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Abstract In this study, we consider limit theorems for microscopic stochastic mod-
els of neural fields. We show that the Wilson–Cowan equation can be obtained as the
limit in uniform convergence on compacts in probability for a sequence of micro-
scopic models when the number of neuron populations distributed in space and the
number of neurons per population tend to infinity. This result also allows to obtain
limits for qualitatively different stochastic convergence concepts, e.g., convergence
in the mean. Further, we present a central limit theorem for the martingale part of
the microscopic models which, suitably re-scaled, converges to a centred Gaussian
process with independent increments. These two results provide the basis for pre-
senting the neural field Langevin equation, a stochastic differential equation taking
values in a Hilbert space, which is the infinite-dimensional analogue of the chemical
Langevin equation in the present setting. On a technical level, we apply recently de-
veloped law of large numbers and central limit theorems for piecewise deterministic
processes taking values in Hilbert spaces to a master equation formulation of stochas-
tic neuronal network models. These theorems are valid for processes taking values in
Hilbert spaces, and by this are able to incorporate spatial structures of the underlying
model.
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1 Introduction

The present study is concerned with the derivation and justification of neural field
equations from finite size stochastic particle models, i.e., stochastic models for the
behaviour of individual neurons distributed in finitely many populations, in terms of
mathematically precise probabilistic limit theorems. We illustrate this approach with
the example of the Wilson–Cowan equation

τ ν̇(t, x) = −ν(t, x) + f

(∫
D

w(x, y)ν(t, y)dy + I (t, x)

)
. (1.1)

We focus on the following two aspects:

(A) Often one wants to study deterministic equations such as Eq. (1.1) in order to
obtain results on the ‘behaviour in the mean’ of an intrinsically stochastic sys-
tem. Thus, we first discuss limit theorems of the law of large numbers type for
the limit of infinitely many particles. These theorems connect the trajectories of
the stochastic particle models to the deterministic solution of mean field equa-
tions, and hence provide a justification studying Eq. (1.1) in order to infer on the
behaviour of the stochastic system.

(B) Secondly, we aim to characterise the internal noise structure of the complex dis-
crete stochastic models as in the limit of large numbers of neurons the noise is
expected to be close to a simpler stochastic process. Ultimately, this yields a
stochastic neural field model in terms of a stochastic evolution equation concep-
tually analogous to the Chemical Langevin Equation. The Chemical Langevin
Equation is widely used in the study of chemical reactions networks for which
the stochastic effects cannot be neglected but a numerical or analytical study of
the exact discrete model is not possible due to its inherent complexity.

In this study, we understand as a microscopic model a description as a stochastic pro-
cess, usually a Markov chain model, also called amaster equation formulation (cf. [3,
5, 8, 9, 22] containing various master equation formulations of neural dynamics). In
contrast, amacroscopic model is a deterministic evolution equation such as (1.1). De-
terministic mean field equations have been used widely and for a long time to model
and analyse large scale behaviour of the brain. In their original deterministic form,
they are successfully used to model geometric visual hallucinations, orientation tun-
ing in the visual cortex and wave propagation in cortical slices to mention only a few
applications. We refer to [7] for a recent review and an extensive list of references.
The derivation of these equations is based on a number of arguments from statisti-
cal physics and for a long time a justification from microscopic models has not been
available. The interest in deriving mean field equations from stochastic microscopic
model has been revived recently as it contains the possibility to derive deterministic
‘corrections’ to the mean field equations, also called second-order approximations.
These corrections might account for the inherent stochasticity, and thus incorporate
so called finite size effects. This has been achieved by either applying a path-integral
approach to the master equation [8, 9] or by a van Kampen system-size expansion of
the master equation [5]. In more detail, the author in the latter reference proposes a
particular master equation for a finite number of neuron populations and derives the
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Wilson–Cowan equation as the first-order approximation to the mean via employing
the van Kampen system size expansion and then taking the continuum limit for a con-
tinuum of populations. In keeping also the second-order terms, a ‘stochastic’ version
of the mean field equation is also presented in the sense of coupling the first moment
equation to an equation for the second moments.

However, the van Kampen system size expansion does not give a precise math-
ematical connection, as it neither quantifies the type of convergence (quality of the
limit), states conditions when the convergence is valid nor does it allow to charac-
terise the speed of convergence. Furthermore, particular care has to be taken in sys-
tems possessing multiple fixed points of the macroscopic equation, and we refer to
[5] for a discussion of this aspect in the neural field setting. The limited applicabil-
ity of the van Kampen system size expansion was already well known to Sect. 10 in
van Kampen [33]. In parallel to the work of van Kampen, T. Kurtz derived precise
limit theorems connecting sequences of continuous time Markov chains to solutions
of systems of ordinary differential equations; see the seminal studies [19, 20] or the
monograph [15]. Limit theorems of that type are usually called the fluid limit, ther-
modynamic limit, or hydrodynamic limit; for a review, see, e.g., [13].

As is thoroughly discussed in [5] establishing the connection between master
equation models and mean field equations involves two limit procedures. First, a
limit which takes the number of particles, in this case neurons per considered popu-
lation, to infinity (thermodynamic limit), and a second which gives the mean field by
taking the number of populations to infinity (continuum limit). In this ‘double limit’,
the theorems by Kurtz describe the connection of taking the number of neurons per
population to infinity yielding a system of ordinary differential equation, one for each
population. Then the extension from finite to infinite dimensional state space is ob-
tained by a continuum limit. This procedure corresponds to the approach in [5]. Thus,
taking the double limit step by step raises the question what happens if we first take
the spatial limit and then the fluid limit, thus reversing the order of the limit proce-
dures, or in the case of taking the limits simultaneously. Recently, in an extension to
the work of Kurtz, one of the present authors and co-authors established limit the-
orems that achieve this double limit [27], thus being able to connect directly finite
population master equation formulations to spatio-temporal limit systems, e.g., par-
tial differential equation or integro-differential equations such as the Wilson–Cowan
equation (1.1). In a general framework, these limit theorems were derived for Piece-
wise Deterministic Markov Processes on Hilbert spaces, which in addition to the
jump evolution also allow for a coupled deterministic continuous evolution. This
generality was motivated by applications to neuron membrane models consisting of
microscopic models of the ion channels coupled to a deterministic equation for the
transmembrane potential. We find that this generality is also advantageous for the
present situation of a pure jump model as it allows to include time-dependent inputs.
In this study, we employ these theorems to achieve the aims (A) and (B) focussing on
the example of the deterministic limit given by the Wilson–Cowan equation (1.1).

Finally, we state what this study does not contain, which in particular distinguishes
the present study from [5, 8, 9] beyond mathematical technique. Presently, the aim is
not to derive moment equations, i.e., a deterministic set of equations that approximate
the moments of the Markovian particle model, but rather processes (deterministic or
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stochastic) to which a sequence of microscopic models converges under suitable con-
ditions in a probabilistic way. This means that a microscopic model, which is close
to the limit—presently corresponding to a large number of neurons in a large num-
ber of populations—can be assumed to be close to the limiting processes in structure
and pathwise dynamics as indicated by the quality of the stochastic limit. Hence, the
present work is conceptually—though neither in technique nor results—close to [30]
wherein using a propagation to chaos approach in the vicinity of neural field equa-
tions the author also derives in a mathematically precise way a limiting process to
finite particle models. However, it is an obvious consequence that the convergence of
the models necessarily implies a close resemblance of their moment equations. This
provides the connection to [5, 8, 9], which we briefly comment on in Appendix B.

As a guide, we close this introduction with an outline of the subsequent sections
and some general remarks on the notation employed in this study. In Sects. 1.1 to 1.3,
we first discuss the two types of mean field models in more detail, on the one hand,
the Wilson–Cowan equation as the macroscopic limit and, on the other hand, a master
equation formulation of a stochastic neural field. The main results of the paper are
found in Sect. 2. There we set up the sequence of microscopic models and state
conditions for convergence. Limit theorems of the law of large numbers type are
presented in Theorem 2.1 and Theorem 2.2 in Sect. 2.1. The first is a classical weak
law of large numbers providing uniform convergence on compacts in probability and
the second convergence in the mean uniformly over the whole positive time axis.
Next, a central limit theorem for the martingale part of the microscopic models is
presented in Sect. 2.2 characterising the internal fluctuations of the model to be of
a diffusive nature in the limit. This part of the study is concluded in Sect. 2.3 by
presenting the Langevin approximations that arise as a result of the preceding limit
theorems. The proofs of the theorems in Sect. 2 are deferred to Sect. 4. The study
is concluded in Sect. 3 with a discussion of the implications of the presented results
and an extension of these limit theorems to different master equation formulations or
mean field equations.

Notations and Conventions Throughout the study, we denote by Lp(D), 1 ≤ p ≤
∞, the Lebesgue spaces of real functions on a domain D ⊂ R

d , d ≥ 1. Physically
reasonable choices are d ∈ {1,2,3}, however, for the mathematical theory presented
the spatial dimension can be arbitrary. In the present study, spatial domains D are
always bounded with a sufficiently smooth boundary, where the minimal assumption
is a strong local Lipschitz condition; see [2]. For bounded domains D, this condi-
tion simply means that for every point on the boundary its neighbourhood on the
boundary is the graph of a Lipschitz continuous function. Furthermore, for α ∈ N

we denote by Hα(D) the Sobolev spaces, i.e., subspaces of L2(D), with the corre-
sponding Sobolev norm. For α ∈ R+\N we denote by Hα(D) the interpolating Besov
spaces. In this study, H−α(D) is the dual space of Hα(D), which is in contrast to the
widespread notation to denote by H−α(D), α ≥ 0, the dual space of Hα

0 (D). As
usual, we have H 0(D) = L2(D) = H−0(D). We thus obtain a continuous scale of
Hilbert spaces Hα(D), α ∈ R, which satisfy that Hα1(D) is continuously embed-
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ded1 in Hα2(D) for all α1 < α2. Next, a pairing (·, ·)Hα denotes the inner product
of the Hilbert space Hα(D) and pairings in angle brackets 〈·, ·〉Hα denote the duality
pairing for the Hilbert space Hα(D). That is, for ψ ∈ Hα(D) and φ ∈ H−α(D) the
expression 〈φ,ψ〉Hα denotes the application of the real, linear functional φ to ψ . Fur-
thermore, the spaces Hα(D), L2(D) and H−α(D) form an evolution triplet, i.e., the
embeddings are dense and the application of linear functionals and the inner product
in L2(D) satisfy the relation

〈φ,ψ〉Hα = (φ,ψ)L2 ∀φ ∈ L2(D),ψ ∈ Hα(D). (1.2)

Norms in Hilbert spaces are denoted by ‖ · ‖Hα , ‖ · ‖0 is used to denote the supremum
norm of real functions, i.e., for f : R → R we have ‖f ‖0 = supz∈R |f (z)|, and | · |
denotes either the absolute value for scalars or the Lebesgue measure for measurable
subsets of Euclidean space. Finally, we use N0 to denote the set of integers including
zero.

1.1 The Macroscopic Limit

Neural field equations are usually classified into two types: rate-based and activity-
based models. The prototype of the former is the Wilson–Cowan equation; see
Eq. (1.1), which we also restate below, and the Amari equation, see Eq. (3.7) in
Sect. 3, is the prototype of the latter. Besides being of a different structure, due to
their derivation, the variable they describe has a completely different interpretation.
In rate-based models, the variable describes the average rate of activity at a certain
location and time, roughly corresponding to the fraction of active neurons at a certain
infinitesimal area. In activity-based models, the macroscopic variable is an average
electrical potential produced by neurons at a certain location. For a concise physical
derivation that leads to these models, we refer to [5]. In the following, we consider
rate-based equations, in particular, the classical Wilson–Cowan equation, to discuss
the type of limit theorems we are able to obtain. We remark that the results are essen-
tially analogous for activity based models.

Thus, the macroscopic model of interest is given by the equation

τ ν̇(t, x) = −ν(t, x) + f

(∫
D

w(x, y)ν(t, y)dy + I (t, x)

)
, (1.3)

where τ > 0 is a decay time constant, f : R → R+ is a gain (or response) function
that relates inputs that a neuron receives to activity. In (1.3), the value f (z) can be
interpreted as the fraction of neurons that receive at least threshold input. Further-
more, w(x,y) is a weight function, which states the connectivity strength of a neuron
located at y to a neuron located at x, and finally, I (t, x) is an external input, which
is received by a neuron at x at time t . For the weight function w : D × D → R and
the external input I , we assume that w ∈ L2(D × D) and I ∈ C(R+,L2(D)). As for

1A normed space X is continuously embedded in another normed space Y , in symbols X ↪→ Y , if X ⊂ Y

and there exists a constant K < ∞ such that ‖u‖Y ≤ K‖u‖X for all u ∈ X.
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the gain function f , we assume in this study that f is non-negative, satisfies a global
Lipschitz condition with constant L > 0, i.e.,∣∣f (a) − f (b)

∣∣≤ L|a − b| ∀a, b ∈ R, (1.4)

and it is bounded. From an interpretive point-of-view, it is reasonable and con-
sistent to stipulate that f is bounded by one—being a fraction—as well as being
monotone. The latter property corresponds to the fact that higher input results in
higher activity. In specific models, f is often chosen to be a sigmoidal function, e.g.,
f (z) = (1 + e−(β1z+β2))−1 in [6] or f (z) = (tanh(β1z + β2) + 1)/2 in [3], which
both satisfy f ∈ [0,1]. Moreover, the most common choices of f are even infinitely
often differentiable with bounded derivatives, which already implies the Lipschitz
condition (1.4).

The Wilson–Cowan equation (1.3) is well-posed in the strong sense as an integral
equation in L2(D) under the above conditions. That is, Eq. (1.3) possesses a unique,
continuously differentiable global solution ν to every initial condition ν(0) = ν0 ∈
L2(D), i.e., ν ∈ C1([0, T ],L2(D)) for all T > 0, which depends continuously on
the initial condition. Furthermore, if the initial condition satisfies ν0(x) ∈ [0,‖f ‖0]
almost everywhere in D, then it holds for all t > 0 that ν(t, x) ∈ (0,‖f ‖0) for almost
all x ∈ D. For a brief derivation of these results, we refer to Appendix A where we
also state a result about higher spatial regularity of the solution: Let α ∈ N be such
that α > d/2. If now ν0 ∈ Hα(D) and if f is at least α-times differentiable with
bounded derivatives and the weights and the input function satisfy w ∈ Hα(D × D)

and I ∈ C(R+,Hα(D)), then the equation is well-posed in Hα(D), i.e., for all T > 0
in ν ∈ C1([0, T ],Hα(D)). In particular, this implies that the solution ν is jointly
continuous on R+ × D.

1.2 Master Equation Formulations of Neural Network Models

For the microscopic model, we concentrate on a variation of the model considered in
[5, 6], which is already an improvement on a model introduced in [11]. We extend the
model including variations among neuron populations and foremost time-dependent
inputs. We chose this model over the master equation formulations in [8, 9] as it pro-
vides a more direct connection of the microscopic and macroscopic models; see also
the discussion in Sect. 3. We describe the main ingredients of the model beginning
with the simpler, time-independent model as prevalent in the literature. Subsequently,
in Sect. 1.3 the final, time-dependent model is defined.

We denote by P the number of neuron populations in the model. Further, we as-
sume that the kth neuron population consists of identical neurons which can either
be in one of two possible states, active, i.e., emitting action potentials, and inactive,
i.e., quiescent or not emitting action potentials. Transitions between states occur in-
stantaneously and at random times. For all k = 1, . . . ,P , the random variables Θk

t

denote the number of active neurons at time t . An integer l(k) is used to characterise
the population size. This number l(k) can be interpreted as the number of neurons in
the kth population, at least for sufficiently large values. However, this is not accurate
in the literal sense as it is possible with positive probability for populations to contain
more than l(k) active neurons. Nevertheless, a posteriori the interpretation can be sal-
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vaged from the obtained limit theorems.2 It is a corollary of these that the probability
of more then l(k) neurons being active for some time becomes arbitrarily small for
large enough l(k). Hence, for physiological reasonable neuron numbers the probabil-
ity in these models of observing ‘non-physiological’ trajectories in the interpretation
becomes ever smaller.

Proceeding with notation, Θt = (Θ1
t , . . . ,ΘP

t ) is a (unbounded) piecewise con-
stant stochastic process taking values in N

P
0 . The stochastic transitions from inactive

to active states and vice versa for a neuron in population k are governed by a con-
stant inactivation rate τ−1 > 0—uniformly for all populations—and inputs from other
neurons depending on the current network state. This non-negative activation rate is
given by τ−1l(k)f k(θ) for θ ∈ N

P
0 . For the definition of f k , we consider weights

Wkj , k, j = 1, . . . ,P , which weigh the input one neuron in population k receives
from a neuron in population j . Then the activation rate of a neuron in population k is
proportional to

f k(θ) = f

(
P∑

j=1

Wkjθ
j

)
(1.5)

for a non-negative function f : R → R, which obviously corresponds to the gain
function f in the Wilson–Cowan equation (1.3). We remark that here f is not the
rate of activation of one neuron. In this model, the activation rate of a population
is not proportional to the number of inactive neurons but it is proportional to l(k),
which stands for the total number of neurons in the population. In [5], this rate is thus
interpreted as the rate with which a neuron becomes or remains active.

It follows that the process (Θt )t≥0 is a continuous-time Markov chain which is
usually defined via the following master equation, where ek denotes the kth basis
vector of R

P ,

dP[θ, t]
dt

= 1

τ

P∑
k=1

(
l(k)f k(θ − ek)P[θ − ek, t]

− (θk + l(k)f k(θ)
)
P[θ, t] + (θk + 1

)
P[θ + ek, t]

)
(1.6)

which is endowed with the boundary conditions P[θ, t] = 0 if θ /∈ N
P
0 . In (1.6), the

variable P[θ, t] denotes the probability that the process Θt is in state θ at time t .
Finally, the definition is completed with stating an initial law L, the distribution of
Θ0, i.e., providing an initial value for the ODE system (1.6).

Another definition of a continuous-time Markov chain is via its generator; see,
e.g., [15]. Although the master equation is widely used in the physics and chemical
reactions literature the mathematically more appropriate object for the study of a
Markov process is its generator and the master equation is an object derived from

2The derivation of limit theorems for bounded populations sizes, where l(k) actually is the number of neu-
rons per population, is much more delicate than the subsequent presentation as the transition rate functions
become discontinuous. Although this would be a desirable result, we have not yet been able to prove such
a theorem, though it is clear that the Wilson–Cowan equation would be the only possible limit. See also a
discussion of this aspect in Sect. 3.2.
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the generator, see Sect. V in [33]. The generator of a Markov process is an operator
defined on the space of real functions over the state space of the process. For the
above model defined by the master equation (1.6), the generator is given by

Ag(θ) = λ(θ)

∫
N

P
0

(
g(ξ) − g(θ)

)
μ(θ,dξ) (1.7)

for all suitable g : N
P
0 → R. For details, we refer to [15]. Here, λ is the total instanta-

neous jump rate, given by

λ(θ) := 1

τ

P∑
k=1

(
θk + l(k)f k(θ)

)
, (1.8)

and defines the distribution of the waiting time until the next jump, i.e.,

P
[
Θt+s = Θt ∀s ∈ [0,Δt]|Θt = θ

]= e−λ(θ)Δt .

Further, the measure μ in (1.7) is a Markov kernel on the state space of the process
defining the conditional distribution of the post-jump value, i.e.,

P[Θt ∈ A|Θt �= Θt−] = μ(Θt−,A) (1.9)

for all sets A ⊆ N
P
0 . In the present case for each θ , the measure μ is given by the

discrete distribution

μ
(
θ, {θ − ek}

)= 1

τ

θk

λ(θ)
,

μ
(
θ, {θ + ek}

)= 1

τ

l(k)f k(θ)

λ(θ)
∀k = 1, . . . ,P .

(1.10)

The importance of the generator lies in the fact that it fully characterises a Markov
process and that convergence of Markov processes is strongly connected to the con-
vergence of their generators; see [15].

1.3 Including External Time-Dependent Input

Until now, the microscopic model does not incorporate any time-dependent input into
the system. In analogy to the macroscopic equation (1.3), this input enters into the
model inside the active rate function f k . Thus, let I k(t) denote the external input into
a neuron in population k at time t , then the time-dependent activation rate is given by

f k(θ, t) = f

(
P∑

j=1

Wkjθ
j + I k(t)

)
. (1.11)

The most important qualitative difference when substituting (1.5) by (1.11) is that the
corresponding Markov process is no longer homogeneous. In particular, the waiting
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time distributions in between jumps are no longer exponential, but satisfy

P
[
Θt+s = Θt ∀s ∈ [0,Δt]|Θt = θ

]= e− ∫ Δt
0 λ(θ,s)ds .

Hence, the resulting process is an inhomogeneous continuous-time Markov chain;
see, e.g., Sect. 2 in [36]. It is straightforward to write down the corresponding master
equation analogously to (1.6) yielding a system of non-autonomous ordinary differ-
ential equations, cf. the master equation formulation in [8]. Similarly, there exists
the notion of a time-dependent generator for inhomogeneous Markov processes, cf.
Sect. 4.7 in [15]. Employing a standard trick, that is, suitably extending the state
space of the process, we can transform a inhomogeneous to a homogeneous Markov
process [15, 28]. That is, the space-time process Yt := (Θt , t) is again a homoge-
neous Markov process. The initial law of the associated space-time process is L × δ0
on N

P × R+. We emphasise that definitions of the space-time process and its initial
law imply that the time-component starts at 0 a.s. and, moreover, moves continuously
and deterministically. That is, the trajectories satisfy in between jumps the differential
equation (

θ̇

ṫ

)
=
(
0
1

)
,

where the jump intensity λ is given by the sum of all individual time-dependent
rates analogously to (1.8). Finally, the post jump value is given by a Markov ker-
nel μ((θ, t), ·)× δt as there clearly do not occur jumps in the progression of time and
μ is the obvious time-dependent modification of (1.10).

It thus follows, that the space-time process (Θt , t)t≥0 is a homogeneous Piecewise
Deterministic Markov Process (PDMP); see, e.g., [14, 16, 26]. This connection is
particularly important as we apply in the course of the present study limit theorems
developed for this type of processes; see [27]. Finally, for the space-time process
(Θt , t)t≥0, we obtain for suitable functions g : N

P
0 × R+ → R the generator

Ag(θ, t) = ∂tg(θ, t) + λ(θ, t)

∫
N

P
0

(
g(ξ, t) − g(θ, t)

)
μ
(
(θ, t),dξ

)
. (1.12)

2 A Precise Formulation of the Limit Theorems

In this section, we present the precise formulations of the limit theorems. To this
end, we first define a suitable sequence of microscopic models, which gives the
connection between the defining objects of the Wilson–Cowan equation (1.3) and
the microscopic models discussed in Sect. 1.2. Thus, (Y n

t )t≥0 = (Θn
t , t)t≥0, n ∈ N,

denotes a sequence of microscopic PDMP neural field models of the type as de-
fined in Sect. 1.3. Each process (Y n

t )t≥0 is defined on a filtered probability space
(Ωn, F n, (F n

t )t≥0,P
n), which satisfies the usual conditions. Hence, the defining ob-

jects for the jump models are now dependent on an additional index n. That is P(n)

denotes the number of neuron populations in the nth model, l(k, n) is the number of
neurons in the kth population of the nth model and analogously we use the notations
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W
n

kj and I k,n and f k,n. However, we note from the beginning that the decay rate τ−1

is independent of n and τ is the time constant in the Wilson–Cowan equation (1.3).
In the following paragraphs, we discuss the connection of the defining components
of this sequence of microscopic models to the components of the macroscopic limit.

Connection to the Spatial Domain D A key step of connecting the microscopic
models to the solution of Eq. (1.3) is that we need to put the individual neuron pop-
ulations into relation to the spatial domain D the solution of (1.3) lives on. To this
end, we assume that each population is located within a sub-domain of D and that
the sub-domains of the individual populations are non-overlapping. Hence, for each
n ∈ N, we obtain a collection Dn of P(n) non-overlapping sub-sets of D denoted
by D1,n, . . . ,DP(n),n. We assume that each subdomain is measurable and convex.
The convexity of the sub-domains is a technical condition that allows us to apply
Poincaré’s inequality, cf. (4.1). We do not think that this condition is too restrictive
as most reasonable partition domains, e.g., cubes, triangles, are convex. Furthermore,
for all reasonable domainsD, e.g., all Jordan measurable domains, a sequence of con-
vex partitions can be found such that additionally the conditions imposed in the limit
theorems below are also satisfied. One may think of obtaining the collection Dn by
partitioning the domain into P(n) convex sub-domains D1,n, . . . ,DP(n),n and con-
fining each neuron population to one sub-domain. However, it is not required that the
union of the sets in Dn amounts to the full domain D nor that the partitions consists
of refinements. Necessary conditions on the limiting behaviour of the sub-domains
are very strongly connected to the convergence of initial conditions of the models,
which is a condition in the limit theorems; see below. For the sake of terminological
simplicity, we refer to Dn simply as the partitions.

We now define some notation for parameters characterising the partitions Dn: the
minimum and maximum Lebesgue measure, i.e., length, area, or volume depending
on the spatial dimension, is denoted by

v−(n) := min
k=1,...,P (n)

|Dk,n|, v+(n) := max
k=1,...,P (n)

|Dk,n|, (2.1)

and the maximum diameter of the partition is denoted by

δ+(n) := max
1,...,P (n)

diam(Dk,n), (2.2)

where the diameter of a set Dk,n is defined as diam(Dk,n) := supx,y∈Dk,n
|x − y|. In

the special case of domains obtained by unions of cubes with edge length n−1, it
obviously holds that v±(n) = n−d and δ+(n) = √

dn−1. It is a necessary condition
in all the subsequent limit theorems that limn→∞ δ+(n) = 0. This condition implies
on the one hand that limn→∞ v+(n) = 0 as the Lebesgue measure of a set is bounded
in terms of its diameter, and on the other hand—at least in all but degenerate cases
due to the necessary convergence of initial conditions that limn→∞ P(n) = ∞. That
is, in order to obtain a limit the sequence of partitions usually consists of ever finer
sets and the number of populations diverges. Finally, each domain Dk,n of the par-
tition Dn contains one neuron population ‘consisting’ of l(k, n) ∈ N neurons. Then
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we denote by �±(n) the maximum and minimum number of neurons in populations
corresponding to the nth model, i.e.,

�−(n) := min
k=1,...,P (n)

l(k, n), �+(n) := max
k=1,...,P (n)

l(k, n). (2.3)

Connection to the Weight Function w We assume that there exists a function w :
D × D → R such that the connection to the discrete weights is given by

W
n

kj := 1

|Dk,n|
∫

Dk,n

(∫
Dj,n

w(x, y)dy

)
dx, (2.4)

where w is the same function as in the Wilson–Cowan equation (1.3). For the defini-
tion of activation rate at time t , we thus obtain

f k,n

(
θn, t

) := f

(
P∑

j=1

W
n

kj

θj,n

l(j, n)
+ I k,n(t)

)
. (2.5)

As already highlighted by Bressloff [5], the transition rates are not uniquely defined
by the requirement that a possible limit to the microscopic models is given by the
Wilson–Cowan equation (1.3). If in (2.5), the definition of the transition rates is
changed to

f k,n

(
θn, t

) := f n

(
P∑

j=1

W
n

kj

θj,n

l(j, n)
+ I k,n(t)

)
,

where f n, n ∈ N, is a sequence of functions converging uniformly to f , then all
limit theorems remain valid. The proof can be carried out as presented adding and
subtracting the appropriate term where the additional difference term vanishes due to
supx∈R |f n(x) − f (x)| → 0 for n → ∞. Hence, any microscopic model with gain
rates f k,n of such a form reduces to the same Wilson–Cowan equation in the limit.
Clearly, the same applies analogously to the decay rate τ , the weights w, and the
input I .

Connection to the Input Current I The external input which is applied to neurons
in a certain population is obtained by spatially averaging a space-time input over the
sub-domain that population is located in, i.e.,

I k,n(t) := 1

|Dk,n|
∫

Dk,n

I (t, x)dx. (2.6)

This completes the definition of the Markov jump processes (Θn
t , t)t≥0. For the

sake of completeness, we repeat the definition of the total jump rate

λn
(
θn, t

) := 1

τ

P∑
k=1

(
θk,n + l(k, n)f k,n

(
θn, t

))
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and the transition measure μn is defined by

μn
((

θn, t
)
,
{
θn − ek

}) := 1

τ

θk,n

λn(θn, t)
,

μn
((

θn, t
)
,
{
θn + ek

}) := 1

τ

l(k, n)f k,n(θ
n, t)

λn(θn, t)

for all k = 1, . . . ,P (n).

Connection to the Solution ν As functions of time, the paths of the PDMP
(Θn

t , t)t≥0 and the solution ν live on different state spaces. The former takes val-
ues in N

P
0 × R+ and the latter in L2(D). Thus, in order to compare these two, we

have to introduce a mapping that maps the stochastic process onto L2(D). In [27],
the authors called such a mapping a coordinate function, which is also the terminol-
ogy used in [13]. In fact, the limit theorems we subsequently present actually are for
the processes we obtain from the composition of the coordinate functions with the
PDMPs. Here, it is important to note that for each n ∈ N the coordinate functions
may—and usually do—differ, however, they project the process into the common
space L2(D). For the mean field models, we define the coordinate functions for all
n ∈ N by

νn : N
P
0 → L2(D) : θn �→

P∑
k=1

θk,n

l(k, n)
IDk,n

. (2.7)

Clearly, each νn is a measurable map into L2(D). For the composition of νn with the
stochastic process (Θn

t , t)t≥0, we also use the abbreviation νn
t := νn(Θn

t ), and hence
the resulting stochastic process (νn

t )t≥0 is an adapted càdlàg process taking values
in L2(D). This process thus states the activity at a location x ∈ D as the fraction of
active neurons in the population, which is located around this location.

Connection of the Initial Conditions One condition in the subsequent limit theorems
is the convergence of initial conditions in probability, i.e., the assumption that

lim
n→∞ P

n
[∥∥νn

(
Θn

0

)− ν0
∥∥

L2(D)
> ε
]= 0 ∀ε > 0. (2.8)

It is easy to see that such a sequence of initial conditions Θn
0 , n ∈ N, can be found

for any deterministic initial condition ν0 under some reasonable conditions on the
domain D and the sequence of partitions Dn. Hence, the assumption (2.8) can always
be satisfied. For example, we may define such a sequence of initial conditions by

Θ
k,n
0 = argmin

i=1,...,l(k,n)

∣∣∣∣ i

l(k, n)
− 1

|Dk,n|
∫

Dk,n

ν(0, x)dx

∣∣∣∣.
Next, assuming that partitions fill the whole domain D for n → ∞, i.e., limn→∞ |D\⋃P(n)

k=1 Dk,n| = 0, and that the maximal diameter of the sets decreases to zero, i.e.,
limn→∞ δ+(n) = 0, it is easy to see using the Poincaré inequality (4.1) that the
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above definition of the initial condition implies that ‖νn
0 − ν(0)‖L2(D) → 0 and

supn∈N ‖νn
0‖2r

L2(D)
< ∞ for all r ≥ 1. Then (2.8) holds trivially as the initial con-

dition is deterministic and converges. A simple non-degenerate sequence of initial
conditions is obtained by choosing random initial conditions with the above value as
their mean and sufficiently fast decreasing fluctuations. Furthermore, a sequence of
partitions, which satisfy the above conditions also exists for a large class of reason-
able domains D. Assume that D is Jordan measurable, i.e., a bounded domain such
that the boundary is a Lebesgue null set, and let Cn be the smallest grid of cubes
with edge length 1/n covering D. We define Dn to be the set of all cubes, which
are fully in D. As D is Jordan measurable, these partitions fill up D from inside and
δ+(n) → 0. For a more detailed discussion of these aspects, we refer to [26].

In the remainder of this section, we now collect the main results of this article. We
start with the law of large numbers, which establishes the connection to the determin-
istic mean field equation, and then proceed to central limit theorems which provide
the basis for a Langevin approximation. The proofs of the results are deferred to
Sect. 4.

2.1 A Law of Large Numbers

The first law of large numbers takes the following form. Note that the assumptions
imply that the number of neuron populations diverges.

Theorem 2.1 (Law of large numbers) Let w ∈ L2(D) × L2(D) and I ∈ L2
loc(R+,

H 1(D)). Assume that the sequence of initial conditions converges to ν(0) in proba-
bility in the space L2(D), i.e., (2.8) holds, that E

nΘ
k,n
0 ≤ l(k, n), and that

lim
n→∞ δ+(n) = 0, lim

n→∞�−(n) = ∞ (2.9)

holds. Then it follows that the sequence of L2(D)-valued jump-process (νn
t )t≥0 con-

verges uniformly on compact time intervals in probability to the solution ν of the
Wilson–Cowan equation (1.3), i.e., for all T , ε > 0 it holds that

lim
n→∞ P

n
[
sup

t∈[0,T ]

∥∥νn
t − ν(t)

∥∥
L2(D)

> ε
]

= 0. (2.10)

Moreover, if for r ≥ 1 the initial conditions satisfy in addition supn∈N E
n‖νn

0‖2r
L2(D)

<

∞, then convergence in the r th mean holds, i.e., for all T > 0

lim
n→∞ E

n sup
t∈[0,T ]

∥∥νn
t − ν(t)

∥∥r

L2(D)
= 0. (2.11)

Remark 2.1 The norm of the uniform convergence supt∈[0,T ] ‖ · ‖L2(D), which we
used in Theorem 2.1 is a very strong norm on the space of L2(D)-valued càdlàg func-
tions on [0, T ]. Hence, due to continuous embeddings, the result immediately extends
to weaker norms, e.g., the norms Lp((0, T ),L2(D)) for all 1≤ p ≤ ∞. Also, for the
state space, weaker spatial norms can be chosen, e.g., Lp(D) with 1 ≤ p ≤ 2 or any
norm on the duals H−α(D) of Sobolev spaces with α > 0. If weaker norms for the
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state space are considered, it is possible to relax the conditions of Theorem 2.1 by
sharpening some estimates in the proof of the theorem. The results in the following
corollary cover the whole range of α ≥ 0 and splits it into sections with weakening
conditions. In particular note that after passing to weaker norms, the convergence
does not necessitate that the neuron numbers per population diverge. However, re-
garding the divergence of the neuron populations, this condition (δ+(n) → 0) cannot
be relaxed.

Corollary 2.1 Let α ≥ 0 and set

q :=

⎧⎪⎨⎪⎩
2d

d+2α if 0 ≤ α < d/2,

1− if α = d/2,

1 if d/2 < α < ∞.

(2.12)

Further, assume that w ∈ Lq(D) × L2(D) and I ∈ L2
loc(R+,H 1(D)) and that the

sequence of initial conditions converges to ν(0) in probability in the space H−α(D),
that limn→∞ δ+(n) = 0 and

limn→∞ v+(n)2α/d

�−(n)
= 0 if 0 ≤ α < d/2,

limn→∞ v+(n)1−
�−(n)

= 0 if α = d/2,

limn→∞ v+(n)
�−(n)

= 0 if d/2 < α < ∞,

⎫⎪⎪⎬⎪⎪⎭ (2.13)

where 1− denotes an arbitrary positive number strictly smaller than 1. Then it holds
for all T , ε > 0 that

lim
n→∞ P

n
[

sup
t∈[0,T ]

∥∥νn
t − ν(t)

∥∥
H−α(D)

> ε
]

= 0

and for r ≥ 1, if the additional boundedness assumptions of Theorem 2.1 are satisfied,
that for all T > 0

lim
n→∞ E

n sup
t∈[0,T ]

∥∥νn
t − ν(t)

∥∥r

H−α(D)
= 0.

Remark 2.2 We believe that fruitful and illustrative comparisons of these conver-
gence results and their conditions to the results in Kotelenez [17, 18], and particularly,
Blount [4] can be made. Here, we just mention that the latter author conjectured the
conditions (2.13) to be optimal for the convergence, but was not able to prove this
result in his model of chemical reactions with diffusions for the region α ∈ (0, d/2].
For our model, we could achieve these rates.

2.1.1 Infinite-Time Convergence

In the law of large numbers, Theorem 2.1, and its Corollary 2.1 we have presented
results of convergence over finite time intervals. Employing a different technique,
we are also able to derive a convergence result over the whole positive time axis
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motivated by a similar result in [32]. The proof of the following theorem is deferred
to Sect. 4.3. Restricted to finite time intervals, the subsequent result is strictly weaker
than Theorem 2.1. However, the result is important when one wants to analyse the
mean long time behaviour of the stochastic model via a bifurcation analysis of the
deterministic limit as (2.14) suggests that E

nνn
t is close to ν(t) for all times t ≥ 0 for

sufficiently large n.

Theorem 2.2 Let α ≥ 0 and assume that the conditions of Corollary 2.1 are satis-
fied.We further assume that the current input function I ∈ L2

loc(R+,H 1(D)) satisfies
‖∇xI‖L∞(R+,L2(D)) < ∞, i.e., it is square integrable in H 1(D) over bounded inter-

vals, and possesses first spatial derivatives bounded for almost all t ≥ 0 in L2(D).
Then it holds that

lim
n→∞ sup

t≥0
E

n
∥∥νn

t − ν(t)
∥∥

H−α(D)
= 0. (2.14)

2.2 A Martingale Central Limit Theorem

In this section, we present a central limit theorem for a sequence of martingales as-
sociated with the jump processes νn. A brief, heuristic discussion of the method of
proof for the law of large numbers explains the importance of these martingales and
motivates their study. In the proof of the law of large numbers, the central argument
relies on the fact that the process (νn

t )t≥0 satisfies the decomposition

νn
t = νn

0 +
∫ t

0
λ
(
Θn

s , s
)∫

N
P
0

(
νn(ξ) − νn

(
Θn

s

))
μn
((

Θn
s , s
)
,dξ
)
ds + Mn

t . (2.15)

Here, the process (Mn
t )t≥0 is a Hilbert space-valued, square-integrable, càdlàg mar-

tingale using (2.15) as its definition. We have used this representation of the process
νn in the proof of Theorem 2.2; see Sect. 4.3. We note that the Bochner integral in
(2.15) is a.s. well defined due to bounded second moments of the integrand; see (4.7)
in the proof of Theorem 2.1. Now an heuristic argument to obtain the convergence
to the solution of the Wilson–Cowan equation is the following: The initial condi-
tions converge, the martingale term Mn converges to zero and the integral term in
the right-hand side of (2.15) converges to the right-hand side in the Wilson–Cowan
equation (1.3). Hence, the ‘solution’ νn of (2.15) converges to the solution ν of the
Wilson–Cowan equation (1.3). Now interpreting Eq. (2.15) as a stochastic evolution
equation, which is driven by the martingale (Mn

t )t≥0 sheds light on the importance
of the study of this term. Because, from this point of view, the martingale part in
the decomposition (2.15) contains all the stochasticity inherent in the system. Then
the idea for deriving a Langevin or linear noise approximation is to find a stochas-
tic non-trivial limit (in distribution) for the sequence of martingales and substituting
heuristically this limiting martingale into the stochastic evolution equation. Then it
is expected that this new and much less complex process behaves similarly to the
process (νn

t )t≥0 for sufficiently large n. Deriving a suitable limit for (Mn
t )t≥0 is what

we set to do next. The result can be found in Theorem 2.3 below and takes the form
of a central limit theorem.



Page 16 of 54 M.G. Riedler, E. Buckwar

First of all, what has been said so far implies the necessity of re-scaling the martin-
gale with a diverging sequence in order to obtain a non-trivial limit. The conditions in
the law of large numbers imply in particular that the martingale converges uniformly
in the mean square to zero, i.e.,

lim
n→∞ E

n sup
t∈[0,T ]

∥∥Mn
t

∥∥
L2(D)

= 0,

which in turn implies convergence in probability and convergence in distribution to
the zero limit.

Furthermore, in contrast to Euclidean spaces norms on infinite-dimensional spaces
are usually not equivalent. In Corollary 2.1, we exploited this fact as it allowed us to
obtain convergence results under less restrictive conditions by changing to strictly
weaker norms. In the formulation and proof of central limit theorems, the change
to weaker norms even becomes an essential ingredient. It is often observed in the
literature, see, e.g., [4, 17, 18] that central limit theorems cannot be proven in the
strongest norm for which the law of large numbers holds, e.g., L2(D) in the present
setting, but only in a strictly weaker norm. Here, this norm is the norm in the dual
of an appropriate Sobolev space. Hence, from now on, we consider for all n ∈ N the
processes (νn

t )t≥0 and the martingales (Mn
t )t≥0 as taking values in the space H−α(D)

for an α > d , where d is the dimension of the spatial domain D, using the embedding
of L2(D) into H−α(D). The technical significance of the restriction α > d is that
these are the indices such that there exists an embedding Hα(D) into a Hα1(D)

with d/2 < α1 < α, which is of Hilbert–Schmidt type3 due to Maurin’s theorem and
Hα1(D) is embedded into C(D) due to the Sobolev embedding theorem. These two
properties are essential for the proof of the central limit theorem and their occurrence
will be made clear subsequently.

The limit we propose for the re-scaled martingale sequence is a centred diffusion
process in H−α(D), that is, a centred continuous Gaussian stochastic process (Xt )t≥0
taking values in H−α(D) with independent increments and given covariance C(t),
t ≥ 0; see, e.g., [12, 25] for a discussion of Gaussian processes in Hilbert spaces. Such
a process is uniquely defined by its covariance operator and conversely, each family
of linear, bounded operators C(t) : Hα(D) → H−α(D), t ≥ 0, uniquely defines a
diffusion process4 if

3A continuous embedding of two Hilbert spaces X ↪→ Y is of Hilbert–Schmidt type if for every orthonor-

mal basis ϕj , j ∈ N, of X it holds that
∑∞

j=1 ‖ϕj ‖2
Y

< ∞. Then, more precisely, Maurin’s theorem states

that for non-negative integers m, k, the embedding of Hm+k(D) into Hm(D) is of Hilbert–Schmidt type
for k > d/2; see [2]. The result was generalised to fractional order Sobolev spaces in [35]: Let D be a
bounded, strong local Lipschitz domain in R

d and 0 ≤ α1 < α2 are real numbers. Then it holds that the
embedding of Hα2+d/2(D) into Hα1 (D) is of Hilbert–Schmidt type.
4Usually, the covariance operator for a Hilbert space-valued process is an operator mapping from the state
space into the state space and not into the dual, i.e., in the present situation mapping H−α(D) into itself.
Due to the canonical embedding of Hilbert spaces into their dual and the Riesz representation, however, we
can effortless change from the usual definition to ours and vice versa. Moreover, the symmetry condition
thus implies due to the Hellinger–Toeplitz theorem that the operator is self-adjoint, and hence of trace class
if and only if (2.16) is satisfied. The choice of the presentation here is due to the fact that it is simpler to
evaluate the duality pairing on H−α(D) than the inner product thereon, as the former usually is just the
inner product in L2(D).
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(i) each C(t) is symmetric and positive, i.e.,〈
C(t)φ,ψ

〉
Hα(D)

= 〈C(t)ψ,φ
〉
Hα(D)

and
〈
C(t)φ,φ

〉
Hα(D)

≥ 0,

(ii) each C(t) is of trace class, i.e., for one (and thus every) orthonormal basis ϕj ,
j ∈ N, in Hα(D) it holds that

∞∑
j=1

〈
C(t)ϕj ,ϕj

〉
Hα(D)

< ∞, (2.16)

(iii) and the family C(t), t ≥ 0, is continuously increasing in t in the sense that the
map t �→ 〈C(t)φ,ψ〉Hα(D) is continuous and increasing for all φ,ψ ∈ Hα(D).

We next define the process, which will be the limit identified in the martingale
central limit theorem via its covariance. In order to define the operator C, we first
define a family of linear operators G(ν(t), t) mapping from Hα(D) into the dual
space H−α(D) via the bilinear form〈

G
(
ν(t), t

)
φ,ψ

〉
Hα(D)

=
∫

D

φ(x)

(
1

τ
ν(t, x)

+ 1

τ
f

(∫
D

w(x, y)ν(t, y)dy + I (t, x)

))
ψ(x)dx. (2.17)

It is obvious that this bilinear form is symmetric and positive and, as ν(t) is con-
tinuous in t , it holds that the map t �→ 〈G(ν(t), t)φ,ψ〉Hα(D) is continuous for all
φ,ψ ∈ Hα(D). Furthermore, it is easy to see that the operator is bounded, i.e.,∥∥G(ν(t), t

)∥∥
L(Hα(D),H−α(D))

= sup
‖φ‖Hα(D)=1

sup
‖ψ‖Hα(D)=1

∣∣〈G(ν(t), t
)
φ,ψ

〉
Hα(D)

∣∣< ∞,

as the solution of the Wilson–Cowan equation ν and the gain function f are
pointwise bounded. Hence, due to the Cauchy–Schwarz inequality, the norm
|〈G(ν(t), t)φ,ψ〉Hα(D)| is proportional to the product ‖φ‖L2(D)‖ψ‖L2(D) and for
any α ≥ 0 the Sobolev embedding theorem gives now a uniform bound in terms of
the norm of φ, ψ in Hα(D). As a final property, we show that these operators are of
trace-class if α > d/2. Thus, let (ϕj )j∈N be an orthonormal basis in Hα(D), then the
Cauchy–Schwarz inequality yields

∣∣〈G(ν(t), t
)
ϕj ,ϕj

〉
Hα(D)

∣∣≤ 1

τ

(
1+ ‖f ‖0

)|D|‖ϕj‖2L2(D)
.

Summing these inequalities for all j ∈ N, we find that the resulting right-hand side is
finite as due to Maurin’s theorem the embedding of Hα(D) into L2(D) is of Hilbert–
Schmidt type. Moreover, their trace is even bounded independently of t .

Now, it holds that the map t �→ G(ν(t), t) is continuous taking values in the Ba-
nach space of trace class operators, hence we define trace class operators C(t) from
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Hα(D) into H−α(D) via the Bochner integral for all t ≥ 0

C(t) :=
∫ t

0
G
(
ν(s), s

)
ds. (2.18)

Clearly, the resulting bilinear form 〈C(t)·, ·〉Hα(D) inherits the properties of the bi-
linear form (2.17). Moreover, due to the positivity of the integrands, it follows that
〈C(t)φ,φ〉Hα(D) is increasing in t for all φ ∈ Hα(D). Hence, the family of opera-
tors C(t), t ≥ 0, satisfies the above conditions (i)–(iii), and thus uniquely defines an
H−α(D)-valued diffusion process.

We are now able to state the martingale central limit theorem. The proof of the
theorem is deferred to Sect. 4.4.

Theorem 2.3 (Martingale central limit theorem) Let α > d and assume that the con-
ditions of Theorem 2.1 are satisfied. In particular, convergence in the mean holds,
i.e., (2.11) holds for r = 1. Additionally, we assume it holds that

lim
n→∞

v−(n)

v+(n)

�−(n)

�+(n)
= 1. (2.19)

Then it follows that the sequence of re-scaled H−α(D)-valued martingales(√
�−(n)

v+(n)
Mn

t

)
t≥0

converges weakly on the space of H−α(D)-valued càdlàg function to the H−α(D)-
valued diffusion process defined by the covariance operator C(t) given by (2.18).

Remark 2.3 In connection with the results of Theorem 2.3, two questions may arise.
First, in what sense is there uniqueness of the re-scaling sequence, and hence of
the limiting diffusion? That is, does a different scaling also produce a (non-trivial)
limit, or, rephrased, is the proposed scaling the correct one to look at? Secondly,
the theorem deals with the norms for the range of α > d in the Hilbert scale, what
can be said about convergence in the stronger norms corresponding to the range of
α ∈ [0, d]? Does there exist a limit? We conclude this section addressing these two
issues.

Regarding the first question, it is immediately obvious that the re-scaling sequence
�−(n)
v+(n)

, which we denote by ρn in the following, is not a unique sequence yielding a
non-trivial limit. Re-scaling the martingales Mn by any sequence of the form

√
cρn

yields a convergent martingale sequence. However, the limiting diffusion differs only
in a covariance operator, which is also re-scaled by c, and hence the limit is es-
sentially the same process with either ‘stretched’ or ‘shrinked’ variability. However,
the asymptotic behaviour of the re-scaling sequences, which allow for a non-trivial
weak limit is unique. In general, by considering different re-scaling sequences ρ∗

n ,
we obtain three possibilities for the convergence of the sequence

√
ρ∗

nMn. If ρ∗
n is

of the same speed of convergence as ρn, i.e., for ρ∗
n = O(ρn), the thus re-scaled se-

quence converges again to a diffusion process for which the covariance operator is
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proportional to (2.18). This is then just a re-scaling by a sequence (asymptotically)
proportional to ρn as discussed above. Secondly, if the convergence is slower, i.e.,
ρ∗

n = o(ρn), then the same methods as in the law of large numbers show that the
sequence converges to zero uniformly on compacts in probability, hence also con-
vergence in distribution to the degenerate zero process follows. Thus, one only ob-
tains the trivial limit. Finally, if we rescale by a sequence that diverges faster, i.e.,
ρn = o(ρ∗

n), we can show that there does not exist a limit. This follows from general
necessary conditions for the preservation of weak limits under transformation, which
presuppose that

√
ρ∗

n/ρnM has to converge in distribution in order for
√

ρ∗
nMn pos-

sessing a limit in distribution; see Theorem 2 in [29]. As the sequence ρ∗
n/ρn diverges,

this is clearly not possible to hold.
Unfortunately, an answer to the second question is not possible in this clarity,

when considering non-trivial limits. Essentially, we can only say that the currently
used methods do not allow for any conclusion on convergence. The limitations are the
following: The central problem is that for the parameter range α ∈ [0, d] the current
method does not provide tightness of the re-scaled martingale sequence, hence we
cannot infer that the sequence possesses a convergent subsequence. However, if tight-
ness can be established in a different way then for the range α ∈ (max{1, d/2}, d], the
limit has to be the diffusion process defined by the operator (2.18) as follows from
the characterisation of any limit in the proof of the theorem. Here, the lower bound
of max{1, d/2} results, on the one hand, from our estimation technique, which ne-
cessitates α ≥ 1, and on the other hand, from the definition of the limiting diffusion.
Recall that the covariance operator is only of trace class for α > d/2. Hence, for
α ∈ [0, d/2], we can no longer infer that the limiting diffusion even exists.

2.3 The Mean-Field Langevin Equation

An important property of the limiting diffusion in view toward analytic and numerical
studies is that it can be represented by a stochastic integral with respect to a cylin-
drical or Q-Wiener process. For a general discussion of infinite-dimensional stochas-
tic integrals, we refer to [12]. First, let (Wt )t≥0 be a cylindrical Wiener process on
H−α(D) with covariance operator being the identity. Then G(ν(t), t) ◦ ι−1 is a trace
class operator on H−α(D) for suitable values of α. Here, ι−1 : H−α(D) → Hα(D)

is the Riesz representation, i.e., the usual identification of a Hilbert space with its
dual. The operator G(ν(t), t) ◦ ι−1 possesses a unique square-root we denote by√

G(ν(t), t) ◦ ι−1, which is a Hilbert–Schmidt operator on H−α(D). It follows that
the stochastic integral process

Zt :=
∫ t

0

√
G
(
ν(s), s

) ◦ ι−1 dWs (2.20)

is a diffusion process in H−α(D) with covariance operator C(t). That is, (Zt )t≥0 is
a version of the limiting diffusion in Theorem 2.3. Now, formally substituting for the
limits in (2.15) yields the linear noise approximation

Ut = ν0 +
∫ t

0
τ−1(Us + F(Us, s)

)
ds + εn

∫ t

0

√
G
(
ν(s), s

) ◦ ι−1 dWs,
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or in differential notation

dUt = τ−1(Ut + F(Ut , t)
)
dt + εn

√
G
(
ν(t), t

) ◦ ι−1 dWt, U0 = ν0, (2.21)

where εn = √v+(n)/�−(n) is small for large n. Here, we have used the operator
notation

F : H−α(D) × R+ → H−α(D) : F(g, t)(x) = f
(〈
g,w(x, ·)〉

Hα(D)
+ I (t, x)

)
.

Equation (2.21) is an infinite-dimensional stochastic differential equation with addi-
tive (linear) noise. Here, additive means that the coefficient in the diffusion term does
not depend on the solution Ut . A second formal substitution yields the Langevin ap-
proximation. Here, the dependence of the diffusion coefficient on the deterministic
limit ν is formally substituted by a dependence on the solution. That is, we obtain a
stochastic partial differential equation with multiplicative noise given by

Vt = V0 +
∫ t

0
τ−1(Vs + F(Vs, s)

)
ds + εn

∫ t

0

√
G(Vs, s) ◦ ι−1 dWs,

or in differential notation

dVt = τ−1(Vt + F(Vt , t)
)
dt + εn

√
G(Vt , t) ◦ ι−1 dWt. (2.22)

Note that the derivation of the above equations was only formal, hence we have to
address the existence and uniqueness of solutions and the proper setting for these
equations. This is left for future work. It is an ongoing discussion and probably un-
decidable as lacking a criterion of approximation quality which—if any at all—is
the correct diffusion approximation to use. First of all note that for both versions the
noise term vanishes for n → ∞, and thus both have the Wilson–Cowan equation as
their limit. And also, neither of them approximates even the first moment of the mi-
croscopic models exactly. This means that for neither we have that the mean solves
the Wilson–Cowan equation, which would be only the case if f were linear. How-
ever, they are close to the mean of the discrete process. We discuss this aspect in
Appendix B.

Furthermore, we already observe in the central limit theorem, and thus also in the
linear noise and Langevin approximation that the covariance (2.18) or the drift and
the structure of the diffusion terms in (2.21) and (2.22), respectively, are independent
of objects resulting from the microscopic models. They are defined purely in terms
of the macroscopic limit. This observation supports the conjecture that these approx-
imations are independent from possible different microscopic models converging to
the same deterministic limit. Analogous statements hold also for derivations from the
van Kampen system size expansion [5] and in related limit theorems for reaction dif-
fusion models [4, 17, 18]. The only object reminiscent of the microscopic models in
the continuous approximations is the re-scaling sequence εn. However, the re-scaling
is proportional to the square root of �−(n)/v+(n), i.e., the number of neurons per area
divided by the size of the area, which is just the local density of particles. Therefore,
in the approximations, the noise scales inversely to the square root of neuron density
in this model, which interpreted in this way can also be considered a macroscopic
fixed parameter and chosen independently of the approximating sequence.



Journal of Mathematical Neuroscience (2013) 3:1 Page 21 of 54

Remark 2.4 The stochastic partial differential equations (2.21) and (2.22), which we
proposed as the linear noise or Langevin approximation, respectively, are not neces-
sarily unique as the representation of the limiting diffusion as a stochastic integral
process (2.20) may not be unique. It will be subject for further research efforts to
analyse the practical implications and usability of this Langevin approximation. Let
Q be a trace class operator, (W

Q
t )t≥0 be a Q-Wiener process and let B(ν(t), t) be

operators such that B(ν(t), t) ◦ Q ◦ B(ν(t), t)∗ = G(ν(t), t) ◦ ι−1, where ∗ denotes
the adjoint operator. Then also the stochastic integral process

Z
Q
t :=

∫ t

0
B
(
ν(s), s

)
dWQ

s

is a version of the limiting diffusion in (2.3) and the corresponding linear noise and
Langevin approximations are given by

dUQ
t = τ−1(UQ

t + F
(
U

Q
t , t
))
dt + εnB

(
ν(t), t

)
dWQ

t

and

dV Q
t = τ−1(V Q

t + F
(
V

Q
t , t

))
dt + εnB

(
V

Q
t , t

)
dWQ

t .

We conclude this section by presenting one particular choice of a diffusion coef-
ficient and a Wiener process. We take (W

Q
t )t≥0 to be a cylindrical Wiener process

on L2(D) with covariance Q = IdL2 . Then we can choose B(t) = j ◦ (·√g(t)) ∈
L(L2(D),H−α(D)), where j is the embedding operator L2(D) ↪→ H−α(D) in the
sense of (1.2) and (·√g(t)) ∈ L(L2(D),L2(D)) denotes a pointwise product of a
function in L2(D), i.e.,

(
φ ·√g(t)

)
(x) = φ(x)

(
τ−1ν(t, x) + τ−1f

(∫
D

w(x, y)ν(t, y)dy + I (t, x)

))1/2
.

We first investigate the operator G(ν(t), t) ◦ ι−1 and write it in more detail as the
following composition of operators:

G
(
ν(t), t

) ◦ ι−1 = j ◦ (·g(t)
) ◦ k ◦ ι−1,

where k is the embedding operator Hα(D) ↪→ L2(D). Next, the Hilbert adjoint
B∗ ∈ L(H−α,L2) is given by B∗ = (·√g) ◦ k ◦ ι−1, which is easy to verify. Hence,
the stochastic integral of B(t) with respect to WQ is again a version of the limiting
martingale as

B(t) ◦ Q ◦ B∗(t) = j ◦ (·√g(t)
) ◦ IdL2 ◦ (·√g(t)

) ◦ k ◦ ι−1

= j ◦ (·g(t)
) ◦ k ◦ ι−1 = G

(
ν(t), t

) ◦ ι−1.

3 Discussion and Extensions

In this article, we have presented limit theorems that connect finite, discrete micro-
scopic models of neural activity to the Wilson–Cowan neural field equation. The
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results state qualitative connections between the models formulated as precise prob-
abilistic convergence concepts. Thus, the results strengthen the connection derived in
a heuristic way from the van Kampen system size expansion.

A general limitation of mathematically precise approaches to approximations, cf.
also the propagation to chaos limit theorems in [30], is that the microscopic models
are usually defined via the limit. In other words, the limit has to be known a priori, and
we look for models which converge to this limit. Thus, in contrast to the van Kampen
system size expansion, the presented results are not a step-by-step modelling pro-
cedure in the sense that, via a constructive limiting procedure, a microscopic model
yields a deterministic or stochastic approximation. Hence, it might be objected that
the presented method can only be used a posteriori in order to justify a macroscopic
model from a constructed microscopic model and that somehow one has to ‘guess’
the correct limit in advance. Several remarks can be made to answer this objection.

First, this observation is certainly true, but not necessarily a drawback. On the con-
trary, when both microscopic and macroscopic models are available, then it is rather
important to know how these are connected and qualitatively and quantitatively char-
acterise this connection. Concerning neural field models, this precise connection was
simply not available so far for the well-established Wilson–Cowan model. Further-
more, when starting from a stochastic microscopic description working through prov-
ing the conditions for convergence for given microscopic models, one obtains very
strong hints on the structure of a possible deterministic limit. Therefore, our results
can also ease the procedure of ‘guessing the correct limit’.

Secondly, often a phenomenological, deterministic model, which is an approxima-
tion to an inherently probabilistic process is derived from ad-hoc heuristic arguments.
Given that the model has proved useful, one often aims to derive a justification from
first principles and/or a stochastic version, which keeps the features of the determin-
istic model, but also accounts for the formerly neglected fluctuations. A standard,
though somewhat simple approach to obtain stochastic versions consists of adding
(small) noise to the deterministic equations. This article, provides a second approach
which consists of finding microscopic models, which converge to the deterministic
limit to obtain a stochastic correction via a central limit argument.

Thirdly and finally, the method also provides an argument for new equations,
i.e., the Langevin and linear noise approximations, which can be used to study the
stochastic fluctuations in the model. Furthermore, in contrast to previous studies, we
do not provide deterministic moment equations but stochastic processes, which can
be, e.g., via Monte Carlo simulations, studied concerning a large number of pathwise
properties and dynamics beyond first and second moments.

We now conclude this article commenting on the feasibility of our approach con-
necting microscopic Markov models to deterministic macroscopic equations when
dealing with different master equation formulations that appear in the literature. Ad-
ditionally, the following discussions also relate the model (1.6) considered in this ar-
ticle to other master equation formulations. We conjecture that the analogous results
as presented for the Wilson–Cowan equation (1.3) in Sect. 2 also hold for these vari-
ations of the master equations. This should be possible to achieve by an adaptation of
the methods of proof presented although we have not performed the computations in
detail.
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3.1 A Variation of the Master Equation Formulation

A first variation of the discrete model we discussed in Sect. 1.2 was considered in the
articles [8, 9] and a version restricted to a bounded state space also appears in [31].
This model consists of the master equation stated below in (3.2), which closely re-
sembles (1.6). In the earlier reference [8], the model was introduced with a different
interpretation called the effective spike model. We briefly explain this interpretation
before presenting the master equation. Instead of interpreting P as the number of
neuron populations, in this model, P denotes the number of different neurons in the
network located within a spatial domain D. Then Θk

t , the state of the kth neuron,
counts the number of ‘effective’ spikes this neuron has emitted in the past up till
time t . Effective spikes are those spikes that still influence the dynamics of the sys-
tem, e.g., via a post-synaptic potential. Then state transitions adding/subtracting one
effective spike for the kth neuron are governed by a firing rate function f̃k , which
depends on the input into neuron k, and a decay rate τ−1. The constant decay rate
indicates that emitted spikes are effective for a time interval of length τ and the gain
function is defined—neglecting external input—by

f̃k(θ) = f ∗
(

P∑
j=1

W̃kj θ
j

)
,

where f ∗ is a certain non-negative, real function. It is stated clearly in [9] that the
function f ∗ is not equal to the gain function f in the proposed limiting Wilson–
Cowan equation (1.3), but rather connected to f such that

Ef ∗
(

P∑
j=1

W̃kjΘ
j
t

)
= f

(
P∑

j=1

W̃kjEΘ
j
t

)
+ higher order terms. (3.1)

The authors in [9] state that for any function f such a function f ∗ can be found.
Then the process Θt = (Θ1

t , . . . ,ΘP
t ) is a jump Markov process given by the master

equation

dP[θ, t]
dt

=
P∑

k=1

[
f̃k(θ − ek)P[θ − ek, t]

−
(
1

τ
θk + f̃k(θ)

)
P[θ, t] + 1

τ

(
θk + 1

)
P[θ + ek, t]

]
(3.2)

with boundary conditions P[θ, t] = 0 if θ /∈ N
P
0 as stated in [9]. The advantage of the

effective spike model interpretation over the interpretation as neurons per population
is that the unbounded state space of the model is justified. In principle, there can be an
arbitrary number of spikes emitted in the past still active. However, a disadvantage of
the master equation (3.2) is that for taking the limit it lacks a parameter corresponding
to the system size providing a natural small parameter in the van Kampen system size
expansion. This explains the shift in the interpretation of the master equation in the
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study [9] following [8], and subsequently in [5] to the interpretation we presented in
Sect. 1.2, which provides the system-size parameters l(k).

On the level of Markov jump processes, the master equation (3.2) obviously de-
scribes dynamics similar to the master equation (1.6) only replacing the activation
rate τ−1l(k)f k(θ) in (1.6) by f̃k(θ) which is independent of the parameter l(k).
Thus, the model (3.2) can be understood as resulting from (1.6) after a limit pro-
cedure taking l(k) → ∞ has been applied and the firing rate functions are connected
via the formal limit liml(k)→∞ l(k)f k(θ) = f̃k(θ). A qualitative interpretation of this
limit procedure connecting the two types of models is given in [8]. This observation
motivated the model in [5] stepping back one limit procedure, and thus providing the
correct framework for the derivation of limit theorems.

It would be an interesting addition to the limit theorems in Theorem 2.1 to de-
rive a law of large numbers for the models (3.2) with stochastic mean activity νn

as defined in (2.7) and suitable chosen weights W̃kj . Clearly, the macroscopic limit
should be given by the Wilson–Cowan equation (1.3). We conjecture that the appro-
priate condition for the function f ∗ in the present setting—including time dependent
inputs—is

E

[
l(k, n)−1f ∗

(
P∑

j=1

W̃n
kjΘ

j + Ĩk,n(t)

)]

= f

(
P∑

j=1

W
n

kj

EΘj

l(j, n)
+ I k,n(t)

)
+ h.o.t., (3.3)

such that the higher order terms are uniformly bounded and vanish in the limit
n → ∞, and where the weights W

n

kj and inputs I k,n(t) are defined as in (2.4) and
(2.6). Property (3.3) closely resembles condition (3.1) and trivially holds for linear f

with f ∗ = f .

3.2 Bounded State Space Master Equations

We have already stated when introducing the microscopic model in Sect. 1.2 that the
interpretation of the parameter l(k) as the number of neurons in the kth population
is not literally correct. The state space of the process is unbounded, hence arbitrarily
many neurons can be active, and thus each population contains arbitrarily many neu-
rons. In order to overcome this interpretation problem, it was supposed to consider the
master equation only on a bounded state space. That is, the kth population consists of
l(k) neurons, and 0≤ Θk

t ≤ l(k) almost surely. Such master equations are simply ob-
tained by setting the transition rates for transition of θk from l(k) → l(k)+ 1 to zero.

A first master equation of this form was considered in [22], which in present no-
tation, takes the form

dP[θ, t]
dt

= 1

τ

P∑
k=1

[(
l(k) − θk + 1

)
f k(θ − ek)P

[
θk − ek, t

]
− (θk + (l(k) − θk

)
f k(θ)

)
P[θ, t] + (θk + 1

)
P[θ + ek, t]

]
. (3.4)
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Versions of such a master equation for, e.g., one population only or coupled inhibitory
and excitatory populations were considered in [3, 22], and a van Kampen systems
size expansion was carried out. Here, the bound in the state space provides a natural
parameter for the re-scaling, thus a small parameter for the expansion. The setup of
this problem resembles closely the structure of excitable membranes for which limits
have been obtained with the present technique by one of the present author and co-
workers in [27]. Therefore, we conjecture that our limit theorems also apply to this
setting with minor adaptations with essentially the same conditions and results as in
Sect. 2. However, the macroscopic limit, which will be obtained does not conform
with the Wilson–Cowan equation but will be given by

τ ν̇(t, x) = −ν(t, x) + (1− ν(t, x)
)
f

(∫
D

w(x, y)ν(t, y)dy + I (t, x)

)
. (3.5)

Next, we return to the master equation (1.6) as discussed in this article in Sect. 1.2
and the comment we made regarding bounded state spaces the footnote on page 7. In
our primary reference for this model [5], actually a bounded state space version of the
master equation was considered where the activation rate for the event θk → θk + 1
is

l(k)f k(θ, t)I[θk<l(k)], (3.6)

replacing l(k)f k(θ, t) in (1.6). The van Kampen system size expansion was then
applied to this bounded state space master equation, tacitly neglecting possible diffi-
culties, which might arise due to the discontinuity of (3.6) considered as a function
on R

P . However, for the present, mathematically precise limit convergence results
considering bounded state space as originally suggested in [5] are problematic. The
discontinuous activation rate (3.6) causes the machinery developed in [27], which
depends on Lipschitz-type estimates to break down. However, we strongly expect
that also in this case the law of large numbers with the deterministic limit given by
the Wilson–Cowan equation (1.3) holds. Furthermore, also the Langevin approxima-
tions should agree with the equations discussed in Sect. 2.3. However, we have not
yet been able to prove such a theorem. We further conjecture that the results in this
article can be used to prove the convergence for the bounded state space model by
a domination argument. Heuristically, it seems clear that a bounded process should
be dominated by a process that possesses the same dynamics inside the state space
of the bounded process, but can stray out from that bounded domain. Hence, as the
limit of the potentially larger process lies within the domain where the two processes
agree also the dominated process should converge to the same limit. Mathematically,
this line of argument relies on non-trivial estimates between occupation measures of
high-dimensional Markov processes. This is work in progress.

3.3 Activity Based Neural Field Model

Finally, we return also to a difference in neural field theory mentioned in the begin-
ning. In contrast to rate-based neural field models of the Wilson–Cowan type (1.1),
there exists a second essential class of neural field models, so-called activity based
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models, the prototype of which is the Amari equation

τ ν̇(t, x) = −ν(t, x) +
∫

D

w(x, y)f
(
ν(t, y)

)
dy + I (t, x). (3.7)

We conjecture that also for this type of equations a phenomenological microscopic
model can be constructed with a suitable adaptation of the activation rates and that
limit theorems analogous to the results in Sect. 2.1 hold. Then also a Langevin equa-
tion for this model can be obtained and used for further analysis.

4 Proofs of the Main Results

In this section, we present the proofs of the limit theorems. For the convenience of
the reader, as it is important tool in the subsequent proofs, we first state the Poincaré
inequality. Let D ⊂ R

d be a convex domain, then it holds for any function φ ∈ H 1(D)

that

‖φD − φ‖L2(D) ≤ diam(D)

π
‖∇φ‖L2(D), (4.1)

where φD is the mean value of the function φ on the domain D, i.e.,

φD = 1

|D|
∫

D

φ(x)dx. (4.2)

Moreover, the constant in the right-hand side of (4.1) is the optimal constant depend-
ing only on the diameter of the domain D, cf. [1, 23]. Whenever we omit to denote the
spatial domain for definition of norms or inner products in L2(D) or Sobolev spaces
Hα(D), then it is to be interpreted as the norm over the whole domain D. If the norm
is taken only over a subset Dk,n, then this is always indicated unexceptionally.

For the benefit of the reader, we next repeat the limiting equation

τ ν̇(t, x) = −ν(t, x) + f

(∫
D

w(x, y)ν(t, y)dy + I (t, x)

)
. (4.3)

We denote by F the Nemytzkii operator on L2(D) defined by

F(g, t)(x) = f

(∫
D

w(x, y)g(y)dy + I (t, x)

)
∀g ∈ L2(D), (4.4)

and for all θ ∈ N
P
0 we define a discrete version of the Nemytzkii operator via

−1

τ
νn(θ) + 1

τ
F

n(
νn(θ), t

) = λn(θ, t)

∫
N

P
0

(
νn(ξ) − νn(θ)

)
μn
(
(θ, t),dξ

)
= 1

τ

P∑
k=1

1

l(k, n)

(−θk + l(k, n)f k,n(θ, t)
)
IDk,n

= −1

τ
νn(θ) + 1

τ

P∑
k=1

f k,n(θ, t)IDk,n
. (4.5)



Journal of Mathematical Neuroscience (2013) 3:1 Page 27 of 54

Note that τ−1(φ, νn(θ))L2 + τ−1(φ,F
n
(νn(θ), t))L2 for φ ∈ L2(D) corresponds to

the generator of (Θn
t , t)t≥0 applied to the function (θ, t) �→ (φ, νn(θ))L2 .

Finally, another useful property is that the means of the process’ components are
bounded. For each k, n it holds that

EΘ
k,n
t = EΘ

k,n
0 + 1

τ

∫ t

0
l(k, n)Ef k,n

(
Yn

s

)− EΘk,n
s ds

≤ EΘ
k,n
0 + 1

τ

∫ t

0
l(k, n)‖f ‖0 − EΘk,n

s ds,

see also (B.1). Therefore, it holds that EΘ
k,n
t ≤ m

k,n
t , where m

k,n
t solves the deter-

ministic initial value problem

ṁ
k,n
t = −1

τ
m

k,n
t + 1

τ
l(k, n)‖f ‖0, m

k,n
0 = EΘ

k,n
0 ,

i.e.,

m
k,n
t = e−t/τ

(
m0

k,n − l(k, n)‖f ‖0
)+ l(k, n)‖f ‖0

≤ l(k, n)
(
1+ ‖f ‖0

) ∀t ≥ 0. (4.6)

Here, we also used the assumption E
nΘ

k,n
0 ≤ l(k, n) on the initial condition.

4.1 Proof of Theorem 2.1 (Law of Large Numbers)

In order to prove the law of large numbers, Theorem 2.1, we apply the law of large
numbers for Hilbert space valued PDMPs, see Theorem 4.1 in [27], to the sequence of
homogeneous PDMPs (Y n

t )t≥0 = (Θn
t , t)t≥0. For the application of this theorem, re-

call that the first, piecewise constant, vector-valued component of this process counts
the number of active neurons in each sub-population and the second, deterministic
component states time. The process (Y n

t )t≥0 is the usual ‘space-time process’, i.e.,
homogeneous Markov process which is obtained via a state-space extension to ob-
tain a homogeneous Markov process from the inhomogeneous process (Θn

t )t≥0. The
continuous component satisfies the simple ODE ṫ = 1, t (0) = 0, and thus the full
process is a PDMP. In the terminology of [27], the sequence of coordinate functions
on the different state spaces of the PDMPs (Y n

t )t≥0 into a common Hilbert space is
given by the maps νn (2.7) with the common Hilbert space L2(D). Thus, in order to
infer convergence in probability (2.10) from Theorem 4.1 in [27], it is sufficient to
validate the following conditions:

(LLN1) For fixed T > 0, it holds that

lim
n→∞ E

n

∫ T

0
λn
(
Yn

t

)∫
NP

∥∥νn(ξ) − νn
(
Θn

t

)∥∥2
L2μ

n
(
Yn

t ,dξ
)
dt = 0. (4.7)

(LLN2) The Nemytzkii operator F satisfies a Lipschitz condition in L2(D) uni-
formly with respect to t , t ≥ 0, i.e., there exists a constant L0 > 0 such
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that∥∥F(g1, t)−F(g2, t)
∥∥

L2 ≤ L0‖g1 −g2‖L2 ∀t ≥ 0, g1, g2 ∈ L2(D). (4.8)

(LLN3) For fixed T > 0, it holds that

lim
n→∞ E

n

∫ T

0

∥∥Fn(
νn
t , t
)− F

(
νn
t , t
)∥∥

L2 dt = 0. (4.9)

Note that the final condition of Theorem 4.1 in [27], i.e., the convergence of the initial
conditions, is satisfied by assumption. For a discussion of these conditions, we refer
to [27] and proceed to their derivation for the present model in the subsequent parts
(a) to (c).

(a) In order to prove condition (4.7), we write the integral with respect to the discrete
probability measure μn as a sum. This yields

E
nλ
(
Yn

t

)∫
NP

∥∥νn(ξ) − νn
(
Θn

t

)∥∥2
L2μ

n
(
Yn

t ,dξ
)

= 1

τ

P∑
k=1

E
n 1

l(k, n)2

(
Θ

k,n
t + l(k, n)f k,n

(
Yn

t

))|Dk,n|

≤ 1

τ

1+ 2‖f ‖0
�−(n)

|D|, (4.10)

where we have used the upper bound (4.6) on the expectation E
nΘ

k,n
t and the

assumption on the initial conditions. Next, integrating over [0, T ] and employing
the assumption limn→∞ �−(n) = ∞ in (2.9) establishes condition (4.7).

(b) The Lipschitz condition (4.8) of the Nemytzkii operators is a straightforward
consequence of the Lipschitz continuity (1.4) of the gain function f as∥∥F(g1, t) − F(g2, t)

∥∥2
L2

=
∫

D

∣∣∣∣f(∫
D

w(x, y)g1(y)dy + I (x, t)

)

− f

(∫
D

w(x, y)g2(y)dy + I (x, t)

)∣∣∣∣2 dx
≤ L2

∫
D

∣∣∣∣∫
D

w(x, y)
(
g1(y) − g2(y)

)
dy

∣∣∣∣2 dx
≤ L2

∫
D

∥∥w(x, ·)∥∥2
L2‖g1 − g2‖2L2 dx

= L2‖w‖2
L2×L2‖g1 − g2‖2L2 .

Therefore, (4.8) holds with Lipschitz constant L0 := L‖w‖L2×L2 .
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(c) Finally, we prove the convergence of the generators (4.9). To this end, we employ
the characterisation of the norm in L2(D) by ‖η‖L2 = sup‖φ‖

L2=1 |(φ, η)L2 | for
all η ∈ L2(D), and thus consider first the scalar product of elements φ ∈ L2(D)

with ‖φ‖L2 = 1 and the difference inside the norm in (4.9). On the one hand, we
obtain using definition (4.5) that

(
φ,F

n(
νn
t , t
))

L2 =
(

φ,

P∑
k=1

f k,n

(
Yn

t

)
IDk,n

)
L2

. (4.11)

Next, we apply the Nemytzkii operator F defined in (4.4) to νn(t) and take the
inner product of the result with respect to φ to obtain on the other hand

(
φ,F

(
νn
t , t
))

L2 =
(

φ,f

(
P∑

k=1

Θ
k,n
t

l(k, n)

∫
Dk,n

w(·, y)dy + I (t, ·)
))

L2

. (4.12)

Subtracting (4.12) from (4.11), we obtain the integrated difference(
φ,F

n(
νn
t , t
))

L2 − (φ,F
(
νn
t , t
))

L2

=
∫

D

φ(x)

[
P∑

k=1

f k,n

(
Yn

t

)
IDk,n

− f

(
P∑

j=1

Θn
j (t)

l(j, n)

∫
Dj,n

w(x, y)dy + I (t, x)

)]
dx

=
P∑

k=1

∫
Dk,n

φ(x)

[
f

(
P∑

j=1

W
n

kj

Θ
j,n
t

l(j, n)
+ I k,n(t)

)

− f

(
P∑

j=1

Θ
j,n
t

l(j, n)

∫
Dj,n

w(x, y)dy + I (t, x)

)]
dx.

We proceed to estimate the norm of the term in the right-hand side. We use the
Lipschitz condition (1.4) on f , the triangle inequality, and finally the Cauchy–
Schwarz inequality on the resulting second term to obtain the estimate∣∣(φ,F

n(
νn
t , t
))

L2 − (φ,F
(
νn
t , t
))

L2

∣∣
≤ L

P∑
k=1

∫
Dk,n

∣∣φ(x)
∣∣

×
∣∣∣∣∣

P∑
j=1

Θn
j (t)

l(j, n)

(
W

n

kj −
∫

Dj,n

w(x, y)dy

)
+ I k,n(t) − I (t, x)

∣∣∣∣∣dx
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≤ L

P∑
k=1

∫
Dk,n

∣∣φ(x)
∣∣∣∣∣∣∣

P∑
j=1

Θn
j (t)

l(j, n)

(
W

n

kj −
∫

Dj,n

w(x, y)dy

)∣∣∣∣∣dx︸ ︷︷ ︸
(∗)

+ L

P∑
k=1

‖φ‖L2(Dk,n)

∥∥I k,n(t) − I (t)
∥∥

L2(Dk,n)︸ ︷︷ ︸
(∗∗)

.

Here, the term in the right-hand side marked (∗∗) is further estimated using the
Cauchy–Schwarz inequality and the Poincaré inequality (4.1), which yields

(∗∗) ≤ δ+(n)

π

(
P∑

k=1

∥∥∇I (t)
∥∥2

L2(Dk,n)

)1/2

= δ+(n)

π

∥∥∇xI (t)
∥∥

L2 . (4.13)

We now consider the term marked (∗). Inserting the definition of W
n

kj given in
(2.4), the reordering of the summations and changing the order of integration
yields

(∗) =
P∑

k=1

∫
Dk,n

∣∣φ(x)
∣∣

×
∣∣∣∣∣

P∑
j=1

Θ
j,n
t

l(k, n)

(∫
Dj,n

(
1

|Dk,n|
∫

Dk,n

w(z, y)dz

)
− w(x,y)dy

)∣∣∣∣∣dx
≤

P∑
k=1

∫
Dk,n

∣∣φ(x)
∣∣

×
P∑

j=1

Θ
j,n
t

l(k, n)

∫
Dj,n

∣∣∣∣( 1

|Dk,n|
∫

Dk,n

w(z, y)dz

)
− w(x,y)

∣∣∣∣dy dx
=

P∑
k=1

P∑
j=1

Θ
j,n
t

l(k, n)

×
∫

Dj,n

[∫
Dk,n

∣∣φ(x)
∣∣∣∣∣∣( 1

|Dk,n|
∫

Dk,n

w(z, y)dz

)
− w(x,y)

∣∣∣∣dx]dy.

We next apply the Cauchy–Schwarz inequality to the integral inside the square
brackets in the last term. Thus, we obtain the estimate

(∗) ≤
P∑

j=1

∫
Dj,n

P∑
k=1

‖φ‖L2(Dk,n)

×
[∫

Dk,n

∣∣∣∣( 1

|Dk,n|
∫

Dk,n

w(z, y)dz

)
− w(x,y)

∣∣∣∣2 dx]1/2 dy.
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Now the Poincaré inequality (4.1) is applied to the innermost integral inside the
square brackets, which yields

(∗) ≤
P∑

j=1

Θ
j,n
t

l(k, n)

∫
Dj,n

P∑
k=1

‖φ‖L2(Dk,n)

diam(Dk,n)

π

∥∥∇xw(·, y)
∥∥

L2(Dk,n)
dy.

Finally, using once more the Cauchy–Schwarz inequality on the innermost sum-
mation we obtain

(∗) ≤ δ+(n)

π

P∑
j=1

Θ
j,n
t

l(k, n)

∫
Dj,n

∥∥∇xw(·, y)
∥∥

L2 dy. (4.14)

Now, a combination of the estimates (4.13) and (4.14) on the terms (∗) and
(∗∗) yields∣∣(φ,F

n(
νn
t , t
))

L2 − (φ,F
(
νn(t), t

))
L2

∣∣
≤ δ+(n)

L

π

(
P∑

j=1

Θ
j,n
t

l(k, n)

∫
Dj,n

∥∥∇xw(·, y)
∥∥

L2 dy + ∥∥∇xI (t)
∥∥

L2

)
.

Here, the right-hand side is independent of φ, hence taking the supremum over
all φ with ‖φ‖L2 = 1 yields∥∥Fn(

νn
t , t
)− F

(
νn(t), t

)∥∥
L2

≤ δ+(n)
L

π

(
P∑

j=1

Θ
j,n
t

l(k, n)

∫
Dj,n

∥∥∇xw(·, y)
∥∥

L2 dy + ∥∥∇xI (t)
∥∥

L2

)
.

Finally, integrating over (0, T ) and taking the expectation on both sides results in

E
n

∫ T

0

∥∥Fn(
νn
t , t
)− F

(
νn(t), t

)∥∥
L2 dt

≤ δ+(n)
L

π

(√|D|T (1+ ‖f ‖0
)‖∇xw‖L2×L2 + ‖∇xI‖L1((0,T ),L2)

)
.

(4.15)

Here, we have used (4.6) and a combination of the Cauchy–Schwarz and Poincaré
inequality (4.1) in order to estimate

E
n

P∑
j=1

Θ
j,n
t

l(k, n)

∫
Dj,n

∥∥∇xw(·, y)
∥∥

L2 dy ≤ δ+(n)

√|D|(1+ ‖f ‖0)
π

‖∇xw‖L2×L2 .

The upper bound in (4.15) is of order O(δ+(n)) and, therefore, converges to zero
for n → ∞ due to assumption (2.9). Hence, condition (4.9) is satisfied. The proof
of the convergence in probability (2.10) is completed.
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It is now easy to extend this result to the convergence in the r th mean. First
of all, the convergence in probability (2.10) implies for all r ≥ 1 the convergence
in probability of the random variables supt∈[0,T ] ‖νn

t − ν(t)‖r
L2 to zero. As conver-

gence in the mean of real valued random variables is equivalent to convergence in
probability and uniform integrability it remains to prove the latter for the families
supt∈[0,T ] ‖νn

t − ν(t)‖r
L2 , n ∈ N.

We first consider the case r = 1, and establish a uniform bound on the second mo-
ments E

n supt∈[0,T ] ‖νn
t − ν(t)‖2

L2 . Then the de la Vallée–Poussin theorem, cf. App.,
Proposition 2.2 in [15], implies that the random variables supt∈[0,T ] ‖νn

t − ν(t)‖L2 ,
n ∈ N, are uniformly integrable.

Without loss of generality, we can assume that there exist5 Poisson processes
(N

k,n
t )t≥0 with rates Λk,n = l(k, n)(1+ ‖f ‖0)/τ , which dominate (Θ

k,n
t − Θ

k,n
0 )t≥0

pathwise. Then we obtain almost surely

∥∥νn
t

∥∥2
L2 ≤ 2

∥∥νn
0

∥∥2
L2 +2

P∑
k=1

(Θ
k,n
t − Θ

k,n
0 )2

l(k, n)2
|Dk,n| ≤ 2

∥∥νn
0

∥∥2
L2 +2

P∑
k=1

(N
k,n
T )2

l(k, n)2
|Dk,n|.

Here, the right-hand side is independent of t ≤ T , and thus we obtain

E
n sup

t∈[0,T ]

∥∥νn
t

∥∥2
L2 ≤ 2E

n
∥∥νn

0

∥∥2
L2 + 2

P∑
k=1

E
n(N

k,n
T )2

l(k, n)2
|Dk,n| ≤ 2E

n
∥∥νn

0

∥∥2
L2 + CT ,

where we have used that N
k,n
T is Poisson distributed with rate T Λk,n, and thus

E
n(N

k,n
T )2 = T Λk,n +T 2Λ2

k,n. Here, CT is some finite constant which depends on T

and the overall parameters of the model, i.e., τ , f , D, but is independent of k and n.
Using this upper bound, the triangle inequality yields the estimate

E
n sup

t∈[0,T ]
∥∥νn

t − ν(t)
∥∥2

L2 ≤ 2CT

(
E

n
∥∥νn

0

∥∥2
L2 + ‖ν‖2

C([0,T ],L2)
+ 1
)
.

Therefore, using the assumption supn∈N E
n‖νn

0‖2
L2 < ∞ it holds that

sup
n∈N

E
n sup

t∈[0,T ]

∥∥νn
t − ν(t)

∥∥2
L2 < ∞.

The general case for r > 1 works analogously. Note that the r th moment of the
Poisson distribution is proportional to the r th power of its rate. Hence, just as in the
case of r = 1, the term

E
n

(
P∑

k=1

(N
k,n
T )2

l(k, n)2
|Dk,n|

)r

5The Poisson process jumps at a faster rate than the components of the Markov chain regardless of the
time and the state these are in. Furthermore, all jumps are upward. Hence, using a coupling argument as
discussed in the proof of Theorem 4.3.5 in [16], we find that there exists a probability space supporting
two processes with distributions equivalent to the Poisson process and the Markov chain component such
that the Poisson process dominates the second process for all paths. Clearly, all moments dominate and
these inequalities are then valid for any probability spaces supporting these processes.
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can thus be bounded from above by some constant CT independent of k and n. The
proof of Theorem 2.1 is completed.

4.2 Proof of Corollary 2.1 (Corollary to the Law of Large Numbers)

For α = 0, the statement of the corollary coincides with the statement of Theorem 2.1,
hence we consider α > 0. As in the proof of Theorem 2.1, we apply Theorem 4.1 in
[27] to the PDMPs (Y n

t )t≥0, however, this time for the functions νn understood as tak-
ing values in the Hilbert space H−α(D) instead of L2(D). Thus, we have to validate
again conditions (LLN1)–(LLN3) wherein the norm in L2(D) is always replaced by
the norm in H−α(D). The essential argument is sharpening the estimates in part (a)
of the proof of Theorem 2.1 using optimal Sobolev embedding theorems such that the
conditions (2.13) imply (LLN1). This we present in part (a) of the proof below. The
Lipschitz condition (LLN2) of the Nemytzkii operator F in the spaces H−α is estab-
lished in part (b). Finally, as the condition δ+(n) → ∞ remains as in Theorem 2.1,
the condition (LLN3) follows immediately from the proof of Theorem 2.1 due to the
continuous embedding of L2(D) into H−α(D).

(a) In the case α = 0, i.e., Hα(D) = L2(D), we used in (4.10) that ‖IDk,n
‖2
L2 =

|Dk,n|. For general α > 0, we use the representation

‖IDk,n
‖H−α = sup

‖φ‖Hα

∣∣(φ, IDk,n
)L2

∣∣.
In order to estimate the terms inside the supremum in the right-hand side, we use
Hölder’s inequality and the Sobolev embedding theorem, i.e.,Hα(D) ↪→ L∞(D)

for α > d/2 and Hα(D) ↪→ Lr(D) with r = d/(d/2 − α) for 0 < α < d/2, see
Theorem 7.34 and Corollary 7.17 in [2]. Thus, we obtain

‖IDk,n
‖H−α ≤

{
Kd/(d/2−α)‖IDk,n

‖L2d/(d+2α) if 0 < α < d/2,

K∞‖IDk,n
‖L1 if d/2< α,

where the constants K are the constants arising from the continuous embeddings
of the Sobolev spaces into the Lebesgue spaces. Evaluating the norms in the
right-hand side, and further estimating using the maximal Lebesgue measure of
the elements of the partition yields

‖IDk,n
‖2
H−α ≤

{
K2

d/(d/2−α)|Dk,n|v+(n)2α/d if 0 < α < d/2,

K2∞|Dk,n|v+(n) if d/2< α.

Note that the upper bounds are consistent with the condition in Theorem 2.1
for α = 0. Finally, as Hd/2(D) ↪→ H(d/2−ε)(D) for all small ε, the result for
α = d/2 follows from the result above as

‖IDk,n
‖H−d/2 ≤ sup

‖φ‖
H2α

(‖φ‖Ld/ε‖IDk,n
‖Ld/(d−ε)

)≤ C‖IDk,n
‖Ld/(d−ε)
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where C is the constant resulting from the continuous embedding of Hd/2(D)

into Hd/2−ε(D). Thus, we obtain for all ε > 0 the estimate

‖IDk,n
‖2
H−d/2 ≤ C2|Dk,n|v+(n)(d−2ε)/d .

(b) Next, we have to establish that the Nemytzkii operator F on L2(D) is also Lip-
schitz continuous with respect to the norms ‖ · ‖H−α , α ≥ 0, i.e., for all α ≥ 0
there exists a constant L−α such that∥∥F(g1, t) − F(g2, t)

∥∥
H−α ≤ L−α‖g1 − g2‖H−α ∀t ≥ 0, g1, g2 ∈ L2(D).

(4.16)
We obtain due to the Lipschitz continuity of f , which implies absolute continuity
of f , that∣∣∣∣∫

D

φ(x)
(
F(g1, t)(x) − F(g2, t)(x)

)
dx

∣∣∣∣= ∣∣∣∣∫
D

φ(x)

∫ z2(t,x)

z1(t,x)

f ′(z)dzdx
∣∣∣∣,

where

z1(t, x) =
∫

D

w(x, y)g1(y)dy + I (t, x),

z2(t, x) =
∫

D

w(x, y)g2(y)dy + I (t, x).

Applying Hölder’s inequality and the essential boundedness of the derivative f ′,
we obtain the estimate∣∣∣∣∫

D

φ(x)
(
F(g1, t)(x) − F(g2, t)(x)

)
dx

∣∣∣∣
≤ ‖φ‖Lp

(∫
D

∣∣∣∣∫ z2(t,x)

z1(t,x)

f ′(z)dz
∣∣∣∣q dx)1/q

≤ ‖φ‖Lp

(∫
D

∣∣∥∥f ′∥∥
L∞
(
z1(t, x) − z2(t, x)

)∣∣q dx)1/q
= ‖φ‖Lp‖f ′‖L∞

(∫
D

∣∣∣∣∫
D

w(x, y)
(
g1(y) − g1(y)

)
dy

∣∣∣∣q dx)1/q .

Next, as by assumption w(x, ·) ∈ Hα(D), we obtain(∫
D

∣∣∣∣∫
D

w(x, y)
(
g1(y) − g1(y)

)
dy

∣∣∣∣q dx)1/q
=
(∫

D

∥∥w(x, ·)∥∥q

Hα

∣∣〈w(x, ·)/∥∥w(x, ·)∥∥
Hα , g1 − g2

〉
Hα

∣∣q)1/q
≤ ‖w‖Lq×Hα‖g1 − g2‖H−α .
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Overall, this yields the estimate∣∣〈φ,F (g1, t) − F(g2, t)
〉
H−α

∣∣≤ ‖φ‖Lp

∥∥f ′∥∥
L∞‖w‖Lq×Hα‖g1 − g2‖H−α .

Hence, taking the supremum on both sides of this inequality over all ‖φ‖Hα = 1,
we obtain the Lipschitz condition (4.16) with L−α := LKα‖w‖Lq×Hα , where Kα

is the constant resulting from the continuous embedding of Hα(D) into Lp(D)

and the Lipschitz constant L of f satisfies L ≥ ‖f ′‖L∞ .

4.3 Proof of Theorem 2.2 (Infinite Time Convergence)

(a) We first present an alternative representation for the jump processes (Θn
t )t≥0 and

the solution ν of the Wilson–Cowan equation (1.3). Using the generator of the
PDMP (Θn

t , t)t≥0, we obtain that the components Θk,n satisfy

Θ
k,n
t = Θ

k,n
0 +

∫ t

0
λn
(
Θn

s , s
)∫

Np

(
ξk − Θk,n

s

)
μn
(
Θn

s , s;dξ)ds + M
k,n
t

= Θ
k,n
0 +

∫ t

0

(
−1

τ
Θk,n

s + 1

τ
l(k, n)f k,n

(
Θn

s , s
))

ds + M
k,n
t , (4.17)

where (M
k,n
t )t≥0 is a square-integrable càdlàg martingale given by

M
k,n
t := Θ

k,n
t −Θ

k,n
0 −

∫ t

0
λn
(
Θn

s , s
) ∫

Np

(
ξk −Θk,n

s

)
μn
(
Θn

s , s;dξ)ds. (4.18)

As the jump process is regular, this martingale is almost surely of finite varia-
tion and it could also be written in terms of a stochastic integral with respect to
the associated martingale measure of the PDMP [16]. Next, interpreting Θk,n as
the solution of the stochastic evolution equation (4.17) driven by the martingale
Mk,n, it follows from the variation of constants formula that it satisfies

Θ
k,n
t = e−t/τΘ

k,n
0 + 1

τ
l(k, n)

∫ t

0
e−(t−s)/τ f k,n

(
Θn

s , s
)
ds

+
∫ t

0
e−(t−s)/τ dMk,n

s . (4.19)

This formula can also be easily verified path-by-path by inserting (4.19) into
(4.17) and using integration by parts. Note that here the stochastic integral with
respect to the martingale is just a Riemann–Stieltjes integral as the martingale is
of finite variation. For the sake of completeness, we briefly sketch the arguments.
Thus, inserting (4.19) into (4.17) yields

Θ
k,n
t = Θ

k,n
0 − 1

τ

∫ t

0
e−s/τΘ

k,n
0 ds︸ ︷︷ ︸

(∗)

− 1

τ
l(k, n)
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×
(
1

τ

∫ t

0

∫ s

0
e−(s−r)/τ f k,n

(
Θn

r , r
)
dr ds −

∫ t

0
f k,n

(
Θn

s , s
)
ds︸ ︷︷ ︸

(∗∗)

)

−1

τ

∫ t

0

∫ s

0
e−(s−r)/τ dMk,n

r ds + M
k,n
t︸ ︷︷ ︸

(∗∗∗)

.

Considering the three terms marked (∗)–(∗ ∗ ∗) separately, we show that this
right-hand side equals (4.19). For the first term (∗) simply evaluating the integral
yields

Θ
k,n
0 − 1

τ

∫
0t

e−s/τΘ
k,n
0 ds = Θ

kn

0 − 1

τ

(
α−1e−t/τ − τ

)
Θ

k,n
0 = e−t/τΘ

k,n
0 ,

which gives the first term in the right-hand side of (4.19). Next, we simplify the
term (∗∗) employing integration by parts to the first term in (∗∗), which yields

1

τ

∫ t

0

∫ s

0
e−(s−r)/τ f k,n

(
Θn

r , r
)
dr ds

= 1

τ

∫ t

0
e(t−s)/τ

∫ s

0
e−(t−r)/τ f k,n

(
Θn

r , r
)
dr ds

= 1

τ

(
−τe(t−s)/τ

∫ s

0
e−(t−r)/τ f k,n

(
Θn

r , r
)
dr

)∣∣∣∣t
0

− 1

τ

∫ t

0
(−τ)e(t−s)τ e−(t−s)/τ f k,n

(
Θn

s , s
)
ds

= −
∫ t

0
e−(t−s)/τ f k,n

(
Θn

s , s
)
ds +

∫ t

0
f k,n

(
Θn

s , s
)
ds.

Thus, we obtain subtracting from this right-hand side the second term in (∗∗)

that

(∗∗) = −
∫ t

0
e−(t−s)/τ f k,n

(
Θn

s , s
)
ds.

This term is just the second term in the right-hand side of (4.19). It remains to
consider the term marked (∗ ∗ ∗). We have already stated that the stochastic inte-
gral with respect to the martingale (4.18) is defined path-by-path as a Riemann–
Stieltjes integral, and thus satisfies

−1

τ

∫ s

0
e−(s−r)/τ dMk,n

s

= −1

τ

∑
τn
j ≤s

e−(s−τn
j )/τ (

Θ
k,n

τn
j

− Θ
k,n

τn
j−

)



Journal of Mathematical Neuroscience (2013) 3:1 Page 37 of 54

+ 1

τ

∫ s

0
e−(s−r)/τ λn

(
Θn

r , r
)

×
∫

N
P
0

(
ξk − Θk,n

r

)
μn
((

Θn
r , r
)
,dξ
)
ds, (4.20)

where τn
j denotes the j th jump time of the nth PDMP. Integrating the sum in this

right-hand side over (0, t) yields

−1

τ

∫ t

0

∑
τn
j ≤s

e−(s−τn
j )/τ (

Θ
k,n

τn
j

− Θ
k,n

τn
j−

)
ds

=
∑
τn
j ≤t

e−(t−τn
j )/τ (

Θ
k,n

τn
j

− Θ
k,n

τn
j−

)− ∑
τn
j ≤t

(
Θ

k,n

τn
j

− Θ
k,n

τn
j−

)
=
∑
τn
j ≤t

e−(t−τn
j )/τ (

Θ
k,n

τn
j

− Θ
k,n

τn
j−

)− (Θk,n
t − Θ

k,n
0

)
.

Next, we apply integration by parts to the integral over (0, t) of the second term
above analogously to the application to term (∗∗), and obtain

1

τ

∫ t

0

∫ s

0
e−α(s−r)λn

(
Θn

r , r
)∫

N
P
0

(
ξk − Θk,n

r

)
μn
((

Θn
r , r
)
,dξ
)
dr ds

= −
∫ t

0
e−(t−s)/τ λn

(
Θn

s , s
)∫

N
P
0

(
ξk − Θk,n

s

)
μn
((

Θn
s , s
)
,dξ
)
ds

+
∫ t

0
λn
(
Θn

s , s
) ∫

N
P
0

(
ξk − Θk,n

s

)
μn
((

Θn
s , s
)
,dξ
)
ds.

Hence, overall these considerations show that

(∗ ∗ ∗) =
∫ t

0
e−(t−s)/τ dMk,n

s

and we obtain the final, third term in the right-hand side of (4.19). This completes
the proof that (4.19) solves Eq. (4.17).

Further, we obtain from the variation of constants formula for Θ
k,n
t also a

representation for the stochastic mean activity νn by inserting (4.19) into its def-
inition (2.7). This gives

νn
t = e−t/τ νn

0 + 1

τ

P∑
k=1

∫ t

0
e−(t−s)/τ f k,n

(
Θn

s , s
)
dsIDk,n

+
P∑

k=1

1

l(k, n)

∫ t

0
e−(t−s)/τ dMk,n

s IDk,n
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= e−t/τ νn
0 + 1

τ

∫ t

0
e−(t−s)/τF

n(
νn
s , s
)
ds

+
P∑

k=1

1

l(k, n)

∫ t

0
e−(t−s)/τ dMk,n

s IDk,n
. (4.21)

Finally, in order to compare stochastic and deterministic solutions we use that
the solution of the Wilson–Cowan equation can also be given via the variation of
constants formula, i.e., it holds that for all t ≥ 0

ν(t) = e−t/τ ν(0) + 1

τ

∫ t

0
e−(t−s)/τF

(
ν(s), s

)
ds. (4.22)

Thus, subtracting (4.22) from (4.21), and taking the expectation of the norm in
H−α(D) yields the estimate

E
n
∥∥ν(t) − νn

t

∥∥
H−α

= e−t/τ
E

n
∥∥ν(0) − νn

0

∥∥
H−α

+ 1

τ

∫ t

0
e−(t−s)/τ

E
n
∥∥F (ν(s), s

)− F
n(

νn
s , s
)∥∥

H−α

+ E
n

∥∥∥∥∥
P∑

k=1

1

l(k, n)

∫ t

0
e−(t−s)/τ dMk,n

s IDk,n

∥∥∥∥∥
H−α

. (4.23)

We deal with the terms in the right-hand side of (4.23) separately in the following
such that we can apply Gronwall’s inequality. Note that the term containing the
initial condition vanishes due to the assumptions of the theorem. We start with
the stochastic integrals in the subsequent part (b) of the proof.

(b) As due to Jensen’s inequality E|Y | ≤ √E|Y |2, it makes sense to calculate the
second moment of the stochastic integral in the right-hand side. For the norm in
H−α(D), we use ‖φ‖2

H−α = (φ,φ)H−α , and thus obtain using the linearity of the
inner product∥∥∥∥∥

P∑
k=1

1

l(k, n)

∫ t

0
e−(t−s)/τ dMk,n

s︸ ︷︷ ︸
=:βk,n

t

IDk,n

∥∥∥∥∥
2

H−α

=
P∑

k=1

|βk,n|2
l(k, n)2

‖IDk,n
‖2
H−α +

P∑
k,j=1
k �=j

βk,nβj,n

l(k, n)l(j, n)
(IDk,n

, IDj,n
)H−α .

We next consider the individual expectations of the random terms |βk,n|2 and
βk,nβj,n in the right-hand side. We have already stated that the stochastic inte-
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gral with respect to the martingale (4.18) is defined path-by-path as a Riemann–
Stieltjes integral (see (4.20)) and, moreover, (4.20) implies that the stochastic
convolution integral can be written as a stochastic integral with respect to the
fundamental martingale measure Mn associated with the PDMP (Θn

t , t)t≥0 (see
[16]), i.e.,∫ t

0
e−(t−s)/τ dMk,n

s =
∫

[0,t]×N
P
0

e−(t−s)/τ
(
ξk − Θ

k,n
s−
)
Mn(ds,dξ)

with predictable integrand

(ξ, s,ω) �→ e−(t−s)/τ
(
ξk − Θ

k,n
s− (ω)

)
.

Then we obtain due to the Itô-isometry following from Proposition 4.6.2 in [16]
using (4.6) that

E
n

∣∣∣∣∫ t

0
e−(t−s)/τ dMk,n

s

∣∣∣∣2
= E

n

∫ t

0
λn
(
Yn

s

)∫
N

P
0

e−2(t−s)/τ
(
ξk − Θk,n

s

)2
μn
(
Yn

s ,dξ
)
ds

≤ E
n

∫ t

0
e−2(t−s)/τ

(
1

τ
Θk,n

s + 1

τ
l(k, n)f k,n

(
Yn

s

))
ds

≤ 1

τ

(
E

nΘ
k,n
0 + 2l(k, n)‖f ‖0

)∫ t

0
e−2(t−s)/τ ds.

It remains to consider the product β
k,n
t β

j,n
t for which we obtain due to the inte-

gration by parts formula

β
k,n
t β

j,n
t =

∫ t

0
β

k,n
s− dβj,n

s +
∫ t

0
β

j,n
s− dβk,n

s + [βk,n, βj,n
]
t
, (4.24)

where the square brackets denote the quadratic variation process. The expectation
of each of the terms in the right-hand side vanishes: The first two are stochastic
integrals with respect to martingales, hence martingales themselves which are
identical to zero at the origin. Furthermore, as both martingales are càdlàg with
paths of finite variation on compacts, hence quadratic pure jump martingales, we
obtain for the quadratic variation process[

βk,n, βj,n
]
t
=
∑
s≤t

(
βk,n

s − β
k,n
s−
)(

β
j,n
s − β

j,n
s−
)
.

However, as all jump times of the two martingales a.s. differ it follows that
[βk,n, βj,n]t = 0.
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Thus, overall we have established that

E
n

∥∥∥∥∥
P∑

k=1

1

l(k, n)

∫ t

0
e−(t−s)/τ dMk,n

s IDk,n

∥∥∥∥∥
2

H−α

= 1

2

P∑
k=1

1+ 2‖f ‖0
l(k, n)

‖IDk,n
‖2
H−α , (4.25)

where 1/2 is an upper bound for 1
τ

∫ t

0 e
−2(t−s)/τ ds independent of t . Estimat-

ing the norm ‖IDk,n
‖2
H−α just as in the proof of Corollary 2.1, we finally obtain

that

E
n

∥∥∥∥∥
P∑

k=1

1

l(k, n)

∫ t

0
e−(t−s)/τ dMk,n

s IDk,n

∥∥∥∥∥
H−α

≤ 1

4

((
1+2‖f ‖0

)|D|v+(n)r

�−(n)

)1/2
,

with r = 2α/d for 0 ≤ α ≤ d/2, r = 1 − ε for α = d/2 and r = 1 for α >

d/2.
(c) We next estimate the term∫ t

0
e−(t−s)/τ

E
n
∥∥F (ν(s), s

)− F
n(

νn
s , s
)∥∥

H−α

in (4.23). From part (b) of the proof of Theorem 2.1 in Sect. 4.1, it follows
that

E
n
∥∥F (νn

t , t
)− F

n(
νn
t , t
)∥∥

H−α

≤ δ+(n)
K−αL

π

(√|D|(1+ ‖f ‖0
)‖∇xw‖L2×L2 + ∥∥∇xI (t)

∥∥
L2

)
, (4.26)

where F is the Nemytzkii operator defined in (4.4) and K−α is a constant
resulting from the continuous embedding of L2(D) into H−α(D). Here, the
right-hand side can be further estimated independently of t ≥ 0 using the as-
sumption that ‖∇xI (t)‖L2 is uniformly bounded in t ≥ 0. Furthermore, we
have shown in Sect. 4.2 in the proof of Corollary 2.1, that under the ap-
propriate assumptions the Nemytzkii operator F is Lipschitz continuous on
H−α(D), α ≥ 0, with Lipschitz constant L−α > 0 independent of t ≥ 0,
i.e.,∥∥F(g1, t) − F(g2, t)

∥∥
H−α ≤ L−α‖g1 − g2‖H−α ∀g1, g2 ∈ L2(D). (4.27)

A combination of the triangle inequality and the estimates (4.26) and (4.27)
yields ∫ t

0
e−(t−s)/τ

E
n
∥∥F (ν(s), s

)− F
n(

νn
s , s
)∥∥

H−α

≤ L−α

∫ t

0
e−(t−s/τ)

E
n
∥∥ν(s) − νn

s

∥∥
H−α ds + O

(
δ+(n)

)
.
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Overall, it thus follows from (4.23) that

E
n
∥∥ν(t) − νn

t

∥∥
H−α ≤ E

n
∥∥ν(0) − νn

0

∥∥
H−α

+ L−α

τ

∫ t

0
e−(t−s/τ)

E
n
∥∥ν(s) − νn

s

∥∥
H−α ds

+ O
(

δ+(n) +
√

v+(n)r

�−(n)

)
.

Then an application of Gronwall’s inequality yields

E
n
∥∥ν(t) − νn

t

∥∥
H−α ≤

(
E

n
∥∥ν(0) − νn

0

∥∥
H−α + O

(
δ+(n) +

√
v+(n)r

�−(n)

))

× exp

(
L−α

τ

∫ t

0
e−(t−s)/τ ds

)

≤
(

E
n
∥∥ν(0) − νn

0

∥∥
H−α + O

(
δ+(n) +

√
v+(n)r

�−(n)

))
eL−α .

By assumptions of the theorem, the term in the right-hand side converges to zero
for n → ∞. As this convergence is uniform in t , it holds that

lim
n→∞ sup

t≥0
E

n
∥∥ν(t) − νn

t

∥∥
H−α = 0. (4.28)

4.4 Proof of Theorem 2.3 (Martingale Central Limit Theorem)

In order to prove the martingale central limit theorem, we employ the general martin-
gale central limit theorem (Theorem 5.1 in [27]) for the Hilbert space H−α(D), i.e.,
the dual of the Sobolev space Hα(D), for α > d . To apply this theorem, it suffices to
prove the following conditions. Subsequently we use ρn =√�−(n)/v+(n) to denote
the re-scaling sequence and use the notation

〈
Gn(t)φ,φ

〉
Hα = λ

(
Yn

t

)∫
N

P
0

〈
νn(ξ) − νn

(
Θn

t

)
, φ
〉2
Hαμ

n
(
Yn

t ,dξ
)

(4.29)

which corresponds to the quadratic variation of the martingales (Mn
t )t≥0, see [27] for

a discussion.

(CLT1) For all t > 0, it holds that

sup
n∈N

ρnE
n

∫ t

0

[
λn
(
Yn

s

)∫
NP

∥∥νn(ξ) − νn
(
Θn

s

)∥∥2
H−αμ

n
(
Yn

s ,dξ
)
ds

]
< ∞, (4.30)
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and there exists an orthonormal basis (ϕj )j∈N of Hα(D) such that for all
j ∈ N and t ≥ 0

ρnE
n
〈
Gn
(
Yn

t

)
ϕj ,ϕj

〉
Hα ≤ γjC, (4.31)

where the constants γj > 0 are independent of n and t , satisfy
∑

j≥1 γj <

∞, and the constant C > 0 is independent of n and k but may depend on t .
(CLT2) The jump heights of the re-scaled martingales are almost surely uniformly

bounded, i.e., there exists a constant β < ∞ such that it holds almost surely
for all n ∈ N that

sup
t≥0

√
ρn

∥∥νn
(
Θn

t

)− νn
(
Θn

t−
)∥∥

H−α < β. (4.32)

Further, for all φ ∈ Hα(D) and all t > 0 it holds that

lim
n→∞

∫ t

0
E

n
∣∣〈G(ν(s)

)
φ,φ

〉
Hα − ρn

〈
Gn
(
Yn

s

)
φ,φ

〉
Hα

∣∣ds = 0. (4.33)

On a technical level, we note that the condition (CLT1) guarantees tightness of the
sequence of re-scaled martingales (

√
ρnM

n
t )t≥0 in the Skorokhod space of càdlàg

functions in H−α(D). This property is equivalent to relative compactness in the
topology of weak convergence of measures, and thus implies the existence of a con-
vergent subsequence. The conditions (CLT2) are then sufficient to establish that any
limit possesses the form of a diffusion process defined by the covariance operator C

given in (2.18). In particular, condition (4.33) precisely gives the convergence of the
quadratic variations and is thus the central condition. In the subsequent two parts of
the proof, we show that they are satisfied: In part (a), we prove conditions (4.30) and
(4.31), and part (b) establishes (4.32) and (4.33).

(a) We first prove conditions (4.30) and (4.31). Here, we also observe the signifi-
cance of the choice of the norm in H−α(D) with α > d for establishing the con-
vergence, which is essentially that it guarantees the existence a Sobolev space
Hα1(D) with continuous embeddings Hα(D) ↪→ Hα1(D) ↪→ C(D), where the
first is of Hilbert–Schmidt type. For subsequent use, we recall the estimates

‖IDk,n
‖2
H−α ≤ K2

α|Dk,n|2

with a suitable constant Kα > 0, which we have already established in the proof
of Corollary 2.1 due to the Hölder inequality and the Sobolev embedding theo-
rem. Therefore, we obtain for the term inside the expectation in (4.30) the esti-
mate

λn
(
Yn

s

)∫
N

P
0

∥∥νn(ξ) − νn
(
Θn

s

)∥∥2
H−αμ

n
(
Yn

s ,dξ
)

≤ 1

τ
K2

α

P∑
k=1

|Dk,n|2
l(k, n)2

(
Θk,n

s + l(k, n)f k,n

(
Yn

s

))
.
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Next taking the expectation, using the bound (4.6) on E
nΘ

k,n
s and integrating

over [0, t] we obtain the estimate∫ t

0
E

n

[
λn
(
Yn

s

)∫
N

P
0

∥∥νn(ξ) − νn
(
Θn

s

)∥∥2
H−αμ

n
(
Yn

s ,dξ
)]

ds

≤ t

τ
K2

α

(
1+ 2‖f ‖0

)v+(n)

�−(n)
.

Multiplying both sides with ρn = �−(n)/v+(n), we find that condition (4.30) is
satisfied.

We proceed to condition (4.31) and first of all expand the integrand to obtain

〈
Gn
(
Yn

s

)
ϕj ,ϕj

〉
Hα = λn

(
Yn

s

)∫
N

P
0

〈
νn(ξ) − νn

(
Θn

s

)
, φj

〉2
H−αμ

n
(
Yn

s ,dξ
)

= 1

τ

P∑
k=1

1

l(k, n)2

(
Θk,n

s + l(k, n)f k,n

(
Yn

s

))〈IDk,n
, ϕj 〉2Hα .

We next estimate the term 〈IDk,n
, ϕ〉2Hα . Here, we use the fact that for a function in

L2(D) its application as an element of the dual H−α(D) as well as H−α1(D) for
any α1 with 0 ≤ α1 < α coincide. We choose α1 such that d/2 < α1 < α − d/2
and obtain

〈IDk,n
, ϕ〉2Hα ≤ ‖IDk,n

‖2
H−α1‖ϕj‖2Hα1 ≤ K2

α1
|Dk,n|2‖ϕj‖2Hα1 ,

where Kα1 is the constant resulting from the Sobolev embedding theorem. Next,
taking the expectation, estimating the expectation terms as before and multiply-
ing by ρn yields

ρnE
n
〈
Gn
(
Yn

t

)
ϕj ,ϕj

〉
Hα ≤ 1

τ
K2

α1

(
1+ ‖f ‖0

)‖ϕj‖2Hα1 .

We chose the constants in (4.31) as C := K2
α1

(1+ ‖f ‖0)/τ and γj := ‖ϕj‖2Hα1 .
Finally, as due to Maurin’s theorem the embedding of the space Hα(D) into
Hα1(D) is of Hilbert–Schmidt type, cf. footnote 3 on page 16, it holds that∑

j≥1 ‖ϕj‖2Hα1 < ∞. Condition (4.31) is satisfied.
(b) The estimates in part (a) further show that the jump sizes are almost surely uni-

formly bounded as

sup
t≥0

√
ρn

∥∥νn
(
Θn

t

)− νn
(
Θn

t−
)∥∥

H−α ≤ Kα

√
v+(n)

�−(n)
.

Here, the upperbound in the right-hand side converges to zero for n → ∞, and
thus the left-hand side is bounded over all n ∈ N. Therefore, condition (4.32)
holds and we are left to prove the convergence of the quadratic variation (4.33).
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For the jump process, the quadratic variation satisfies

〈
Gn(t)φ,φ

〉
Hα = λ

(
Yn

t

)∫
N

P
0

〈
νn(ξ) − νn

(
Θn

t

)
, φ
〉2
Hαμ

n
(
Yn

t ,dξ
)

= 1

τ

P∑
k=1

1

l(k, n)2

(
Θ

k,n
t + l(k, n)f k,n

(
Yn

t

))〈IDk,n
, φ〉2Hα .

The quadratic variation of the limiting diffusion is given by〈
G
(
ν(t), t

)
φ,φ

〉
Hα

=
∫

D

φ(x)2
(
1

τ
ν(t, x) + 1

τ
f

(∫
D

w(x, y)ν(t, y)dy + I (t, x)

))
dx.

Here, the necessary estimates are split into several parts which are separately
considered in the following. Afterwards, the estimates are combined to infer the
convergence (4.33). In the following, we use again F as the Nemytzkii operator
defined in (4.4). Hence, for the difference of the quadratic variations, we obtain
the estimate

E
n
∣∣〈G(ν(t), t

)
φ,φ

〉
Hα − ρn

〈
Gn(t)φ,φ

〉
Hα

∣∣
= 1

τ
E

n

∣∣∣∣∫
D

φ(x)2ν(t, x) + φ(x)2F
(
ν(t), t

)
(x)dx

−
P∑

k=1

ρn

l(k, n)2

(
Θ

k,n
t + l(k, n)f k,n

(
Yn

t

))〈IDk,n
, φ〉2Hα

∣∣∣∣
≤ 1

τ
E

n

∣∣∣∣∫
D

φ(x)2ν(t, x)︸ ︷︷ ︸
(i)

+φ(x)2F
(
ν(t), t

)
(x)︸ ︷︷ ︸

(ii)

dx

−
∫

D

φ(x)2νn
(
Θn

t

)
(x)︸ ︷︷ ︸

(i)

+φ(x)2F
(
νn
(
Θn

t

)
, t
)
(x)︸ ︷︷ ︸

(ii)

dx

∣∣∣∣
+ 1

τ
E

n

∣∣∣∣∫
D

φ(x)2νn
(
Θn

t

)
(x)︸ ︷︷ ︸

(iii)

+φ(x)2F
(
νn
(
Θn

t

)
, t
)
(x)︸ ︷︷ ︸

(iv)

dx

−
P∑

k=1

ρn

l(k, n)

(
Θ

k,n
t

l(k, n)
〈IDk,n

, φ〉2Hα︸ ︷︷ ︸
(iii)

+ l(k, n)

l(k, n)
f k,n

(
Yn

t

)〈IDk,n
, φ〉2Hα︸ ︷︷ ︸

(iv)

)∣∣∣∣. (4.34)
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Using the triangle inequality once again for each of the two differences grouping
the terms marked (i)–(iv) we obtain four terms, which we subsequently estimate
separately. Finally, in part (v), we combine the four estimates.
(i) The first term is the simplest to estimate. Using the Cauchy–Schwarz in-

equality, we obtain

E
n

∣∣∣∣∫
D

φ2(x)
(
ν(t, x) − νn

t (x)
)
dx

∣∣∣∣≤ ‖φ‖2
L4E

n
∥∥ν(t) − νn

t

∥∥
L2 . (4.35)

(ii) We next consider the difference arising from the terms marked (ii) and ob-
tain using the Lipschitz condition (1.4) on f and the Cauchy–Schwarz in-
equality twice

E
n

∣∣∣∣∫
D

φ(x)2
(
F
(
ν(t), t

)
(x) − F

(
νn
t , t
)
(x)
)
dx

∣∣∣∣
≤ LE

n

∫
D

∣∣φ(x)
∣∣2∣∣∣∣∫

D

w(x, y)
(
ν(t, y) − νn

t (y)
)
dy

∣∣∣∣dx
≤ LE

n

∫
D

∣∣φ(x)
∣∣2∥∥w(x, ·)∥∥

L2

∥∥ν(t) − νn
t

∥∥
L2 dx

≤ L‖φ‖2
L4‖w‖L2×L2E

n
∥∥ν(t) − νn

t

∥∥
L2 . (4.36)

(iii) In order to estimate the next term, we use the bound (4.6) on E
nΘ

k,n
t , and

thus obtain

E
n

P∑
k=1

Θ
k,n
t

l(k, n)

∣∣∣∣∫
Dk,n

φ(x)2 dx − ρn

l(k, n)

(∫
Dk,n

φ(x)dx

)2∣∣∣∣
≤ (1+ ‖f ‖0

)
×

P∑
k=1

|Dk,n|
∣∣∣∣ 1

|Dk,n|
∫

Dk,n

φ(x)2 dx −
(

1

|Dk,n|
∫

Dk,n

φ(x)dx

)2∣∣∣∣
+ (1+ ‖f ‖0

) P∑
k=1

|Dk,n|
∣∣∣∣1− ρn|Dk,n|2

l(k, n)|Dk,n|
∣∣∣∣( 1

|Dk,n|
∫

Dk,n

φ(x)dx

)2

≤ (1+ ‖f ‖0
) P∑

k=1

∫
Dk,n

(
φ(x) − 1

|Dk,n|
∫

Dk,n

φ(y)dy

)2
dx

+ (1+ ‖f ‖0
)∣∣∣∣1− v−(n)

v+(n)

�−(n)

�+(n)

∣∣∣∣ P∑
k=1

|Dk,n|
(

1

|Dk,n|
∫

Dk,n

φ(x)dx

)2
.



Page 46 of 54 M.G. Riedler, E. Buckwar

Then the estimate is completed applying the Poincaré inequality (4.1) to the
first term, that is, estimating

P∑
k=1

∫
Dk,n

(
φ(x) − 1

|Dk,n|
∫

Dk,n

φ(y)dy

)2
dx ≤ diam(Dk,n)

2

π2
‖∇φ‖2

L2,

and the observation that the second term is proportional to ‖φn‖2
L2 , which

is the piecewise constant approximation to φ based on the partition Dn;
see (4.2). Therefore, we overall obtain an upper bound for the difference
constituted by the terms (iii) in (4.34) by

E
n

∣∣∣∣∫
D

φ(x)2νn
t (x)dx − ρn

P∑
k=1

Θ
k,n
t

l(k, n)2
〈IDk,n

, φ〉2Hα

∣∣∣∣
≤ δ+(n)2

1+ ‖f ‖0
π2

‖φ‖2
H 1 + (1+ ‖f ‖0

)
R(n). (4.37)

In the last term,

R(n) :=
∣∣∣∣1− v−(n)

v+(n)

�−(n)

�+(n)

∣∣∣∣∥∥φn∥∥2
L2

converges to zero for n → ∞ by assumption (2.19) and as the sequence
‖φn‖L2 is bounded as it converges to ‖φ‖L2 for n → ∞.

(iv) Finally, we consider the difference

E
n

∣∣∣∣∫
D

φ(x)2F
(
νn
t , t
)
(x)dx − ρn

P∑
k=1

l(k, n)

l(k, n)2
f k,n

(
Yn

t

)〈IDk,n
, φ〉2Hα

∣∣∣∣
≤ E

n

P∑
k=1

∣∣∣∣∫
Dk,n

φ(x)2F
(
νn
t , t
)
(x)dx − ρn

l(k, n)
f k,n

(
Yn

t

)〈φ, IDk,n
〉2Hα

∣∣∣∣.
We continue estimating the difference in each summand in the final right-
hand side and obtain using the triangle inequality for the term inside the
expectation

E
n

P∑
k=1

∣∣∣∣∫
Dk,n

φ(x)2F
(
νn
t , t
)
(x)dx − ρn

l(k, n)
f k,n

(
Yn

t

)〈IDk,n
, φ〉2Hα

∣∣∣∣
≤ E

n

P∑
k=1

∣∣∣∣∫
Dk,n

φ(x)2
(
F
(
νn
t , t
)
(x) − f k,n

(
Yn

t

))
dx

∣∣∣∣︸ ︷︷ ︸
(∗)

+ E
n

P∑
k=1

∣∣∣∣f k,n

(
Yn

t

)(∫
Dk,n

φ(x)2 dx − ρn

l(k, n)
〈IDk,n

, φ〉2Hα

)∣∣∣∣︸ ︷︷ ︸
(∗∗)

.
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We start with the first term and observe that it possesses the same structure
as the term estimated in part (c) of the proof of Theorem 2.1 with the only
difference that here the function φ in the integrand is squared. Therefore,
we obtain the estimate, cf. (4.15),

(∗) ≤ δ+(n)
L‖φ‖2

L4

τπ

(√|D|(1+ ‖f ‖0
)‖∇xw‖L2×L2 + ∥∥∇xI (t)

∥∥
L2

)
.

Next, we estimate the second term. Note that f k,n is bounded by ‖f ‖0, and
thus the remaining term is just as in part (iii) of the proof. Hence, we obtain
the estimate, cf. (4.37),

(∗∗) ≤ δ+(n)2
‖f ‖0
π2

‖φ‖2
H 1 + ‖f ‖0

∣∣∣∣1− v−(n)

v+(n)

�−(n)

�+(n)

∣∣∣∣∥∥φn∥∥2
L2 .

Therefore, we overall obtain an upper bound for the difference generated by
the terms (iv) by

E
n

∣∣∣∣∫
D

φ(x)2F
(
νn
t , t
)
(x)dx − ρn

P∑
k=1

1

l(k, n)
f k,n

(
Yn

t

)〈IDk,n
, φ〉2Hα

∣∣∣∣
≤ δ+(n)

L‖φ‖2
L4

π

(√|D|(1+ ‖f ‖0
)‖∇xw‖L2×L2 + ∥∥∇xI (t)

∥∥
L2

)
+ δ+(n)2

‖f ‖0
π2

‖φ‖2
H 1 + ‖f ‖0R(n), (4.38)

where the term R(n) is as in (4.37).
(v) To complete the proof, we combine the estimates (4.35)–(4.38) to obtain

E
n
∣∣〈G(ν(t), t

)
φ,φ

〉
Hα − ρn

〈
Gn(t)φ,φ

〉
Hα

∣∣
≤ (1+ L‖w‖L2×L2

)‖φ‖2
L4E

n
∥∥ν(t) − νn

t

∥∥
L2 + (1+ 2‖f ‖0

)
R(n)

+ δ+(n)
L‖φ‖2

L4

π

(√|D|(1+ ‖f ‖0
)‖∇xw‖L2×L2 + ∥∥∇xI (t)

∥∥
L2

)
+ δ+(n)2

1+ 2‖f ‖0
π2

‖φ‖2
H 1 .

Integrating over (0, T ), we obtain with a suitable constant Cφ > 0 indepen-
dent of n and T the estimate∫ T

0
E

n
∣∣〈G(ν(t), t

)
φ,φ

〉
Hα − ρn

〈
Gn(t)φ,φ

〉
Hα

∣∣dt
≤ Cφ

(
E

n
∥∥ν(t) − νn

t

∥∥
L1((0,T ),L2)

+ T R(n)

+ T δ(n)
(
1+ ∥∥∇xI (t)

∥∥
L1((0,T ),L2)

)+ δ(n)2
)
.
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The constant Cφ depends on the norm of φ in the spaces H 1(D) and L4(D)

where the latter can be estimated in terms of the norm in the Sobolev space
Hα(D) due to the embedding Hα(D) ↪→ L4(D), i.e., Cφ is finite and de-
pends only on φ ∈ Hα(D). Finally, each term in the right-hand side con-
verges to zero for n → ∞, and hence condition (4.33) follows. The proof of
Theorem 2.3 is completed.
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Appendix A: Well-Posedness of the Wilson–Cowan Equation

This section provides a concise exposition, based on classical existence theory, of
the well-posedness of the Wilson–Cowan equation (1.3), and the boundedness and
regularity results for its solution as referred to in Sect. 1.1. We understand Eq. (1.3)
as an L2(D)-valued integral equation, i.e.,

ν(t) = ν0 + 1

τ

∫ t

0

(−ν(s) + F
(
ν(s), s

))
ds, t ≥ 0, ν0 ∈ L2(D), (A.1)

where the integral is a Bochner integral and F is the Nemytzkii operator acting on
L2(D) defined by

F(g, t)(x) = f

(∫
D

w(x, y)g(y)dy + I (t, x)

)
∀g ∈ L2(D).

As in Sect. 1.1, we assume that f : R → R+ is Lipschitz continuous, w ∈ L2(D ×D)

and I ∈ C(R+,L2(D)), which implies that F is continuous in t . Furthermore, it was
shown in Sect. 4.1 that under these assumptions F(g, t) is Lipschitz continuous in the
argument g with Lipschitz constant independent of t ≥ 0. Thus, the integrand in (A.1)
is Lipschitz continuous with respect to the L2(D)-valued argument for all t ≥ 0 and,
moreover, uniformly continuous in g with respect to t . It follows that the integrand in
(A.1), that is, the map (g, t) → −g + F(g, t), is jointly continuous on R+ × L2(D).
Then Theorem 5.1.1 in [10] implies that there exists a unique, strongly continuous,
global solution to (A.1) for every initial condition ν0 ∈ L2(D). By definition, this
solution is absolutely continuous, and as F is jointly continuous, the derivative of the
solution is continuous and exists everywhere. Thus, we conclude that there exists a
unique continuously differentiable solution, i.e., ν ∈ C1(R+,L2(D)).
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Next, we recall an ‘explicit’ representation of the solution is the variation of con-
stants formula (4.22), which we already stated in Sect. 4.3. We have that the solution
of the Wilson–Cowan equation satisfies the integral equation

ν(t) = ν0 +
∫ t

0
Aν(t) + F

(
ν(t), t

)
/τ dt,

where A is the linear operator in L2(D) mapping g to −g/τ . Thus, the solution ν

satisfies

ν(t) = etAν0 + 1

τ

∫ t

0
e(t−s)AF

(
s, ν(s)

)
ds ∀t ≥ 0.

In the present setting, the application of the linear operator etA corresponds to the
scalar multiplication with e−t/τ as A = − 1

τ
IdL2 , and thus

ν(t) = e−t/τ ν0 + 1

τ

∫ t

0
e−(t−s)/τF

(
s, ν(s)

)
ds ∀t ≥ 0.

We next discuss the results stated in Sect. 1.1 on the higher spatial regularity of
solutions to (A.1). Then a pointwise bound on ν(t) ∈ L2(D), i.e., a constant C such
that |ν(t, x)| ≤ C for almost all x ∈ D and all t ≥ 0, are then easily obtained by an
approximation argument, that is, approximating the less regular solution by solutions
of higher regularity. It is possible to prove the pointwise bounds directly; see e.g.,
[26] for such an argumentation in a similar setting. However, it is easier and more
illustrative to use available results for solutions of higher spatial regularity, which are
usually arising as the deterministic solution of (A.1) one is interested in. For example,
the authors in [34] argue that from an application point of view it is reasonable to con-
sider at least continuous solutions. In particular, the authors in [34] present a detailed
existence and uniqueness result for the activity based Amari mean field equation and
state that an analogous result hold for the Wilson–Cowan equation (A.1) for spatial
dimensions d ≤ 3, which covers all physical relevant domains. Concerning the spatial
regularity, they consider the space Hα(D), where α is set to be the smallest integer
such that α > d/2. The significance of the choice of α > d/2 is—as so often in this
study—that this implies the embedding of the space Hα(D) into C(D). Furthermore,
we then even obtain that C([0, T ],Hα(D)) ⊂ C([0, T ] × D), i.e., the solution ν is
jointly continuous.

Therefore, we have the subsequent theorem, which is sufficient for the set-up in
this study. However, we note that existence and uniqueness of solutions of the Amari
equation were considered under less strict regularity assumptions on the coefficients
in [24], and we conjecture that these are also valid for the Wilson–Cowan equation.

Theorem A.1 (Sect. 2 in [34]) The domain D is bounded and satisfies the strong
local Lipschitz property. We assume that w ∈ Hα(D × D), that f ∈ Cα(D) with
all derivatives bounded, and that I ∈ C(R+,Hα(D)). Then there exists a unique
global solution ν ∈ C([0, T ],Hα(D)) for every T > 0 and every initial condition
ν0 ∈ Hα(D) to (A.1), which depends continuously on the initial condition and is
continuously differentiable. Moreover, the solution is globally bounded in Hα(D) if
the externally applied current I is globally bounded.
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Remark A.1 In the work [34], the authors assume for the domain only the cone prop-
erty, which is implied by the strong local Lipschitz property; see p. 84 in [2]. The
latter is the necessary boundary regularity for the present study, cf. footnote 3 on
page 16. Furthermore, in [34], it is also assumed that the gain function f is infinitely
often differentiable with bounded derivatives, but it is surely sufficient for f being
α-times continuously differentiable.

Finally, it remains to show the pointwise bound ν(t, x) ∈ (0,‖f ‖0) if the initial
condition satisfies ν0(x) ∈ [0,‖f ‖0] proposed in Sect. 1.1. Under Theorem A.1 the
solution ν(t, x) to (A.1) is jointly continuous and, therefore, theWilson–Cowan equa-
tion holds pointwise in x everywhere and for all t ≥ 0. Furthermore, t �→ ν(t, x) is
continuously differentiable for every fixed x ∈ D, and it is immediate that the bounds
are satisfied due to the fact that the derivative of the solution approaching 0 or ‖f ‖0
becomes positive or negative, respectively. Now, using an approximation result of
smooth solutions converging to the L2(D) solution, we obtain that even in this less
regular case the pointwise bounds hold almost everywhere.

Appendix B: Comparisons of Moment Equations

In this section, we discuss the moment equations for the L2(D)-valued jump Markov
processes νn

t = νn(Θn
t ). These can be derived from the corresponding moment equa-

tions of the jump Markov process (Θn
t )t≥0 taking values in N

P . This process is anal-
ogous in structure to the usual model used in chemical reaction kinetics, cf., e.g.,
[21]. Thus, we can use the formulae derived in this reference to obtain, e.g., for the
mean the system of differential equations

d

dt
E

nΘn
t = −1

τ
E

nΘn
t + 1

τ

P∑
k=1

l(k, n)Enf

(
P∑

j=1

W
n

kjΘ
k,n
t

)
ek. (B.1)

Furthermore, it is straightforward to state a system for the second moments, how-
ever, we are not so much interested in the moments of the Markov chain model,
but those of the L2(D)-valued processes (νn

t )t≥0, which we can compare to the
Langevin approximation. As νn is a linear mapping from R

P into L2(D), it holds
that νn(EnΘn

t ) = E
nνn(Θn

t ) and νn( d
dt E

nΘn
t ) = d

dt E
nνn(Θn

t ), and thus

d

dt
E

nνn
t = −1

τ
E

nνn
t + 1

τ
E

nF
n(

νn
t , t
)
. (B.2)

For the second moments of theL2(D)-valued process, we obtain for all φ ∈ L2(D)

d

dt
E

n
(
φ,νn

t

)2
L2

= E
n

(
P∑

k=1

Θ
k,n
t

l(k, n)

∫
Dk

φ(x)dx

)2



Journal of Mathematical Neuroscience (2013) 3:1 Page 51 of 54

= 2
1

τ
E

n
[(

φ,νn
t

)
L2

(
φ,−νn

t + F
n(

νn
t , t
))

L2

]
+ 1

τ
E

n

[
P∑

k=1

1

l(k, n)2

(
Θ

k,n
t + l(k, n)f k,n

(
νn
t , t
))(∫

Dk,n

φ(s)dx

)2]

= 2

τ
E

n
[(

φ,νn
t

)
L2

(
φ,−νn

t + F
n(

νn
t , t
))

L2

]
+ E

n
(
Gn
(
Θn

t , t
)
φ,φ

)
L2 , (B.3)

where the bilinear form (Gn(Θn
t , t)φ,φ)L2 is as defined in (4.29).

Next, we state the moment equations for the stochastic partial differential equa-
tions. We assume that the Langevin approximation (2.22) possesses a (strong) solu-
tion in an appropriate Hilbert space H and employ the Itô-formula Sect. 4.5 in [12]
which yields for all φ ∈ H ∗

〈φ,Vt 〉H = 〈φ,V0〉H + εn

∫ t

0

〈
φ,
√

G(Vs, s)dWs

〉
H

+
∫ t

0

〈
φ,

1

τ
Vs + 1

τ
F (Vs, s)

〉
H

ds

and

〈φ,Vt 〉2H = 〈φ,V0〉H + εn

∫ t

0

〈
2〈φ,Vs〉H φ,

√
G(Vs, s)dWs

〉
H

+ 2
∫ t

0
〈φ,Vs〉H

〈
φ,−1

τ
Vs + 1

τ
F (Vs, s)

〉
H

ds

+ ε2n

∫ t

0

〈
φ,G(Vs, s)φ

〉
H
ds.

Next, we take the expectation both sides of these identities and differentiate with
respect to t resulting for the first moment in the differential equations

d

dt
E〈φ,Vt 〉H =

〈
φ,E

[
−1

τ
Vt + 1

τ
F (Vt , t)

]〉
H

which is equivalent to the abstract evolution equation in H given by

d

dt
EVt = −1

τ
EVt + 1

τ
EF(Vt , t). (B.4)

And for the second moment, we obtain the differential equation

d

dt
E〈φ,Vt 〉2H = 2

τ
E
[〈φ,Vt 〉H

〈
φ,−Vt +F(Vt , t)

〉
H

]+ε2nE
[〈
G(Vt , t)φ,φ

〉
H

]
. (B.5)

Further, the linear noise approximation (2.21) satisfies the equations

d

dt
EUt = −1

τ
EUt + 1

τ
EF(Ut , t) (B.6)
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and

d

dt
E〈φ,Ut 〉2H = 2

τ
E
[〈φ,Ut 〉H

〈
φ,−Ut + F(Ut , t)

〉
H

]+ ε2n
〈
G
(
ν(t), t

)
φ,φ

〉
H

. (B.7)

Finally, we note that exactly the same moment equations hold for the variants of the
linear noise and Langevin approximation using a Q-Wiener process and an appropri-
ate diffusion coefficient, cf. Remark 2.4.

A comparison of the moment equations (B.1), (B.4), (B.6) for the mean and (B.3),
(B.5), (B.7) for the second moments show that they are similar in structure, but do
not coincide. This is analogous to the properties of the moment equations in finite
dimension and as in finite dimensions there is one exception, which is the case of
first order transitions: If F were affine6 in v, i.e., F(v, t) = f1(t) · v + f2(t), then
we obtain that the first moment equations (B.4) and (B.6) of the Langevin and linear
noise approximation, respectively, reduce to the Wilson–Cowan equation with ν(t) =
EVt = EUt . Furthermore, if F is affine, this implies that also G is affine in Vt , and
thus

〈
φ,G(Vt , t)φ

〉
H

= 1

τ
〈φ,Vt · φ〉H + 〈φ,f1(t) · Vt · φ〉

H
+ 〈φ,f2(t) · φ〉

H
. (B.8)

Taking the expectation on both sides and assuming interchangeability of the expec-
tation with the application of all the linear forms (think of the duality pairing as the
inner product in L2(D)), we obtain

E
〈
G(Vt , t)φ,φ

〉
H

= 1

τ

〈
φ,E[Vt ] · φ〉

H
+ 〈φ,f1(t) · E[Vt ] · φ〉

H
+ 〈φ,f2(t) · φ〉

H

= 〈G(E[Vt ], t
)
φ,φ

〉
H

. (B.9)

As EVt = EUt = ν(t), we obtain that the second moment equation for the Langevin
approximation and the linear noise approximation coincide. Moreover, they are
closed (for each φ), i.e., the system depends only on EVt and E〈φ,Vt 〉2H . Again,
this corresponds to the well-known case from finite-dimensional chemical reaction
kinetics.

Finally, if F is affine also the connection of the moment equations for the resulting
Markov chain models is interesting. On the one hand, the equation for the mean
coincides with the Wilson–Cowan equation where the gain function in its right-hand
side is given by F

n
. As F

n
is essentially a piecewise constant approximation to F , the

resulting equations for the mean correspond to a spatial discretisation of the Wilson–
Cowan equation, cf. the continuum limit in the derivation of the mean field equation
in [5].

6In the case of an affine function F(v, t) = f1(t) · v + f2(t), the mapping f1 is a linear form on H , which
is interchangeable with the expectation operator. For example, in the simplest case, the application of f1
to v ∈ H is just a multiplication by a scalar.
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