to
converge to its stable firing pattern and then plotted the slow variable coordinates at
these firing transitions as open circles in the corresponding panels of Figure 3. These
coordinates agree well with the singular limit analysis.

In addition to the solid and open circles corresponding to the attractors in the sin-
gular limit and full simulations, respectively, certain points associated with transients
are also plotted in Figure 3. An example of a transient 1,3,1,3 firing sequence found
with the singular limit formulas, which led to a subsequent 2313231323. . . activation
pattern, is marked with the blue asterisks in Figure 3A,B. In this example, initial
conditions were chosen such that cell 1 jumped down with (m2,m3) = (0.29,0.6),
indicated by the rightmost asterisk in Figure 3A (label 1). Since the asterisk is below
the blue solid curve C23 in the plane shown, cell 3 jumps next. Obviously, the im-
age of the initial point under �13 must lie in the range of �13 in the (h,m2) plane,
which is bounded to the left, below and to the right by solid blue curves and above
by a dashed red curve. We observe (Figure 3B, label 2) that this image lies at about
(h,m2) = (0.51,0.24), which is indeed in the relevant region but also is above the
black solid curve C12, meaning that cell 1 jumps up next. The image of (h,m2) under
�31 is marked by the other asterisk in Figure 3A (label 3), which lies below C23 such
that cell 3 jumps again after cell 1. Finally, the image of that point under �13 is la-
beled by the other asterisk in Figure 3B (label 4); since that point is below the black
curve C12, cell 2 finally gets to fire after this second activation of cell 3.

We also obtained a similar 1,3,1,3 transient in full model simulations correspond-
ing to the singular limit analysis. To match the singular limit, we used (m2,m3) =
(0.29,0.6) as our initial condition, with v1 = −33 mV and h = h∗ such that time 0
represented the beginning of the jump down of cell 1. This point and the slow vari-
able values at the next 3 jump down transitions are marked with red open squares in
Figure 3. By construction, the red open square at label 1 lies in the same position as
the blue asterisk there. The rest of these markers, near labels 2,3,4, lie quite close to
the blue asterisks, showing that, in addition to correctly predicting the jumping se-
quence, the singular limit analysis gives good estimates to the slow variable values at
jumping times in the original system, although the agreement is not perfect since ε

is nonzero in the original system and our analysis replaces sigmoidal activation and
coupling functions by step functions.

4 From six maps to one

4.1 Derivation of the map

We now present a somewhat different approach. Previously, we considered the six
separate maps between the three different 2D slow phase planes, (h,m2), (h,m3),
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and (m2,m3). Here, we demonstrate that it is possible to use these six maps to reduce
the dynamics to a single map, defined from some subset of the (m2,m3) phase plane
into itself. Moreover, with some simplifying assumptions, we will derive an explicit
formula for the map.

First, fix (m2,m3) and assume that when τ = 0, cells 2 and 3 lie in the silent phase
with m2(0) = m2 and m3(0) = m3. Suppose also that cell 1 lies in the active phase
with v1(0) = θI , so that cell 1 jumps down at this time. Then either cell 2 or cell 3
will jump up. These two cells may take turns firing, but we assume that eventually,
cell 1 will win a race and successfully jump up to the active phase again, from which
it will subsequently jump down and start a new cycle. Choose T > 0 to be the first
time (after τ = 0) that cell 1 jumps down. Then define a map as simply

�(m2,m3) = (
m2(T ),m3(T )

)
. (23)

In other words, iterates of � keep track of the positions of (m2,m3) every time that
cell 1 jumps down from the active phase.

We can obtain explicit formulas for this map if we assume that the slow variables
satisfy (4), (5), and (6). Different sets of formulas will be relevant on the regions R12
or R13, above or below C23 respectively, corresponding to whether cell 2 or cell 3
wins the race and jumps up first when cell 1 jumps down. We can subdivide each of
these regions based on the number of times that cells 2 and 3 take turns firing after
cell 1 jumps down, before cell 1 jumps up again. On each of these subregions of
the (m2,m3) phase plane, a different formula applies. Here we derive the formulas
for the case in which cell 2 jumps up at τ = 0 when cell 1 jumps down. Formulas
for the case in which cell 3 jumps up at τ = 0 are derived in a similar manner. First
we derive the formulas for the map � and then determine for which region of the
(m2,m3) phase plane each component of the formula is valid.

Recall that cells 2 and 3 may take turns firing for 0 ≤ τ < T . Let N2 and N3 be the
number of times that cells 2 and 3, respectively, jump up during this time interval. We
note that either the two cells fire the same number of times, in which case N3 = N2,
or cell 2 fires one more time than cell 3, in which case N3 = N2 − 1. Using the
definitions and notation described in the preceding section, we find that:

If N3 = N2, then

�(m2,m3) = �31 ◦ �23 ◦ (�32 ◦ �23)
N2−1 ◦ �12(m2,m3).

If N3 = N2 − 1, then

�(m2,m3) = �21 ◦ (�32 ◦ �23)
N2−1 ◦ �12(m2,m3).

We derive explicit formulas for these maps using the formulas for �ij derived in the
preceding section. In what follows, we use the notation �(m2,m3) = (m̂2, m̂3), and
we employ the time constants σL, σR , λL, λR , μL and μR introduced in Section 3.2.
The formulas are derived by direct calculations; we first consider two simple cases,
before presenting the general formulas. For these formulas, recall that h∗ denotes the
value of h attained when cell 1 is about to jump down (i.e., cell 1 is active, cell 1 is
not inhibited, and v1 = θI , see Figure 2A); similarly, m∗

2, m∗
3 denote the values of m2,

m3 when cell 2 or cell 3 is about to jump down (v2 = θI , v3 = θI ), respectively.
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Case 1: N2 = 1, N3 = 0.
Here (m̂2, m̂3) = �21 ◦ �12(m2,m3) = �21(h

1,m1
3), where

h1 = 1 + (
h∗ − 1

)(1 − m∗
2

1 − m2

)σL/λR

, m1
3 = m3

(
1 − m∗

2

1 − m2

)μL/λR

,

m̂2 = m∗
2

(
h∗

h1

)λL/μR

, m̂3 = m1
3

(
h∗

h1

)μL/λR

.

(24)

To achieve N3 = 0, we need that cell 1, not cell 3, jumps up when cell 2 jumps down.
From the earlier discussion, this is true if (h1,m1

3) lies above the curve C13. Together
with (24), this criterion leads to a condition on (m2,m3), which defines a region in the
(m2,m3) plane where this case occurs. One could numerically compute this region
using the definition of C13 given in the preceding section. Alternatively, we will now
make a simplifying assumption that allows us to compute this region analytically.
The validity of this assumption will be confirmed by comparing the firing sequence
of the full model with that predicted by the analysis in the examples in the following
section.

Our simplifying assumption can be described as follows: Suppose that at some
time, say t = 0, cell 1 lies in the silent phase and is released from inhibition (by
either cell 2 or cell 3). We assume that the time it takes cell 1 to jump up and reach the
threshold θI is independent of h(0). It follows from this assumption that the curves
C12 and C13 are horizontal; that is, they can be written as m2 = M2 and m3 = M3 for
some constants M2 and M3.

Using this assumption, we conclude that Case 1 occurs if: (a) (m2,m3) lies above
C23 (so that cell 2 jumps up when cell 1 jumps down), and (b) m1

3 > M3, which,
together with (24), gives

m3 > M3

(
1 − m2

1 − m∗
2

)μL/λR

≡ k2
1(m2). (25)

We define the curve K2
1 by

K2
1 := {

(m2,m3) ∈ R12 : m3 = k2
1(m2)

}
.

Here, the superscript ‘2’ reflects that cell 2 jumps up when cell 1 jumps down, while
the subscript ‘1’ corresponds to the number of jumps that follow before cell 1 jumps
up again (i.e., N2 + N3 = 1). There is another curve, given by m2 = K3

1(m3), corre-
sponding to cell 3 jumping up when cell 1 jumps down. The formula for K3

1 is derived
in a similar manner, and K3

1 ⊂ R13, below C23.
Case 2: N2 = 1, N3 = 1.
This case is illustrated in Figure 4. Here,

(m̂2, m̂3) = �31 ◦ �23 ◦ �12(m2,m3) = �31 ◦ �23
(
h1,m1

3

) = �31
(
h2,m2

2

)
,
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Fig. 4 Phase planes for Case 2. We start at the red disc, when cell 1 jumps down from the active phase (or
equivalently, with respect to the slow time τ , when cell 1 enters the silent phase). At this time, cell 2 wins
the race and jumps up. When cell 2 jumps down, cell 3 wins the race with cell 1 and jumps up. Finally,
when cell 3 jumps up, cell 1 wins the race with cell 2 and jumps up.

where

h2 = 1 + (
h1 − 1

)(1 − m∗
3

1 − m1
3

)σL/μR

, m2
2 = m∗

2

(
1 − m∗

3

1 − m1
3

)λL/μR

,

m̂2 = m2
2

(
h∗

h2

)λL/σR

, m̂3 = m∗
3

(
h∗

h2

)μL/σR

,

(26)

where h1, m1
3 are defined in (24). For this case to occur, we need that: (i) cell 3 jumps

up when cell 2 jumps down, and (ii) cell 1 jumps up when cell 3 jumps down. These
conditions are satisfied if: (i) (h1,m1

3) lies below the curve C13, and (ii) (h2,m2
2) lies

above the curve C12. These conditions define a region in the (m2,m3) phase plane.
If we make the same assumption as in Case 1, that the curves C12 and C13 are given
by m2 = M2 and m3 = M3 for some constants M2 and M3, then Case 2 occurs if:
(a) (m2,m3) lies above C23 (i.e., in R12), (b) m1

3 < M3, and (c) m2
2 > M2. It follows

from (24) and (26) that (b) and (c) are satisfied if k2
2(m2) < m3 < k2

1(m2) where

k2
2(m2) :=

[1 − (
m∗

2
M2

)μR/λL(1 − m∗
3)

(1 − m∗
2)

μL/λR

]
(1 − m2)

μL/λR . (27)

Furthermore, we define the boundary curve

K2
2 = {

(m2,m3) ∈ R12 : m3 = k2
2(m2)

}
,

such that Case 2 corresponds to those (m2,m3) ∈ R12 between K2
1 and K2

2.
General case: The general formulas are derived recursively, again by direct calcu-

lation. Let

α = m∗
2

(
1 − m∗

3

)λL/μR , β = m∗
3

(
1 − m∗

2

)μL/λR ,

f (m) = α(1 − m)−λL/μR , g(m) = β(1 − m)−μL/λR ,

mk
2 = (f ◦ g)k(m2) if k is even,
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mk
3 = (g ◦ f )k−1(m1

3

)
if k is odd,

ak =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − m∗

2

1 − mk−2
2

)σL/λR

if k is odd
(
here, we let m−1

2 = m2
)
,(

1 − m∗
3

1 − mk−2
3

)σL/μR

if k is even,

h0 = 1 + (
h∗ − 1

)
a1, (28)

hk = ak+1h
k−1 + 1 − ak+1 for k ≥ 1, (29)

and N = N2 + N3. Then �(m2,m3) = (m̂2, m̂3), where

m̂2 =

⎧⎪⎪⎨
⎪⎪⎩

m∗
2

(
h∗

hN

)λL/σR

if N2 = N3,

mN
2

(
h∗

hN

)λL/σR

if N2 �= N3,

(30)

and

m̂3 =

⎧⎪⎪⎨
⎪⎪⎩

mN
3

(
h∗

hN

)μL/σR

if N2 = N3,

m∗
3

(
h∗

hN

)μL/σR

if N2 �= N3.

(31)

Formulas (30) and (31) hold only if cells 2 and 3 take turns firing N2 and N3 times,
respectively, before cell 1 finally jumps up. As before, we can use the explicit formu-
las for hk , mk

2, mk
3 to derive explicit conditions on the initial point (m2,m3) for when

this is true. We do not give the explicit general formula here. In the following section,
we consider concrete examples and will give the formulas needed for the analysis of
those examples.

4.2 Numerical examples

Again, we use MATLAB and XPPAUT to illustrate our results numerically. Figure 5
shows four solutions of system (1), each generating a different firing pattern, corre-
sponding to parameter values given in the Appendix in Table 2. The parameters for
each of these solutions are exactly the same except for the rates λL and μL at which
the slow variables m2 and m3 decay while cells 2 and 3 lie in the silent phase. Here
we show stable attractors so the firing patterns presented repeat as time evolves. In
each panel, cells 1, 2, and 3 are displayed with the colors blue, green and red, re-
spectively. We can denote the firing patterns shown in Figure 5A-D as (132), (1323),
(13123132), and (132313213), respectively, in reference to the shortest firing pattern
that repeats in each case. The analysis presented in Section 4.1 is very useful in un-
derstanding the origins of these firing patterns and how transitions between the firing
patterns take place as parameters are varied.

Figure 6 shows the projections of the solutions exhibited in Figure 5 onto the
(m2,m3) phase plane. First consider Figure 6A. The blue curve is the projection of
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Fig. 5 Four solutions of (1) for different values of the parameters (λL,μL), given in the text. In each
panel, the blue, green and red curves correspond to cells 1, 2, and 3, respectively.

the solution shown in Figure 5A onto the (m2,m3) phase plane. For this solution,
(λL,μL) = (1/3,500,1/2,000). The red, blue, and green circles correspond to when
cells 1, 2, and 3 jump down, respectively. The red curve corresponds to C23 and the
two turquoise curves correspond to K3

1 (to the right of/above the red circle) and K3
2

(to the left of/below the red circle), respectively. If we start at the red circle (at the
arrow) and follow the blue trajectory, then we find that cells 1, 3, and 2 take turns
firing, in that order. Note that when cell 1 jumps down, (m2,m3) lies below C23, such
that cell 3 jumps after cell 1, and k3

2(m3) < m2 < k3
1(m3). This position corresponds

to Case 2 above. As predicted by the theory for that case, when cell 1 jumps down,
cell 3 jumps up and then cell 2 jumps up before cell 1 jumps up again.

Next consider Figure 6B. Now (λL,μL) = (1/4,200,1/1,700). As before, when
cell 1 jumps down at the red circle marked by the arrow, (m2,m3) lies below C23,
so cell 3 jumps up when cell 1 jumps down. However, now m2 < k3

2(m3). According
to the theory, this relation implies that after cell 3 jumps down, cell 2 jumps up and
down, and then cell 3 does the same again before cell 1 jumps up, as observed in the
simulation. We note that for this example, K3

3(m3) < 0, so cell 3 can fire no more
than two times between firings of cell 1. Note that the firing order of the attractor in
Figures 5B and 6B, namely 1323, matches that shown in Figure 3.

For Figure 6C, (λL,μL) = (1/4,500,1/2,000). Once again, we start at the red
circle indicated by the arrow when cell 1 jumps down. At that time, (m2,m3) lies
below C23 and above K3

1; that is, m2 > k3
1(m3). Thus, we expect that cell 3 jumps

up and then cell 1 jumps down again without any jumps by cell 2, and that is what
is observed numerically along the trajectory from the initial red circle to the green
circle to the next red circle (the 131 part of the solution). Now, this next red circle
lies above C23. Thus, the next cell to jump should be cell 2, as is seen in the figure
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Fig. 6 The projections of the solutions shown in Figure 5 onto the (m2,m3) phase plane. The red curves
are C23, while the turquoise curves are K2

1 (larger m2) and K2
2 (smaller m2). The red, blue, and green

circles correspond when cells 1, 2, and 3 jump down, respectively. The red arrows denote the starting
points for the discussions of the panels in the text. Finally, the numerical legend within each panel indicates
the firing sequence that repeats periodically.

by following the trajectory forward again. It turns out that at that second red circle,
k2

2(m2) < m3 < k2
1(m2) (not shown in the figure), which implies that cell 3 follows

cell 2 before cell 1 jumps down yet again (the 231 part of the solution following the
initial 131 part). Finally, when cell 1 jumps down for the third time, the corresponding
red circle lies between K2

2 and K2
1, with k2

2(m3) < m2 < k2
1(m3), as can be seen in

Figure 6C. This relation implies that cell 3 and then cell 2 jump after cell 1, yielding
the final 23 part of the solution before the trajectory returns to the initial red circle
and the whole pattern repeats.

Finally, consider Figure 6D. Here, (λL,μL) = (1/4,500,1/1,800). As with each
of these examples, the curves C23, K2

1 and K2
2 (and similarly K3

1, K3
2 on the other side

of C23) divide the phase plane into separate regions. These regions determine how
many times cells 2 and 3 take turns firing between the firings of cell 1.

5 Discussion

We have presented a method for predicting the order with which model neurons or
populations of synchronized neurons, arranged in a mutually inhibitory ring, will ac-
tivate. We have derived and illustrated the method for a network of three cells, each
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with 2D intrinsic dynamics, motivated by models for rhythm-generating circuits in
the mammalian respiratory brain stem [4–6]. Our approach involves the derivation of
explicit formulas that can be used to partition reduced phase spaces into regions lead-
ing to different firing sequences. These ideas require a decomposition of dynamics
into two distinct time scales. We have assumed an explicit fast-slow decomposition
of the model equations for each neuron, into a fast voltage equation and a slow gating
variable equation, with similar time scales present across all neurons, but we expect
that the results would extend to other cases involving drift along slow manifolds al-
ternating with fast jumps between manifolds yet lacking this explicit decomposition.
A powerful aspect of the approach is that mapping from one activation to the next
only requires evaluation of our formulas on a small number of curves in a particular
reduced phase space. Moreover, if the images of these curves do not intersect the
partition curves in the appropriate image space, then we can conclude that certain
neurons will always become active in a fixed order, possibly after a short transient.
Our formulas involve the time that it takes each neuron’s voltage to jump up to thresh-
old upon release from inhibition. With the additional assumption that, for a particular
cell in the network, this time does not depend on the cell’s slow variable in the silent
phase, we obtain an especially strong result. That is, from a starting configuration
with the distinguished cell at the end of an active phase, we arrive at a collection of
closed form expressions that can be computed iteratively to determine, for all possi-
ble initial values of the other two cells’ slow variables, exactly how many times the
other two cells will take turns activating before the distinguished cell activates again.
We note that our additional assumption is reasonable for slow variables modulating
currents that act predominantly to sustain or terminate activity. Finally, by observ-
ing the effects of parameters on the formulas that we obtain, we can determine how
changes in parameters will alter model solutions, as we have demonstrated.

Interestingly, in the examples that we show and others that we have explored, the
trajectories of the model system that we have considered tend to settle to one particu-
lar attractor for each parameter set. This lack of bistability likely stems from the fact
that when each neuron is active, the other two neurons in the system experience a
strong, common inhibitory signal, albeit with different strengths, and the fact that the
neurons’ intrinsic dynamics is low-dimensional. It is well known that common inhibi-
tion can be strongly synchronizing in neuronal models (e.g., [1, 2, 14–18]). The model
that we consider has rapid onset of inhibition, which prevents synchronization, but the
strong inhibition is nonetheless able to quickly compress trajectories associated with
different initial conditions towards similar paths through phase space. Perhaps evolu-
tionary pressures conspire to steer dynamics of respiratory rhythm-generators away
from regimes supporting bistability, to maintain a stable respiratory rhythm that ad-
justs smoothly to changes in environmental or metabolic demands. Other recent work
has also been directed towards reduced descriptions that yield complete informa-
tion about possible attractors in networks that are similar to the one we consider but
tend to support multistability [19–21]. For example, trajectories can be generated for
Poincaré maps based on phase lags, also under the assumption that units activate via
release from inhibition, with fixed points corresponding to periodic states [22]. While
that approach can handle high-dimensional dynamics and gives a rather complete de-
scription of how phase relations between units evolve, it requires that all cells fire
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before any cell fires twice and it is computationally intensive relative to our method,
with additional computation needed for networks with strong coupling or significant
asymmetries.

Previous work has presented analytical methods based on a fast-slow decomposi-
tion for solutions of model neuronal networks featuring two interacting populations,
each synchronized, with different forms of intrinsic dynamics or two or more syn-
chronized clusters of neurons within one population (e.g., [1, 2, 23–25]). The meth-
ods in this article provide tools for dealing with multiple different forms of dynamics.
They are particularly well suited for three-population networks with 2D intrinsic dy-
namics as presented in this article, and a set of general assumptions that are sufficient
for the method to apply are presented in the Appendix. In more complicated settings,
the subspaces of slow variables that we consider would become higher-dimensional,
such that while the same theory would apply, its application would be more cumber-
some. Another direction for future consideration is the analysis of solutions in which
suppressed neurons may escape from the silent phase, rather than being released from
inhibition. Such solutions are qualitatively different than what we consider in this ar-
ticle, because the race to escape would take place within the slow dynamics. Similar
issues have been considered previously in the context of the break-down of synchro-
nization and the development of clustered solutions within a single population [21,
25–27], and with simple slow dynamics, analysis of the race to escape among hetero-
geneous populations would be straightforward. Some networks may feature solutions
involving some transitions by escape and some by release [6], however, and combin-
ing both effects, especially with adaptation that allows slow adjustment of inhibitory
strength within phases [28, 29], would be more complicated and remains for future
study. Additional study would also be required to weaken the other assumptions we
have made in our analysis. In particular, it might be possible to improve the quanti-
tative agreement between our formulas and the actual slow variable values at jumps,
and the actual jumping order for some parameter sets near transitions between so-
lution types, by no longer treating sigmoidal activation and coupling functions as
step functions; however, it is not clear how to derive explicit formulas without these
approximations. Finally, it would be interesting to try to generalize our approach to
noisy systems. Presumably, this generalization would involve replacing our boundary
curves with distributions of jumping probabilities defined over regions of each slow
variable space, leading to probabilistically defined jumping orders and mappings be-
tween spaces.

Appendix 1: Model details

In system (1), the functions Fi are given by (2). Equations (1) and (2) involve
several additional functions. The functions x∞(v) = 1/{1 + exp[(v − θx)/σx]} for
x ∈ {h,m,mp,n}, while

τi(v) = τa,i + τb,i/
{
1 + exp

[(
v − θτ

i

)
/σ τ

i

]}
, i ∈ {h,2,3}. (32)

Parameter values for Equations (1) and (2) and for these additional functions are
listed in Tables 1 and 2. These values were chosen by starting from those in published
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Table 1 Parameter values for full model and singular limit simulations and singular limit analysis corre-
sponding to Figure 3

Conductances
(nS)

Reversal
potentials
(mV)

Half
activations
(mV)

Slopes Time
constants
(ms)

Coupling
constants

Other

gNaP = 0.25 VNa = 50 θh = −48 σh = 3 τa,h = 9.5 b12 = 0.4 ε = 0.01

gKdr = 0.25 VK = −85 θn = −30 σn = −4 τa,2 = 30 b13 = 0.4 C = 1 pF

gad = 0.5 θm = −36 σm = −10−1 τa,3 = 45 b21 = 0.2 d1 = 0.21

gL = 0.14 VL = −60 θmp = −50 σmp = −10−1 τb,h = −4.5 b23 = 0.24 d2 = 0.73

gI = 3.0 VI = −75 θτ
h

= −48 στ
h

= −10−2 τb,2 = −10 b31 = 0.3 d3 = 1.4

gE = 0.5 VE = 0 θτ
2 = 0 στ

2 = 10−1 τb,3 = −32.3 b32 = 0.25 θI = −32

θτ
3 = 0 στ

3 = 10−1 σI = −10−1

Singular limit
parameter values

σL = 1
950 σR = 1

500 λL = 1
2,000 λR = 1

2,000 μL = 1
1,270 μR = 1

1,270

Table 2 Parameter values for full model and singular limit simulations and singular limit analysis corre-
sponding to Figures 5A and 6A

Conductances
(nS)

Reversal
potentials
(mV)

Half
activations
(mV)

Slopes Time
constants
(ms)

Coupling
constants

Other

gNaP = 0.25 VNa = 50 θh = −48 σh = 3 τa,h = 5 b12 = 0.4 ε = 0.01

gKdr = 0.25 VK = −85 θn = −30 σn = −4 τa,2 = 35 b13 = 0.5 C = 1 pF

gad = 0.6 θm = −40 σm = −10−3 τa,3 = 20 b21 = 0.3 d1 = 0.55

gL = 0.2 VL = −60 θmp = −40 σmp = −10−2 τb,h = −1.5 b23 = 0.5 d2 = 1.4

gI = 3.0 VI = −75 θτ
h

= −48 στ
h

= −10−2 τb,2 = 0 b31 = 0.3 d3 = 1.5

gE = 0.4 VE = 0 θτ
2 = −40 στ

2 = 10−3 τb,3 = 0 b32 = 2.0 θI = −40

θτ
3 = −40 στ

3 = 10−3 σI = −10−3

Singular limit
parameter values

σL = 1
500 σR = 1

350 λL: see text λR = 1
3,500 μL: see text μR = 1

2,000

studies [6, 8] and making changes to achieve interesting dynamics; also, we rescaled
the capacitance C to 1 pF and divided all conductances by its original value, 20,
correspondingly. Note that the actual values are not important as long as they give
a certain nullcline structure and fast-slow time scale separation, as these do (see the
general assumptions in Appendix 2 below).

Note that given (τa,i , τb,i), i = h,2,3, one can compute the σ , λ, and μ values
that appear in (4), (5), and (6). That is, taking into account that θτ

2 and θτ
3 in Table 1

are well above the voltages actually achieved in our simulations and that σ τ
h < 0, we

compute the singular limit parameter values in the table as

σL = ε/τa,h, σR = ε/(τa,h + τb,h),

λL = ε/(τa,2 + τb,2), λR = ε/(τa,2 + τb,2),
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μL = ε/(τa,3 + τb,3), μR = ε/(τa,3 + τb,3).

The parameter values listed in Table 1 for τa,h, τb,h were used during times when
cell 3 was in the active phase and in the subsequent races, while τa,h = 5.75, τb,h =
−0.75 were applied during times when cell 4 was active and in the subsequent races;
similarly, σL was changed to 1/575 when cell 4 was active. These values of τa,h, τb,h

were obtained from preliminary simulations using a slightly different form of τh(v)

that had been used in earlier studies [6, 8, 30], which gave qualitatively identical
behavior. This original τh(v) took different values depending on whether cell 3 or
cell 4 was active because v1 belonged to different intervals in the two cases. The
form of τh(v) that we adopted, as given in Equation (32), was chosen to unify the
form of the equations across all three neurons and to simplify numerical exploration
of parameter space. We note that a change in θmp from −50 to −52 changed the
attractor from 13231323. . . to 132313213. . . as in Figure 6A, although this parameter
set did not give the full range of patterns seen in the other panels of Figure 6.

Similarly, with the values of θτ
i , σ τ

i , i = h,2,3 given in Table 2, the singular limit
parameter values in Table 2 are obtained from

σL = ε/τa,h, σR = ε/(τa,h + τb,h),

λL = ε/(τa,2 + τb,2), λR = ε/τa,2,

μL = ε/(τa,3 + τb,3), μR = ε/τa,3.

For all panels in Figures 5 and 6, we used the parameter set in Table 2, ex-
cept that we adjusted (τa,2, τb,2, τa,3, τb,3) for panels B,C,D. Specifically, we set
(τa,2, τb,2, τa,3, τb,3) to (35,7,20,−3) in Figures 5B and 6B, (35,10,20,0) in Fig-
ures 5C and 6C, and (35,10,20,−2) in Figures 5D and 6D.

Appendix 2: General assumptions

System (1) has certain properties that make it suitable for the analysis that we per-
form. Given a network of three synaptically coupled elements, our analysis can pro-
ceed if the following assumptions on the network and its dynamics are satisfied.

(A1) Each unit in the network consists of a system of two ordinary differential
equations (ODE), one for the evolution of a fast variable with an O(1) vec-
tor field, call it fj , and one for a slow variable with an O(ε) vector field, sj ,
for j ∈ {1,2,3}, where ε is a small, positive parameter.

(A2) Each unit is coupled to both of the other units in the network. The coupling from
unit j to unit k appears as a Heaviside step function H(fj −θI ), or a sufficiently
steep increasing sigmoidal curve with half-activation θI , in the ODE for fk .

(A3) The fast vector field of each unit is a decreasing function of the strengths of the
inputs that unit receives. Thus, if fj decreases through θI , such that the input
from unit j to the other units turns off, then dfk/dt increases for k �= j .

(A4) When both inputs to unit j are fixed, the nullcline of its fast variable is de-
scribed by the graph of a function {sj = Nj(fj )} such that:
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(a) if one input to unit j is on (i.e., fk > θI for some k �= j ), then:
(i) there is a monotone branch Nsil

j of the fj -nullcline,

(ii) Nsil
j is defined on an interval I sil

j satisfying fj < θI for all fj ∈ I sil
j ,

(iii) Nsil
j intersects the sj -nullcline in a unique point (f ∗

j , s∗
j ), and

(iv) (dNsil
j (fj )/df )(dsj /dt) > 0 when dsj /dt is evaluated along Nsil

j

with fj < f ∗
j ;

(b) if no inputs to unit j are on, then:
(i) there is a monotone branch Nact

j of the fj -nullcline,
(ii) Nact

j is defined on an interval I act
j such that θI ∈ I act

j ,
(iii) Nact

j intersects the sj -nullcline in a unique point (f ∗∗
j , s∗∗

j ) with f ∗∗
j <

θI , and
(iv) (dNact

j (fj )/df )(dsj /dt) < 0 when dsj /dt is evaluated along Nact
j

with fj > f ∗∗
j .

For system (1), each v plays the role of the fast variable f from (A1) while the
other variable linked to v is the slow variable s. Since S∞(v) is a Heaviside step
function, (A2) holds for system (1), and the fact that all coupling is inhibitory, with a
reversal potential less than the range of values traversed by each v, means that (A3)
is satisfied as well. Assumption (A4), although more complicated than the others, is
in fact fairly standard for typical planar neuronal models. This assumption holds, for
example, if a unit’s f -nullcline is the graph of a cubic function for all levels of input;
if in the presence of input, the nullcline’s left branch lies below θI and the unit has a
critical point on this branch; and if in the absence of input, the nullcline’s right branch
crosses through θI , with a critical point on this branch having an f -coordinate less
than θI . It is easy to choose parameters for the (v1, h) unit in system (1) that meet
all of these criteria. The persistent sodium current renders the v1-nullcline cubic, and
we can choose θI and the parameters of h∞ to achieve the other desired properties,
as we do throughout this article. The other two units in the system have monotone
v-nullclines because each can be expressed as a graph (v,m(v)) where m(v) is the
ratio of two linear functions of v. Certain choices of θI and parameters of m∞, such as
those made in this article, ensure that (A4) holds for these units as well. We note that
the assumptions made about the relations of the f -nullclines to θI can be weakened
as long as fj = θI is only achieved when the inputs to unit j are both off.
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