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Abstract Transient bursting behaviour of excitable cells, such as neurons, is a com-
mon feature observed experimentally, but theoretically, it is not well understood. We
analyse a five-dimensional simplified model of after-depolarisation that exhibits tran-
sient bursting behaviour when perturbed with a short current injection. Using one-
parameter continuation of the perturbed orbit segment formulated as a well-posed
boundary value problem, we show that the spike-adding mechanism is a canard-like
transition that has a different character from known mechanisms for periodic burst
solutions. The biophysical basis of the model gives a natural time-scale separation,
which allows us to explain the spike-adding mechanism using geometric singular
perturbation theory, but it does not involve actual bifurcations as for periodic bursts.
We show that unstable sheets of the critical manifold, formed by saddle equilibria
of the system that only exist in a singular limit, are responsible for the spike-adding
transition; the transition is organised by the slow flow on the critical manifold near
folds of this manifold. Our analysis shows that the orbit segment during the spike-
adding transition includes a fast transition between two unstable sheets of the slow
manifold that are of saddle type. We also discuss a different parameter regime where
the presence of additional saddle equilibria of the full system alters the spike-adding
mechanism.
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1 Introduction

How a single spike or a burst of spikes is generated and regulated for neuron cells
is one of the most fundamental questions in neuroscience [1]. Spike generation is
closely related to neuronal excitability, which is the ability of the cell’s membrane
potential to undergo a large excursion, called an action potential or a spike, when
subjected to a sufficiently strong stimulus [1–3]. An excitable cell either responds in
full to such a stimulus or not at all, which allows for a reliable transmission of infor-
mation. Therefore, the different mechanisms for excitability and bursting have been
widely studied; we refer to Izhikevich [4] for a comprehensive overview of mecha-
nisms for neurons. Excitable behaviour has also been reported to occur in many other
types of cells [1–3] as well as in physical systems, such as lasers [5, 6], electronic
circuits [7–10] and chemical reactions [11]. Neuronal excitability can be very sensi-
tive to even relatively small changes in, for example, the biophysical properties of a
neuron [12–14] or its morphology [15]. This parameter sensitivity indicates that dy-
namical systems theory is particularly suited for explaining the rich dynamics found
in excitable systems.

The classification of different bursting mechanisms was pioneered by Rinzel [16],
who used a system decomposition into slow and fast subsystems. He showed that the
burst can be divided into active (spiking) and silent phases, which follow different
types of attractors of the fast subsystem. Hence, a classification of the bursting oscil-
lators is provided by the structure of the bifurcation diagram of the fast subsystem.
Rinzel’s classification was extended in Izhikevich’s studies [1, 4]. As an alternative
approach, Golubitsky et al. [17] used singularity theory to classify the bifurcation di-
agrams of the fast subsystem and, hence, the different bursting mechanisms; see also
[18]. These studies are primarily for systems with one slow variable; see Smolen et
al. [19] for an extension to two slow variables and Ermentrout and Terman [3] for a
summary of these ideas along with new results.

A classification of bursting mechanisms, however, does not answer questions
about the number of spikes in a particular burst of the same type nor does it explain
possible transitions between spiking and bursting. While the latter has received con-
siderable attention over the years, the former has hardly been addressed. Terman [20]
analysed transitions between bursting and tonic (continuous) spiking in a pancreatic
β-cell model. He recognised the importance of connecting classical slow-fast anal-
ysis with full system bifurcation analysis and identified bifurcations of the periodic
bursting solutions that organise the transitions between different parameter regimes.
He further studied chaotic spiking that can arise in between such transitions [21]. Re-
cently, Benes et al. [22] and Kramer et al. [23] reported that a new type of torus canard
can play a role in the transition from spiking to bursting in a model of Purkinje cells.
Other recent studies particularly focus on spike-adding in a periodic bursting oscil-
lator; for example, see Govaerts and Dhooge [24], Guckenheimer and Kuehn [25],
Tsaneva-Atanasova et al. [26] and Linaro et al. [27]. These studies show that the
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spike-adding mechanism is formed by a pair of saddle-node bifurcations of periodic
orbits of the full system; bursts with different numbers of spikes are, in fact, different
periodic attractors of the full system that may coexist only if the number of spikes
differs by one [20, 26]. The recent study by Teka et al. [28] explains how one may
predict the precise number of spikes in a burst; here, the use of two slow variables
is essential. Methods to regulate the number of spikes are reported by Ghigliazza
and Holmes [29], where a minimal Hodgkin-Huxley model of bursting is proposed
to analyse spike-adding and transitions between bursting and tonic spiking in a more
general context.

As discussed by Izhikevich [4], the mechanisms for generating spikes do not de-
pend on whether the neuron exhibits spiking only as a transient phenomenon when
subjected to a strong enough stimulus or whether it is spiking or bursting continu-
ously. This is indeed the case if transient bursting is organised by the applied stimulus.
Applying a stimulus has the effect of changing the right-hand side of the underlying
system of ODEs. The bifurcation diagram of the corresponding fast subsystem typi-
cally no longer has a stable equilibrium that corresponds to the resting potential, and
a spike or burst arises from new attractors that exist only when the stimulus is on. As
soon as the stimulus is switched off, the system relaxes back to the resting potential.
Therefore, the mechanism is due to a change in the structure of the bifurcation dia-
gram, which depends on the strength of the applied stimulus. Studies of this nature,
where the type of burst is studied in dependence on the strength or duration of the
stimulus, have been done, for example, by Tran et al. [30], Kim et al. [31] and Stern
et al. [32].

In this paper, we investigate spike-adding in a transient burst in the model of
hippocampal pyramidal neurons from Nowacki et al. [13]. In contrast to the above
studies, the spike-adding occurs after the applied stimulus has been switched off.
Hence, the bursting behaviour is governed by the underlying bifurcation structure of
the original system, for which a stable equilibrium exists. The strength of the applied
stimulus must be such that a first action potential is generated, but the stimulus is not
responsible for generating any additional spikes. Our investigation can be compared
to excitability in laser systems [5, 6] where the response after an applied stimulus is
explained by the existence of a nearby homoclinic bifurcation with respect to a pa-
rameter. This mechanism is due to the presence of a saddle equilibrium that coexists
with the stable equilibrium (i.e., the resting potential). The interesting aspect about
our model is that there exists only a stable equilibrium, and we have been unable
to identify any nearby saddle-type invariant object in the parameter region of inter-
est that could organise homoclinic bifurcations. We explain the transient behaviour
following the ideas of Geometric Singular Perturbation Theory (GSPT) [33–36].

Another important difference with existing studies is that we do not rely on simu-
lations to study the effects of an applied stimulus in numerical experiments. Instead,
we use a continuation-based approach and show the process of spike-adding tran-
sitions during a transient burst in unprecedented detail, which is not possible using
brute-force simulation. Our numerical method is based on the continuation of orbit
segments as solutions of a two-point boundary value problem; this approach has al-
ready been applied to the bifurcation analysis of periodic orbits, including homoclinic
or heteroclinic bifurcations [37], and more recently for the computation of invariant
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manifolds [38] and so-called slow manifolds in systems with multiple time scales
[39, 40]. We divide the system into two separate orbit segments, with and without
current injection, which are coupled only by the boundary conditions. This allows us
to continue the orbit segments in a chosen parameter and analyse the precise nature of
their continuous deformation even over exponentially small parameter variations. We
complement this continuation with the computation of the two-dimensional critical
manifold of the fast subsystem, which comprises all the equilibria of the fast subsys-
tem parametrised by two slow variables. The critical manifold is folded and consists
of a number of stable and unstable sheets. In our setting, the unstable sheets are of
saddle type, and we will refer to them as saddle-unstable sheets. The fast subsystem
also has families of periodic orbits that emanate from Hopf bifurcations on the crit-
ical manifold, which give rise to the spiking behaviour during a burst. Our analysis
shows that, during the spike-adding transition, orbit segments trace saddle-unstable
slow manifolds that lie very close to corresponding saddle-unstable sheets of the crit-
ical manifold; the distance between these two manifolds is of the same order as the
ratio between the contraction/expansion rates towards and on the manifold, which
is organised by the difference between the slow and fast time scales [33, 41]. This
canard-like behaviour is very similar to behaviour during a spike-adding transition of
a periodic burst [25], but it does not involve bifurcations, and coexistence of bursts
with different numbers of spikes is not possible here. Thus, our analysis indicates that
it is the presence of canard-like behaviour that organises the spike adding.

As for periodic bursting, the spike-adding transition in our model occurs over an
exponentially small parameter interval [42–44]. Within this exponentially small pa-
rameter interval, we find an even smaller parameter interval during which the canard-
like orbit segment includes a fast transition from a saddle-unstable to another saddle-
unstable slow manifold. This phenomenon is similar to the so-called fold-initiated ca-
nards that have been observed for periodic orbits [45]. To understand this behaviour,
we study the associated slow flow on the critical manifold and identify the effect of
folds and folded singularities on the behaviour of the orbit segment. Our findings
complement the study for planar systems by Guckenheimer et al. [45] and confirm
that such fold-initiated canard-like behaviour occurs robustly during a spike-adding
transition due to continuity of the vector field with respect to the parameter.

Our study concerns the analysis of a spike-adding mechanism where the full sys-
tem has a unique stable equilibrium that does not undergo any bifurcations. We find
that, for different values of model parameters, the system can have additional unsta-
ble equilibria that alter the nature of the spike-adding mechanism. More precisely,
the appearance of two saddle equilibria on the critical manifold suppresses the fold-
initiated transition between saddle-unstable sheets and changes the behaviour of the
orbit segment. The presence of the saddle equilibria give rise to a mechanism that
is reminiscent of the excitability studies by Wieczorek et al. [5] and Krauskopf et
al. [6]; a new spike is added via a heteroclinic connection of the perturbed state to a
saddle equilibrium of the full system. However, this saddle equilibrium lies outside a
neighbourhood of the resting potential, and we observe a canard-like transition before
and after the heteroclinic connection that is similar to the canard-like transition that
occurs when no additional equilibria are present. We compute the critical manifold
for this situation and study the associated slow flow to explain this phenomenon; we
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find that the saddle equilibrium point lies in the middle of a saddle-unstable sheet of
the critical manifold, and it is an attractor with respect to the slow flow on the critical
manifold.

This paper is organised as follows: In the next section we present our model of the
study. In Section 3, we numerically identify the mechanism of spike-adding via con-
tinuation of the orbit segment. Next, in Section 4, we calculate the critical manifold of
the fast subsystem along with the slow flow to explain the transition to bursting. Here,
we also investigate the transition between two unstable slow manifolds of the saddle
type and the changes in the spike-adding mechanism when additional equilibria of
the full system are present. We end with a discussion in Section 5.

2 The model

We apply our analysis of transient bursts to pyramidal neuron cells from the CA1
and CA3 regions of the hippocampus. A detailed model of such neurons in Hodgkin-
Huxley formalism was presented by Nowacki et al. [13], but for the purpose of this
paper, we study a reduced version of this model. The simplified model consists of
four ionic currents, namely, fast and slow inward currents, denoted as IFI and ISI,
respectively, and fast and slow outward currents, denoted as IFO and ISO, respec-
tively. Inward currents are responsible for the depolarisation or increase of the mem-
brane potential, whereas outward currents hyperpolarise or decrease the membrane
potential and return the cell back to its resting state (a stable equilibrium) [2, 46].
The fast inward current IFI represents the fastest class of spike-generating Na+- and
Ca2+-currents. The rates of change of these currents are usually similar to that of the
membrane potential. Therefore, we assume that the gating of IFI is instantaneous [13,
46–48]. The slow inward current ISI mainly corresponds to the transient T-type Ca2+-
current [13, 49–51] and represents the low-voltage activated currents responsible for
shaping the subthreshold behaviour of the model. The fast outward current IFO rep-
resents high-voltage activated fast K+-currents that we base on the delayed rectifier
K+-current [13, 46, 47]. Finally, ISO represents muscarinic-sensitive K+-current [50,
52, 53], which has an activation rate of the same order as that of ISI.

We only consider the following variables as dynamic: the membrane potential V ,
the gating variables mSI, mFO and mSO that govern activation of the respective cur-
rents and the gating variable for inactivation of ISI, which we denote by hSI. Hence,
our reduced model is five dimensional and has the form

du
dt

= d

dt

⎛
⎜⎜⎜⎜⎝

V

mSI
mFO
mSO
hSI

⎞
⎟⎟⎟⎟⎠ = f(u, λ, Iapp) :=

⎛
⎜⎜⎜⎜⎝

f1(u, λ, Iapp)

f2(u, λ)

f3(u, λ)

f4(u, λ)

f5(u, λ)

⎞
⎟⎟⎟⎟⎠ . (1)

Here, u ∈ R
5 is the non-dimensionalised state vector, and Iapp is an applied current

that stimulates (perturbs) the cell model when it is non-zero. We specifically indicate
further parameter dependencies with the parameter vector λ ∈ R

k for some integer
k > 0. In this paper, we primarily focus on how the system depends on the maximal
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Table 1 Parameter values for
the simplified model (1) as
defined in (2)-(4)

Cm = 1.0 μF/cm2

Inward currents:

EI = 80.0 mV

gFI = 2.0 mS/cm2 gSI = 0.5 mS/cm2

VmFI = −25.0 mV VmSI = −54.0 mV VhSI = −56.0 mV

kmFI = 5.0 mV kmSI = 5.0 mV khSI = −8.5 mV

τmSI = 3.0 ms τhSI = 20.0 ms

Outward currents:

EO = −80.0 mV

gFO = 9.5 mS/cm2 gSO = 1.2 mS/cm2

VmFO = −6.0 mV VmSO = −20.0 mV

kmFO = 11.5 mV kmSO = 10.0 mV

τmFO = 1.0 ms τmSO = 75.0 ms

conductances of ISI and IFO; these parameters are likely to vary between neurons
due to different sizes and numbers of channels in different cells (even among the
same types of neurons). The right-hand side of (1) has the specific form that is well
known from Hodgkin-Huxley formalism: the dynamics of the membrane potential is
organised by the equations for the ionic currents, modelled as

Cm
dV

dt
= −(IFI + ISI + IFO + ISO) + Iapp

= −(
gFImFI∞(V )(V − EI) + gSIm

2
SIhSI(V − EI)

+ gFOmFO(V − EO) + gSOmSO(V − EO)
) + Iapp, (2)

where Cm is the membrane capacitance. Here, gx with x ∈ {FI,SI,FO,SO} are max-
imal conductances of the currents, and EI and EO are Nernst potentials of the in-
ward and outward currents, respectively. Note that IFI only depends on V , that is,
mFI = mFI∞(V ) as defined in (4) below. The dynamics of the gating variables is
modelled by

dx

dt
= x∞(V ) − x

τx

, where x ∈ {mSI,mFO,mSO, hSI}; (3)

the corresponding activation and inactivation steady-state functions x∞(V ) of the
respective currents, as well as mFI∞(V ), are given in Boltzmann form as:

x∞(V ) = 1

1+ exp(−V −Vx

kx
)
. (4)

Unless specified otherwise, the default values that we use for the parameters of this
simplified model are summarised in Table 1.

Figure 1 illustrates three classes of the responses of the simplified model obtained
by changing the maximal conductance gSI. These correspond to cell responses that
are typically observed experimentally. During the simulations, the model is perturbed
from its stable equilibrium by a short current injection whose duration guarantees
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Fig. 1 Responses of system (1)
to a current injection of
Iapp = 20 μA/cm2. The current
injection is applied from t = 50
to t = 53. Overlaid are the
responses corresponding to
different values of the maximal
conductance gSI (in mS/cm2) of
the slow inward current, namely,
gSI = 0.1, gSI = 0.5 and
gSI = 0.6, which are examples
of responses with no ADP, with
ADP and a three-spike burst
with ADP, respectively.

that the rapidly rising membrane potential will reach and cross its local maximum,
creating a fully developed spike; see [12, 13, 47, 48] for more details. Two of the three
typical responses shown in Figure 1 exhibit a positive deflection of the membrane
potential characterised by a ‘hump’ in the time trace of the membrane potential at the
end of the burst; this is called after-depolarisation (ADP), which can exist provided
that τmFO < τmSI [13]. Only the first response (lower curve) is a spike without ADP.
Note that the last trace, which corresponds to gSI = 0.6, the highest value of gSI in
the example, has sufficiently strong ISI to enable the membrane potential to cross the
excitability threshold during the ADP so that additional spikes are fired.

System (1) defined by Equations (2)-(4) evolves on multiple time scales be-
cause Cm/gFO (as an approximation of the time scale for V ) and τx with x ∈
{mSI,mFO,mSO, hSI} have different orders of magnitude. As indicated in Table 1,
mSO and hSI are slow variables that vary on a time scale that is (roughly) 10 times
slower than mSI and mFO and 100 times slower than V . In particular, this means that
our model is capable of firing an arbitrarily large number of spikes during the ADP.
More precisely, an increase in gSI, as in Figure 1 and throughout this paper, has the
net effect that the slow variable hSI becomes even slower so that more spikes can be
fired during the time it takes for hSI to relax back to its equilibrium value. In this
paper, we are not interested in the exact nature of this process, but we mention here
that a large number of spikes will also be accompanied by a noticeable reduction
in oscillation amplitudes. As hSI slows down, the dynamics will resemble more and
more the behaviour organised by slow passage through a Hopf bifurcation [26, 54].
We focus on the process of spike adding and take advantage of the difference in time
scales in Section 3, where it suffices to consider the time-scale separation between
the three fast variables V , mSI and mFO, and the two slow variables mSO and hSI.

The gating variables express the fractions of channels in a given state and nat-
urally range over the interval [0,1]. The natural range of the membrane poten-
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tial V is bounded by the two Nernst potentials [2, 46], i.e., EO ≤ V ≤ EI, where
EO = −80.0 mV and EI = 80.0 mV. It is beneficial for the numerical analysis if all
variables vary over a similar range. Therefore, the computations are done using the
scaled membrane potential V/kv , where kv = 100 mV. For our numerical investi-
gations, we used the continuation package AUTO [55, 56] for solving the boundary
value problems. All numerical simulations were done with XPP [57] using the front-
end package XPPy [58] in Python [59], and visualisations were done in Python using
Matplotlib [60] and Mayavi [61].

3 Identifying the spike-adding mechanism

Spike adding happens after a current injection, that is, in the regime where Iapp = 0.
Hence, any numerical investigation of the transient behaviour must take into account
a discontinuous jump from Iapp > 0 to Iapp = 0 on the right-hand side of Equation (2).
We view the orbit as a concatenation of two orbit segments that are the solution of
two boundary value problems and define appropriate boundary conditions to account
for the discontinuity in Iapp.

More precisely, we consider two successive orbit segments denoted as uON and
uOFF, during which current is injected (Iapp > 0) and during which it is not (Iapp = 0),
respectively; the concatenation of the two orbit segments uON and uOFF gives the
orbit segment that characterises the solution of interest. An illustration of this idea is
given in Figure 2, where uON is the segment coloured red, and uOFF is the segment
coloured blue. Both uON and uOFF are solution segments of (1) but for different values
of Iapp and for different integration times TON and TOFF, respectively. Using the set-
up that is standard in AUTO [55, 56], we formulate a boundary value problem using
scaled equations such that the total integration time for both segments is 1. That is,
uON and uOFF are solutions of

u′
ON(t) = TON f

(
uON(t), λ, Iapp

)
, (5)

u′
OFF(t) = TOFF f

(
uOFF(t), λ,0

)
. (6)

In order to obtain a unique solution pair (uON,uOFF), we must impose boundary
conditions. The boundary conditions for (5) are determined by the fact that the current
injection perturbs system (1) from its resting potential for a fixed duration TON, as
indicated by horizontal black and vertical red dashed lines. Hence, (5) is effectively
an initial value problem with uON(0) = u∗

OFF, where u∗
OFF is the stable equilibrium of

(1) with Iapp = 0; we solve for u∗
OFF implicitly in AUTO [55, 56], and the boundary

condition becomes

f
(
uON(0), λ,0

) = 0. (7)

Equations (5) and (7) uniquely define the orbit segment uON as a function of λ for
fixed TON. The orbit segment uOFF continues on from uON, but now, Iapp = 0. Hence,
uOFF is again effectively the solution of an initial value problem with initial condition

uOFF(0) = uON(1). (8)

Throughout this paper, we use Iapp = 20 μA/cm2 for a total duration TON = 3 ms,
which is long enough to drive the system past its threshold for the constants as in
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Fig. 2 Formulation of system (1) as the boundary value problem (5)-(8). The first (red) segment is the
solution uON(t) of (1) with Iapp = 20 μA/cm2 and uON(0) at the resting potential u∗

OFF, which is an
equilibrium of (1) for Iapp = 0 (indicated by the horizontal black dashed line). The total integration time
is TON = 3 ms, such that one action potential occurs. The second (blue) segment is the solution uOFF(t)

of (1) with Iapp = 0 and uOFF(0) = uON(1); the integration time TOFF is fixed to a large enough value so
that uOFF(1) ≈ u∗

OFF.

Table 1. We fix TOFF = 297 ms so that the total integration time of the orbit segment
is TON + TOFF = 300 ms, which is long enough for uOFF(1) to be (approximately)
at the resting potential. System (5)-(8) is now well posed and uniquely defines a λ-
dependent solution family.

As illustrated by the example in Figure 1, we expect that increasing gSI leads to
a spike-adding transition; a new spike is added on top of ADP when it reaches a
critical threshold of the membrane potential V . Hence, we set λ = gSI in (5)-(8) and
solve it by continuation in AUTO [55, 56], starting from gSI = 0.5 mS/cm2. Figure 3a
shows the resulting solution branch using the standard L2-norm of AUTO [55, 56]
as a measure. We observe that the solution norm exhibits a series of fairly constant
‘plateaus’ that are separated by sharp downward peaks. This behaviour seems similar
to that of spike-adding phenomena of periodic bursting solutions, which is organised
by pairwise saddle-node bifurcations of periodics [19, 26]. However, our numerical
set-up imposes a fixed initial condition rather than a periodicity constraint. Hence,
the uniqueness of the solutions of (5)-(8) prevents the possibility of coexisting orbit
segments, that is, the branch in Figure 3a cannot have folds with respect to gSI. The
orbit segments of selected solutions along the branch are shown in Figure 3b,c,d,e,f;
note that we present the time series up to t = 200 ms for clarity of the presentation.

Figure 3b shows our starting solution, i.e., a single spike followed by ADP. Along
the first plateau of the solution branch up to the first downward peak, all orbit seg-
ments are qualitatively like Figure 3b; in particular, the ADP is a small hump. As
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Fig. 3 Continuation for increasing gSI of solutions to system (5)-(8). Panel (a) shows the AUTO L2-norm
[55, 56] of the solution branch versus gSI and illustrates that the spike-adding mechanism happens sud-
denly via a pronounced drop in norm; panels (b), (c), (d), (e) and (f) show representative solutions along
the branch, indicated by the correspondingly labelled dots in panel (a), and illustrate that solutions during
a spike generation, i.e., panels (c) and (d), exhibit a stretched ADP that develops into a double step before
relaxing back to the resting potential.

we follow the solutions into the downward peak, the hump of the ADP for the or-
bit segments stretches out as shown in Figure 3c, which lies at the bottom of the
downward peak. Interestingly, as we follow the solution back up along the downward
peak, the orbit segment generates a double step in the ADP, as shown in Figure 3d;
we selected the orbit segment with the longest double step (with respect to time).
As we continue to trace the solution up along the downward peak, the small spike at
the end of the orbit segment grows into a fully developed spike, while the stretched
double step retracts; the orbit segment shown in Figure 3e is representative of such
a solution, and all orbit segments along the second plateau in Figure 3a are qualita-
tively like Figure 3e. Figure 3f represents a solution along the next plateau, which
exhibits three spikes that are created via the same process as explained above for
the two-spike burst. In fact, the same spike-adding process takes place for all spike-
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adding transitions via the downward peaks in Figure 3a. We emphasise here that the
stretched single- and double-step ADPs, as shown in Figure 3c,d, only exist along the
downward peaks in Figure 3a, that is, in the exponentially small parameter interval
during which a spike-adding transition occurs. Hence, such solutions are unlikely to
be observed in actual experiments, and they are also very difficult to find in numerical
experiments that use initial-value integration methods. The fact that a spike-adding
transition happens over an exponentially small parameter interval, during which the
solution measure changes rapidly, suggests that it is organised by the difference in
time scales present in system (1). Therefore, in order to obtain a better understand-
ing, we proceed by using GSPT [34–36, 41, 62, 63].

4 Spike-adding organised by the critical manifold

As mentioned in Section 2, the full five-dimensional system (1) contains a three-
dimensional fast subsystem with variables V , mSI and mFO. Since mSO and hSI are
much slower, the idea of GSPT is to assume that mSO and hSI do not change at all and
treat them as parameters. More precisely, we consider the singular limit of system (1)
and analyse the dynamics of the layer equation

du
dt

= d

dt

⎛
⎜⎜⎜⎜⎝

V

mSI
mFO
mSO
hSI

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

f1(u, λ, Iapp)

f2(u, λ)

f3(u, λ)

0
0

⎞
⎟⎟⎟⎟⎠ .

Furthermore, because we are interested in spike-adding phenomena after the brief
current injection, we set Iapp = 0.

The important objects of study in the singular limit are equilibria and periodic
orbits. Since mSO and hSI are parameters, these invariant objects occur in two-
parameter families. The (mSO, hSI)-dependent families of equilibria are known as
the critical manifold, which we denote by S. The equilibria on S can be stable or
unstable, determined with respect to the three-dimensional fast subsystem, and are
typically separated by curves of fold or Hopf bifurcations. Similarly, we can expect
the existence of (mSO, hSI)-dependent families of periodic orbits that emanate from a
curve of Hopf bifurcations on the critical manifold; these periodic orbits can again be
stable or unstable with respect to the three-dimensional fast subsystem. Typically, the
stable periodic orbits of the fast subsystem organise the spiking phase of the bursting
oscillators [16, 19, 26].

The critical manifold S, when considered in the full five-dimensional phase space
of system (1), is a two-dimensional surface, or collection of surfaces, and the asso-
ciated families of periodic orbits form a three-dimensional manifold, or collection of
manifolds, that we denote by P . Together, these collections of manifolds organise the
behaviour of solutions of (1). If mSO and hSI vary slowly enough, then GSPT guar-
antees that a solution of (1) (with Iapp = 0) will trace attracting sheets of S or P that
correspond to the (mSO, hSI)-dependent families of attractors of the fast subsystem
[41]. For example, the transient spikes of system (1) trace the manifold P a that cor-
responds to the family of attracting periodic orbits of the fast subsystem, while mSO
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and hSI are slowly varying [16, 64]. More precisely, solutions of (1) lie on so-called
slow manifolds that are perturbations of the different sheets of S and P from the
singular limit [41]. Solutions of (1) are characterised by fast transitions between, fol-
lowed by exponential contraction onto the slow manifolds. The essential difference in
behaviour during a spike-adding transition is the fact that the solution of (1) contains
a segment that traces a slow manifold associated with a sheet of S that is unstable
(of saddle type) rather than attracting; see also [25, 34, 36, 63]. While technically the
solutions of (1) trace slow manifolds, we will abuse notation and write ‘sheet of S’
where we mean ‘slow manifold corresponding to the sheet of S.’

The geometry of S and P depends on the values of the other parameters in the
system, such as the conductance gSI. In order to illustrate the spike generation, we
consider the fast subsystem at the fixed value gSI = 0.5615 mS/cm2, which is approx-
imately at the first downward peak in Figure 3a where the solution changes from a
one-spike to a two-spike transient burst. Figure 4 shows the critical manifold S for
this value of gSI from two different viewpoints; in both views, the embedding into the
five-dimensional phase space of (1) is projected onto the (hSI,mSO,V )-coordinates.
The surface was obtained as follows: for ten fixed values ofmSO uniformly distributed
in the interval [0,0.4], we computed the hSI-dependent curves of equilibria via stan-
dard equilibrium continuation with AUTO [55, 56], where we allowed hSI to extend
outside its physiological range of [0,1]; the surface S was obtained via concatenation
of this collection of ten mSO-slices, and it is shown in Figure 4 with hSI restricted to
the interval [−1,1] for the sake of presentation.

The critical manifold S in Figure 4 forms a single manifold, containing four fold
curves, and can be divided into six different sheets depending on the stability type
of the equilibria; the stable sheets are coloured black and the unstable ones red. The
bottom (black) sheet is labelled Sa

1 , and it contains the resting potential as a stable
equilibrium on S that is an actual equilibrium of the full five-dimensional system (1)
with Iapp = 0. The sheet Sa

1 is connected via a curve F0 of fold bifurcation points to
the sheet labelled Sr

1 in Figure 4; this fold curve F0 lies outside hSI ∈ [−1,1] and is
not shown in Figure 4. The sheet Sr

1 is a two-parameter family of equilibria with two
stable and one unstable eigenvalues. Hence, Sr

1 has a four-dimensional stable and a
three-dimensional unstable manifold. The next two sheets labelled Sa

2 and Sr
2 have

the same stability types as Sa
1 and Sr

1 , respectively; Sa
2 is connected to Sr

1 via the
fold curve F1 and Sa

2 and Sr
2 are separated by the fold F2. Note that the sheet Sa

2 is
nearly vertical (with respect to V ), as shown in Figure 4; this is not an artefact of the
chosen projection. The sheet Sr

3 is connected to Sr
2 via the fold curve F3, and this

sheet consists of equilibria with one stable and two unstable eigenvalues, that is, Sr
3

has a three-dimensional stable and a four-dimensional unstable manifold. The sheet
Sr
3 ends at the curve H of Hopf bifurcations, after which it becomes stable again and

is labelled Sa
3 . An overview of the different sheets and their stability properties is

provided in Table 2.
The maxima and minima of the families of periodic orbits originating from H

are shown in Figure 4c,d, using the same two viewpoints as in panels (a) and (b),
respectively. The Hopf bifurcation is subcritical along the entire curve so that the em-
anating family of periodic orbits is unstable (of saddle type), with four-dimensional
stable and unstable manifolds; we coloured this family magenta and labelled it P r .
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Fig. 4 Critical manifolds for gSI = 0.5615 mS/cm2 embedded in the five-dimensional phase space of
system (1). Shown are projections onto the (hSI,mSO,V )-coordinates; panels (a) and (b) show two dif-
ferent viewpoints of the surfaces of equilibria, coloured black when stable and red when not; from the
same viewpoints, panels (c) and (d) also show maxima and minima with respect to V of the two-parameter
families of periodic orbits, coloured blue when stable and magenta when not. The equilibrium manifold
splits into six sheets, labelled Sa

1 , Sr
1 , Sa

2 , Sr
2 , Sr

3 and Sa
3 , that are separated by four fold curves, F0 (not

shown), F1, F2 and F3, and a curve of Hopf bifurcations labelled H . The saddle and attracting families of
periodic orbits are labelled P r and Pa , respectively. See also Table 2.

The family of periodic orbits becomes stable via a fold of periodic orbits, after which
it is coloured blue and labelled P a , and ends in a homoclinic bifurcation involving
equilibria on the sheet Sr

1 . We refer again to Table 2 for an overview of the different
families and their stability properties.

Figure 5 illustrates how orbit segments selected from the first downward
peak in Figure 3a trace the different sheets of the critical manifold S for gSI =
0.5615 mS/cm2; these orbit segments are all for virtually the same values gSI ≈
0.5615 mS/cm2 that differ only in the seventh decimal point, during which the man-
ifolds S and P hardly change at all. This extreme sensitivity of gSI is a serious
challenge for numerical computations, which we overcome by using continuation in
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Table 2 Stability properties of the critical manifold S and the manifold P of periodic orbits

Two-dimensional critical manifold S Three-dimensional manifold P

Sa
1 Sr

1 Sa
2 Sr

2 Sr
3 Sa

3 P r P a

Dimension stable manifold 5 4 5 4 3 5 4 5

Dimension unstable manifold N/A 3 N/A 3 4 N/A 4 N/A

Overview of the different sheets and stability properties of the critical manifold S and the manifold P of
periodic orbits for the simplified model (1) with gSI = 0.5615 mS/cm2; the number of sheets, as well as
their stability, does not change for any of the other choices of gSI considered in this paper.

Fig. 5 Orbit segments uOFF(t) of the boundary value problem (5)-(8). Orbit segments uOFF(t) for
gSI ≈ 0.5615 mS/cm2 overlayed on the critical manifolds of Figure 4 with gSI = 0.5615 mS/cm2. The
orbit segments are selected along the first downward peak in Figure 3a; panel (a) shows an orbit segment
just before the minimum of the peak in Figure 3a is reached; panel (b) shows one shortly after; panel (c)
shows the orbit segments labelled (d) in Figure 3a; and panels (d), (e) and (f) show the spike generation as
the orbit segments are continued until the start of the next ‘plateau’ in Figure 3a.

AUTO [55, 56] of the orbit segments defined by (5)-(8). For clarity of the presenta-
tion, we show only the segment uOFF(t), that is, after the current injection, depicted
as a blue gradient (cyan to magenta) to visualise its evolution in time. In each panel
of Figure 5, the orbit segment starts from uOFF(0) = uON(1), which is located at
the top-left in each panel, above the sheet Sa

3 ; since gSI hardly changes, uOFF(0) is
virtually the same point in all of these panels. The orbit segments uOFF(t) traverse
the critical manifold S before reaching the stable equilibrium of the full system (1),
which lies on the bottom stable sheet Sa

1 . Recall that the full phase space is five di-
mensional, and Figure 5 may show intersections that are due to projection onto the
(hSI,mSO,V )-coordinates; Figure 5 gives the best possible projection and viewpoint
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to illustrate the location of the one-dimensional orbit segments relative to S. Some
anomalous intersections remain at isolated points, e.g., the intersection with the sheet
Sa
3 of S, but the observation that uOFF(t) traces sheets of S is real, also in the full

five-dimensional space.
The spike-adding process occurs along the downward peak in Figure 3a, during

which the parameter gSI remains almost fixed, but the orbit segments of system (5)-
(8) change dramatically. We observe the formation of a stretched ADP, which initially
gets increasingly longer and shortens again as we follow the orbit segments along
the downward peak in Figure 3a. This transition is initiated by the fact that, at the
special value gSI ≈ 0.5615 mS/cm2, the injected current perturbs the orbit segment
such that uON(1) = uOFF(0) lies almost on the four-dimensional stable manifold of
the saddle-unstable sheet Sr

1; more precisely, Sr
1 has a corresponding slow manifold

with a corresponding finite-time stable manifold that uON(1) = uOFF(0) comes close
to. The closer uON(1) = uOFF(0) lies to this four-dimensional manifold, the closer
the corresponding orbit segment comes to the slow manifold associated with Sr

1 and
the longer it will trace this slow manifold. We approximate the slow manifold by the
critical manifold Sr

1 , and Figure 5a shows the orbit segment from Figure 3c, which
traces Sr

1 almost up to the fold F1 before it drops down to Sa
1 and converges to the

resting potential.
Figure 5b,c,d,e,f illustrates orbit segments for the second upward part of the down-

ward peak in Figure 3a. Interestingly, a double-step ADP is created via a transition
from Sr

1 to Sr
2 as shown. The orbit that was previously shown in Figure 3d traces

both saddle-unstable sheets Sr
1 to Sr

2 of S all the way up to the fold F3. This tran-
sition from Sr

1 to Sr
2 is, in fact, a robust part of the spike-adding process that is a

continuous (parameter-dependent) variation of the case where the folds F1 and F2
are absent, that is, where Sr

1 connects directly to Sr
3; see Section 4.2 for more details.

After reaching the top fold F3, the membrane potential V initially increases instead
of immediately decreasing down to the stable sheet Sa

1 , and a small spike is created.
As we continue to follow the solution up along the downward peak, the spike part of
the orbit segment grows and moves back towards the attracting periodic orbit family
P a , as illustrated in Figure 5d,e. Finally, as shown in Figure 5f, the orbit segment
traces Sr

1 for only a very short time before the second spike occurs; this orbit segment
is selected almost at the end of the downward peak, after which orbit segments stop
tracing Sr

1 altogether, and the transition from a one- to two-spike transient burst ends.
We refer to Govaerts and Dhooge [24], Guckenheimer and Kuehn [25], and Osinga
et al. [65] for similar transitions of periodic bursting oscillators.

We remark here that the manner of eventual convergence to the resting potential
depends on the nature of the lift-off from the slow manifolds that correspond to the
sheet Sr

1 or Sr
2 . Recall that both sheets Sr

1 and Sr
2 of the critical manifold S have

three-dimensional stable manifolds; see Table 2. This means that the associated slow
manifolds have a one-dimensional repelling fast component [41], and orbit segments
that trace these saddle-unstable slow manifolds can leave it only along a single fast
direction. We can see this in Figure 5 as a lift-off from Sr

1 ‘down’ in V , shown in
Figure 5a, or a lift-off from Sr

1 ‘up’ in V , shown in Figure 5f; this uniquely defined
change in direction along the one-dimensional repelling fast component is real and
not just due to the projection onto (hSI,mSO,V )-space. The same holds for the sheet
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Sr
2 , for which Figure 5b,e is a good example that also shows the required lift-off up

from Sr
1 in order to reach Sr

2 . In what follows, the notions up and down are with
respect to this uniquely-defined change in direction.

The behaviour of the orbit segment of system (1) in relation to the critical manifold
S of the fast subsystem that corresponds to the first downward peak in Figure 3a is
representative for what happens along the other downward peaks in Figure 3a. Each
time gSI reaches a special value such that the orbit segment comes close enough to the
four-dimensional stable manifold of Sr

1 , it gets trapped onto Sr
1 (or, more precisely,

the corresponding saddle-unstable slow manifold) for increasingly longer times, and
the next spike-adding transition begins. For the parameters of Table 1, we found that
this process always includes a transition between two saddle-unstable sheets, which
organises the double-step ADP solutions. As mentioned before, the two sheets Sr

1
and Sr

2 together are perturbations of a single sheet connected to F3 that can be ob-
tained continuously via a small parameter variation (using a suitable parameter from
Table 1), such that the fold curves F1 and F2 disappear in a curve of cusp bifur-
cations. Therefore, in the next section, we first explain the jump at the end of the
canard-like behaviour, that is, the behaviour near the fold F3 that separates the two
saddle-unstable sheets Sr

2 and Sr
3 . We then discuss the transition between Sr

1 and Sr
2

in Section 4.2. Section 4.3 illustrates how the spike-adding mechanism can change
when additional equilibria are present.

4.1 Slow flow on the critical manifold near F3

Let us first focus our attention on the behaviour near the fold F3, that is, the transition
from Figure 5c to Figure 5d. The behaviour near folds can be explained by analysis
of the slow flow on the critical manifold S [63]. The slow flow on S is defined by the
differential algebraic system ⎛

⎜⎜⎜⎜⎝

0
0
0

ṁSO

ḣSI

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

f1(u, λ)

f2(u, λ)

f3(u, λ)

f4(u, λ)

f5(u, λ)

⎞
⎟⎟⎟⎟⎠ . (9)

Here, we always have Iapp = 0. Recall that the gating variables of (1) are only coupled
through the membrane potential V . In fact, it is easy to solve equations f2(u, λ) = 0
and f3(u, λ) = 0 explicitly, which gives us the solutions for the fast gating variables
mSI = mSI∞(V ) and mFO = mFO∞(V ). We substitute these solutions into f1 to obtain⎛

⎝ 0
ṁSO

ḣSI

⎞
⎠ =

⎛
⎝f ∗

1 (V ,mSO, hSI, λ)

f ∗
4 (V ,mSO, λ)

f ∗
5 (V ,hSI, λ)

⎞
⎠ ,

that is, the slow flow on the two-dimensional critical manifold S is defined by two
ordinary differential equations for mSO and hSI and a single algebraic constraint
f ∗
1 (V ,mSO, hSI, λ) = 0. Unfortunately, S is folded with respect to V so that mSO

and hSI do not uniquely define V ; however, the algebraic constraint does uniquely
define mSO or hSI from given pair (V ,mSO) or (V ,hSI), respectively; compare also
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Fig. 6 Phase portraits on the sheets Sr
2 and Sr

3 of the critical manifold S near the fold F3. Panel (a) shows
a projection onto the (mSO,V )-plane of a trajectory of the desingularised slow flow (11), which converges
to an attracting focus on F3 (grey line), and panel (b) shows projected trajectories of the slow flow (9).
The repelling and attracting nature of F3 is indicated by light- and dark-green colours, respectively.

Figure 4a,b. Hence, it is advantageous to express the slow flow in terms of only one
of the slow variables, mSO or hSI, together with the fast variable V .

We choose to work with V and mSO. If we formally differentiate the algebraic
constraint, we obtain⎛

⎜⎝ V̇

ṁSO

⎞
⎟⎠ =

⎛
⎜⎝

[
−∂f ∗

1

∂V

]−1[ ∂f ∗
1

∂mSO
f ∗
4 + ∂f ∗

1

∂hSI
f ∗
5

]

f ∗
4

⎞
⎟⎠ , (10)

where hSI is uniquely determined from f ∗
1 (V ,mSO, hSI, λ) = 0. We refer to

Desroches et al. [63] for more details on this step. Note that (10) becomes singu-
lar when ∂f ∗

1 /∂V = 0, that is, precisely where S has folds with respect to V . We
can desingularise the flow by scaling time with the factor −∂f ∗

1 /∂V . This rescaling
reverses the direction of the time whenever ∂f ∗

1 /∂V > 0, and we obtain the desingu-
larised slow flow in the form⎛

⎜⎜⎜⎜⎝
V̇

ṁSO

0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

∂f ∗
1

∂mSO
f ∗
4 + ∂f ∗

1

∂hSI
f ∗
5

−∂f ∗
1

∂V
f ∗
4

f ∗
1

⎞
⎟⎟⎟⎟⎠ . (11)

The actual slow flow on S is now defined by the desingularised slow flow (11)
where we must take into account the time reversal in the regimes where ∂f ∗

1 /∂V > 0.
Figure 6 illustrates this for a neighbourhood of the fold F3 on S that separates the
sheets Sr

2 and Sr
3; we have ∂f ∗

1 /∂V < 0 on Sr
3 and ∂f ∗

1 /∂V > 0 on Sr
2 . The phase

portraits in Figure 6 are projected onto the (mSO,V )-plane. Figure 6a shows how a
trajectory of (11) near F3 (grey line) is attracted to a focus equilibrium of the desingu-
larised slow flow, marked with a black dot on F3. Figure 6b shows the corresponding
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Fig. 7 The slow flow on S near the top fold F3. Vectors of the slow flow on S are shown together with the
orbit segment from Figure 5c. The direction of flow on S is indicated by the arrows where hotter colours
correspond to vectors with larger magnitudes. The folded focus is the black dot on F3 with the uniformly
repelling and attracting parts of F3 coloured light and dark green, respectively. Panels (a) and (b) show the
process from two opposite viewpoints, and panels (c) and (d) show corresponding close-up views near F3.

projection of the slow flow (9) on S; note the change in direction of the flow for the
region where ∂f ∗

1 /∂V > 0. The fold F3 in Figure 6b is now divided into two parts, a
repelling segment on the left side of the focus equilibrium (light-green line) and an
attracting segment on the right side of the focus equilibrium (dark-green line). In fact,
the focus equilibrium is no longer a focus; it has become a folded singularity or, more
precisely, a folded focus. We refer to Wechselberger [36] and Desroches et al. [63]
for more details. Figure 7 shows the sheets Sr

2 and Sr
3 of the critical manifold near the

folded singularity, with the orbit segment from Figure 5c depicted by a blue-gradient
curve as before; panels (a) and (b) provide two opposite viewpoints, and panels (c)
and (d), two corresponding close-up views. The slow flow is visualised as a vector
field on S, where hotter colours depict vectors with a higher magnitude (the length of
the vectors is constant for clarity of presentation). The fold F3 in Figure 7 is coloured
the same dark and light green as in Figure 6b.
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Figure 7a,b shows a projection onto (hSI,mSO,V )-coordinates of how the orbit
segment follows the slow flow on Sr

2 as it approaches F3. The first part of the orbit
segment lies slightly above (relative to this projection) Sr

1 , and after a jump, another
part of this orbit segment lies slightly below Sr

2 . In a neighbourhood of the folded
focus on the fold curve F3, the slow flow has the form of large semi-cycles that cause
the orbit segment to trace Sr

2 laterally and, at the same time, push it toward F3. Since
the flow on the top sheet Sr

3 also points towards F3, as shown in Figure 7c,d, the
orbit segment cannot pass F3 and reaches a so-called jump point; compare also with
Figure 6b. At the jump point, the fast directions of the flow take over, which causes
the formation of a small spike as the orbit segment leaves S; see also Figure 5c. Let
us emphasise here that the behaviour of the orbit segments near F3 does not involve
interactions with the slow flow on Sr

3; the small spike and subsequent drop down to
Sa
1 do not intersect the surfaces Sr

3 and Sr
2 . As mentioned earlier in this section, the

actual spike formation develops as soon as an orbit segment has reached F3. After
reaching F3, the orbit segment will lie slightly above (relative to this projection) Sr

2
and experience a lift-off up from Sr

2 (or later only from Sr
1 as shown in Figure 5f). The

spike-formation takes place on the fast time scale, and any perceived intersections
with Sr

3 and Sr
2 are due to the projection onto (hSI,mSO,V )-coordinates.

4.2 Slow flow of the critical manifold near the folds F1 and F2

The formation of a new well-developed spike occurs over an exponentially small pa-
rameter interval gSI ≈ 0.5615 mS/cm2 for which the effect of the injected current
is precisely such that the orbit segment comes close to the four-dimensional stable
manifold of Sr

1 . The behaviour of the orbit segment near the top fold F3 corresponds
to the onset of such a new spike, but the process of reaching F3, as illustrated in
Figure 5a,b, as well as the further development of the spike, as illustrated in Fig-
ure 5d,e,f, involves the creation of a double-step ADP; this behaviour is organised
by a (fast) jump from Sr

1 to another saddle-unstable sheet Sr
2 . Such a jump, which

is actually a jump between the two corresponding saddle-unstable slow manifolds, is
a phenomenon that occurs robustly as part of the spike-adding mechanism and has
previously been observed for periodic orbits in planar systems; it was reported as a
new type of canard called fold-initiated canards in a study by Guckenheimer et al.
[45], and a slightly different version termed ducks with relaxation is discussed by
Arnol′d [66, Ch.4, Sec.5.4]. In fact, the behaviour we observe in our model is essen-
tially planar and very similar to the example discussed by Guckenheimer et al. [45].
Indeed, there are no folded singularities on the folds F1 and F2, which means that
each fold point has the same effect on the dynamics, and the slow flow is essentially
one dimensional. Furthermore, the repelling fast component of the slow manifolds
associated with Sr

1 and Sr
2 is one dimensional as well.

The presence of folds F1 and F2 results in the formation of a double-step ADP
during the spike-adding process; see Figure 5a,b. The double-step creation is a direct
consequence of the fact that the direction of the slow flow on S is transverse to both
fold curves F1 and F2; this is illustrated in Figure 8. Figure 8a shows the same orbit
segment as in Figure 5a, and Figure 8b,c shows two subsequent orbit segments that
both occur before the case shown in Figure 5b. As before, the orbit segments are
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Fig. 8 The slow flow on S in the vicinity of the two folds F1 and F2. The folds F1 and F2 mark the
transition of the orbit segment between the two saddle-unstable sheets Sr

1 and Sr
2 ; the direction of flow

on S is indicated by the arrows where hotter colours correspond to vectors with larger magnitudes. The
attracting fold F1 is dark green, and the repelling fold F2 is light green. Panels (a), (b) and (c) show the
same perspective with orbit segments that almost reach F1, reach F1 via the attracting sheet Sa

2 and reach
F2 with a jump from Sr

1 to Sr
2 , respectively.

depicted as blue-gradient curves, and the colour-coded vectors indicate the slow flow
on S. We observe that the orbit segment in Figure 8a exhibits a lift-off down from Sr

1
before a fast jump down to Sa

1 returns the system to its resting potential, while the
two orbit segments in Figure 8b,c exhibit a lift-off up from Sr

1 . These orbit segments
are all part of the same continuous one-parameter family of orbit segments that trace
Sr
1; each orbit segment corresponds to a unique value of gSI even though we always

have gSI ≈ 0.5615 mS/cm2 and the variation is exponentially small, occurring only
in the seventh decimal place.

Let us consider this continuous one-parameter family of orbit segments as iden-
tified by the moment of lift-off (first down and then up) from Sr

1 . At the start of the
spike-adding process, orbit segments trace only the saddle-unstable sheet Sr

1 before a
lift-off down to Sa

1 returns the system to its resting potential; the example in Figure 8a
shows an orbit segment that almost reaches F1. As gSI ≈ 0.5615 mS/cm2 increases
continuously (but only exponentially small), the orbit segments come increasingly
closer to Sr

1 until one actually reaches F1; these orbit segments grow increasingly
longer stretched ADPs.

Using the analysis via the desingularised slow flow (11) as derived in Section 4.1,
we can decide what happens when an orbit segment reaches F1. We find that the
desingularised slow flow (11) does not have any equilibria in the neighbourhood of
the two folds F1 and F2, which means that there are no folded singularities on either
F1 or F2; the fold curve F1 is uniformly attracting, which we indicated by a dark-
green colour, and F2 is uniformly repelling, indicated by a light-green colour. Hence,
upon reaching F1, the orbit segment simply jumps down toward the resting potential,
and subsequent orbit segments exhibit a lift-off up from Sr

1 . Since the sheet S
a
2 on the

other side of F1 is attracting, the fast directions will push these orbit segments toward
Sa
2 , provided that the lift-off up from Sr

1 occurs not too far away from F1. Note that
the slow flow on Sa

2 points back to F1, so orbit segments that reach Sa
2 will flow to

F1 and again drop down to Sa
1 ; an example is shown in Figure 8b.

As we continue to increase gSI ≈ 0.5615 mS/cm2 ever so slightly, orbit segments
will converge to Sa

2 closer and closer near F2, until the lift-off up from Sr
1 happens
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earlier, far enough from F1, such that they may reach F2. In order to determine what
happens when an orbit segment reaches F2, we must remember that system (1) and,
hence, the slow flow on S depend continuously on gSI. This means that the family
of orbit segments is also continuous, and the orbit segment that reaches F2 is a con-
tinuous variation of an orbit segment that experiences a lift-off up from Sr

1 later so
that it still converges to Sa

2 and flows back to F1 as well as an orbit segment that
experiences a lift-off up from Sr

1 earlier so that it misses F2 altogether and forms a
well-developed spike as illustrated in Figure 5f. Therefore, the family of orbit seg-
ments must include a subfamily of orbit segments that experience a lift-off from Sr

2 .
Just as for Sr

1 , the lift-off will first be down as a continuous variation from the or-
bit segments that flow along Sa

2 and then up to transform into an orbit segment that
misses F2 altogether. This subfamily exists in a (doubly) exponentially small param-
eter regime of fold-initiated canard behaviour [45] and consists of orbit segments that
exhibit a double-step ADP.

Another way to understand this phenomenon is in terms of singularity theory,
which suggests that Sr

1 and Sr
2 are part of the same surface that unfolds a cusp singu-

larity. Recall that the critical manifold S is a collection of families of equilibria of the
fast subsystem of (1); the folds F1 and F2 are curves of saddle-node bifurcations that
exist robustly in the (mSO, hSI)-parameter plane organised by the two slow variables.
Since F1 and F2 are typically not parallel, they will meet; note that F1 and F2 may
need to be extended into an unphysical parameter regime of the (mSO, hSI)-plane.
Singularity theory tells us that the two fold curves F1 and F2 typically meet at a cusp
point and end there, which means that the two sheets Sr

1 and Sr
2 merge into one in

this region of the (mSO, hSI)-plane. The existence of a double-step ADP then merely
depends on the location relative to the cusp point of the interaction between the orbit
segments and the critical manifold S. We remark that a small change in one or more
of the parameters given in Table 1 may move the cusp point into the physical regime
or such that F1 and F2 no longer exist for physiologically realistic values of mSO and
hSI; in the latter case, the spike-adding transition will not feature a double-step ADP.

4.3 Spike-adding when additional equilibria are present

It turns out that the spike-adding mechanism organised by canard-like behaviour
during the downward peaks of Figure 3a always features a double-step ADP stage
involving a jump between Sr

1 and Sr
2 . Hence, each downward peak in Figure 3a

corresponds to a qualitatively similar transition as discussed for the first one at
gSI ≈ 0.5615 mS/cm2. If we increase gFO from the fixed value gFO = 9.5 mS/cm2

that was used in Figure 3 to the new value gFO = 9.6 mS/cm2, then the nature of
spike adding changes due to the presence of additional unstable equilibria of sys-
tem (1). If we again continue the two-point boundary value problem (5)-(8) as before
with λ = gSI but gFO = 9.6 mS/cm2 set to its new value, we get a bifurcation diagram
similar to the one for gFO = 9.5 mS/cm2 shown in Figure 3. In fact, the spike-adding
mechanism for the first four additional spikes involves a double-step ADP stage as
we have seen in the previous section. However, for gSI ≈ 0.7672 mS/cm2, that is,
just before the transition from five to six spikes, a saddle-node bifurcation occurs on
the saddle-unstable sheet Sr

1 . This creation of two new (unstable) equilibria prevents
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Fig. 9 The critical manifold calculated for gFO = 9.6 mS/cm2 and gSI = 0.7842 mS/cm2 projected onto
(hSI,mSO,V )-space. Superimposed in the left and right column are orbit segments with gSI ≈ 0.7842
selected from the falling and rising slopes of the downward peak, respectively. Panels (a) and (b) show an
overall view, and panels (c) and (d) are enlargements near F1 and F2 along with the associated slow flow.
The two unstable equilibria s1 and s2 of the full system are marked with black and red dots because they
are an attractor and a saddle on Sr

1 , respectively.

a double-step ADP stage; the spike-adding mechanism only involves orbit segments
exhibiting a stretched ADP with a singe step, and there is no longer a jump between
saddle-unstable slow manifolds.

Let us focus on the transition from a burst with five to one with six spikes, which
takes place at gSI ≈ 0.7842 mS/cm2. For this value of gSI, there exists three equilib-
ria, but only one is stable so that there is no bistability. The stable equilibrium is the
resting potential on Sa

1 . The other two equilibria are saddles, one with one and one
with two unstable eigenvalues denoted s1 and s2, respectively; these additional saddle
equilibria are located on Sr

1 . We calculate the critical manifold S of the fast subsys-
tem for gSI = 0.7842 mS/cm2; it is shown in Figure 9 projected onto (hSI,mSO,V )-
space. Figure 9 illustrates that the critical manifold does not change qualitatively for
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higher values of gFO and gSI; compare with Figure 4. Two orbit segments, one se-
lected from the falling slope and one from the rising slope of the downward peak at
gSI ≈ 0.7842 mS/cm2, are superimposed onto S; see Figure 9a,b with enlargements
in Figure 9c,d, respectively. As before, only the part of the orbit segments that starts
after the current injection is shown, so only the downward part of the first of the five
spikes is visible. The enlargements in Figure 9c,d also show the slow flow on S in
a neighbourhood of the two equilibria and better visualise the interaction of the two
orbit segments with s1 and s2. The equilibria s1 and s2 are both saddles, but with re-
spect to the slow flow on S, the equilibrium s1 is stable (black dot) and s2 is a saddle
(red dot).

The value gSI ≈ 0.7842 mS/cm2 for this case with gFO = 9.6 mS/cm2 is again spe-
cial because at the end of the oscillations, when the orbit segment reaches the family
of homoclinic orbits where P a ends, it lies extremely close to the four-dimensional
stable manifold of Sr

1 so that it drops down and traces the saddle-unstable sheet Sr
1

of S. The difference with the spike-adding mechanism illustrated in Figure 5 is that
the behaviour of the orbit segment on Sr

1 is affected by the presence of the equilibria
s1 and s2. With respect to the two-dimensional slow flow on Sr

1 , the equilibrium s1
is an attractor, and all orbit segments on Sr

1 converge to s1 provided that they lie in
its basin of attraction, which is bounded by the one-dimensional stable manifold of
the saddle s2. In terms of the full five-dimensional flow, Sr

1 is obviously unstable, and
orbit segments that come close enough to Sr

1 will behave as dictated by the slow flow
for only a finite amount of time; this means that convergence to s1 will eventually be
followed by a fast repulsion away from Sr

1 . The orbit segment in Figure 9a,c enters
a close enough neighbourhood of Sr

1 in the region of the basin of attraction of s1;
hence, during the time that it is following the slow flow, it converges to s1, but we can
clearly see in Figure 9c that the fast directions take over before it reaches s1. Since
this orbit segment was selected from the falling slope of the downward peak of the
spike-adding mechanism, the orbit segment jumps straight down toward Sa

1 , where it
converges to the resting potential. Orbit segments on this slope that lie closer to the
minimum of the downward peak would come closer to s1 but still jump down toward
Sa
1 when the fast directions take over. On the other hand, orbit segments from the ris-

ing slope of the downward peak eventually experience a lift-off ‘up’ from Sr
1 so that

a large action potential occurs before converging back to the resting potential; this
change of direction corresponds to the onset of a new spike, which is more dramatic
and abrupt than the gradual increase in V followed by a small-amplitude spike as
illustrated in Figure 5.

Continuity of the vector field (1) implies that there exists an orbit segment that
actually converges to the saddle s1 and never relaxes back to the resting potential.
This happens when gSI ≈ 0.7842 mS/cm2 is exactly at the value where the perturbed
trajectory lies on the four-dimensional stable manifold Ws(s1) of the equilibrium s1.
In contrast to the four-dimensional stable manifold of Sr

1 , the manifold Ws(s1) is
invariant under the flow of (1), and this heteroclinic connection is a well-defined
bifurcation for system (1).

We remark here that the presence of additional equilibria, such as s1 and s2 in the
example discussed, only affects the spike-adding mechanism if the orbit segments
that trace Sr

1 enter the basin of attraction of s1. If such orbit segments trace Sr
1 on the
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other side of the stable manifold of s2, then a double-step ADP stage would occur. We
know from our further model analysis (not shown) that the unstable equilibria persists
for higher values of gSI as well as gFO, and in all cases that we investigated, these
additional equilibria on Sr

1 affect the spike generation in the way described above.

5 Discussion

In this paper, we performed a detailed analysis of the mechanisms of spike genera-
tion and spike-adding in a transient burst. Based on a reduction of our previous model
[13], we identify these mechanisms using numerical continuation of orbit segments
that are solutions to a well-posed boundary value problem. In our analysis, we utilised
the separation of time scales in system (1). We calculated the two-dimensional critical
manifold S of the fast subsystem, which organises the behaviour of the system. The
spike-generation process is characterised by the fact that orbit segments trace saddle-
unstable slow manifolds that correspond to saddle-unstable sheets of S. More pre-
cisely, there are two saddle-unstable sheets, Sr

1 and Sr
2 , with four-dimensional stable

and three-dimensional unstable manifolds; this means that the lift-off from the asso-
ciated slow manifolds is characterised by a uniquely defined direction. The changes
in sign of this direction mark the different phases of the spike-adding transition.

By considering the slow flow on S, we were able to explain the onset of a
spike as well as the double-step stretched ADP that leads up to it. For the value
of gFO = 9.5 mS/cm2 that we considered, the onset of a spike is organised by the
top fold F3 of S. This fold contains a folded-focus singularity, but it is not acces-
sible and the spikes are due to (regular) jump points. The folds F1 and F2 that are
involved in the double-step ADP do not contain any folded singularities, and they
are uniformly attracting and repelling, respectively. Therefore, the first step in the
stretched ADP ends at a regular jump point. The second step occurs due to a type of
fold-initiated canard because the slow flow points away from F2; the fold-initiated
canard-like behaviour forms a robust part of the spike-adding mechanism that has
also been observed for periodic orbits [45]. The actual spike-adding transition occurs
in an exponentially small parameter regime that is very difficult, if not impossible,
to find with brute-force integration routines; therefore, it is also highly unlikely to
observe anything like a stretched ADP or double-step ADP in experiments.

We found that the nature of the spike-adding mechanism may change if gFO in-
creases slightly. For higher values of gFO, an increase in gSI causes the appearance of
two equilibria, s1 and s2, on Sr

1 that form a saddle-node pair with respect to the slow
flow. As it turns out, the presence of these equilibria prevents the double-step ADP.
Instead, orbit segments that come close to Sr

1 during the spike-generation process
flow towards the attracting equilibrium s1 before a lift-off in the fast direction. This
means that the onset of a spike is now organised by s1 rather than the fold F3, and the
stretched ADP involves only a single step. A spike generated by s1 is dramatically
different from one generated by F3. While both spike generations happen in an expo-
nentially small parameter interval, the increase in amplitude of a spike generated by
F3 is gradual and should be viewed as a variation of the orbit segment that depends
continuously on gSI. On the other hand, a spike generated by s1 is not a continuous
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variation, and a large-amplitude spike appears abruptly as gSI is increased (on an ex-
ponentially small scale). The two families, one with and one without the additional
spike, are separated by a heteroclinic connection (via a current injection) from the
resting potential to the saddle s1; our numerical method for continuation of the fam-
ily only gets past this discontinuity because we do not impose relaxation back to the
resting potential but keep TOFF fixed instead. Similar spike-adding mechanisms can
be organised by the presence of a saddle periodic orbit or other saddle-type invariant
object, but we did not observe this in our model.

In theory, it should be possible to have a double-step ADP as part of the spike-
adding transition even when additional equilibria are present. The occurrence of a
double-step ADP in this case only depends on whether tracing of Sr

1 commences
in the basin of attraction of s1 (restricted to Sr

1) or not, which is determined by the
stable manifold of the saddle equilibrium s2. In our numerical explorations, the or-
bit segments always commence tracing Sr

1 in the basin of attraction of s1. Hence,
we may conclude that gFO and gSI do not have a profound influence on the rela-
tive location where orbit segments begin to trace Sr

1 during the spike-adding process.
However, other parameters of the system may alter this relative location and provoke
a double-step ADP even in the presence of additional equilibria. While this observa-
tion indicates a challenge for a precise definition of spike-onset in our context, the
two different mathematical notions seem to have the same biological effect.

We believe that the canard-like transition involving saddle-unstable sheets of the
critical manifold lies at the heart of any spike-adding mechanism when no invariant
saddle-type objects are present. The different phases during the transition, however,
could be organised by features other than regular jump points and fold-initiated ca-
nards. For example, it should be expected that other folded singularities may appear
due to variations in the slow flow on S. An investigation of all possibilities remains
an interesting and challenging project for future work.
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