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Abstract We consider a coupled, heterogeneous population of relaxation oscillators
used to model rhythmic oscillations in the pre-Bötzinger complex. By choosing spe-
cific values of the parameter used to describe the heterogeneity, sampled from the
probability distribution of the values of that parameter, we show how the effects of
heterogeneity can be studied in a computationally efficient manner. When more than
one parameter is heterogeneous, full or sparse tensor product grids are used to select
appropriate parameter values. The method allows us to effectively reduce the dimen-
sionality of the model, and it provides a means for systematically investigating the
effects of heterogeneity in coupled systems, linking ideas from uncertainty quantifi-
cation to those for the study of network dynamics.
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1 Introduction

Networks of coupled oscillators have been studied for a number of years [1–7]. One
motivation for these studies is that many neurons, when isolated (and possibly in-
jected with a constant current), either periodically fire action potentials [8, 9] or peri-
odically move between quiescence and repetitive firing (the alternation being referred
to as bursting [10, 11]). In either case, the isolated neuron can be thought of as an os-
cillator. Neurons are typically coupled with many others via either gap junctions [12]
or chemical synapses [13–15]; hence, a group of neurons can be thought of as a net-
work of coupled oscillators.

As an idealisation, one might consider identical oscillators; in which case, the
symmetry of the network will often determine its possible dynamics [16, 17]. How-
ever, natural systems are never ideal, and thus, it is more realistic to consider hetero-
geneous networks. Also, there is evidence in a number of contexts that heterogeneity
within a population of neurons can be beneficial. Examples include calcium wave
propagation [18], the synchronisation of coupled excitable units to an external drive
[19, 20], and the example we study here: respiratory rhythm generation [13, 21].

One simple way to incorporate heterogeneity in a network of coupled oscillators is
to select one parameter which affects the individual dynamics of each oscillator and
assign a different value to this parameter for each oscillator [3, 15, 22, 23]. Doing
this raises natural questions such as from which distribution should these parameter
values be chosen, and what effect does this heterogeneity have on the dynamics of
the network?

Furthermore, if we want to answer these questions in the most computationally
efficient way, we need a procedure for selecting a (somehow) optimal representative
set of parameter values from this distribution. In this paper, we will address some of
these issues.

In particular, we will show how - given the distribution(s) of the parameter(s) de-
scribing the heterogeneity - the representative set of parameter values can be chosen
so as to accurately incorporate the effects of the heterogeneity without having to fully
simulate the entire large network of oscillators.

We investigate one particular network of coupled relaxation oscillators, derived
from a model of the pre-Bötzinger complex [13, 14, 24], and show how the hetero-
geneity in one parameter affects its dynamics. We also show how heterogeneity in
more than one parameter can be incorporated using either full or sparse tensor prod-
uct grids in parameter space.

Our approach thus creates a bridge between computational techniques developed
in the field of uncertainty quantification [25, 26] involving collocation and sparse
grids on the one hand, and network dynamics on the other. It also helps us build
accurate, reduced computational models of large coupled neuron populations.

One restriction of our method is that it applies only to states where all oscilla-
tors are synchronised (in the sense of having the same period) or at a fixed point.
Synchronisation of this form typically occurs when the strength of coupling between
oscillators is strong enough to overcome the tendency of non-identical oscillators to
desynchronise due to their disparate frequencies [2, 3, 27] and is often the behaviour
of interest [6, 13, 14, 23].
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We present the model in Section 2 and show how to efficiently include parameter
heterogeneity in Section 3. In Section 4, we explore how varying heterogeneity mod-
ifies bifurcations and varies the period of the collective oscillation. Sections 5 and 6
show how to deal with two and more, respectively, heterogeneous parameters. We
conclude in Section 7.

2 The model

Our illustrative example is a network of model neurons thought to describe at some
level the dynamics of the pre-Bötzinger complex, governed by the following equa-
tions:

C
dVi

dt
= −gNam(Vi)hi(Vi − VNa) − gl(Vi − Vl) + I i

syn + I i
app, (1)

dhi

dt
= h∞(Vi) − hi

τ (Vi)
(2)

for i = 1, . . . ,N , where

I i
syn = gsyn(Vsyn − Vi)

N

N∑
j=1

s(Vj ), (3)

as considered in the work of Rubin and Terman [14]. Here, Vi is the membrane po-
tential of cell i, and hi is a channel state variable for neuron i that is governing the
inactivation of persistent sodium. Equations 1 and 2 were derived from the model in
the works of Butera et al. [13, 24] by blocking currents responsible for action po-
tentials. A similar model with N = 2 was considered in the work of Rubin [28], and
Dunmyre and Rubin [29] considered synchronisation in the case N = 3, where one
of the neurons was quiescent, another was tonically firing, and the third one could be
either quiescent, tonically firing or bursting. The neurons are all-to-all coupled via the
term I i

syn; when gsyn = 0 the neurons are uncoupled. The various functions involved
in the model equations are the following:

s(V ) = 1

1 + exp [−(V + 40)/5] , (4)

τ(V ) = 1

ε cosh [(V + 44)/12] , (5)

h∞(V ) = 1

1 + exp [(V + 44)/6] , (6)

m(V ) = 1

1 + exp [−(V + 37)/6] . (7)

The functions τ(V ), h∞(V ) and m(V ) are a standard part of the Hodgkin-Huxley for-
malism [8], and synaptic communication is assumed to act instantaneously through
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Fig. 1 Solutions of Equations 1
and 2. These are the solutions
when the I i

app values are
uniformly sampled from a
uniform distribution on [10,25].
Top: Vi as functions of time.
Bottom: hi as functions of time
N = 101. Different line colours
correspond to different neurons
(only every 10th neuron is
shown).

the function s(V ). The parameter values we use initially are VNa = 50, gl = 2.4,
Vl = −65, Vsyn = 0, C = 0.21, ε = 0.1, gsyn = 0.3 and gNa = 2.8.

Note that the synaptic coupling is excitatory. These parameters are the same as
that used in the work of Rubin and Terman [14] except that they [14] used ε = 0.01
and gl = 2.8, and their function s(V ) had a more rapid transition from approximately
0 to 1 as V was increased. These changes in parameter values were made to speed up
the numerical integration of Equations 1 and 2, and the methods presented here do
not depend on the particular values of these parameters.

If the values of the applied current I i
app are taken from a uniform distribution on

the interval [10,25], the behaviour is as shown in Figure 1. After a transient, we see
a synchronous behaviour, i.e. all neurons oscillate periodically with the same period,
although the heterogeneity in the I i

app means that each neuron follows a slightly dif-
ferent periodic orbit in its own (V ,h) phase space. (Because spiking currents have
been removed in the derivation of Equations 1 and 2, these oscillations are inter-
preted as burst envelopes, i.e. neuron i is assumed to be spiking when Vi is high and
quiescent when Vi is low.) It is this stable synchronous periodic behaviour that is of
interest: In what parameter regions does it exist, and how does the period vary as
parameters are varied? Butera et al. [13] observed that including parameter hetero-
geneity in a spiking model for the pre-Bötzinger complex, it increased both the range
of parameters over which bursting occurred and the range of burst frequencies (this
being functionally advantageous for respiration), and this was the motivation for the
study of Rubin and Terman [14].

3 Managing heterogeneity

3.1 The continuum limit

The key observation behind our approach can be seen in Figure 2, where we plot
the Vi and s(Vi) as functions of I i

app at one instant in time. Once the neurons have
synchronised, Vi values (and hi and any smooth functions of these variables) appear
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Fig. 2 Solutions of Equations 1
and 2 at one instant in time. Vi

(top) and s(Vi ) (bottom) as
functions of I i

app, N = 101. This
shows a state where all neurons
are active (see Figure 1). If the
network was switching from
active to quiescent or vice versa,
there would be a steep ‘front’
where the Vi changed rapidly
with i although they would still
form a continuous curve.

to vary smoothly when plotted as a function of the heterogeneous parameter I i
app. This

is also the case when the I i
app values are chosen randomly from the interval [10,25]

rather than uniformly (not shown). This suggests that in the limit of N → ∞, at any
instant in time, V and h will be smooth functions of the continuous variable Iapp. We
now consider this case where Iapp is a continuous random variable with a uniform
density on the interval [10,25]. We parametrise Iapp as Iapp = Im + Isμ, where the
probability density function for μ is as follows:

p(μ) =
{

1/2, −1 ≤ μ ≤ 1,

0, otherwise.
(8)

Vi(t) and hi(t) become V (μ, t) and h(μ, t), respectively, and the points in Fig-
ure 2 ‘fill in’ to form continuous functions. In the given example, we had Im = 17.5
and Is = 7.5. Thus, the ordinary differential equations (ODEs) 1 and 2 become the
following:

C
∂V (μ, t)

∂t
= −gNam

(
V (μ, t)

)
h(μ, t)

(
V (μ, t) − VNa

) − gl

(
V (μ, t) − Vl

)
+ Isyn(μ, t) + Im + Isμ, (9)

∂h(μ, t)

∂t
= h∞(V (μ, t)) − h(μ, t)

τ (V (μ, t))
, (10)

where

Isyn(μ, t) = gsyn
(
Vsyn − V (μ, t)

)∫ 1

−1
s
(
V (μ, t)

)
p(μ)dμ. (11)

The results for N → ∞ should provide a good approximation to the behaviour
seen when N is large but finite, which is the realistic (although difficult to simulate)
case. The continuum limit presented in this section was first introduced by Rubin
and Terman [14], but their contribution was largely analytical, whereas ours will be
largely numerical.
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3.2 Stochastic Galerkin

One approach to studying Equations 9 and 11, motivated by techniques developed in
the context of uncertainty quantification [25, 26], is to expand the functions V (μ, t)

and h(μ, t) in orthogonal polynomials in μ, with the choice of particular polynomials
determined by the probability density of μ, i.e. the distribution of the heterogeneous
parameter. For the uniform density p(μ), one would choose Legendre polynomials,
written as follows:

V (μ, t) =
∞∑
i=0

ai(t)Pi(μ), h(μ, t) =
∞∑
i=0

bi(t)Pi(μ), (12)

where Pi is the ith Legendre polynomial; this is known as a ‘polynomial chaos’
expansion [3]. Substituting Equation 12 into Equation 9, multiplying both sides by
Pj (μ)p(μ) and integrating over μ between −1 and 1, the orthogonality properties
of Legendre polynomials with uniform weight allows one to obtain the ODE satis-
fied by aj (t). Similarly, one can use Equation 10 to obtain the ODEs governing the
dynamics of bj (t). Having solved (a truncated set of) these ODEs, one could recon-
struct V (μ, t) and h(μ, t) using Equation 12. This is referred to as the stochastic
Galerkin method [25]. However, the integrals just mentioned cannot be performed
analytically. They must be calculated numerically at each time step in the integration
of the ODEs for ai and bi ; this is computationally intensive. Note that the optimal
choice of orthogonal polynomials is determined by the distribution of the heteroge-
neous parameter: for a uniform distribution, we use Legendre polynomials; for other
distributions, other families of orthogonal polynomials are used [25, 26].

3.3 Stochastic collocation

An alternative, motivated by the stochastic collocation method [25], is to simply dis-
cretise in the μ direction, obtaining N different μi values, and then solve Equations 9
and 10 at each of the μi , using the values of s(V (μi, t)) to approximate the integral
in Equation 11.

It is important to realize that the number (N ) of neurons simulated in this ap-
proach may well be much smaller than the number of neurons in the ‘true’ system,
considered to be in the thousands. Notice also that these neurons are ‘mathematically’
coupled to one another via the discretisation of the integral (Equation 11), which is
an approximation of the continuum limit.

Using the values of s(V (μi, t)) to approximate the integral in Equation 11, we
are in fact including the influence of all other neurons (an infinite number of them in
the continuum limit), not just those that we have retained in our reduced approxima-
tion. We now examine how different discretisation schemes affect several different
calculations.

3.3.1 Period calculation

Firstly, we consider the period of the collective oscillations seen in Figure 1. The
analogue of finite differences, or the method of lines, is to uniformly discretise the
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Fig. 3 Error in the calculated
period of the synchronised
oscillators. Error in the
calculated period of the
synchronised oscillators as a
function of the number of
neurons simulated (N ) for the
midpoint rule (red stars) and the
Gaussian quadrature (blue
circles). Also shown (dashed) is
a line corresponding to error
approximately N−2, to guide
the eye.

interval [−1,1] into N values, μi , and to solve Equations 9 and 10 at each of the μi .
Defining μi = −1 + 2(i − 1/2)/N for i = 1,2, . . . ,N , we approximate the integral
in Equation 11 using the composite midpoint rule:

∫ 1

−1
s
(
V (μ, t)

)
p(μ)dμ ≈ 1

N

N∑
i=1

s
(
V (μi, t)

)
(13)

which, after defining Vi(t) = V (μi, t), is nothing more than the sum in Equation 3,
where I i

app = Im + Isμi . To show convergence of the calculation of the period with
N , we plot the error in Figure 3 with red stars; the error is defined to be the absolute
value of the difference between the calculated period and the true period (defined
below). We see that the error scales as N−2 as expected from numerical analysis [30].
(All numerical integration was performed using Matlab’s ode113 with an absolute
tolerance of 10−10 and a relative tolerance of 10−12.)

However, by choosing non-uniformly spaced values of μi , we can evaluate the
integral in Equation 13 much more accurately. (By ‘more accurately’, we mean either
that for a fixed N , using the non-uniformly spaced μi will result in a smaller error
than that obtained using uniform spacing, or that to obtain a fixed accuracy, using
non-uniform spacing will require a smaller N than that needed for uniform spacing.)
Specifically, for a fixed N , if we choose μi to be the ith root of PN(μ), where PN is
the N th Legendre polynomial, normalised so that PN(1) = 1, and the weights

wi = 1

(1 − μ2
i )[P ′

N(μi)]2
, (14)

then the Gauss-Legendre quadrature rule [31] is

∫ 1

−1
s
(
V (μ, t)

)
p(μ)dμ ≈

N∑
i=1

wis
(
V (μi, t)

)
. (15)

Convergence of the error in the period with N is shown in Figure 3 (blue cir-
cles), where we see the very rapid convergence expected from a spectral method. For
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Fig. 4 Error in calculation error
of the value of Im where upper
Hopf bifurcation occurs. Error
in the calculation of the value of
Im at which the upper Hopf
bifurcation occurs using the
midpoint rule (red stars) and the
Gaussian quadrature (blue
circles). Other parameters:
gsyn = 0.3, Is = 7.5. The
midpoint rule error decays as
1/N2. For 10 < N , the error
using the Gaussian quadrature is
dominated by the precision with
which the Hopf bifurcation can
be located, hence the plateau.

50 � N , the error in the period calculation using this method is dominated by errors in
the numerical integration of the Equations 9 and 10 in time, rather than in the approx-
imate evaluation of the integral in Equation 11. (The true period was calculated using
the Gauss-Legendre quadrature with N significantly larger than 104 and is approxi-
mately 8.040104851819.) The rapid convergence of the Gauss-Legendre quadrature
is a consequence of the fact that the function s(V (μ)) is a sufficiently smooth func-
tion of μ (see Figure 2). This smoothness will arise only when the oscillators become
fully synchronised.

3.3.2 Hopf bifurcations

By decreasing or increasing Im (the mean of the I i
app), we find that the oscillations in

Figure 1 terminate in Hopf bifurcations. We now examine the effects of the different
discretisations mentioned on the detection of these Hopf bifurcations. In Figure 4,
we see the error in calculating the value of Im at which the upper Hopf bifurcation
occurs as a function of N , the number of points used, for the two different schemes
(the true value, again calculated using the Gauss-Legendre quadrature with a large
N , is approximately Im = 33.1262).

The expected behaviour (very rapid convergence for Gaussian quadrature and the
error scaling as N−2 for the composite midpoint rule) is seen (as compared with
Figure 3). Figure 5 shows a similar calculation but for the lower Hopf bifurcation
which occurs at Im ≈ 6.064. Several interesting points in contrast with the results in
Figure 4 are evident: The error in the composite midpoint rule appears to decay as
N−1, while the error using the Gaussian quadrature appears to decay as N−2. The
reason for these differences is not clear.

3.4 Summary

In this section, we have shown that a judicious choice of the values of the hetero-
geneous parameter, combined with a scheme for the Gaussian quadrature, allows us
to calculate quantities of interest (such as the period of oscillation and the parameter
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Fig. 5 Error in calculation error
of the value of Im where lower
Hopf bifurcation occurs. Error
in calculation of the value of Im
at which the lower Hopf
bifurcation occurs using the
midpoint rule (red stars) and the
Gaussian quadrature (blue
circles). The error for the
midpoint rule appears to decay
as 1/N . Other parameters:
gsyn = 0.3, Is = 7.5.

value at which a Hopf bifurcation occurs) much more parsimoniously than a naive
implementation of uniformly spaced Ii values for a uniform distribution. Effectively,
we have simulated the behaviour of a large network of oscillators by actually simu-
lating a much smaller one, carefully choosing which oscillators to simulate (and how
to couple them so as to also capture the effect of the omitted ones).

Having demonstrated this, we now fix N = 10 and use the quadrature rule given
in Equation 15. Note that our discretisation in μ can be thought of in two different
ways. Firstly, we can consider the continuum limit (N → ∞) as the true system,
whose dynamics will be close to the real system which consists of a large number of
neurons. Our scheme is then an efficient way of simulating this true system. The other
interpretation is that the true system consists of a large, finite number of neurons with
randomly distributed parameter(s), and our scheme is a method for simulating such a
system but using far fewer oscillators.

In the next section, we investigate the effects of varying Im, Is and gsyn. In a later
section, we consider more than one heterogeneous parameter and show how tensor
product grids and sparse tensor product grids can be used to accurately calculate the
effects of further, independently distributed, heterogeneities.

4 The effects of heterogeneity

4.1 A single neuron

In order to investigate the effects of heterogeneity, we first examine a single uncou-
pled neuron (i.e. N = 1 and gsyn = 0). The behaviour as Im is varied as shown in
Figure 6 (left panel). For this range of Im, there is always one fixed point, but it un-
dergoes two Hopf bifurcations as Im is varied, leading to a family of stable periodic
orbits. The period decreases monotonically with increasing Im. The lower Hopf bi-
furcation results in a canard periodic solution [32] which very rapidly increases in
amplitude as Im is increased. This is related to the separation of time scales between
the V dynamics (fast) and the h dynamics (slow). In the left panel of Figure 6, we see
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Fig. 6 The bifurcation behaviour, V as functions of Im and period of the stable periodic orbit. Left: the
bifurcation behaviour of a single uncoupled neuron (N = 1, gsyn = 0). Top left: voltage V at a fixed point
(solid, stable; dashed, unstable) and the maximum and minimum of V over one period of oscillation (cir-
cles), as a function of Im. Bottom left: period of the stable periodic orbit for a single uncoupled neuron.
The apparent discontinuity in the periodic orbit towards low Im is because of the canard nature of the os-
cillations (mentioned in the text). Right: the bifurcation behaviour of a single self-coupled neuron (N = 1,
gsyn = 0.3). Top right: voltage V at a fixed point (solid stable, dashed unstable) and the maximum and
minimum of V over one period of oscillation (circles), as a function of Im. Bottom right: period of the
stable periodic orbit for a single self-coupled neuron.

that some of the neurons in the network whose behaviour is shown in Figure 1 would
be quiescent when uncoupled, while most would be periodically oscillating.

The behaviour in the left panel of Figure 6 can also be understood by looking at
the (V ,h) phase plane for different values of Im - see Figure 7. The behaviour of
one self-coupled neuron (N = 1, gsyn = 0.3) is shown in Figure 6 (right panel). We
see that the main effect of self-coupling is to move both Hopf bifurcations to lower
values of Im.

4.2 A coupled population of neurons

Now, consider a coupled heterogeneous population with N = 10 neurons. Parameter
values are gsyn = 0.3 and Is = 7.5. (Note that if Is = 0, we recover the results for one
self-coupled neuron.) The results from varying Im are shown in Figure 8. Comparing
with the right panel of Figure 6, we see that including heterogeneity widens the range
of Im values for which oscillations occur. The periodic orbit cannot be followed below
Im ≈ 8, as more complex oscillations than purely periodic occur (not shown), as
discussed below. Note that the mean voltage at the fixed point is easily calculated
as V ≡ ∑10

i=1 wiVi , where Vi is the steady state value of neuron i, and the variance
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Fig. 7 The phase plane for a
single uncoupled neuron.
h-nullcline (dashed, on which
dh/dt = 0) and the V -nullclines
(circles, on which dV/dt = 0)
for Im = 10,15 and 35 (top to
bottom). Also shown (solid) is
the stable periodic orbit that
exists when Im = 15.

Fig. 8 The bifurcation
behaviour of a heterogeneous
population. Top: mean voltage at
a fixed point (solid stable,
dashed unstable), mean ± one
standard deviation (dotted), and
the maximum and minimum of
the mean of V over one period
of oscillation (circles), as a
function of Im. Bottom: period
of the stable periodic orbit.
N = 10, gsyn = 0.3, Is = 7.5.

of the Vi ’s is simply
∑10

i=1 wi(Vi − V )2. (Recall that the weights wi are given in
Equation 14.)

To better understand these results, we can follow the Hopf bifurcations as two pa-
rameters are varied. Figure 9 (top) shows the two curves of Hopf bifurcations in the
Im, Is plane for gsyn = 0.3. Increasing the ‘spread’ of the heterogeneity, i.e. increas-
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Fig. 9 Hopf bifurcation curves
and period of the stable periodic
orbit for three different values of
Is . Top: Hopf bifurcation curves
(solid) and the curve on which
the periodic orbit created in the
rightmost Hopf bifurcation loses
stability (circles, found from
direct simulation). Bottom:
period of the stable periodic
orbit for three different values of
Is , the spread of the
heterogeneity. For
Is = 8 and 14, the curves are
terminated at low Im when the
periodic orbit loses stability to a
more complex oscillation.
gsyn = 0.3, N = 10.

ing Is , increases the range of values of Im for which periodic oscillations are possible
(between the Hopf bifurcations), but there may not necessarily exist stable periodic
orbits over the entire range. For Is larger than about 6, i.e. for very heterogeneous
neurons, the synchronous behaviour created in the rightmost Hopf bifurcation shown
in Figure 9 (top) breaks up as Im is decreased at constant Is , leading to complex os-
cillations (not shown). The break-up of the synchronous behaviour always involves
the neurons with the lowest values of μ, i.e. the lowest values of Iapp. The curve in
Figure 9 (top) where synchronous behaviour breaks up was found by slowly decreas-
ing Im at constant Is until the break-up was observed. In principle, it could be found
by numerical continuation of the stable periodic orbit created in the rightmost Hopf
bifurcation, monitoring the orbit’s stability.

Now, consider varying gsyn and Im for a fixed Is = 7.5. As seen in Figure 10, the
range of values of Im for which oscillations may arise decreases at gsyn increases
(both Hopf bifurcations move to lower values of Im), and for small gsyn (i.e. weak
coupling), the neurons are no longer synchronous, due to break-up as discussed. The
conclusion is that, in order to obtain robust synchronous oscillations, we need moder-
ate to large coupling (gsyn) and a not-too-heterogeneous population (Is not too large).
This is perhaps not surprising, but our main point here is to demonstrate how the com-
putation of the effects of heterogeneity can easily be accelerated. We now consider
more than one heterogeneous parameter.
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Fig. 10 Hopf bifurcation
curves and period of the stable
periodic orbit for three different
values of gsyn. Top: Hopf
bifurcation curves (solid) and
the curve on which the periodic
orbit created in the rightmost
Hopf bifurcation loses stability
(circles, obtained by direct
simulation). Synchronous
oscillations occur only above the
curve shown with red circles.
Bottom: period of the stable
periodic orbit for three different
values of gsyn. The curve for
gsyn = 0.1 is terminated at low
Im when the periodic orbit loses
stability to a more complex
oscillation. Is = 7.5, N = 10.

5 Two heterogeneous parameters

Now, consider the case where both Iapp and gNa for each neuron are randomly (in-
dependently) distributed. We keep the uniform distribution for the Iapp, choosing
Im = 25, Is = 7.5 so that the Iapp come from a uniform distribution on [17.5,32.5].
We choose the gNa from a normal distribution with a mean of 2.8, and standard de-
viation σ and set gsyn = 0.3. We keep 10 points in the μ direction and use the values
of μi and wi from above to perform integration in the μ direction. The quantity M

refers to the number of different gNa values chosen, and we thus simulate 10M ap-
propriately as coupled neurons.

The values of Iapp and gNa for the different neurons are selected based on the
tensor product of the vectors formed from Iapp and gNa. Similarly, the weights in
a sum of the form (Equation 15) will be formed from a tensor product of the wi

associated with the Iapp direction and those associated with the gNa.
We initially choose σ = 0.25 and write gNa = 2.8 +σλ, where λ has the probabil-

ity density function

q(λ) = 1√
2π

e−λ2/2, (16)

i.e. λ is normally distributed. Then, as mentioned, the continuum variables V and h

are written in the form V (μ,λ, t) and h(μ,λ, t), respectively, and the sum in Equa-
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Fig. 11 Examples of the
heterogeneity grid values of μi

and λj for M = 15. Top: the λj

values are randomly chosen
from a unit normal distribution.
Middle: the λj values are chosen
by uniformly sampling the
inverse cumulative distribution
function of a unit normal
distribution. Bottom: the λj

values are the roots of H15, the
15th Hermite polynomial. In all
cases, the μi are roots of P10,
the 10th Legendre polynomial.

tion 3 becomes ∫ ∞

−∞

∫ 1

−1
s
(
V (μ,λ, t)

)
p(μ)q(λ)dμdλ. (17)

Keeping the Gauss-Legendre rule in the μ direction, this gives

∫ ∞

−∞

10∑
i=1

wis
(
V (μi, λ, t)

)
q(λ)dλ. (18)

The simplest approach to this integral is the Monte Carlo method [30], where
we simply randomly choose M values of λ from the unit normal distribution and
calculate an approximation to the integral as the following:

1

M

M∑
j=1

10∑
i=1

wis
(
V (μi, λj , t)

)
. (19)

Here, the weights in the λ direction are all equal to 1/M . An example of the μi

and λj for M = 15 is shown in Figure 11 (top). Another approach is to transform the
integral to one over [0,1] and use the composite midpoint rule on that new variable.
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Specifically, if we define

z = Q(λ) ≡
∫ λ

−∞
q(s) ds, (20)

i.e. Q is the cumulative density function for λ, and then for a general function f , the
integral ∫ ∞

−∞
f (λ)q(λ)dλ (21)

can be written as ∫ 1

0
f

(
Q−1(z)

)
dz. (22)

Thus, we define

λj = Q−1
(

j

M
− 1

2M

)
, (23)

for j = 1, . . . ,M and use the approximation (Equation 19). An example of the μi

and λj for M = 15 is shown in Figure 11 (middle). It is better still to use the Gaus-
sian quadrature (specifically, the Gauss-Hermite quadrature) in the λ direction. We
approximate the integral

∫ ∞

−∞
f (λ)q(λ)dλ ≈

N∑
j=1

vjf (λj ), (24)

where λj is the j th root of HN ; the N th ‘probabilists’ Hermite polynomial’ and the
weights vj are given by

vj = N !
[NHN−1(λj )]2

. (25)

(The first few probabilists’ - as opposed to physicists’ - Hermite polynomials are
H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, . . . .) Thus, we approximate the integral in
Equation 17 by the double sum:

∫ ∞

−∞

∫ 1

−1
s
(
V (μ,λ, t)

)
p(μ)q(λ)dμdλ ≈

M∑
j=1

10∑
i=1

vjwis
(
V (μi, λj , t)

)
. (26)

An example of the μi and λj for M = 15 is shown in Figure 11 (bottom).
The result of using these three different methods to allocate the gNa (and thus, to

select the reduced number of appropriately coupled neurons we simulate) is shown
in Figure 12. This figure shows the error in the calculated period as M is varied. (The
true period was calculated using the Gauss-Hermite quadrature with a large M in the
gNa direction.)

We see that as expected, the Gauss-Hermite quadrature performs the best, with
the error saturating between M = 10 and M = 20. (Recalling that we are using 10
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Fig. 12 Error in the calculated
period using three different
methods (see text) for σ = 0.25.
The dashed lines, drawn to
guide the eye, have slopes −1/2
(upper) and −1 (lower). For the
Monte Carlo simulations, the
average of 10 calculations for
each M is shown.

points in the μ direction, this is consistent with the idea that roughly the same number
of points should be used in each random direction.) Using the Monte Carlo method,
i.e. randomly choosing, the gNa gives convergence that scales as M−1/2. Uniformly
sampling the inverse cumulative distribution function gives an error that appears to
scale as M−1. This is at variance with the expected scaling of M−2 for the composite
midpoint rule applied to a function with a bounded second derivative, but the inverse
CDF of a normal distribution (i.e. Q−1(z)) does not have a bounded second deriva-
tive, and an error analysis of Equation 22 (not shown) predicts a scaling of M−1, as
observed.

6 Sparse grids

The process described above can obviously be generalised to more than two ran-
domly, but independently, distributed parameters. The distribution of each parameter
determines the type of quadrature which should be used in that direction, and the
parameter values and weights are formed from tensor products of the underlying
one-dimensional rules. However, the curse of dimensionality will restrict how many
random parameters can be accurately sampled. If we use N points in each of D ran-
dom dimensions, the number of neurons we need to simulate is ND .

One way around this problem is to use sparse grids [33, 34], as introduced by
Smolyak [35]. The basic idea is to use sparse tensor products, chosen in such a way
as to have similar accuracy to the corresponding full tensor product, but with fewer
grid points, and thus (in our case) fewer neurons to simulate. A general theory ex-
ists [33, 34], but to illustrate the idea, suppose we have two uncorrelated random
parameters, each is distributed uniformly between −1 and 1. A full tensor product
for the Gauss-Legendre quadrature using 11 points in each direction is shown in Fig-
ure 13.
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Fig. 13 Full tensor product
using 11 points in each direction
(121 points in total). The points
are the roots of P11, the 11th
Legendre polynomial.

To form a two-dimensional sparse grid using the Gauss-Legendre quadrature, we
first write the one-dimensional integration rule for integrating a function f as

∫ 1

−1
f (x)dx ≈ Ui(f ) ≡

Ni∑
j=1

wjf (xj ), (27)

where i ∈ N; wj are the weights, and xj are the nodes. We form a nested family of
such rules with index i where the correspondence between i and Ni is given in the
following:

i 0 1 2 3 4 · · ·
Ni 1 3 7 15 31 · · ·

i.e. Ni = 2i+1 − 1. Then, the level L rule in two spatial dimensions is

A(L,2) =
∑
|i|=L

(
Ui1 ⊗ Ui2

) −
∑

|i|=L−1

(
Ui1 ⊗ Ui2

)
, (28)

where i ∈ N
2 and |i| = i1 + i2. The approximation of the integral of f over the domain

[−1,1]2 is A(L,2)(f ). So for example, the level 2 rule (in 2 spatial dimensions and
using Gauss-Legendre quadrature) is

A(2,2) = U0 ⊗ U2 + U1 ⊗ U1 + U2 ⊗ U0 − (
U0 ⊗ U1 + U1 ⊗ U0). (29)

The grid for this rule is shown in Figure 14 (top), along with grids corresponding
to several of its components.1 Figure 14 (bottom) shows the grid for rule A(3,2).

Rules such as these can be constructed for an arbitrary number of spatial dimen-
sions, using a variety of quadrature rules (and possibly different rules in different
dimensions). Their advantage becomes apparent as the dimension of the space to be
integrated over (or in our case, the number of heterogeneous parameters) is increased.

1These sparse grids were computed using software from http://people.sc.fsu.edu/~jburkardt/.

http://people.sc.fsu.edu/~jburkardt/
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Fig. 14 Grids for rules A(2,2)

and A(3,2). Top: blue circles:
the grid for rule A(2,2) (i.e.
level 2 in 2 spatial dimensions)
using Gauss-Legendre
quadrature. Red crosses: grid
corresponding to U0 ⊗ U2 (one
point horizontally, 7 vertically).
Black dots: grid corresponding
to U1 ⊗ U1 (3 points both
horizontally and vertically). The
three black dots on the y-axis
correspond to U0 ⊗ U1, while
the three black dots on the
x-axis correspond to U1 ⊗ U0.
Bottom: the grid for rule A(3,2)

(i.e. level 3 in 2 spatial
dimensions). Rule A(2,2) has
21 grid points, and rule A(3,2)

has 73.

Fig. 15 Error in calculation of
period. This happens when four
distinct parameters are
simultaneously heterogeneous
(independently of one another)
for both full and sparse grids.
See text for details. N is the
number of neurons simulated.

To illustrate this, we consider as an example the model, Equations 1 and 2 with Iapp

uniformly spread between 17.5 and 32.5; the gNa uniformly spread between 2.55 and
3.05; Vsyn uniformly spread between −1 and 1; and VNa uniformly spread between
49 and 51, i.e. 4 independent random dimensions. A comparison of the error in cal-
culating the period of collective oscillation using full and sparse grids is shown in
Figure 15.

We see that for fixed N , the sparse grid calculation is approximately two orders
or magnitude more accurate than the full grid - implying, in turn, that the way we
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select the reduced number of neurons we retain to simulate the full system is critical.
This relative advantage is expected to increase as the number of distributed param-
eters increases. As an example of the growth in the number of grid points, a level
6 calculation in 10 dimensions uses fewer than one million points, and the result-
ing system can be easily simulated on a desktop PC. (Note that the grid points and
weights are calculated before the numerical integration starts, so the computational
cost in producing data like that shown in Figure 15 is almost entirely due to numer-
ical integration of the ODEs, which is proportional to the number of grid points, i.e.
neurons, used.)

7 Discussion

In this paper, we have presented and demonstrated the use of a computationally ef-
ficient method for systematically investigating the effects of heterogeneity in the pa-
rameters of a coupled network of neural oscillators. The method constitutes a model
reduction approach: By only considering oscillators with parameter values given by
roots of families of orthogonal polynomials (Legendre, Hermite, . . . ), we can use the
Gaussian quadrature to accurately evaluate the term coupling the oscillators, which
can be thought of as the discretisation of an integral over the heterogeneous dimen-
sion(s).

Effectively, we are simulating the behaviour of an infinite number of oscillators by
only simulating a small number of judiciously selected ones, modifying appropriately
the way they are coupled. When the oscillators are synchronised, or at a fixed point,
the function to be integrated is a smooth function of the heterogeneous parameter(s),
and thus, convergence is very rapid. The technique is general (although subject to
the restriction immediately above) and can be used when there is more than one
heterogeneous parameter, via full or sparse tensor products in parameter space. For
a given level of accuracy, we are simulating far fewer neurons than might naively
be expected. The emphasis here has been on computational efficiency rather than a
detailed investigation of parameter dependence.

The model we considered involved coupling only through the mean of a function,
s, of the variable Vi which, in the limit N → ∞, can be thought of as an integral
or, more generally, as a functional of V (μ). Thus, the techniques demonstrated here
could also be applied to networks coupled through terms which, in the continuum
limit, are integrals or functions of integrals. A simple example is diffusive coupling
[3]; another possibility is coupling which is dependent upon the correlation between
some or all of the variables. As mentioned, the technique will break down once the os-
cillators become desynchronised, as the dependence of state on parameter(s) will no
longer be smooth. However, if the oscillators form several clusters [14, 36], it may be
possible to apply the ideas presented here to each cluster, as the dependence of state
on parameter(s) within each cluster should still be smooth. Ideally, this reparametri-
sation would be done adaptively as clusters form, in the same way that algorithms for
numerical integration adapt as the solution varies [30]. Alternatively, if a single oscil-
lator ‘breaks away’ [27], the methods presented here could be used on the remaining
synchronous oscillators, with the variables describing the state of the rogue oscillator
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also fully resolved. More generally, there are systems in which it is not necessarily
the state of an oscillator that is a smooth function of the heterogeneous parameter, but
the parameters describing the distribution of states [37, 38], and the ideas presented
here could also be useful in this case.

The primary study with which we should compare our results is that of Rubin
and Terman [14]. They considered essentially the same model as Equations 1 and 2
but with heterogeneity only in the Iapp and, taking the continuum limit, referred to
the curve in (V ,h) space describing the state of the neurons at any instant in time
as a ‘snake’. By making various assumptions, such as an infinite separation of time
scales between the dynamics of the Vi and the hi , and that the dynamics of the hi

in both the active and quiescent phases is linear, they derived an expression for the
snake at one point in its periodic orbit and showed that such a snake is unique and
stable. They also estimated the parameter values at which the snake ‘breaks’ and
some oscillators lose synchrony. In contrast with their mainly analytical study, ours
is mostly numerical and thus does not rely on any of the assumptions just mentioned.
Using the techniques presented here, we were able to go beyond the work of Rubin
and Terman, exploring parameter space.

Our approach can be thought of as a particular parametrisation of this snake, which
takes into account the probability density of the heterogeneity parameter(s); we also
showed a systematic way of extending this one-dimensional snake to two and higher
dimensions. Another paper which uses some of the same ideas as presented here
is that of Laing and Kevrekidis [3]. There, the authors considered a finite network of
coupled oscillators and used a polynomial chaos expansion of the same form as Equa-
tion 12. However, instead of integrating the equations for the polynomial chaos coef-
ficients directly, they used projective integration [39] to do so, in an ‘equation-free’
approach [40] in which the equations satisfied by the polynomial chaos coefficients
are never actually derived. They also chose the heterogeneous parameter values ran-
domly from a prescribed distribution and averaged over realisations of this process in
order to obtain ‘typical’ results. Similar ideas had been explored earlier by Moon et
al. [27], who considered a heterogeneous network of phase oscillators.

Assisi et al. [22] considered a heterogeneous network of coupled neural oscil-
lators, deriving equations of similar functional form to Equations 9 and 11. Their
approach was to expand the variables in a way similar to Equation 12 but using
a small number of arbitrarily chosen ‘modes’ rather than orthogonal polynomials.
Their choice of modes, along with the fact that their neural model consisted of ODEs
with polynomial right hand sides, allowed them to analytically derive the ODEs sat-
isfied by the coefficients of the modes. This approach allowed them to qualitatively
reproduce some of the behaviour of the network such as the formation of two clusters
of oscillators. However, in the general case modes should be chosen as orthogonal
polynomials, the specific forms of which are determined by the distribution of the
heterogeneous parameter(s) [25, 26].

The network we considered was all-to-all coupled, and the techniques presented
should be applicable to other similar systems. The only requirement is that the rela-
tionship between the heterogeneity parameter(s) and the state of the system (possibly
after transients) be smooth (or possibly piecewise smooth). An interesting extension
is the case when the network under consideration is not all-to-all. Then, the effects of
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degree distribution may affect the dynamics of individual oscillators [38, 41, 42], and
if we have a way of parameterising this type of heterogeneity, it might be possible
to apply the ideas presented here to such networks. Degree distribution is a discrete
variable, and corresponding families of orthogonal polynomials exist for a variety of
discrete random variables [25, 26].
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