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Abstract The phase response curve (PRC) is a powerful tool to study the effect of
a perturbation on the phase of an oscillator, assuming that all the dynamics can be
explained by the phase variable. However, factors like the rate of convergence to the
oscillator, strong forcing or high stimulation frequency may invalidate the above as-
sumption and raise the question of how is the phase variation away from an attractor.
The concept of isochrons turns out to be crucial to answer this question; from it, we
have built up Phase Response Functions (PRF) and, in the present paper, we com-
plete the extension of advancement functions to the transient states by defining the
Amplitude Response Function (ARF) to control changes in the transversal variables.
Based on the knowledge of both the PRF and the ARF, we study the case of a pulse-
train stimulus, and compare the predictions given by the PRC-approach (a 1D map)
to those given by the PRF-ARF-approach (a 2D map); we observe differences up to
two orders of magnitude in favor of the 2D predictions, especially when the stimu-
lation frequency is high or the strength of the stimulus is large. We also explore the
role of hyperbolicity of the limit cycle as well as geometric aspects of the isochrons.
Summing up, we aim at enlightening the contribution of transient effects in predicting
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the phase response and showing the limits of the phase reduction approach to prevent
from falling into wrong predictions in synchronization problems.

List of Abbreviations

PRC phase response curve, phase resetting curve.
PRF phase response function.

ARF amplitude response function.

1 Introduction

The phase response (or resetting) curve (PRC) is frequently used in neuroscience to
study the effect of a perturbation on the phase of a neuron with oscillatory dynam-
ics (see surveys in [1-3]). For it to be applied, several conditions are required (weak
perturbations, long time between stimuli, strong convergence to the limit cycle, etc.)
so that the system relaxes back to the limit cycle before the next perturbation/kick is
received. In this case, one can reduce the study to the phase dynamics on the oscilla-
tory solution (namely, a limit cycle). However, in realistic situations, we may not be
able to determine whether the system is on an attractor (limit cycle); moreover, the
system may not show regular spiking, especially because of noise; see for instance [4,
5]. In addition, even in the absence of noise, strong forcing may send the dynamics
away from the asymptotic state, eventually close to other nearby invariant manifolds
[6]; thus, both the rate of convergence to the attractor and the stimulation frequency
(which can be relatively high; take for instance the case of bursting-like stimuli) play
an important role in controlling the time spent in the transient state (away from the
limit cycle). All these factors may prevent the trajectories from relaxing back to the
limit cycle before the next stimulus arrives and raise the question of the nature of the
phase variation away from an attractor (that is, in transient states) and how much can
we rely on the phase reduction (PRC).

Recently, tools to study the phase variation away from a limit cycle attractor have
been developed. They rely on the concept of isochrons (manifolds transversal to the
limit cycle and invariant under time maps given by the flow), introduced by Winfree
(see [7]) in biological problems, from which one can extend the definition of phase in
a neighborhood of the limit cycle. In a previous paper [8, 9], we showed how to com-
pute a parameterization of the isochrons (see also [10—12] for other computational
methods) as well as the change in phase due to the kicks received when the system is
approaching the limit cycle but not yet on it. This approach allowed us to control the
phase advancement away from the limit cycle (that is, in the transient states) and build
up the Phase Response Functions (PRF), a generalization of the PRCs. In [8], exam-
ples of neuron oscillators were shown in which the phase advancement was clearly
different for states sharing the same phase. A review of these tools is presented in
Sect. 2.

In Sect. 3, we complete the extension of advancement functions to the transient
states by defining the Amplitude Response Function (ARF), and we provide methods
to compute it by controlling the changes induced by perturbations in a transversal
variable, which represents some distance to the limit cycle. One of the methods pre-
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sented here to compute the ARFs is an extension of the well-known adjoint method
for the computation of PRCs; see, for instance, [13, 14] or Chap. 10 in [1].

Indeed, the knowledge of both the PRF and the ARF allows us to consider special
problems in which these functions can forecast the asymptotic phase of an oscillator
under pulsatile repetitive stimuli. In the case of a pulse-train stimulus, the variations
of the extended phase and the amplitude can be controlled by means of a 2D map;
this 2D map extends the classical 1D map used when the dynamics is restricted to the
limit cycle or phase-reduction is assumed; see, for instance Chap. 10 in [1]. Another
successful strategy to deal with kicks that send the dynamics away from the limit
cycle is the so-called second-order PRC (see [15—17]), which measures the effects of
the kick on the next cycle period, taking into account that synaptic input can span two
cycles.

As an illustration of the method, in Sect. 4, we then consider a canonical model
for which we compute the PRFs and ARFs thanks to the exact knowledge of the
isochrons. In this “canonical” example, we apply a two parametric periodic forcing
(varying the stimulus strength and frequency) and make predictions both with our 2D
map and the classical 1D map; we use rotation numbers to illustrate the differences
between the two predictions and we observe differences up to two orders of magni-
tude in favor of the 2D predictions, especially when the stimulation frequency is high
or the strength of the stimulus is large. We also use this example to shed light on the
role of hyperbolicity of the limit cycle as well as geometric aspects of the isochrons
(see also [18] for a related study of the effect of isochrons’ shear). Finally, we also
present the comparison of the two approaches in a conductance-based neuron model,
where we do not know the isochrons analytically.

Summing up, we aim at enlightening the contribution of transient effects in pre-
dicting the phase response, focusing on the importance of the “degree” of hyperbol-
icity of the limit cycle, but also on the relative positions of the isochrons with respect
to the limit cycle. Since PRCs are used for predicting synchronization properties, see
[19], Chap. 10 in [1] or Chap. 8 in [2], our final goal is to show the limits of the phase
reduction approach to prevent wrong predictions in synchronization problems.

2 Set-up of the Problem: Isochrons and Phase Response Functions (PRF)

In this section, we set up the problem and we review some of the results in [8] that
serve as a starting point of the study that we present in this paper.
Consider an autonomous system of ODEs in the plane

x=X(x), xeUCR?, (1)

and denote by ¢, the flow associated to (1). Assume that X is an analytic vector field
and that (1) has a hyperbolic limit cycle I" of period T, parameterized by 8 =¢/T as

y:']T—)Rz
Oy (©),

@)

where T =R/Z, so that y () =y (6 + 1).
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Under these conditions, by the stable manifold theorem (see [20]), there exists a
unique scalar function defined in a neighborhood 2 of the limit cycle I,

O:R2CR>>T
X O(x)

3

such that
Jim [¢: 00—y (t/T + O )| =0, @

if the limit cycle is attracting. If the limit cycle is repelling, the same is true with
t — —00.

The value ®(x) is the asymptotic phase of x and the isochrons are defined as the
sets with constant asymptotic phase, that is, the level sets of the function ®. The
same construction can be extended to limit cycles in higher dimensional spaces, but
since the applications in this paper will be restricted to planar systems, we give the
definitions in R?.

Moreover, we know from [21] that there exists an analytic local diffeomorphism

K:Tx [a_,a+]—>R2
0,0)~ K(0,0),

(&)
satisfying the invariance equation

1 Lo
(;89+78(,>K(9,a):X(K(9,0)), (6)

where T is the period and X is the characteristic exponent of the periodic orbit.

We can describe (6) as saying that if we perform the change of variables given by
K, the dynamics of the system (1) in the coordinates (6, o) consist of a rigid rotation
with constant velocity 1/T for 6 and a contraction (if A < 0) with exponential rate
A/ T for o. That is,

6=1/T,
oc=xo/T,

(N

and ¢, (K(0,0)) =K (@O +1/T,0¢?* "), where ¢, is the flow associated to (1). See
Fig. 1 for an illustration of the evolution of the variables (6, o) along an orbit of the
system.

Remark 2.1 In [8], we presented a computational method to compute the parameter-
ization K defined in (6) numerically.

Given an analytic local diffeomorphism K satisfying (6), we know from Theo-
rem 3.1 in [8] that the isochrons are the orbits of a vector field Y satisfying the Lie
symmetry [Y, X] = uY with u =X/T. That is,

YoK(0,0)=0,K(6,0). ®)
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Fig. 1 The new coordinate 4

system. Representation of a K (80, 00)

limit cycle (red) and an isochron .

(blue) corresponding to the -

phase level sets 6 = 6. The -

black dashed curve is a piece of e K (6, 00e*)
the trajectory of the vector field . - - - =
X starting at a generic point

K (6o, 90) ,

Let us assume that a pulse of small modulus € instantaneously displaces the tra-
jectory in a direction given by the unit vector w. Mathematically, we consider

X=X (X)+ewd(t —t,), 9

where € < 1 and §(¢) is the Dirac delta function. Then we define the phase response
function (PRF) as the infinitesimal rate of change of the phase in the direction w of
the perturbation, that is,

PRE(x) = Dy O (x) = (w, VO (x)),

where @ is the phase function defined in (3) and (-, -) denotes the dot product. In [8],
we showed that

VO (K(©® = (8 K) 10
KO =76, 00wk "

where (3, K)* = J (3, K) and the matrix J is given by
0 —1
J= <1 0 ) (11)

We will use this notation for the rest of the paper.
In neuron models, the usual situationis x = (V,...) and w = (1,0, ..., 0); thus,
the phase response function (PRF) is defined as

PRE(x) = 9y O (x), (12)

where dy denotes partial derivative with respect to the variable V.

3 The Amplitude Response Function (ARF)

A pulse stimulation displaces the trajectory away from the limit cycle, producing a
change both in the phase 6 and the transversal variable o, that we will refer to as
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the amplitude variable. In our notation, the amplitude variable is a distance measure
defined by the time from the limit cycle along the orbits of the auxiliary vector field
Y, transversal to X, defined in (8). In fact, the orbits of the vector field Y are the
isochrons; see, for instance, the blue curve in Fig. 1. The phase-reduction approach
assumes that the amplitude decreases to zero before the next pulse arrives and, there-
fore, the amplitude is always zero at the stimulation time. However, if one wants to
consider pulses that arrive before the trajectory relaxes back to the limit cycle, one
needs to compute also the amplitude displacement in order to predict the coordinates
of the point at the next stimulation time.

In this section, we introduce the amplitude function and Amplitude Response
Function (ARF), the analogues of the phase function (3) and the PRF (12) for the
variable o . Finally, we provide a formula to compute them given the diffeomorphism
K introduced in (5).

3.1 Definitions

Given an analytic local diffeomorphism K as in (5) satisfying (6), it follows that there
exists a unique function ¥, defined in a neighborhood 2 of the limit cycle I,

Y:QCcR*>R
X X (X)

13)

such that
Z(p®) = Z(x)et/T,

where ¢; is the flow associated to the vector field X. The level curves of X are closed
curves that we will call amplitude level curves or, in short, A-curves.

Analogous to the phase isochrons, it can be seen that given an analytic local dif-
feomorphism K, as in (5), satisfying (6), the A-curves are the orbits of a vector field
Z, satisfying [X, Z] =[Z, X] = 0; see the Appendix for a proof of this result. More
specifically,

Z(K(0,0))=0K(®,0). (14)

Expressed in the variables (6, o) introduced in (5), the motion generated by Z is
given by {§ = 1,6 =0}.

A pulsatile kick in the direction given by the unit vector w (see (9)) causes a
change in the amplitude variable. Analogous to the PRF introduced in (10), we define
the Amplitude Response Function (ARF) as the infinitesimal rate of change of the
phase in the direction w of the perturbation, that is,

ARF(x) = Dy, X (x) = (W, VX (x)).

In neuron models, the ARF typically measures the change in amplitude under the
action of a pulsatile kick in the direction of the voltage V, that is,

ARF(x) = dy 2 (x),

where dy denotes partial derivative with respect to the variable V.
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3.2 Computation of the PRFs and the ARFs

In this section, we provide a formula to compute the functions VO and VX' given
the diffeomorphism K introduced in (5).

Using the parameterization K introduced in (5) and writing K (x, y) = K(O(x, y),
X(x,y)) = (K, Ky), where ® and X' are the functions introduced in (3) and (13),
respectively, we have that

K, 0K\ (0® 9,0\ (1 0
K, 9,K,)\o:¥ 9,X) \0 1)’
and, therefore, VO = (0,0, 9,0) and VX = (3, X, 9, X) are given by

VO\ (%K. K.\
vy ) \&%K, &K,

_ 1 Ky —0sKx

(0 KL, 09K) \—9 K, 09K,
_ 1 aaKi>
T (0, KL, 99K) \pKt)"

Hence,

VO(K(®,0)) = 9 K*(®.0) d
)T 0, KL 0. 0). 00K 0. 0))

KL, 0)
(0 K+(0,0),0K(0,0))

15)

VE(K@®,0))=
Using the vector field description given in (8) and (14), we can rewrite the expres-
sion above, using the relations 3, K =Y o K and 9K =Z o K, as

1 ZL

VO(K@.0) =T K©.0) e VEKOO) =7y KO.0)
, ’ ’ N

By the invariance equation (6), we know that X = %Z + %UY and, therefore,

1
VO(K(0,0))= ——7—= , and
( ) T(Y+L X) K(0,0) (16)
ro Zt
VE(K®.0)=— T~ ‘
T (Z-, X) K(,0)

Remark 3.1 Notice that expression for VX' in (16) might suggest that it has a singu-
larity at o = 0. Nevertheless, the vanishing terms in the numerator and denominator
cancel out at 0 = 0, and using that Z(K (0, 0)) = dp K (0, 0) = X (K (0, 0)), the value
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at o =0 is given by

Xty ®)
XLy (0)), K1(0))

where K1(0) = 3, K (0,0) = Y(K (8, 0)).

)

VE(y®)=

3.3 The Adjoint Method for the ARF

The most common method to compute the PRC, the so-called adjoint method, uses
that the function V@ evaluated on the limit cycle I" is a periodic solution of some
adjoint equation (see, for instance, [1]). In the generalization introduced in [8], it
was shown that the adjoint method can be extended to compute VO for points in a
neighborhood of the limit cycle, for which the periodicity condition is not satisfied.
Indeed, Q = VO satisfies the equation

%g=—DXW@@»Q, (17
where DXT is the transpose of the real matrix DX. In this case, the method just
requires an initial condition, so that it can be solved uniquely. The initial condition is
provided by formula (15).

The same result can be extended to compute the change in the transversal variable
o due to a pulse stimulation. In the following proposition, we provide the differential
equation satisfied by VX' (p) where p = K (6, o) is a point in a neighborhood §2 of
the limit cycle y evolving under the flow of X.

Proposition 3.2 Let I be a hyperbolic T -periodic orbit of a planar analytic vector
field X parameterized by 6 according to (2). Assume that there exists a change of
coordinates K in a neighborhood 2 satisfying (6). Then the function VX along the
orbits of the vector field X satisfies the adjoint equation

do A
g?:(?—DXW@@»>Q (18)

where ¢ is the flow of the vector field X and X is the characteristic multiplier of the
periodic orbit, with the initial condition

AZ(p)  ZH(p)
T (ZX(p),X(p))’

0(0) = (19)

where ZL(K(G, 0)=JpK(@0, o).

Proof We will show that the function VX' evaluated along the orbits ¢:(p) of X
satisfies the adjoint equation (18). From expression (16), we have that

LZ (¢ (p)) Z- (¢ (p))
T (ZHd(p). X (& (p)

V(i (p)) = (20)

@ Springer



Journal of Mathematical Neuroscience (2013) 3:13 Page 9 of 26

We now compute the derivative of VX (¢;(p)) with respect to time. In order to
simplify notation, we set X := ¢, (p). We will also use that Z+ = JZ where J is the
matrix (11). Using that %Z (x) = DZ(x) X (x), we have from (20)

d AMdZ /dt)(x) T Z(x) + 22 (x)J DZ(x) X (x)
ZVI(x) =
dt T(Z+(x), X (x))

AT @I ZE(IDZEX(X), X (X)) + (JZ(x), DX ()X (X))
T(Z+(x), X(x))?

Using that DXZ = DZX, expression (20) and dot product properties (namely,
(JZ(x), DX (X)X (x)) = (DX (x)T JZ(x), X (x))), we obtain
iVZJ(x) _ A/ THAEX)JZ(X) + 12 (x)J DX (x)Z(x)
dt Tg(x)
_ VYX){IJDX(X)Z(x) + DXx)TJZ(x), X (x))
(Z+(x), X (%))

Using J DX (x) + DX (x)T J = trace(DX)(x)J, and denoting 7 (x) := trace(DX)(x),
we are led to

d ()\./T—DX(X)T—F‘E(X)))\.E(X)JZ(X) VXX {(tX)JZ(X), X (X))
—VX(x) = -
dt T(Z1(x), X(x)) (Z1t(®), X (x))

Finally, using again (20), we have
%vz(x) = (/T -DXX" +1(x)VI(x) — VEX)T(X)
=(/T-DXx")VEX),

as we wanted to prove. g

4 Periodic Pulse-Train Stimuli

The purpose of this section is to show the convenience of using the response func-
tions away from the limit cycle to obtain accurate predictions of the ultimate phase
advancement. To this end, we force a system with pulse-trains of period 7y < Ty for
trajectories near a limit cycle I of period T and characteristic exponent A.

Given an oscillator, assume that it is perturbed with an external instantaneous stim-
ulus of amplitude € in the voltage direction every T time units, that is,

N
X=X +ew) 8(t—jTy), Q1)
j=0

where w = (1, 0), € < 1 and § is the Dirac delta function. This system can represent,
for example, a neuron which receives an idealized synaptic input from other neurons.
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Remark 4.1 In the sequel, we will also use ws = 1/ Ty, the frequency of the stimulus,
and wg = 1/ Tp, the frequency of the limit cycle I". Then the quotient w; /wq indicates
how many inputs the oscillator receives in one period.

In order to know the evolution of the perturbed oscillator after each time period T,
it is enough to know how the variables 6 and o change. We recall that the variation of
the variable 6 produced by an external stimulus is given, to first order in the stimulus
strength €, by the PRF. Similarly, the variation of the variable o is given to first order
by the ARF. Hence, we can consider the following map, which approximates the
position of the oscillator at the moment of the next kick:

T
Ont1 =0y, + €PRF(6,,0,) + — (mod 1),
Ty (22)

On+1 = (0n + € ARF(0,, 0,)) e/ 1o,

Moreover, we can compare it with the map obtained by considering the classical PRC
(see, for instance, Chap. 10 in [1]), which is

T
Op+1 =0, +€PRC(H,) + Fb (mod 1). (23)
0

In the latter case, we are assuming that the perturbation happens always on the limit
cycle and, therefore, o, = 0 for all n. The possibility that this might not be a realistic
assumption (for example, if the stimulus period T is too small, the limit cycle is
weakly hyperbolic or the strength of the stimulus € is too large) has been already
pointed out in the literature; see, for instance, [22] or Chap. 10 in [1]. However,
other factors could play a role, for example, the geometry of the isochrons (curvature,
transversality to the limit cycle, etc.). Our aim is to consider some examples and see
in which cases the 1D map (23) gives a correct prediction or, on the contrary, one
requires the 2D map (22) to correctly assess the true dynamics of the phase variable.

To quantify the long-term agreement or disagreement between the 1D and the 2D
predictions, we compute an approximation of the rotation numbers after N iterations
for both maps. More precisely, given an initial condition (6y, og), we compute

_ . 1 s~ =
p = lim NZ(@j—@jfl), (24)

where 6 denotes the lift of 6 to R. Then, for the 2-dimensional map (22) and assuming
N large enough, the rotation number can be approximated by

N-1

T, 1
pp =+ —€ ) PRF(;.0)), (25)
To N —
j_
and by
T 1 N—1
S
=+ = PRC(9;), 26
P1D 7 + Ne jzo Ch (26)

for the 1-dimensional map (23).
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These approximate rotation numbers will be our main indicator to compare the
dynamics predicted by the 1D map with that of the 2D map. In order to dissect the
causes that create the eventual differences between the two maps and highlight the
shortcomings of the phase-reduction approach, we have first considered a “canonical”
example in which the isochrons can be computed analytically. Next, we consider a
conductance-based model, in which the isochrons have to be computed numerically
and we obtain similar comparative results.

4.1 Examples
4.1.1 A Simple Canonical Model

We consider a simple model having a limit cycle with two parameters, o and a,
that control the hyperbolicity of the limit cycle and the angle between the isochrons
and the limit cycle, respectively. The system has the following expression in polar
coordinates:

r :otr(l — r2),

(27
p=1+ ozarz,
for a, o € R, and the following one in Cartesian coordinates:
)'c:ozx(l — (x2+y2)) —y(l+aa(x2+y2)), 28)

= ay(1 = (2 45%) + 51 +aa(s 7))

The limit cycle corresponds to » = 1 and the dynamics on it are given by ¢ =
1 + aa; therefore, ¢(t) = ¢o + (1 + aa)t mod 2. The period of the limit cycle I”
is To =27 /(1 4+ aa). A parameterization of the limit cycle in terms of the phase
0=t/Ty, for 6 €[0, 1) is y(0) = (cos(2m ), sin(2w9)).

Now, consider the vector field Y, given in the polar and Cartesian coordinates by

F=ar3, and )'c=a(x2+y2)(x+ay),
¢ = —aar?; y= a(x2 + y2) (y —ax).

It is easy to check that Y satisfies [X, Y] = —2«aY. Then, using (8), we find that
u = —2a and

1 1
K@,0)= ——cos| 2760 + —aln(l — 2c0) |,
1 —2a0 2

[1 . 1
1= 20 sm(2n@ + Ealn(l — 20{0))), 29)

with 6 € [0, 1) and 0 > 1/(2cx).
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Notice that the function K can be easily inverted using that r> = x2 + y? =
(1 =2a0)~ ! and arctan(%) =20 + %aln(l —2a0). Then K~ 1(x, y)=(O(x,y),
X (x,y)), where

1 y 1 1 1 1
@)(x,y)=§<arctan(;> —Ealn(r—2>>, E(x,y)=£<1_r_2>_

Thus, the dynamics for (6, o) are given by

6=1/Ty,
(30)
o = —2uo0.

The vector field Z, defined in (14), has the following expression in Cartesian co-
ordinates and polar coordinates, respectively:

x=-2my, and 7 =0,

y=2mx; ¢ =2m.

Therefore, we find that VO (p) = ﬁ (=y 4+ ax, x + ay), and, by the parameter-

ization y of the limit cycle, VO (y (0)) = %(— sin(270) + a cos(2mwH), cos2m ) +

asin(2r@)). Similarly, VX(p) = ﬁ, ﬁ), and VX (y(@@)) = (cos(2m0),
sin(270)).
From the last equations, we can then obtain

PRF(K (0. 0)) = —7”2;2“" (sin<2n0 + %aln(l - 2a0)>
—acos<2n9+ %aln(l —2010))) 3D

and

. 3/2
ARF(K (0, 0)) = %cos(

1
270 + Ea In(1 — 2050)).

In Fig. 2, we show the PRF and the ARF for a specific isochron for representative
values of the parameters, @ = 10 and o = 0.1. An important remark is that the PRF
is far from being constant along isochrons, whereas the ARF is clearly nonzero near
the limit cycle (o = 0). These features will have a significant effect when comparing
the predictions provided by the 1D map and the 2D map.

We want to stress the role of the parameters « and a. On one hand, the parameter
« determines the hyperbolicity of the limit cycle, since its characteristic exponent is

A= —=2aTy.

Hence, for small values of « the contraction to the limit cycle will be weak, while as
o goes to infinity A tends to —47/a. On the other hand, the parameter a determines
the transversality of the isochrons to the limit cycle. Indeed, denoting by B the angle
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o

Fig. 2 Phase and amplitude response functions along isochrons. Phase response function (PRF) and am-
plitude response function (ARF) for system (28) with @ = 10 and o« = 0.1, computed from (31)

1.5

-15-

(a) a=0.1 (b) a=10

Fig. 3 Limit cycle and isochrons. The limit cycle (red) of system (28) and some isochrons (blue) for
different values of the parameter a. In both cases, « = 10

between the isochron {p € R? : @ (p) = 0} and the limit cycle at the point y (6), we
have

_ (0), Vo)
os B = .
Ly’ @ IVeLy el

Computing explicitly the right-hand side of the equality, it is straightforward to verify
that

2ma
Vi+a?

In particular, note that 8 is independent of the variable 6. Moreover, for a = 0 the
isochrons are orthogonal to the limit cycle and, as a tends to infinity, they become to
it (see Fig. 3).

cosfB =
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4.1.2 Numerical Simulations

In this section, we use the analytic expressions obtained in the previous subsection
for the PRF, ARF, and PRC to compute and compare the maps defined in (22) and
(23). Moreover, as we also have an explicit formula for the parameterization K and
its inverse K !, we can integrate numerically system (28), perturb it periodically, and
obtain a sequence (x,, y,). Then we can compute analytically

O, 00) = K (X, yn), (32)

and compare it with the iterations obtained using the maps (22) and (23). In the
following, we will call the approximation of the rotation number obtained by this
method simply p, to distinguish it from p,p and p;p defined previously in (25) and
(26), respectively. The following lemma gives a description of the dynamics expected
in the 1-dimensional map.

Lemma 4.2 For k € 7, let us denote

2 T
Cr= —Tr<—é —k).
e \Ty

Then, the fixed points of the 1-dimensional map (23) can be computed analytically
and:

o Ifl+a’+ C,% < 0 forall k € Z, the map (23) has no fixed points.

o Ifthere exists k € Z such that 1 + a* + Cl% <0 and

‘—aCk+,/l+a2—C,%

1+ a2 =1

—= 1

the map (23) has the fixed point

1 (—aCk+‘/1+a2—C,f>

0y = . arccos Lt a

Moreover, if a < Cy and

‘—ack—,/1+a2—c,§

1 +a?

<1

’

there exists also another fixed point

1 —aCy —\/1+a? - C}
9*:—arccos( >

T 27 1 +a2

Proof The fixed points 6* of map (23) must satisfy

T

* _— =
€ PRC(6*) + T k
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for some k € Z, or equivalently
Cy _

*
PRC(67) + o

0.
Substituting PRC(6*) in the above equation by expression (31) with o = 0 and rear-
ranging terms we have

sin(ZnG*) =a cos(27r9*) + Cy. (33)

Taking squares of both sides of the equality and using trigonometric properties, we
obtain
(1 + a2) 0052(27149*) +2aCy cos(2n0*) + C,% —1=0,

which is an equation of degree 2 in cos(26*). Solving it, after some simplifications,

we obtain
—aCr+,/1+a? - C}
cos(2m6*) = . (34)

1+ a?
It is clear that for Eq. (34) to have real solutions, the right-hand side must have mod-
ulus at most 1 and 1 + a2 — Cj. > 0. In this case, the solutions of (34) are

1 —aCy £ \/1+a? - C?
0% = — arccos )
2 ( )

1+ a?

However, as we have taken squares in Eq. (33), we still have to check whether 9_’[_ and
0* are solutions of (33). It is easy to check that 07 always solves (33), while 0_ is a
solution only when a < Cy. O

Remark 4.3 A natural question is whether the 2-dimensional map (22) and the se-
quence (32) have the same qualitative behavior. As an example, let us take € = 0.03,
o = 0.1 and a = 10. In this case, there exists just the fixed point GJ*F for the 1-
dimensional map (23). So, let us take the initial condition (6, og) = (Gi, 0) and
compute its iterates by the three different maps (22), (23), and (32). In Fig. 4, we
plot the sequences K (6,, 0,,) (for clarity, we have just plotted those with n > 200).
As one can see, map (23) fails to predict correctly the qualitative behavior of the so-
lution, since (32) seems to be attracted to a quasi-periodic orbit and not a fixed point.
On the contrary, map (22) correctly predicts this qualitative behavior.

From now on, we will take the initial condition to be (6, og) = (0.8, 0), that is,
(x0, y0) ~ (0.30901, —0.95106). In order to explore the effect of both the hyperbolic-
ity and the transversality of the isochrons to the limit cycle, we will plot the different
approximations of the rotation numbers p, pap, and p;p for different values of the
parameters a and «.

First of all, we will take &« = 0.1 and a = 10. This corresponds to considering a
weakly hyperbolic limit cycle with isochrons that are almost tangent to it. In Fig. 5,
we show the rotation numbers obtained for different amplitudes and for two different
stimulus periods 7. In this case, in order to make the rotation number p;p stabilize,
we have taken N = 1000.
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Fig. 4 ) Com.parTson of ltergtlve 1.5 i ; ; . Limit cycle
maps for periodic pulse-train ; B map <
stimuli. Sequences K (6, o), alytic computatiog +
for n > 200, computed using 1L
maps (22), (23) and (32)
respectively
0.5}
> 0
05+
-1+
15 . . . . .
1.5 1 0.5 0.5 1 15

Observe also the agreement with the result in Lemma 4.2, which predicts the ap-
pearance of the fixed point of the 1D map when 1 + a? — C,? = 0, that is, when

C,% = 101 or, equivalently after substituting Ty = Ty/m, € = 27 /(~/101m). The fixed
point appears at € & 0.0125 for m = 50 (panel (a) in Fig. 5) and € ~ 0.0312 for
m = 20 (panel (b) in Fig. 5); both values coincide with the downstroke of the corre-
sponding values of p|p.

One can see that the rotation number obtained with the 1-dimensional map
diverges from the analytical computation, while the one obtained with the 2-
dimensional map does not. This wrong prediction by the 1-dimensional approach
is consistent for all intermediate values of 7 (not shown here). We point out that,
although the difference between the 1-dimensional approach and the other two seems

002 *—s——w o, o e o 0.05
0.04
_ 0015 =
[9] [9]
5 5
E] E o0.03
= =
c 0.01 =
] <]
s T 0.02
o P ° P
i P o« P
0.005r |* 71D = P1D
0.01
- Pop ~ Pap
0 0
0 0.01 0.02 0.03 0.04 0 0.01 0.02 0.03 0.04
g, stimulus strength g, stimulus strength
(a) (b)

Fig.5 Rotation numbers as a function of the stimulus strength. Rotation numbers as a function of the stim-
ulus strength for parameter values « = 0.1 and a = 10. Stimulation periods are a Ty = 0.0628319 ~ T /50,
b Ty = 0.1570800 ~ Ty /20
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Fig. 6 Iterates for a weakly 15 it oycle
hyperbolic limit cycle. First 100 Bmap X
iterates of sequences K (6, oy,) - Falmaarerat o ﬁ"a'y’ic computation -+
R +
computed using the three il . it A N
different methods. Parameter Ll ! oy
values are taken to be o« = 0.1,
a =10, € =0.022 and
Ty = 0.0628319 ~ T /50 05r i N
i 7
¥ ™
> 0 {r N
+\ e
/AN
0.5
Al
15 .
15 1 0.5 0 05 1 15
X
Fig. 7 Differences among the X107
2D prediction and the analytic 45
rotation numbers. Absolute .
difference between the rotation
number obtained with the 35
2-dimensional approach and the g
analytic one, that is |[ppp — pl, g 0.0256 3
in the two-parametric space k7] 255
[2] =
(@rel, €) % 5
E oot84 2
@
o 15
1
0.5

20 23 26 29 32 35 38 41 44 47 50

o __, stimulus relative frequency

rel’

rather small (it ranges from 1073 to 1072), we can identify a wrong prediction of
the qualitative behavior of the system by the 1-dimensional map. Indeed, in the cases
where p;p ~ 0 but pp, p # 0, the 1-dimensional map (23) has a fixed point, while
the other two do not (see Remark 4.3). For example, in Fig. 6, we plot in the phase
space the first 100 iterates of the sequences K (6,, 0,,), where (6,, 0,,) are obtained,
respectively, using the 2-dimensional map (22), the 1-dimensional map (23), and ex-
pression (32). While for the 1D map a fixed point is reached, for the 2D and the
analytic approaches it seems that the dynamics are not so simple. Observe that this
different qualitative behavior is obtained in spite of the initial condition being on the
limit cycle.

Another visualization of the agreement or disagreement between the different ap-
proximations of the rotation numbers is provided in Figs. 7, 8, and 9. We show the
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Fig. 8 Differences among the
1D prediction and the analytic
rotation numbers. Absolute
difference between the rotation
number obtained with the
1-dimensional approach
(phase-reduction hypothesis)
and the analytic one, that is
lp1p — pl, in the
two-parametric space (wre], €)

¢, stimulus strength

20 23 26 29 32 35 38 41 44 47 50

O stimulus relative frequency

Fig. 9 Ratio between errors

given by the 2D prediction and

by the 1D prediction. Ratio of 0.02
the absolute difference between

the 2-dimensional approach and

the analytic one (numerator, see 0.015
Fig. 7) over the absolute

difference between the

1-dimensional approach and the 0.01
analytic one (denominator, see

Fig. 8), that is,

lo2p — pl/1P1D — Pl 0.005

¢, stimulus strength
Error

20 23 26 29 32 35 38 41 44 47 50
O stimulus relative frequency

differences between them depending on both € (that is, the strength of the stimu-
lus) and wye := wy/wo = Ty/ T, (the ratio between the frequency of the stimulus
and the frequency of the limit cycle). In Fig. 7, we plot the absolute difference be-
tween the rotation number obtained with the 2-dimensional approach and the analytic
one, namely |p2p — p|, whereas in Fig. 8, we plot the error when using the phase-
reduction hypothesis, namely |p1p — p|. Both errors are compared in Fig. 9, where
the ratio |p2p — p|/Ip1p — p| is displayed. As expected, one can see in Figs. 7 and 8
that, fixing the stimulus period 7, the worst approximations of p given respectively
by p2p and p1p are obtained for high values of €. However, fixing the strength of the
stimulus €, the results for both cases are different: while for the 2-dimensional map
the worst results are for high frequency ratios wy], for the 1D approach the worst
results are obtained, in general, for low wy. Finally, as we also expected, in Fig. 9
we can appreciate that the 2D approach is always better than the 1D. Moreover, the
difference between pop and p is, in the worst case, two orders of magnitude smaller
than the difference between pp and p.

As we mentioned above, we use this example to help us understanding the effect
of the hyperbolicity of the limit cycle and the transversality of the isochrons to it
in the validity of the PRC approach. In Figs. 10, 11, and 12, we plot the different
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c 6 c 0.0246
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g 5 P g 0.0244 P
o p o P
4 -P1p +P1p
s -~ Pop 0.0242 - Psp
% 0.01 0.02 0.03 0.04 0.0245 0.01 0.02 0.03 0.04
¢, stimulus strength ¢, stimulus strength

(a) (b)

Fig. 10 Effect of weak hyperbolicity and normal isochrons in the phase prediction. Rotation numbers
for different stimulus strengths in case of weak hyperbolicity and normal isochrons (¢ = 0.1 and a = 0).
Stimulation periods are a Ty = 0.0628319 ~ T()/50, b Ty = 0.1570800 ~ Ty /20

1.007 2.5225
1.006 p 2.5225
_ 1.005 +P1p _ 25225
3 P 8
£ 1.004 20 £ 25224
> >
c c
c 1.003 c 25223
2 S
T T
£ 1.002 g 25223 p
i o p
1.001 25222 ~Pip
1 25222 = P20
0-999 0.01 0.02 0.03 0.04 25221, 0.01 0.02 0.03 0.04
€, stimulus strength ¢, stimulus strength
(a) (b)

Fig. 11 Effect of strong hyperbolicity and almost tangent isochrons in the phase prediction. Rotation
numbers for different stimulus strengths in case of strong hyperbolicity and almost tangent isochrons
(o =10 and a = 10). Stimulation periods are a 7y = 0.0628319 ~ T;/50, b T; = 0.1570800 ~ Tg /20

approximations of the rotation numbers varying the parameters « (¢ = 0 meaning
loss of hyperbolicity) and a (¢ = 0 meaning isochrons normal to the limit cycle).
On one hand, when the limit cycle is strongly hyperbolic (for instance, @ = 10 as in
Figs. 11 and 12), all approximations give a very similar result. Hence, in these two
cases (even when the isochrons are almost tangent to the limit cycle, which corre-
sponds to Fig. 11), the use of PRFs and ARFs instead of PRCs seems not necessary.
In fact, that is what one can expect intuitively: if the attraction to the limit cycle is
very strong, the system relaxes back to the asymptotic state very quickly, so that at
each kick we can assume that the state variables are on the limit cycle. Of course, this
will depend also on the frequency of stimulation wy.

On the other hand, in Fig. 10, where the contraction to the limit cycle is slow but
the isochrons are almost orthogonal to the limit cycle, one can see that the 1D ap-
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x107

10.5 0.0252
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Fig. 12 Effect of strong hyperbolicity and normal isochrons in the phase prediction. Rotation numbers
for different stimulus strengths in case of strong hyperbolicity and normal isochrons (o = 10 and a = 0).
Stimulation periods are a Ty = 0.0628319 ~ T(/50, b Ty = 0.1570800 =~ T /20

proach diverges from the 2D approach and the analytic one. However, for the range
of € and the two different stimulation periods 7 (panels (a) and (b)) considered in
Fig. 10, the 1D prediction still gives a fairly good approximation. Moreover, unlike
the case where @ = 0.1 and a = 10 (see Fig. 5), the 1D approach predicts a sim-
ilar qualitative behavior as the other two approaches. The results for € = 0.04 in
Fig. 10(a) raise another interesting question since the analytic rotation number p sud-
denly diverges from the 1D and the 2D rotation numbers. This is due to the fact that
the iterates of the analytic map suddenly fail to encircle the critical point of the con-
tinuous system (located inside the limit cycle) while the iterates of the 1D and the 2D
maps still do it. Thus, the rotation number for the analytic case may not give accurate
information.

In conclusion, it seems that for the 2D map to represent a qualitative improvement
with respect to the 1D it is necessary to have the combination of weak hyperbolicity
of the limit cycle and “weak transversality” of isochrons to it. However, the role
of hyperbolicity seems to be much more important, since in the presence of strong
hyperbolicity the use of the 2D approach seems completely unnecessary, but for weak
hyperbolicity the differences between the 1D and the 2D maps are present also when
the isochrons are orthogonal to the limit cycle.

Remark 4.4 Of course, considering a stimulus strength € large enough, both maps
(22) and (23) will not give correct predictions, since they are based on first-order
approximations. In this case, one should consider PRFs of second (or higher) order
to obtain a correct result; see, for instance, [23, 24] for higher-order PRCs. One has
to distinguish between these higher order response functions in terms of the stimulus
strength from the second-order PRCs above mentioned (see [15] for instance) that
relate to the second cycle after the stimulus.

In the next example, we apply the same methodology to a more biologically in-

spired case: a conductance-based model for a point-neuron with two types of ionic
channels.
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Fig. 13 The limit cycle of the 0.8
conductance-based model and

its isochrons. The limit cycle

(red) and equally spaced in 0.75
phase isochrons (blue) for

system (35) and Inpp = 190

0.65

0.6

-35 -30 -25 -20 -15 -10 -5

4.1.3 A Conductance-Based Model

We consider a reduced Hodgkin—Huxley-like system, with sodium and potassium
currents, and only one gating variable:

. 1
V= —C—m(gNamooW)(V — VNa) + gkn(V = VK) + gL (V = Vi) — Iypp), 5)

n=noo(V)—n,
where V represents the membrane potential, in mV, n is a nondimensional gating
variable and the open-state probability functions are
1
I +exp(—(V — Vmax,m)/km) '
1
I +exp(—(V — Vmax,n)/kn).

Moo (V) =

noo(V) =

The parameters of the system are C, = 1 uF/cmz, gNa = 20 mS/ch, VNa =
60 mV, gk = 10 mS/cm?, Vg = —90 mV, g; =8 mS/cm?, v, = —80 mV, Vipax.m =
=20mV, ky, = 15, Vipax.n = —25mV, k, =5.

Here, we will take I pp, = 190 iLA/cm?. In this case, the system has a limit cycle
with period T & 1.3055442, and its characteristic exponent is A &~ —0.6055956. That
is, the limit cycle is weakly hyperbolic, and hence we expect that the 2-dimensional
approach will give qualitatively different results with respect to the 1-dimensional
approach. Figure 13 shows the limit cycle and its isochrons.

In Fig. 14, we show the PRF and the ARF on the limit cycle (o = 0), panels (a)
and (b), and for a specific isochron (6 = 0), panels (c) and (d).

Remark 4.5 We have chosen a value of the parameter I,,p, = 190 for which the system
presents weak attraction to the limit cycle. However, for this value of I,pp, system (35)

is not a model of a spiking neuron, but one with high voltage oscillations. Thus, this
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Fig. 14 Phase and amplitude response functions along isochrons and o -level sets. Phase response function
(PRF) and amplitude response function (ARF) for system (35) and Ipp = 190 on the limit cycle (o = 0),
panels a and b, and for a specific isochron (6 = 0), panels ¢ and d

example is not intended to deal with a realistic setting of spike synchronization, but
to illustrate how to deal with the tools introduced in this paper in the case where one
does not explicitly have the parameterization K.

Remark 4.6 In order to compute the parameterization K and the PRFs we have used
the methods proposed in [8]. The same ideas can be applied to compute the ARFs.
Briefly, the method consists of two steps. First, to compute the value of a given ARF
near the limit cycle, where the numeric approximation of the parameterization K is
valid, expression (16) is used. Second, to compute the value of some ARF far from
the limit cycle, we just integrate the adjoint system (18) backwards in time using an
initial condition for ARF close to the limit cycle.

Again, we have computed the rotation numbers as defined in (25) and (26) varying
the strength of the stimulus € with fixed stimulation periods. We have taken N = 100
and initial conditions 6y = 0.089 and o = 0. The results, for two different stimuli
periods Ty, are shown in Fig. 15. Again, note that although the dynamics begin on
the limit cycle (since op = 0), the behavior of the 1-dimensional approach and the 2-
dimensional approach are quite different. Moreover, for € > 0.4 we find that p;p ~ 0,
while p2p =~ 0.02. This can be interpreted, similarly to the previous example, as an
indicator that the 1D map (23) has a fixed point, while the 2D map does not. Further-
more, this indicates that after 100 iterations of the 2D map (22), the state variables
have turned approximately twice around the fixed point, as one can see from the plots
of the sequences K (8, 0,,) computed using both maps (see Fig. 16).
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Fig. 15 Rotation numbers for different stimulus strengths in the conductance-based model. Rotation num-
bers for different stimulus strengths and fixed stimulus periods for system (35)

Fig. 16 Iterates for a weakly
hyperbolic limit cycle of the
conductance-based model.
Sequences K (6, 0;,) computed
using the 2-dimensional map
(22) and the 1-dimensional map
(23), respectively, for system
(35). The strength of the c
stimulus is € = 0.574604, while
the stimulation period is

Ty, =0.026111 ~ Ty /50

5 Discussion

We have introduced general tools (the PRF and the ARF) to study the advance of both
the phase and the amplitude variables for dynamical systems having a limit cycle
attractor. These tools allow us to study variations of these variables under general
perturbation hypotheses and extend the concept of infinitesimal PRCs which assumes
the validity of the phase-reduction and is only true under strong hyperbolicity of the
limit cycle or under weak perturbations. In fact, the PRFs and ARFs are first-order
approximations of the actual variation of the phase and the amplitude, respectively,
and so they are supposed to work mainly for weak perturbations; however, being an
extension away from the limit cycle makes them more accurate than the PRCs even
under strong perturbations. We thus claim that the phase-reduction has to be used
with caution since assuming it by default may lead to completely wrong predictions
in synchronization problems. We are not dismissing phase-reduction but trying to
show the limits beyond which an extended scenario is required.
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We have presented a computational analysis to understand the contribution of tran-
sient effects in first-order predictions of the phase response, focusing on the impor-
tance of the hyperbolicity of the limit cycle, but also on the relative positions of the
isochrons with respect to the limit cycle.

In the examples studied, subject to pulse-train stimuli, we have compared the pre-
dictions obtained both with the new 2D map defined from the PRF and ARF and
the 1D map defined from the classical PRC. Using rotation numbers, we have shown
differences up to two orders of magnitude in favor of the 2D predictions, especially
when the stimulation frequency is high or the stimulus is too strong. These results
confirm previous numerical experiments with specific oscillators; see [22]. On the
other hand, we have found that both weak hyperbolicity of the limit cycle and “weak
transversality” of isochrons to it are important factors, although the role of hyperbol-
icity seems to be more crucial. In this paper, these achievements have been tested in a
canonical model allowing comparisons with the exact solutions, and other numerical
tests have been applied in a conductance-based model. The technique can be ap-
plied to other neuron models, and not necessarily for planar systems; n-dimensional
systems would only require an additional computational difficulty in computing the
associated (n — 1) ARFs.

We would like to emphasize the importance of having good methods to compute
isochrons (see [8—12]) since they are the cornerstone to study these transient phenom-
ena that we have observed. They can be useful, not only for the problem illustrated
here, but for other purposes like testing how far the experimentally recorded phase
variations are from the theoretically predicted ones. In fact, they are the key con-
cept to be able to predict the exact phase variation since, theoretically, if we know
the parameterization K that gives the isochrons, the problem reduces to solving, at
each step, (x,y) = K(0,0) and (x', y') = K(0', 0’), where (x, y) is the point in the
phase space where the pulse perturbation, ew, is applied and (x', y") = (x, y) + ew.
Indeed, the PRFs and ARFs can be computed knowing only the first order in K;
in principle, then they are valid only for weak perturbations, but easier to compute.
Other refinements could be obtained by computing second order PRFs and ARFs by
using the second-order approximations of the isochrons. Further extensions include
also the possibility of computing response curves for long (in time) stimulus rather
than pulsatile stimuli.
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Appendix: The Vector Field for the A-Curves

We prove here that given an analytic local diffeomorphism K, as in (5), satisfying

(6), the A-curves are the orbits of a vector field Z, satisfying [X, Z] =[Z, X]=0.
This is equivalent to proving that DXZ = DZX.
Taking derivatives with respect to 8 in Eq. (6), we get

1 A
(789 + ?0'8(7)39[( = (DX (@) K)BQK,

and using (14), we get

1 A
<?39 + ?03(,>(Z oK)=(DX 0 K)(ZoK).

By the chain rule,

(DZ o K)<%39 + %080>K = (DX o K)(ZoK),

and again, by the invariance equation (6), we obtain

(DX oK)(ZoK)=(DZoK)(XoK). (36)

as we wanted to prove.
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