
Journal of Mathematical Neuroscience (2012) 2:8
DOI 10.1186/2190-8567-2-8

RESEARCH Open Access

Analysis of stability and bifurcations of fixed points and
periodic solutions of a lumped model of neocortex with
two delays

Sid Visser ·Hil GE Meijer ·Michel
JAM van Putten · Stephan A van Gils
Received: 4 October 2011 / Accepted: 18 March 2012 / Published online: 25 April 2012
© 2012 Visser et al.; licensee Springer. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Abstract A lumped model of neural activity in neocortex is studied to identify re-

gions of multi-stability of both steady states and periodic solutions. Presence of both

steady states and periodic solutions is considered to correspond with epileptogenesis.

The model, which consists of two delay differential equations with two fixed time lags

is mainly studied for its dependency on varying connection strength between popu-

lations. Equilibria are identified, and using linear stability analysis, all transitions are

determined under which both trivial and non-trivial fixed points lose stability. Peri-

odic solutions arising at some of these bifurcations are numerically studied with a

two-parameter bifurcation analysis.
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Fig. 1 Overview of the model.
Two cortical layers (red and
blue) with excitatory pyramidal
cells are connected mutually.
The inhibition of the
interneurons (green) is modeled
intrinsically.

1 Introduction

Epilepsy is a neurological disease characterized by an increased risk of recurring
seizures that affects about 1% of the world population. Such seizures typically mani-
fest themselves as brief periods in which neural activity is more synchronized than a
certain baseline level. In lumped models of neural activity in the brain, these seizures
are, for that reason, often characterized as large-amplitude oscillations [1]. Many
causes might exist for the neural network to start oscillating, e.g., a slow parameter
or an external factor might cause a bifurcation [2], or a perturbation might force the
system to a different attractor [3].

In this paper, we study the attractors and their bifurcations in a lumped model of
superficial and deep pyramidal cells in neocortex that has been shown to correspond
well with a large detailed model whose results conformed to experiments [4, 5]. The
structure of this model is shown in Figure 1. Our main goal is to identify the dominat-
ing stable attractors in the system as well as their bifurcations for varying connection
strength of the neural populations. The model proposed in [5] is essentially a contin-
uous time two-node Hopfield network with discrete time delays and feedback that is
governed by the following equations:

dx1

dt
(t) = −μ1x1(t) − F1

(
x1(t − τi)

) + G1
(
x2(t − τe)

)
,

dx2

dt
(t) = −μ2x2(t) − F2

(
x2(t − τi)

) + G2
(
x1(t − τe)

)
,

(1)

where xi is the node’s activity, μi the natural decay rate of activity, τi the time lag
of feedback inhibition, τe the delay of feedforward excitation and both Fi (x) and
Gi (x) are bounded monotonically increasing functions that represent inhibitory and
excitatory synaptic activation, respectively.

Small Hopfield networks of this and similar forms have been studied in detail by
various researches [6–22]. For example, Olien and Bélair [16] studied a two-node
network with both delayed feedforward and delayed feedback connections between
the nodes. Later, the same model was analyzed further by Wuan and Rei [18]. The
delays in this model, however, are node-specific (the delays for all outgoing connec-
tions of a node are unique for that node) instead of connection-specific (the delays are
unique for each type of connection: excitatory and inhibitory). The latter case applies
to our network.

We particularly notice the work by Shayer and Campbell [17] that studies a model
very similar to the system (Equation 1) except for the fact that they choose the acti-
vation functions as odd functions. Although they numerically identify multi-stability
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of steady states and a periodic solution, their study mainly focuses on analytical de-
termination of the stability and bifurcations of the trivial equilibrium in terms of the
time lag parameters. In 2005, Campbell et al. studied the numerical continuation of
periodic solutions in a ring of neurons [9]. We will extend a similar approach to a
two-parameter bifurcation study in this work.

Because Hopfield networks originate from computer science to solve mathemati-
cal programming problems [23], it is more common to study models of the Wilson-
Cowan type for physiological modeling [24]. On that note, we like to point to a study
by Coombes and Laing of a Wilson-Cowan type model, which is very similar to our
model, in which they observe a variety of steady states, periodic solutions and chaos
[25]. While Hopfield models are uncommon in mathematical neuroscience, we are
not the first to study these models with a physiological relevance. For instance, Song
et al. studied two clusters, each consisting of an excitatory and an inhibitory node that
projected onto each other with delayed connections [26]. They assumed that the con-
nections between the nodes could be faster in one direction than in the other, and they
studied the model’s dependency on this difference in time lags. Furthermore, they are,
to our knowledge, the only group that has performed a numerical bifurcation study
of periodic orbits in two parameters for this type of model.

Due to the physiological background of our model, the delays are known and
we consider fixed values of τi and τe. Because of that, we are primarily interested
in the parameters related to connection strength as these may be amended with anti-
epileptic drugs. Although these results will depend on the chosen values of the delays,
we elaborate on their robustness under variations of these delays in the discussion.

Another difference with the pioneering works [7, 17] is related to symmetry in
the model. They have chosen their functions Fi and Gi as odd functions, which in-
troduces a reflectional symmetry. For physiological reasons, the model considered in
this paper uses non-symmetric activation functions for the synapses because the acti-
vation of synapses is thought to be stronger than the deactivation. In order to reduce
the number of parameters, we choose the following:

μ1 = μ2 := μ, F1(x) = F2(x) := F (x), G1(x) = G2(x) := G(x).

This choice of parameters and activation functions makes the model Z2-symmetric.
The following expressions are chosen for the synaptic activation functions

F (x) = aiS(σix), G(x) = aeS(σex) (2)

for certain S that is smooth, strictly increasing and satisfies S(0) = 0 and S′(0) = 1.
Typically, S(x) is bounded and sigmoidal, i.e., S has exactly one inflection point. The
results in Section 2 are independent of the specific shape of S, but we will specify S

for the numerical bifurcation analysis.
In the remaining part of this article, we study the non-dimensionalized version of

Equation 1 by taking x̃i (t̃ ) := xi(μt̃):

dx̃1

dt̃
(t̃) = −x̃1(t̃) − α1S

(
β1x̃1(t̃ − τ1)

) + α2S
(
β2x̃2(t̃ − τ2)

)
,

dx̃2

dt̃
(t̃) = −x̃2(t̃) − α1S

(
β1x̃2(t̃ − τ1)

) + α2S
(
β2x̃1(t̃ − τ2)

)
,

(3)
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with α1 := ai

μ
, β1 := σi , α2 := ae

μ
, β2 := σe, τ1 := μτi and τ2 := μτe. For conve-

nience, we drop the tildes from now on and switch to vector notation:

ẋ(t) = f(xt ), with xt ∈ C
([−h,0],R

2) and h = max(τ1, τ2). (4)

In the following section, we will study this system analytically by determining its
fixed points and the linear stability of these points. We will identify a stability region
in parameter space and classify the bifurcations on the edge of this region. For Hopf
bifurcations of the trivial steady state, we compute the first Lyapunov coefficient
to study the criticality of these bifurcations. In the ‘Numerical bifurcation analysis’
section, we use software packages to determine (numerically) how the presence and
stability of the bifurcating periodic solutions depend on the parameters α1 and α2.

2 Equilibria: linear stability and bifurcations

In this section, we study the equilibria as well as their linear stability. Necessary con-
ditions for saddle-node, trans-critical and Hopf bifurcations are derived. Thereafter,
the first Lyapunov coefficient is evaluated for the Hopf bifurcations to determine their
criticality.

2.1 Equilibria and stability region

First we note, since S(0) = 0, that the origin (x1, x2) = (0,0) is always a fixed point
of the system (Equation 4). For the non-trivial fixed points, the following holds:

Theorem 1 The system (Equation 4) admits exclusively symmetric fixed points:

f
(
x∗) = 0 =⇒ x∗ = (

x∗, x∗) for some x∗ ∈ R.

Proof First we note that, since S(x) is a continuous strictly increasing function, its
inverse function S−1(x) exists, and it is also continuous and strictly increasing. Next
define:

H(x) := 1

β2
S−1

(
1

α2

(
x + α1S(β1x)

))
.

Because of monotonicity of both S and S−1 and positiveness of all parameters, H is
continuous and strictly increasing as well.

Fixed points of Equation 4 satisfy f(x∗) = 0 which is equivalent to:{
x∗
2 = H

(
x∗
1

)
,

x∗
1 = H

(
x∗
2

)
.

(5)

Assume that the equilibrium is asymmetric and that x∗
1 < x∗

2 without loss of gener-
ality. Application of H on both sides of this inequality and use of the conditions in
Equation 5 yield:

x∗
2 = H

(
x∗
1

)
< H

(
x∗
2

) = x∗
1 .
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This contradicts our assumption; hence, we conclude that x∗
1 = x∗

2 = x∗. �

Due to the symmetric positions of these fixed points, the linearization u(t) at these
equilibria takes the following form:

u̇1(t) = −u1(t) − k1u1(t − τ1) + k2u2(t − τ2),

u̇2(t) = −u2(t) − k1u2(t − τ1) + k2u1(t − τ2),
(6)

with

k1 := α1β1S
′(β1x

∗), k2 := α2β2S
′(β2x

∗). (7)

Both k1 and k2 take positive values only because S′ is positive as well as the param-
eters αi and βi for i = 1,2.

Next, we look for exponential solutions of the form u(t) = eλtc with c ∈ C
2. For

a non-trivial solution of Equation 6, it is required that �(λ)c = 0, where �(λ) is the
characteristic matrix:

�(λ) =
[
λ + 1+ k1e

−λτ1 −k2e
−λτ2

−k2e
−λτ2 λ + 1+ k1e

−λτ1

]
. (8)

Non-trivial solutions c exist if the characteristic equation is satisfied:

0 = det�(λ)

= (
λ + 1+ k1e

−λτ1 + k2e
−λτ2

)︸ ︷︷ ︸
:=�+(λ)

(
λ + 1+ k1e

−λτ1 − k2e
−λτ2

)︸ ︷︷ ︸
:=�−(λ)

. (9)

From this decomposition, it follows that the spectrum of Equation 6 is the union of
the spectra of the decoupled equations:

v̇−(t) = −v−(t) − k1v−(t − τ1) + k2v−(t − τ2), (10a)

v̇+(t) = −v+(t) − k1v+(t − τ1) − k2v+(t − τ2). (10b)

The spectra of linear DDEs with two delays, like Equations 10a and 10b, have been
studied extensively since the 1960s (for instance, Bellman, Cooke and Hale [27, 28]).
The main consensus of these works is that the stability region often has a complex
shape in terms of the parameters of the differential equation. The majority of the
results in the remainder of this section and the next one (i.e. ‘Bifurcations’ section)
could be considered as ‘common knowledge’. For the purpose of clarity, however, we
have chosen to present a short derivation of these results.

We start by denoting the following theorem regarding symmetry of solutions:

Theorem 2 Roots of �− correspond to symmetric solutions, whereas roots of �+
relate to asymmetric solutions.
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Proof Let Z2 act on R
2 so that −1 ∈ Z2 acts as ξ(x, y) : (x, y) �→ (y, x), then:

�−(λ) = 0 ⇔
{

�(λ)v = 0,

ηv = v
and

�+(λ) = 0 ⇔
{

�(λ)v = 0,

ξv = −v.

(11)

�

Using the characteristic equation, we can find a relation between the parameters
(k1, k2) and the eigenvalues:

Theorem 3 Let λ = ρ + iω for ρ,ω ∈ R satisfy the characteristic equation (Equa-
tion 9) and let τ2 > τ1 > 0, then the following inequality holds:

|k1| + |k2| ≥ eρτ

√
(1+ ρ)2 + ω2, τ =

{
τ2, ρ < 0,

τ1, ρ ≥ 0.
(12)

Proof Solutions of the characteristic equation (Equation 9) satisfy either �+(λ) = 0
or �−(λ) = 0. Upon assuming �+(λ) = 0, it follows that:

emax(−ρτ1,−ρτ2)
(|k1| + |k2|

) ≥ |k1|e−ρτ1 + |k2|e−ρτ2 ≥ |1+ ρ + iω|,
which yields the inequality (Equation 12). A similar argument for �−(λ) yields the
same inequality. �

Corollary 4 An equilibrium of the system (Equation 4) is asymptotically stable if
|k1| + |k2| < 1.

Proof The inequality (Equation12) yields in this case:

eρτ

√
(1+ ρ)2 + ω2 < 1, (13)

which can only hold for ρ < 0. Therefore, all roots of the characteristic matrix have
a negative real part and the equilibrium is asymptotically stable. �

Having obtained a minimal stability region in the Corollary 4, we study conditions
for bifurcations of equilibria to expand the minimal stability region determined by
Corollary 4.

2.2 Bifurcations

The stability of an equilibrium of a DDE is lost when one or more eigenvalues pass
through the origin or the imaginary axis. The first case, in which a real eigenvalue
crosses through the origin, is characterized in the following theorem:

Theorem 5 The linearized system (Equation 6) has at least one zero eigenvalue if
and only if 1+ k1 + k2 = 0 or 1+ k1 − k2 = 0.
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Proof Substitution of λ = 0 into the characteristic equation (Equation 9) yields that
either �+(0) = 0 or �−(0) = 0 and hence:

�+(0) = 0 =⇒ 1+ k1 + k2 = 0, (14a)

�−(0) = 0 =⇒ 1+ k1 − k2 = 0. (14b)

�

Since the origin is always a fixed point of the system, the conditions in Theorem 5
correspond to transcritical bifurcations. For non-trivial fixed points, these conditions
imply either a fold bifurcation or a trans-critical bifurcation. Because k1 and k2 are
both positive, saddle-node bifurcations from �+ cannot occur. This, in combination
with Theorem 2, leads to the conclusion that no symmetry-breaking steady-state bi-
furcations exist, a result which we also obtained in Theorem 1.

The case in which a pair of complex eigenvalues passes the imaginary axis is
summarized in the following theorem:

Theorem 6 Two piecewise continuous functions h+(ω) and h−(ω) exist in param-
eter space (k1, k2) for which the characteristic equation (Equation 9) has a pair of
purely imaginary roots λ = ±iω. Furthermore, when ω = − tanωτ1 = − tanωτ2, a
line k1 + σk2 = c exists for some c and σ = ±1 for which Equation 9 has roots ±iω.

Proof Substituting λ = iω with ω > 0 into Equation 9 yields that either �+(iω) = 0
or �−(iω) = 0. The roots of �+(iω) are considered first:

iω + 1+ k1e
−iωτ1 + k2e

−iωτ2 = 0.

Splitting this equation in its real and imaginary part gives:[
cos(ωτ1) cos(ωτ2)

sin(ωτ1) sin(ωτ2)

][
k1
k2

]
=

[−1
ω

]
. (15)

In the case that this matrix is invertible, we find the unique solution (k1, k2) in terms
of ω by matrix inversion:[

k1
k2

]
= h+(ω) := −1

sin(ω(τ2 − τ1))

[
sin(ωτ2) cos(ωτ2)

− sin(ωτ1) − cos(ωτ1)

][
1
ω

]
. (16)

In the other case, the matrix is not invertible and, hence, its determinant is zero,
yielding:

tanωτ1 = tanωτ2. (17)

Combined with the condition that [−1, ω]T ∈ R(A), A being the matrix in Equa-
tion 15, follows that:

ω = − tan(ωτ1) = − tan(ωτ2). (18a)
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This yields the line of solutions:

k1 + σk2 = − 1

cos(ωτ1)
(18b)

for σ = ±1 such that cosωτ1 = σ cosωτ2.
The roots of �−(iω) are identified in a similar manner, yielding:[

k1
k2

]
= h−(ω) := −1

sin(ω(τ2 − τ1))

[
sin(ωτ2) cos(ωτ2)

sin(ωτ1) cos(ωτ1)

][
1
ω

]
. (19)

Furthermore, the same line of solutions and corresponding condition as in Equa-
tions 18a and 18b hold for �−(iω). For a Hopf bifurcation to occur, any of the equa-
tions (Equations 16 to 19) must be satisfied. �

In Theorem 2, we have already shown that Hopf bifurcations caused by �− cor-
respond to symmetric periodic solutions. For Hopf bifurcations induced by �+, the
following holds:

Theorem 7 Hopf bifurcations corresponding with �+ yield asymmetric periodic so-
lutions, i.e., x1(t) = x2(t + 1

2T ) with T the period of the solution.

Proof Let λ = iω0 for ω0 > 0 be a simple root of �+ (i.e., of algebraic multiplicity
one) and p a corresponding eigenvector of �(iω0). Then, from Hopf bifurcation
theory, we know that, for ε, sufficiently small C1 functions k∗(ε), ω∗(ε) and x∗(ε)
exist, taking values in R

2, R and C([−h,0],R
2), respectively. Furthermore, k∗(ε) →

h+(ω0), ω∗(ε) → ω0 and x(ε)(t) = ε
(eiω∗(ε)tp) + o(ε) for ε ↓ 0. For k = k∗(ε)
and ε, sufficiently small 2π

ω∗(ε) -periodic solutions x(t) = x∗(ε)(t + θ) exist with θ ∈
[0,2π/ω∗(ε)).

Since �+(iω0) = 0, it follows from Equation 11 that ξp = −p. As the full non-
linear equation commutes with ξ , it follows that the bifurcating periodic solution
inherits this symmetric property:

x
(

t + π

ω∗(ε)

)
= ε
(

eiω∗(ε)t+iπp
) = ξx(t). (20)

So, the condition for asymmetric periodic solutions is satisfied. �

The different conditions for eigenvalues to have zero real part, as determined
in Theorems 5 and 6, are displayed in the (k1, k2)-plane in Figure 2. Due to the
sine terms in the denominators of h+ and h−, these functions consist of numerous
branches separated by asymptotes. Intersections of these curves correspond to param-
eters at which the system satisfies conditions for two co-dimension one bifurcations
and so we expect (at least) the following co-dimension two bifurcations: Bogdanov-
Takens, fold-Hopf and Hopf-Hopf.

Studying the right diagram of Figure 2, we observe that the bifurcation curves do
not coincide with the bounds of the stability region from Corollory 4. Hence, it ap-
pears that parameters exist outside this square stability region for which it still holds
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Fig. 2 Bifurcation curves in the (k1, k2)-plane. τ1 = 11.6 and τ2 = 20.3. The right plot shows a detail of
the first quadrant only. Blue shows the conditions for fold or transcritical bifurcations (Equations 14a and
14b) and red and magenta depict Hopf bifurcations; equations h+ and h− , respectively. The gray area
represents the stability region as in Corollary 4. The full stability region is hatched in the right diagram.

that all eigenvalues have negative real part. We now determine the full stability region
around the origin of the (k1, k2)-plane by showing that instabilities are exclusively in-
duced by low frequencies. More precisely:

Theorem 8 The square |k1| + |k2| <
√
1+ ω2

0 contains no eigenvalues λ = ±iω for
ω ≥ ω0 > 0.

Proof This follows from substitution of λ = iω0 into Theorem 3 and the fact that√
1+ ω2

0 is a monotically increasing function. �

So, if we choose ω0 sufficiently large as dictated by Theorem 8, no other bifurca-
tions are located inside the bifurcation diagrams of Figure 2 for ω > ω0. Hence, we
can extend the stability region from the square region to the nearest bifurcation. This
new stability region is hatched in the right diagram of Figure 2.

Since we are mainly interested in stable solutions, we consider only bifurcation
curves that bound the stability region. Even though we identified a bounded stability
region in parameter space, we cannot assure that this is the only region in which
fixed points are stable. As shown in [29], the roots of either �− or �+ can contain
multiple, disjoint regions in parameter space in which all roots have negative real
parts. Since in our case, however, the eigenvalues of Equation 6 are the union of the
eigenvalues of the Equations 10a and 10b, we conjecture that no other stable regions
exist in parameter space than the one shown in Figure 2.

For the fixed parameters τ1 = 11.6 and τ2 = 20.3, we find that the stability region
in the first quadrant is bounded by a line of fold bifurcations (Equation 14b) as well as
both curves h+ and h− of Hopf bifurcations; see also Figure 3. For clarity, we denote
the domains of ω for which these curves bound the stability region by �S(h+) and
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Fig. 3 Detail of bifurcations.
Similar to Figure 2 but now
showing the fine structure of
branches bounding the stability
region. The points ZH and HH
correspond with the fold-Hopf
and Hopf-Hopf bifurcations
from Equations 22 and 23. For
clarity, we do not show the
stability region. Blue,
fold/transcritical; red,
asymmetric Hopf; magenta,
symmetric Hopf.

�S(h−), respectively. We compute approximations of these ranges:

�S(h+) ≈ (0.148,0.150), �S(h−) ≈ (0.250,0.294). (21)

Similarly, we identify the codim-2 bifurcations that bound the stability region. The
fold-Hopf bifurcation is located at:

kZH := h+(0.148) =
[
0.008
1.008

]
. (22)

For the Hopf-Hopf bifurcation, we find:

kHH := h+(0.150) = h−(0.294) =
[
0.056
0.995

]
. (23)

It follows from Equation 7 that, for the trivial equilibrium, the bifurcation diagram
in the (k1, k2)-plane determines the bifurcation diagram in the (α1, α2)-plane up to
linear rescaling.

2.3 The first Lyapunov coefficient

Hopf bifurcations give rise to either stable or unstable periodic solutions depending
on the criticality. Therefore, we determine the first Lyapunov coefficient. Since it is
easier to relate k1 and k2 to α1 and α2 in the origin than at non-trivial fixed points,
we only consider Hopf bifurcations at the origin.

We follow the method described in [30]. Let p and q be eigenvectors of the char-
acteristic matrix �(iω) and �∗(iω), respectively. We normalize these vectors such
that qT �′(iω)p = 1. By choosing p = [1,1]T as an eigenvector of �(iω), q takes
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the form:

q = q0

[
1
1

]
:= 1

2(1− k1τ1e−iωτ1 + k2τ2e−iωτ2)

[
1
1

]
. (24)

For φ(t) = peiωt , the first Lyapunov coefficient of a (candidate) Hopf bifurcation is
defined as the real part of c1:

c1 = 1

2
qT D3f(0)(φ,φ, φ̄)

+ qT D2f(0)
(
e0·�(0)−1D2f(0)(φ, φ̄), φ

)
+ 1

2
qT D2f(0)

(
e2iω·�(2iω)−1D2f(0)(φ,φ), φ̄

)
. (25)

We note that f is symmetric, i.e., fj ([x, x]) = f (x) for j = 1,2, and that it does not

contain any cross terms, that is ∂2

∂x1 ∂x2
f([x1, x2]) = 0. Therefore, both components of

the differential operators D2f([x, x]) and D3f([x, x]) will be identical when evalu-
ated for symmetric arguments and we denote these components by f ′′(x) and f ′′′(x),
respectively. By using the multi-linear properties of the operators, we expand c1:

c1 = 1

2
q0

[
1 1

]
f ′′′(0)

(
eiωt , eiωt , e−iωt

)[
1
1

]

+ q0
[
1 1

]
f ′′(0)

(
eiωt , e−iωt

)
f ′′(0)

(
e0t , eiωt

)
�(0)−1

[
1
1

]

+ 1

2
q0

[
1 1

]
f ′′(0)

(
eiωt , eiωt

)
f ′′(0)

(
e2iωt , e−iωt

)
�(2iω)−1

[
1
1

]
. (26)

Evaluation of the differential operators and the matrix inversions yields:

c1 = q0

(
−S′′′(0)

(
α1β

3
1e

−iωτ1 − α2β
3
2e

−iωτ2
)

+ 2S′′(0)2(α1β
2
1 − α2β

2
2 )(α1β

2
1e

−iωτ1 − α2β
2
2e

−iωτ2)

1+ α1β1 − α2β2

+ S′′(0)2(α1β
2
1e

−2iωτ1 − α2β
2
2e

−2iωτ2)(α1β
2
1e

−iωτ1 − α2β
2
2e

−iωτ2)

1+ 2iω + α1β1e−2iωτ1 − α2β2e−2iωτ2

)
.(27)

As the real part of this expression is too intricate to study analytically, we study the
first Lyapunov coefficient only numerically.

In Figure 2, we observe that, for chosen parameter τ1 = 11.6 and τ2 = 20.3, the
stability region is primarily bounded by the curve h−(ω) and so we study the Lya-
punov coefficient along this boundary. Similarly as in [5], we choose β1 = 2, β2 = 1.2
and

S(x;a) = (
tanh(x − a) + tanh(a)

)
cosh2(a), (28)
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with a = 1. Values of α1 and α2 are parameterized along the boundary using Equa-
tion 7 and (k1, k2) given by h−(ω) with ω ∈ �S(h−). In this case, we find that the
first Lyapunov coefficient has a root at:

kGH := h−(0.281) =
[
0.491
0.614

]
. (29)

Such a root corresponds with a generalized Hopf bifurcation at which the criticality
of the Hopf bifurcation changes. Hence, for ω < 0.281, the Hopf bifurcations are
supercritical and for ω > 0.281 the bifurcations are subcritical.

So far, we have studied the fixed points and their bifurcations extensively, and we
have shown that the system can exhibit stable periodic solutions. Since the further
development of these periodic solutions cannot be studied with a local analysis of
points, we must use a different approach to continue this study. Therefore, we explore
the behavior of the periodic solutions numerically in the next section.

3 Numerical bifurcation analysis

Here, we investigate the outcome of the periodic solutions that emanate from the Hopf
bifurcations in the above text. We turn to a numerical analysis since the orbits cannot
be determined analytically. More specifically, we use DDE-BIFTOOL [31] to study
non-trivial fixed points, and for continuation of periodic solutions, we use Knut [32].
In the following analysis, we only describe branches of solutions that are by some
means associated with stable solutions. Branches not resulting in stable solutions are
not discussed further.

3.1 One parameter bifurcations in α2

First, a bifurcation analysis is done in a single parameter. Here, we have chosen to
vary the parameter α2 that represents the total amount of excitation in the system.
The inhibition α1 is fixed at 0.069, and the function S is chosen as Equation 28 with
a = 1.

The bifurcation diagram is shown in Figure 4, and corresponding parameter val-
ues for the bifurcations are shown in Table 1. Each curve represents, for different
solutions, the maximum value reached during one period of the solution at different
parameter values. The color corresponds with the type of solution, while thick/thin
lines correspond to stable/unstable branches.

3.1.1 Fixed points

The origin is a natural starting point of our discussion of the bifurcation analysis be-
cause it is always a fixed point of Equation 4. The origin is stable until it undergoes
a subcritical Hopf bifurcation H1. Thereafter, it goes through two other Hopf bifur-
cations and a branch point B1. For this value of α1, these Hopf bifurcations involve
only unstable periodic solutions.
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Fig. 4 Bifurcations in one parameter. The top shows the bifurcation diagram in α2. Different colors rep-
resent different solutions, and a thick/thin line indicates that such a solution is stable/unstable. The four
diagrams at the bottom show details of the four marked regions in the top diagram. τ1 = 11.6, τ2 = 20.3,
α1 = 0.069, β1 = 2, β2 = 1.2.
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Table 1 Overview of
approximate parameter values
for codim-1 bifurcations in α2

Parameter α1 is fixed at 0.069.

Point α2

H1 0.771

B1 0.948

F1 0.5211

H2 0.5212

H3 0.5212

H4 1.052

PD1 0.650

LPC1 0.462

PD2 0.465

PD3 0.596

LPC2 0.615

PD4 0.522

LPC3 0.464

LPC4 0.619

Fig. 5 Mapping to
(k1, k2)-plane. The curves
ET (α2) and EN(α2) show the
parametrization of the origin
(trivial fixed point) and
non-trivial fixed points,
respectively, for fixed α1. This
figure illustrates how some
solution branches can regain
stability after encountering
numerous bifurcations. Blue,
fold/transcritical; red,
asymmetric Hopf; magenta,
symmetric periodic solution;
black, parametrization of fixed
points.

Next, we follow the fixed point that emerges from the branch point B1. This fixed
point encounters numerous Hopf bifurcations until it reaches a fold bifurcation F1.
Thereafter, it rapidly undergoes two distinct subcritical Hopf bifurcations: H2 and
H3, becoming stable at H3. Continuing the intersecting fixed point at B1 in the other
direction, the steady state goes through two Hopf bifurcations until it gains stability
at the subcritical Hopf bifurcation H4 (not shown).

The appearance of Hopf bifurcations for fixed points is detailed in the ‘Bifuca-
tions’ section and Figure 2. If the trivial fixed point is considered, the variation of
a single parameter maps the coefficients k1 and k2 into a straight line (Equation 7).
This line, labeled ET , is shown in the (k1, k2)-plane in Figure 5. The coefficients k1
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and k2 belonging to non-trivial equilibria, however, vary in a more complex manner
when a single parameter is adjusted. Once plotted, it becomes clear that this branch
encounters 18 Hopf bifurcations between departure from and return to the stability
region for this specific value of α1 (see the curve EN in Figure 5).

Whether a Hopf bifurcation is caused by a crossing of �− or �+ determines
whether this Hopf bifurcation results in symmetric or asymmetric periodic solutions.
Hence, we conclude that Hopf bifurcations H1, H2 and H4 yield symmetric periodic
solutions, and that H3 yields asymmetric ones.

3.1.2 Periodic solutions

Next, we investigate the periodic solutions emanating from the Hopf bifurcations H1,
H2 and H3. The branch of unstable periodic solutions that emerges from H1 con-
sists of symmetric solutions. This matches with the analytical results since H1 lies
on h− and it, therefore, corresponds with symmetric solutions. The branch subse-
quently goes through a subcritical Neimark-Sacker bifurcation (not shown), a super-
critical period-doubling bifurcation PD1, a limit point of cycles LPC1 and a subcrit-
ical period-doubling bifurcation PD2 at which it finally becomes stable. Then, the
solution remains stable until it undergoes a supercritical period doubling bifurcation
PD3, folds over in LPC2, goes through a subcritical period doubling bifurcation PD4
and terminates in the Hopf bifurcation H2.

Solutions branching from PD1 are asymmetric. This branch folds over near PD1
and a second time at LPC3 where it gains stability. Following this branch, stability
is lost at LPC4 and it ends in Hopf bifurcation H3. We mention a branch sprouting
from PD3 of symmetric solutions that is initially stable but then folds over three times
before it terminates in PD4. Even though these solutions are initially stable, we have
been unable to find these solutions in simulations because their domain of attraction
is relatively small.

3.1.3 Summary

For fixed α1, we find that system can have one or two stable steady states. More
specifically, for values of α2 between H3 and H1, two stable equilibria coexist. Stable
symmetric periodic solutions exist for α2 between PD2 and PD3, and stable asymmet-
ric periodic solutions between LPC3 and LPC4. Multi-stability of two equilibria and
two periodic solutions exists for α2 between H3 and PD3. This is illustrated in Fig-
ure 6 where we calculated time series of the model with fixed parameters (α2 = 0.55)
but varying initial conditions:

[x1, x2](t) = [0,0.1], (30a)

[x1, x2](t) = [1.5,1.7], (30b)

[x1, x2](t) =
[
1+ 1.2 sin

(
2π

15
t

)
,0.8+ 1.3 sin

(
2π

15
t

)]
, (30c)

[x1, x2](t) =
[
0.7+ 0.7 sin

(
π

30
t

)
,0.6− 0.9 sin

(
π

30
t

)]
, (30d)
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Fig. 6 Time series in multi-stable regime. Time series of the system for α2 = 0.55, other parameters
as in Figure 4 and initial conditions given by Equations 30a, 30b, 30c and 30d. Solid and dashed lines
correspond with x1 and x2. Solutions of all four stable branches are obtained: (A) trivial steady state, (B)
non-trivial steady state, (C) symmetric periodic solutions and (D) asymmetric periodic solutions. Colors
of these time series correspond with the branches in Figure 4.

with −20.3≤ t ≤ 0. All four types of limiting behavior, as determined by the preced-
ing bifurcation analysis, are observed.

3.2 Two parameter bifurcations in α1 and α2

As stated before, we are mainly interested in the bifurcations at which stable solu-
tions become unstable. These bifurcations (found with a one parameter analysis) are,
therefore, continued in two parameters (α1 and α2). Figure 7 shows the relevant part
of the bifurcation diagram of the system and Table 2 presents parameter values of the
indicated bifurcation points. A small detail is magnified, but it shows a caricature of
the complex structure. Mixed colors are used to indicate the co-existence of multiple
stable solutions, but for clarity, we also show the stability regions for each type of
solution separately in Figure 8.

3.2.1 Steady states

In the one-parameter analysis, we have found that the origin and the non-trivial steady
state turn unstable at Hopf bifurcations H1 and H3, respectively. Continuing H1 in
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Fig. 7 Bifurcations in two parameters. Bifurcation diagram in α1 and α2. Colored regions mark stability
regions of indicated solutions. Overlapping areas, depicted with mixed colors, correspond with multi-
stability. See text for a description of the points. Stability regions for individual solutions are shown in
Figure 8 for clarity.

two parameters yields a Hopf bifurcation curve, and on this curve, we find a Hopf-
Hopf bifurcation HH1. Following the second Hopf branch (H5) involved, we find a
transcritical-Hopf point ZH1 as it collides with B1. This corresponds with the analysis
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Table 2 Overview of
approximate parameter values
for codim-2 bifurcations in α1
and α2

Point α2 α1

HH1 0.829 0.028

ZH1 0.840 0.004

GH1 0.512 0.246

ZH2 0.440 0.008

FF1 0.455 0.158

R21 0.460 2.9e-4

FF2 0.460 2.8e-4

R22 0.460 2.9e-4

FF3 0.460 2.8e-4

CP1 0.421 0.390

CP2 0.460 2.8e-4

CP3 0.481 0.168

R11 0.531 0.114

CP4 0.460 0

Fig. 8 Regions of multi-stability. Identical to Figure 7, but showing the stability regions of each type of
solution separately. Two partially overlapping ‘triangles’ corresponding with stability of fixed points (left),
stability region for symmetric periodic solutions with a small area of bistability caused by cusp point CP1
(middle), and region in parameter space where stable asymmetric periodic solutions exist (right).

of ‘Bifurcations’ section where we showed the existence of zero-Hopf and Hopf-Hopf
points (see Equations 22 and 23). The arrangement of these curves is the same as in
Figure 3 except for scaling. Since all involved Hopf curves at the points HH1 and
ZH1 are subcritical, it follows then from the normal form analysis [33] that, for these
parameters, no extra stable solutions exist near these points.

Our analysis of the first Lyapunov coefficient also revealed the existence of a gen-
eralized Hopf bifurcation (see Equation 29). We numerically identify this point GH1

along the branch of H1 by finding an emanating branch of limit point of cycles LPC1

with Knut. When the Hopf bifurcation H3 of the non-trivial equilibrium is followed,
a zero-Hopf bifurcation ZH2 is found as H3 collides with fold bifurcation F1. We
remark that the curves H3 and F1 are undistinguishable in the diagram since they are
close to each other for all (α1, α2) considered. The bifurcation ZH2 is a simple case
([33], s = 1, θ > 0), yielding no additional stable solutions. These curves and the
corresponding stability regions are shown in Figures 7 and 8. Bi-stability is indicated
by the overlapping, darker region.
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3.2.2 Symmetric periodic solutions

The stability region of the symmetric periodic solutions is bounded by PD2 and PD3.
Continuation of PD2 for stronger inhibition reveals a fold-flip bifurcation FF1 where
the period doubling bifurcation hits LPC1 branch. Thereafter, it bends away and ter-
minates. Continuing the LPC1 curve in the same direction, we first find a cusp point
CP1 after which the curve ends in the generalized Hopf bifurcation GH1. When PD2
is continued in the other direction (less inhibition), it undergoes a 1:2-resonance bi-
furcation R21 (i.e., the period doubling branch encounters a period-doubling), and
thereafter, it is subjected to a fold-flip bifurcation FF2 with LPC1. Following the
LPC1 curve at FF2, we encounter another fold-flip bifurcation FF3 and a cusp bifur-
cation CP2. At this cusp point, the branch merges with LPC2.

The branch PD3 does not undergo any bifurcation when continued for stronger
inhibition. Continuation in the other direction reveals a 1:2-resonance bifurcationR22
and the previously identified fold-flip bifurcation FF3. Unfolding the 1:2-resonance
bifurcations R21 and R22 reveals that both points are connected by the curve NS1
of Neimark-Sacker bifurcations. Therefore, this curve is also part of the boundary
of the stability region of symmetric periodic solutions. From the unfolding of these
1:2-resonance bifurcations, we know that branches of stable homoclinic orbits should
exist. However, we have been unable to continue these branches.

3.2.3 Asymmetric periodic solutions

From single parameter continuation, it follows that stable asymmetric oscillations are
bounded by LPC3 and LPC4. Continuation of LPC3 yields a cusp point CP3 and a
1:1-resonance bifurcation R11 at which the branch becomes unstable. Hereafter, the
stability region is bounded by a branch of Neimark-Sacker bifurcation that sprouts
from R11. When LPC3 is continued in the other direction, it undergoes a cusp bifur-
cation (CP4) at α1 = 0 where LPC3 merges with LPC4.

3.2.4 Summary

With the two-parameter bifurcation analysis, we find that a large part of parameter
space corresponds with multi-stability. In the center, we find a region with four dif-
ferent stable solutions: two steady states and two periodic solutions. Furthermore, it
can be seen that steady states destabilize for strong values of inhibitory feedback (α1
large) since only periodic solutions exist in the upper part of the bifurcation diagram.

3.3 Comparison with a realistic model

As this two-parameter bifurcation study might seem contrived for a fairly simple
model, we like to make a comparison with a study of a more biologically realis-
tic model. Van Drongelen et al. analyzed a small model of neocortex consisting of
656 neurons to study emergent epileptiform activity [4]. For similar reasons as in
this study, they varied only parameters related to excitatory and inhibitory synaptic
strength, and they then obtained Figure 9. In this figure, the behavior of their realis-
tic model for different choices of parameters is categorized in one of five categories:
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Fig. 9 Behavior of a detailed network. This figure, copied with permission from [4], shows the behavioral
changes of a large physiologically detailed model of neocortex. For varying strengths of excitatory and
inhibitory connections, the model’s behavior is classified in one of five categories. See text for a description
of the network states and their correspondence to the population model.

desynchronized, irregular bursting, oscillatory, regular bursting and saturated activ-
ity. The small exemplary time series show for each class the characteristic behavior
of the model except for saturated activity. This latter state is best described as a state
in which all neurons are non-stop activated in an incoherent manner.

In the regular bursting state, the model is rather quiet apart from a burst of ac-
tivity that occurs regularly about every second. These bursts are primarily generated
by slow dynamical processes in the underlying neurons. In the absence of slow pro-
cesses, the network would exhibit no activity in this state [4]. Hence, this type of
behavior should be compared with the trivial steady state of our model. Furthermore,
the non-trivial steady state in our simplified model corresponds with saturated activ-
ity in the detailed model because the network is very active, but no clear oscillations
or rhythms are observed. Finally, the oscillatory state can be compatible with both
the symmetric and asymmetric periodic solutions in our model.

With these analogues for the observed types of network behavior in our mind,
the bifurcation diagram in Figure 7 displays several strong similarities with the de-
tailed network model in Figure 9. For low excitation, both models exhibit regular
bursting/trivial steady-state solutions. Furthermore, we see in both cases a triangular
region at the bottom in which both models exhibit saturated/non-trivial steady-state
solutions. Finally, we observe that the above-mentioned regions are separated by a
regime of oscillatory solutions. We also note that not all types of behavior in the de-
tailed model have a counterpart in the simplified model, but we will elaborate on this
in the discussion.
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4 Discussion

In this paper, we have studied a continuous time two-node Hopfield network with two
discrete time delays. The model has been derived in [5], and it describes the activ-
ity of two excitatory neural populations located in different layers of the mammalian
neocortex. Inhibitory connections are assumed to exist only between neurons within
the same population, whereas excitatory connections are exclusively made between
both populations. Furthermore, a bifurcation study in the same article has shown that
the model is able to produce different types of behavior that correspond to a realis-
tic 656-neuron model of neocortex as proposed in [34]. This detailed model is able
to reproduce phenomena observed in in vitro experiments in mouse [4]. By study-
ing the population model more thoroughly, we hope to gain a better understanding
of the complex dynamics seen in the realistic 656-neuron model. In this way, new
experiments for both in silico and in vitro environments can be proposed.

Even though Hopfield networks of this and similar forms have been studied thor-
oughly in other works, these works mainly consider changes of the dynamics under
variation of the time delays. As the time lags in our model are fixed because of the
physiological background, we are mainly interested in the dynamics’ dependency on
connectivity parameters. As a new contribution to this field, we have focused our
study of the model on varying connection strengths of excitatory and inhibitory con-
nections.

All the bifurcations that we have identified in the model, both analytically and
numerically, satisfied the non-degeneracy condition. Combined with the fact that
the model depends smoothly on all parameters, all these bifurcations are structural.
Hence, local variations of parameters will result in local variations of the bifurcations
and the stability region. Some of the delicate bifurcation structures that we identi-
fied will be more sensitive to parameter variations, but only because of their limited
separation in parameter space.

For the steady states in the model, we have analytically determined conditions in
terms of the coupling parameters for which these states become unstable due to bifur-
cations. We have found that both the trivial and the non-trivial equilibria undergo fold
as well as Hopf bifurcations. The non-trivial equilibria, however, are the solution of
a transcendental equation, and therefore, we have studied these bifurcations numeri-
cally. In this manner, we have identified a region in parameter space of bi-stability in
which both the trivial and a non-trivial fixed point are stable.

By studying the first Lyapunov coefficient at the Hopf bifurcations in the sys-
tem, we have found both supercritical and subcritical bifurcations. Furthermore, we
have analytically determined the type of bifurcating periodic solution, either symmet-
ric (in-phase) or asymmetric (anti-phase) oscillations. The evolution of the periodic
solutions arising at the Hopf bifurcations is studied numerically with continuation
software. A large region in parameter space is determined in which both types of
periodic solutions co-exist. Furthermore, we have identified numerous codim-2 bi-
furcations: cusp, generalized Hopf, zero-Hopf, Hopf-Hopf, fold-flip and both 1:1 and
1:2 resonance bifurcations. In the area where bistability exists between these differ-
ent solutions, simulations have shown that the solutions often tend to the asymmetric
solutions.
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Combining the stability regions of the steady states and the periodic solutions, we
have found a region in parameter space in which four types of stable solutions co-
exist: the trivial fixed point, a non-trivial fixed point and both symmetric and asym-
metric periodic solutions. Although it has been shown in [35] that small Hopfield
networks can exhibit chaotic behavior, we have not found such behavior in this study.

The biological relevance of these results is, in our opinion, significant as well.
We have shown that the complex bifurcation structure of the model matches with the
dynamical changes seen in a biologically relevant model for variations of both exci-
tatory and inhibitory strengths [4]. This relation is most clear for the regular bursting,
oscillatory and saturated states of the detailed model because these have a clear equiv-
alent attractor in the population model studied in this article. The other states of the
detailed network, however, might be produced by the population model as part of
a transient behavior. Long transients, during which the model resides close to sev-
eral attractors for an extended period of time, are not uncommon for multi-stable
delayed systems. Since these transients are not attractors themselves, they cannot be
identified with a bifurcation analysis as in this study. Therefore, it remains to be de-
termined whether the population model exhibits long transients and, if so, whether
the time-series correspond with the two missing network states, i.e., desynchronized
and irregular bursting as described in [4].

Although the considered model has very little resemblance with the structures of
a real brain, we still believe that studying models like these provide new insights.
Complex bifurcation structures and multi-stability observed in these models reveal
possible transitions of network behavior that might not have been considered before.
For that reason, we plan to seek and analyze such critical transitions more accurately
with a detailed model of neuronal activity.

Furthermore, we plan to investigate networks of similar systems in order to study
emergent patterns. It is promising that the combined analytical/numerical study of a
single column already shows interesting dynamics, in particular, multi-stability. We
expect to find patterns in such networks that will be relevant to understand observed
patterns in slice experiments.
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