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Abstract Mathematical neuroendocrinology is a branch of mathematical neuro-
sciences that is specifically interested in endocrine neurons, which have the uncom-
mon ability of secreting neurohormones into the blood. One of the most striking
features of neuroendocrine networks is their ability to exhibit very slow rhythms of
neurosecretion, on the order of one or several hours. A prototypical instance is that of
the pulsatile secretion pattern of GnRH (gonadotropin releasing hormone), the master
hormone controlling the reproductive function, whose origin remains a puzzle issue
since its discovery in the seventies. In this paper, we investigate the question of GnRH
neuron synchronization on a mesoscopic scale, and study how synchronized events in
calcium dynamics can arise from the average electric activity of individual neurons.
We use as reference seminal experiments performed on embryonic GnRH neurons
from rhesus monkeys, where calcium imaging series were recorded simultaneously
in tens of neurons, and which have clearly shown the occurrence of synchronized
calcium peaks associated with GnRH pulses, superposed on asynchronous, yet oscil-
latory individual background dynamics. We design a network model by coupling 3D
individual dynamics of FitzHugh–Nagumo type. Using phase-plane analysis, we con-
strain the model behavior so that it meets qualitative and quantitative specifications
derived from the experiments, including the precise control of the frequency of the
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synchronization episodes. In particular, we show how the time scales of the model
can be tuned to fit the individual and synchronized time scales of the experiments.
Finally, we illustrate the ability of the model to reproduce additional experimental
observations, such as partial recruitment of cells within the synchronization process
or the occurrence of doublets of synchronization.

Keywords Mathematical neuroendocrinology · GnRH neurons · Calcium
dynamics · Multiple time scale dynamics · Mixed-mode oscillations (MMOs) ·
Network model · Synchronization/desynchronization · Pulsatile rhythm · Frequency
control

List of Abbreviations
GnRH: Gonadotropin Releasing Hormone
IPI: InterPeak Interval
MMOs: Mixed-Mode Oscillations

1 Introduction

GnRH (gonadotropin releasing hormone) plays a prominent role in the control of
reproductive processes in mammals. GnRH is a neurohormone released into the pi-
tuitary portal blood by hypothalamic GnRH neurons in a pulsatile manner. The pul-
satile nature of this release is important for the proper functioning of the reproduc-
tive system. To date, the mechanisms behind the pulsatility are poorly understood
as GnRH neurons present a significant challenge to experimental studies. They are
scarce, sparsely located in the hypothalamus and interspersed with other neuronal
and glial cells.

However, although GnRH neurons are sparsely located in the hypothalamus, they
all have an extracerebral origin in the nasal (olfactory) placode, where they develop
and from where they migrate to the brain during the development of the embryo.
This feature was used in a number of studies in different species (rodents, primates,
sheep) [1, 2]. In particular, Terasawa et al. [3] studied cultures of pre-GnRH neurons
obtained from fetuses of rhesus monkeys. It is an accepted view in the community
working on placode cultures that the neurons develop in the culture in a similar way
as they would in vivo [4]. Terasawa et al. [3, 5] made a series of experiments, measur-
ing GnRH release, calcium levels, and the electric activity in the cultured embryonic
GnRH neurons. Remarkably, as reported in [4], placode GnRH neurons are able to
release GnRH in a pulsatile manner and at frequency very close to that observed in
vivo in adult animals and this process is calcium dependent. Detailed investigations
of calcium dynamics revealed that calcium levels evolved in an oscillatory manner
in each cell, mostly independent from cell to cell, with the exception of periodically
occurring episodes of synchronization. The oscillations in the individual neurons oc-
curred on the scale of approximately 10 min and the synchronization events roughly
with the period of one hour. During the synchronization events the maximal calcium
levels were typically much higher than during the independent oscillations.

Complementary information on electric activity can be retrieved from the work
of [6], as well as from another experimental approach using brain slices from mice
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expressing Green Fluorescent Protein (GFP) specifically in GnRH neurons [7]. These
studies provide evidence of the presence of three modes of oscillation, with the two
slower modes possibly related to the individual and synchronized calcium oscilla-
tions. Together with the findings of [3] this led to the following working hypothesis:
The peaks of the intermediate oscillation of the electric activity coincide with the in-
dividual calcium peaks, whereas the peaks of the slowest oscillation of the electric
activity coincide with the synchronized calcium peaks. Finally, since the excitation-
secretion coupling mediated by calcium is well documented in other types of cells
(see the discussion in [4]), we suggest the following causal sequence: increased elec-
tric activity −→ synchronized calcium peaks −→ pulse of GnRH release.

In this article, we propose a phenomenological model that can produce patterns
of oscillations consistent with the experimental results described above. On a more
generic ground, our model provides a mathematical mechanism of the genesis of
synchronized events superimposed on faster, individual oscillations. We introduce a
three-dimensional model based on the FitzHugh–Nagumo system that reproduces the
average electric activity and the intracellular calcium oscillations in individual neu-
rons. This model has a mathematical structure that makes it possible to explain, study
and control the dynamics by means of phase plane analysis. Moreover, the model
can generate calcium patterns fulfilling qualitative and quantitative specifications:
peak heights, baseline level, InterPeak Interval (IPI). We build the network model by
introducing a network level (global) variable that mediates periodic fluctuation of ex-
citability of the neurons, whose increase leads to episodes of electric synchronization
and to calcium peaks. We show by a combination of analysis and simulations that
our model can, in a robust manner, reproduce the alternation of asynchronous phases,
episodes of calcium peak synchronization and postexcitatory suppression. We prove,
in particular, how the time scales can be adjusted so that they agree with the individ-
ual and synchronized time scales of the experiment reported on in [3]. We also show
the ability of the model to reproduce additional experimental observations, such as
partial recruitment of the cells within the synchronization process and the occurrence
of doublets of synchronization.

Synchronization of coupled oscillators has been widely studied, and the ideas de-
veloped in our paper have their origin in some of these earlier works. Many studies
have focused on the setting of weakly coupled oscillators, in physics; see [8] for a
review, in mathematics [9, 10], and in neuroscience [11]. In its simplest form, the
context of such studies have been networks of coupled phase oscillators [12, 13].
More general models can be reduced to coupled phase oscillators; in this reduction,
the asymptotic phase of the individual oscillators, or equivalently, the foliation by
isochrones, is used to derive the so-called Phase Resetting Curve, which gives rise to
the coupling function [10, 11]. Synchronization depends on the structure of the cou-
pling; some of the frequently considered coupling architectures are “nearest neigh-
bor” [10], “all-to-all” [13], and global coupling, that is coupling that depends on a
global variable, e.g., the average of the phases. Examples of systems with global cou-
pling are coupled arrays of Josephson junctions [14] and a model of the Belousov–
Zhabotinsky reaction with global feedback [15].

More recently, some ideas have emerged on how to understand synchronization in
the context of slow/fast systems using the limit of strong, rather than weak coupling;
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see, for example, [16]. Our model is inspired by the work of [16], who considered the
so-called PING model of gamma oscillations, consisting of a population of excitatory
cells and a population of interneurons, with the interneurons delivering inhibition
simultaneously to all excitatory cells, thus creating a synchronizing effect. We have
adapted this idea to the context of our model, creating a global variable which would
have a similar, strong effect on all the members of the population, giving rise to a
synchronous calcium peak.

This article is organized as follows. In Sect. 2, we review the results of [3] and [5]
in more detail, preparing the ground for the construction, analysis, and simulation of
our model. In Sect. 3, we introduce and analyze the individual cell model. We addi-
tionally show how to reproduce the variability in the IPI and peak height by varying
two specific parameters. In Sect. 4, we consider the coupled dynamics of a population
of GnRH neurons, introduce the network model, and explain the dynamical mecha-
nisms that underlie the emergence of the desired oscillation patterns. In particular,
we show how to control the frequency of the synchronization episodes, and obtain a
rigorous estimate for the simplest case. In Sect. 5, we present numerical simulations
that reproduce the periodic sequence of synchronization, postexcitatory suppression
and desynchronization phases. We show how to mimic partial recruitment of the cells
in the synchronization episodes and how to reproduce synchronization doublets.

2 Intracellular Calcium Patterns in Embryonic GnRH Neurons

In this section, drawing mostly on the results of [3] and [5], we review the main
qualitative and quantitative properties of intracellular calcium patterns in cultured
embryonic GnRH cells.

Calcium data in [3] and [5] were obtained by means of calcium imaging: cells
were loaded with fluorochrome (fura 2) and exposed to light excitation at specific
UV wavelengths. As the dye’s fluorescence properties are altered when it is bound to
calcium, its relative light emission in response to different wavelengths can be used
to estimate intracellular calcium concentration [17]. The data were acquired every 5
to 10 seconds during up to 170 minute periods.

Figure 1 in [3] (http://www.jneurosci.org/content/19/14/5898/F1.expansion.html)
shows time traces of intracellular calcium concentration in 10 GnRH cells. The most
common patterns of variation of calcium in one cell are characterized by the follow-
ing qualitative features. Each pattern consists of successive peaks characterized by
a fast increase followed by a slower decrease to a baseline. Before the subsequent
peak, a quiescent phase of a few minutes occurs, as either a jitter near the constant
baseline calcium level or a slight and slow increase. The frequency of the oscillations
in a single cell is often quite close to constant while considerable variability exists
between different cells: typical patterns display InterPeak Interval (IPI) ranging be-
tween 7 and 20 minutes with an average of 8.2 minutes in [3] and 13.9 minutes in [5].
In general, the peak heights range from approximately 200 to approximately 500 nM,
and the baseline ranges from 50 to 200 nM. There is a large variability in the duration
of the quiescent phase: it ranges from 0 minutes (no quiescent phase) to 15 minutes.
Typically, the quiescent phase duration is approximately 2/3 of the IPI.

http://www.jneurosci.org/content/19/14/5898/F1.expansion.html
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Figure 5 in [3] (http://www.jneurosci.org/content/19/14/5898/F5.expansion.html)
shows, on the same graph, the pattern of intracellular calcium in 50 embryonic GnRH
cells during 152 minutes as well as zooms of this graph over three different time
intervals of 18 minute length. Each calcium pattern fits the type described above and
displayed in Fig. 1 in [3]. Most of the time, the calcium patterns are independent
among cells (unsynchronized, with different IPI and peak levels).

The most striking result of [3], sometimes referred to as the Terasawa puzzle, is
the existence of isolated episodes of synchronization: Almost all cells begin a peak
at approximately the same time and for each cell recruited in the synchronization
the height of its calcium peaks during a synchronized peak is higher than the peak
heights attained outside of the synchronization periods (see Fig. 5 in [3], where three
synchronized peaks are shown). These episodes of synchronization are followed by
a “postexcitatory suppression” of a few minutes during which calcium levels are at
the baseline in all cells. Moreover, the episodes of synchronization occur at regular
intervals of nearly 60 minutes (between 59 and 61 minutes). There is also a gradual
decrease in the signal amplitude (due to photobleaching) inherent in the experimental
protocol and that we do not intend to capture with our modeling study.

3 A Model of Intracellular Calcium Dynamics in Single GnRH Neuron

We use the excitability property of the FitzHugh–Nagumo dynamics to generate pe-
riodic oscillations of Ca that fit the qualitative pattern obtained in [3] and described
in the preceding section. Moreover, the FitzHugh–Nagumo dynamics is well under-
stood, which allows us to control the quantitative properties of the oscillatory events.
We consider the following model for one neuron:

x′ = τ
(−y + 4x − x3 − φfall(Ca)

)
, (1a)

y′ = τεk(x + a1y + a2), (1b)

Ca′ = τε

(
φrise(x) − Ca−Cabas

τCa

)
, (1c)

with

φfall(Ca) = μCa

Ca+Ca0
,

φrise(x) = λ

1+ exp(−ρCa(x − xon))
.

(2)

Parameter ε > 0 is assumed to be small. On the other hand, k > 0 is of order 1
compared to ε and τ allows us to rescale the time variable to obtain the physical time
scale of the experiments in minutes. Hence, system (1a)–(1c) is a slow–fast system
with one fast variable x and two slow variables y and Ca. Variable x represents the
electrical activity of the cell and y is a recovery variable as in the classical FitzHugh–
Nagumo model [18]. The third variable Ca represents the intracellular calcium level.
Its dynamics is mostly driven by x through the increasing sigmoidal function φrise.

http://www.jneurosci.org/content/19/14/5898/F5.expansion.html
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When φrise is inactive (φrise(x) close to 0), Ca decreases to a quasi steady state close
to Cabas which represents the baseline of the intracellular calcium level. The speed
of this motion is determined by the τε/τCa ratio (exponential decay rate). Ca acts as
a feedback onto the x dynamics through the increasing function φfall(Ca) bounded
by μ. The effect of this coupling is to reduce the electric activity of the neuronal
population in response to the rise of the calcium concentration. An analogous term is
used in models of single neurons to represent the hyperpolarization of the cell mem-
brane stimulated by calcium; see [19] for an example. We explain in the following
how, in a certain range of parameter values, the cell may stay in the “hyperpolarized
regime” ((x, y) to the left of the lower knee of the fast nullcline) while the values of
the calcium concentration remain low.

The values of parameter ai are chosen according to the well-known properties of
the FitzHugh–Nagumo oscillators. Hence, we take a classic cubic dynamics for the
x dynamics. By default, we set k = 1 and we assume a1 to be negative and small, so
that the y nullcline is steep. In the following, we set a1 = −0.1, which ensures that
the x and y nullclines intersect only at one point. Parameters μ and Ca0 are positive,
ensuring that φfall(Ca) is well-defined and positive for all positive values of Ca.

3.1 Qualitative Study of the Single GnRH Neuron Model

Depending on the value of Ca considered as a parameter, the slow–fast FitzHugh–
Nagumo oscillator (1a)–(1b) can be in an oscillatory, excitable or steady regime:

1. Oscillatory regime: the y nullcline intersects the cubic x nullcline on its middle
branch (between the two knees). This singular point is unstable and the system
displays a globally attractive limit cycle of relaxation type.

2. Excitable regime: the singular point lies on either the left or the right branch close
to the knee. The excitability of the system is then characterized by the following
property. Let us consider the stable singular point lying on the left branch of the
cubic near the left knee as initial condition. Then a small perturbation of this initial
condition introduced by increasing x and/or decreasing y implies a large excursion
of the orbit near the right branch of the cubic toward the right knee and back to
the vicinity of the left branch before asymptotically reaching the singular point.

3. Steady regime: the singular point lies on either the left or the right branch far away
from the knees: the singular point is then stable and attracts any orbit of (1a)–(1b).
The perturbation from the steady state has to be large enough to bring about a
large excursion in the phase portrait.

Let us recall that the transition between the excitable state and the oscillatory regime
that occurs in a very narrow interval of Ca values is the well-known canard phe-
nomenon, leading to the existence of small attractive limit cycle following the middle
branch of the cubic for a while [20]. When considering the 3D model, the periodic
exploration of the regions corresponding to oscillatory regime and excitable regime
of subsystem (1a)–(1b) may produce mixed-mode oscillations (MMOs). We will use
this feature to reproduce the quiescent phase in the generated Ca pattern.

MMOs are a class of complex oscillations occurring in excitable systems and in
particular in models of action potential generation in neurons, see [21] for a review. In
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this work, we will take advantage of the fact that MMO dynamics can reproduce the
features of the individual calcium oscillations and that the passage between different
types of MMOs can be easily controlled, especially in systems where MMOs arise
via the mechanism of slow passage through a canard explosion [22, 23].

System (1a)–(1c) is a slow–fast system with one fast and two slow variables. To
describe the dynamical mechanisms underlying the behavior of the system, we intro-
duce the following notations. The critical manifold S0 (or x nullcline), given by

y = 4x − x3 − φfall(Ca), (3)

is an S-shaped surface embedding two fold lines F −, contained in the half-space
x < 0, and F +, contained in the half-space x > 0. The fold lines split S0 into three
parts (see Fig. 1): the left and right sheets contained entirely in the half-spaces x < 0
and x > 0, respectively, and a middle sheet. The y nullcline, defined by

a0x + a1y + a2 = 0, (4)

is a plane that crosses F − for a given value Caf of Ca. The Ca nullcline is an attrac-
tive surface for the Ca dynamics and is defined by

Ca= τCaφrise(x) +Cabas. (5)

The right-hand side of (5) is, like φrise, a smooth sigmoidal function of x.
We now describe the typical interactions between the state variables, starting from

a low level of Ca (i.e., close to Cabas) and a pair (x, y) such that (x, y,Ca) lies just
below F −. Under the influence of the fast dynamics, the current point (x, y,Ca)
quickly reaches the right sheet of S0, so that x and τCaφrise(x) quickly increase.
Consequently, Ca increases while the current point moves up along the right sheet of
S0 toward F +. Then, once the current point has arrived above F +, it quickly comes
back near the left sheet of S0 under the influence of the fast dynamics; variable x

quickly decreases as well as the term τCaφrise(x) (which becomes almost zero). The
current point, driven by the slow dynamics, moves down along the left sheet of S0 and
Ca decreases eventually down to Cabas. Then several situations may occur depending
mainly on the value of μ and related to the regime of system (1a)–(1b):

A: For small values of μ, when the current point reaches the vicinity of F −, system
(1a)–(1b) is in the oscillatory regime. As a consequence, the current point directly
and quickly reaches the right sheet of S0, and the behavior described above re-
peats immediately. An example of such an orbit is represented in panel (a) of
Fig. 1.

B: For an interval of values of μ, system (1a)–(1b) is in the excitable regime when
Ca approaches Cabas. Then (x, y) reaches the vicinity of the singular point of
(1a)–(1b) close to the left knee. Ca keeps decreasing until the current point is
very close to the attractive surface given by (5). Consequently, system (1a)–(1b)
passes into the oscillatory regime. During this passage, the current point makes
small oscillations around the fold F − before it undergoes the fast transition to the
right sheet and the whole motion repeats. Panel (b) of Fig. 1 represents such an
orbit and panel (d) displays a magnified view of the small oscillations.
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Fig. 1 Different types of system (1a)–(1c) orbits according to the value of μ. In each panel, the cyan
surface represents the x nullcline S0 whose folds F ± are represented by red lines. a Attractive periodic
orbit without small oscillations near the fold F − . This type of orbit is obtained for small values of μ.
b Attractive MMO limit cycle with small oscillations near the fold F −. This type of orbit is obtained for
an interval of μ values. c Orbit that, after a transient excursion in the phase portrait, tends to the attractive
singular point of system (1a)–(1c) lying on the left sheet of S0. This type of orbit is obtained for large
value of μ. d is the zoom of the purple box of b and shows a magnified view of the small oscillations of
the orbit

C: For large values of μ, system (1a)–(1b) remains permanently in the steady regime.
Hence, after an excursion in the phase space, the current point reaches the attrac-
tive singular point and remains in its vicinity. Consequently, the corresponding
Ca trace has one peak and remains close to the baseline afterward. Panel (c) of
Fig. 1 represents such an orbit.

It is worth noticing that the interval of μ values corresponding to the second case
depends on the other parameters, particularly on the time scale parameters ε and k.
To fix the idea, we consider a particular set of parameter values given in Table 1.
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Table 1 Parameter values of
the single cell model (1a)–(1c) a0 = 1,

ε = 0.06,
τCa = 2,

a1 = −0.1,
μ = 2.4,
λ = 175,

a2 = 0.8,
Ca0 = 500,
ρCa = 4.5,

k = 1,
Cabas = 100,
xon = −0.45,

τ = 37.

With these values, cases A, B, and C correspond to μ < 2.26, μ ∈ [2.26,2.45] and
μ > 2.45, respectively.

Figure 2 represents the x, y, and Ca patterns generated by system (1a)–(1c) with
the set of parameter values given by Table 1 except for μ set to 2, 2.4, and 3 in
panel (a), (b), and (c), respectively. The generated Ca patterns reproduce different
qualitative types of calcium patterns obtained experimentally in individual cells. In
panels (a) and (b), the pattern is pulsatile but in panel (c), it is composed of a single
isolated peak. In panel (a), there is no quiescent phase between successive peaks. In
the case of panel (b), system (1a)–(1c) admits an attractive MMO limit cycle and the
small oscillations reproduce the quiescent phase of the calcium pattern at the baseline
level between two successive peaks.

Fig. 2 Patterns of variables x, y, and Ca generated by system (1a)–(1c) with different values of μ. The
orbits correspond to types A, B and C described in the text and illustrated in Fig. 1. The other parameter
values were chosen according to Table 1. a (μ = 2): system (1a)–(1c) admits an attractive limit cycle of
relaxation type. The increase in the calcium level is triggered by the activation of x, the decrease by its
deactivation. The Ca pattern is oscillatory and consists of successive peaks without any quiescent phase
between two successive peaks. b (μ = 2.4): system (1a)–(1c) admits an attractive MMO limit cycle. The
quiescent phase after each Ca peak is due to small oscillations of the current point near the fold F − , which
results in a slight and slow increase in Ca before the subsequent peak. The Ca pattern fulfills the average
quantitative specifications provided by the experimental data. c (μ = 3): starting from an initial condition
just below the fold F −, the Ca pattern consists of a unique peak. Afterward, the current point (x, y,Ca)
tends asymptotically to a stable steady state
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Fig. 3 Effects of changes in the value of μ and k on the IPI and peak heights of Ca patterns generated
by system (1a)–(1c). The values of μ and k corresponding to each colored pattern are given on the right
of each panel. In a, the red signal is obtained with parameter values given in Table 1, the IPI equals 10
minutes and the height of the peaks is 342 nM (a dashed red line indicates this value in b, c, and d for the
sake of comparison). b illustrates the effect of a change in μ on the IPIs: the blue (resp. green) pattern is
obtained with a smaller (resp. larger) value of μ than the red pattern and has a smaller (resp. larger) IPI (7
minutes, resp. 14 minutes). c illustrates the effect of a change in k on the peak heights: an increase (resp.
decrease) in the value of k, as in the blue (resp. green) pattern, implies a decrease (resp. increase) in both
the height of the peaks (320 nM, resp. 365 nM) and the IPI (around 4.5 minutes, resp. 17 minutes). In d,
we show how to hold the IPI constant (10 minutes) while obtaining a variability in the peak heights by
changing k first (in the same way as in c) and then adjusting the value of μ

In the following, we use Table 1 as the reference set of parameter values because
the generated Ca pattern (see panel (a) of Fig. 3) has the same qualitative properties
as most of the patterns obtained experimentally and moreover fulfills the average
quantitative specifications: the quiescence phase is twice as long as the peak duration,
the peak height is around 350 nM and the IPI equals 10 minutes.
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3.2 Variability in Quantitative Properties of Calcium Patterns

In this section, we show how to mimic the variability of the quantitative features of
calcium patterns between different cells by choosing different values for parameters
of special importance: μ and k. From the above explanation, one can already under-
stand that the precise value of μ prescribes the number of small oscillations of the
current point near the left fold F − and, consequently, the duration of the quiescent
phase. Since variations in μ do not impact much the duration of the peaks, this pa-
rameter can be considered to control the IPI. Panel (b) of Fig. 3 shows the results of
a change in μ: an increase (resp. decrease) in μ value implies an increase (resp. de-
crease) in the IPI as shown by the green (resp. blue) pattern compared to the red one
in panel (a). The range of variation in μ is limited by the need to produce a quiescent
phase between two successive peaks in the Ca pattern.

Parameter k essentially tunes the time scale separation between y and Ca (x being
much faster). Hence, an increase in k implies a shorter time for subsystem (1a)–
(1b) to complete a relaxation oscillation and, consequently, a shorter time for Ca to
increase and decrease back to the baseline. One can thus increase or decrease the
height of the Ca peak by tuning the value of parameter k. Of course, a change in
k also implies a change in the duration of the quiescence phase and, consequently,
the IPI. Panel (c) of Fig. 3 shows that an increase (resp. decrease) in the value of k

implies a decrease (resp. increase) in the height of the peaks.
The peak height and the IPI can also be chosen independently by first tuning the

value of k and afterward the value of μ. Panel (d) of Fig. 3 shows the Ca patterns
obtained with the same set of k values as in panel (c) except that the values of μ

are chosen to balance the effect of the changes in k and maintain the 10 minutes IPI
(μ = 2.448 for the blue signal, μ = 2.238 for the green one). Yet the variability in
the peak heights persists.

The information on the dependence of the peak heights and the IPIs on the param-
eters will be used to demonstrate the ability of our network model to reproduce the
experimental results. Although we will not use this in the sequel, we would like to
point out that other quantitative features could be controlled by tuning other parame-
ters of system (1a)–(1c).

4 Network Model

In this section, we consider the following network model of a population of GnRH
neurons:

x′
j = τ

(−yj + 4xj − x3
j − φfall(Caj )

)
, (6a)

y′
j = τεkj

(
xj + a1yj + a2 − ηjφsyn(σ )

)
, (6b)

Ca′
j = τε

(
φrise(xj ) − Caj −Cabas

τCa

)
, (6c)

σ ′ = τ

(
δεσ − γ (σ − σ0)φσ

(
1

N

N∑
i=1

Cai −Cadesyn

))
, (6d)
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for j = 1, . . . ,N , with N the number of neurons and

φsyn(σ ) = 1

1+ exp(−ρsyn(σ − σon))
,

φσ (u) = 1

1+ exp(−ρσ u)
.

(7)

In system (6a)–(6d), function φσ is applied to

u = 1

N

N∑
i=1

Cai −Cadesyn,

which is the difference between the mean calcium level and the desynchronization
threshold Cadesyn. For each j = 1, . . . ,N , subsystem (6a)–(6c) (of the same type as
system (1a)–(1c)) represents the activity of the j th cell. The values of parameters kj

are chosen randomly using a uniform distribution in the interval [0.8,1.2] to repro-
duce, as explained in Sect. 3, the variability in the IPI and height of the peaks from
one cell to another. The values of the parameters that have been already introduced in
Sect. 3 are given in Table 1. Variable σ represents a global state of the network and
acts on each cell through the term ηjφsyn(σ ). Its dynamics consists of a very slow
linear part (ε and δ are assumed to be small) and a term that depends on the level of
synchronization of the network and acts as a reset mechanism when the network is
sufficiently synchronized.

Note that the individual cells (xj , yj ,Caj ) are coupled only through variable σ

which depends on the mean calcium concentration. This coupling is different from
the one used in most synchronization studies and creates a link between calcium
synchronization and higher calcium peaks. Similar global coupling arises in coupled
arrays of Josephson junctions [14] as well as in a model of the Belusov–Zhabotinsky
reaction with global feedback [15]. However, the specific feature of our coupling is
that it is active only during very short periods when the mean calcium level is high.

Parameter σ0 plays the role of a reset value and is chosen smaller than σon. Func-
tions φsyn and φσ are increasing sigmoidal functions with inflection points at σon
and 0, respectively, and are both bounded above by 1. Since they play the role of
activation functions, parameters ρsyn and φσ are assumed to be sufficiently large. In
the limit ρsyn → +∞ (resp. ρσ → +∞), φsyn (resp. φσ ) converges pointwise to the
following Heaviside function with activation point σon (resp. 0):

φ∞
syn(σ ) = H(σ − σon) =

{
0 if σ < σon,

1 if σ ≥ σon
(8)

(
resp. φ∞

σ (u) = H(u) =
{
0 if u < 0,
1 if u ≥ 0

)
. (9)

4.1 Qualitative Study of the Network Model

We now explain how the model can reproduce the alternation of asynchronous phases
and episodes of synchronization in the case when φsyn and φσ behave as the Heavi-
side functions (8) and (9), respectively. We refer to Fig. 4 for a visual help on the σ
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Fig. 4 Transition of the j th cell of the network from independent to synchronized regime. In each panel,
the blue parts correspond to the unsynchronized regime, σ < σon and φsyn(σ ) � 0, and the red parts to
the synchronized regime, σ > σon and φsyn(σ ) � 1. a and b represent the projection of the orbit onto
the plane (xj , yj ) for σ < σon and σ > σon, respectively, and the position of the xj and yj nullclines.
The xj nullcline depends on Caj : in each panel, the two cubic curves represent the xj nullcline for the
minimal (lower curve) and maximal (upper curve) value taken by Caj during the corresponding regime.
c to f represent the generated xj , Caj , mean calcium (among all cells) and σ patterns. As long as σ < σon,
each cell generates a Caj pattern with it owns rhythm: the cells are asynchronous and the mean calcium
level remains low (blue parts). When σ exceeds σ0 (red parts), φsyn(σ ) is activated and the cells for which
ηi is large enough enter the steady regime (b). Hence, they produce, all almost at the same time, a higher
calcium peak than in the asynchronous period of the oscillation. The mean calcium level exceeds Cadesyn,
which resets σ to a value close to σ0

driven transition of a particular cell of the network from the independent regime to
the synchronized regime. Let us consider an initial value of σ just above σ0. While
σ < σon, φsyn(σ ) is almost zero and each cell (6a)–(6c) (for j = 1, . . . ,N ) acts as de-
scribed in Sect. 3. Since the values of parameters kj are different, each cell generates
a Caj pattern with its own IPI. As a consequence, the calcium peaks are asynchronous
and, as time evolves, the mean calcium level among cells, given by 1

N

∑N
i=1 Cai , re-

mains low. As long as the mean calcium level is smaller than Cadesyn, the second term
of the σ dynamics is negligible. Then, since δ is assumed to be small, σ increases
very slowly. This regime corresponds to the orbit in blue shown in panel (a) of Fig. 4
and the blue parts of the time series in panels (c) to (f).

Once the mean calcium level exceeds the threshold value σon, φsyn(σ ) activates.
Let us consider a particular cell, i.e., system (6a)–(6c) for a particular j . When
φsyn(σ ) is activated, the yj nullcline quickly moves to the right and, provided that
ηj is large enough, ends up intersecting the xj nullcline on its right branch as shown
on panel (b) of Fig. 4. Hence, as long as φsyn(σ ) is activated, the cell remains in a
steady regime. The current point (xj , yj ) reaches the vicinity of a singular point on
the right branch and remains stationary. Therefore, the corresponding calcium level is
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higher than usual. Provided that sufficiently many cells are recruited in this process,
the mean level quickly becomes higher than Cadesyn. This corresponds to the red parts
of the curves in Fig. 4. Then the reset term of the σ dynamics activates, σ quickly
decreases, crossing back the threshold value σon, to a value near σ0. Consequently,
φsyn(σ ) is deactivated, and the whole process starts again.

It is worth noticing that all cells recruited in the event (i.e., those corresponding
to a large enough value of ηj ) were synchronized by the global variable to produce
a higher calcium peak than usual. Moreover, they come back to their own pulsatile
regime approximately at the same time, starting by a quiescence phase. Hence, all
individual calcium levels are at the baseline for a while, before individual peaks rise
again unsynchronized, which corresponds to a postexcitatory suppression.

4.2 Frequency of Synchronization Episodes

In Sect. 3, we have shown how to specify the parameters of individual cells to obtain
the required time traces. In this section, we show how to control the network level
parameters σ0, σon and δ to obtain global synchronization with a specified frequency.
In Proposition 1, we prove that the evolution of σ depends on the ratio σon/σ0 rather
than on each of these parameters independently. Proposition 2 gives a formula for the
dependence of the frequency of the synchronized peaks on δ and σon/σ0.

Proposition 1 For any given α > 0, the outputs Caj of system (6a)–(6d) are invariant
under the change of parameter values from (σ0, σon, ρsyn) to (ασ0, ασon,

ρsyn
α

).

Proof Changing the parameters from (σ0, σon, ρsyn) to (ασ0, ασon,
ρsyn
α

) in system
(6a)–(6d) yields

x′
j = τ

(−yj + 4xj − x3
j − φfall(Caj )

)
, (10a)

y′
j = τεkj

(
xj + a1yj + a2 − ηjφsyn(σ )

)
, (10b)

Ca′
j = τε

(
φrise(xj ) − Caj −Cabas

τCa

)
, (10c)

σ ′ = τ

(
δεσ − γ (σ − ασ0)φσ

(
1

N

N∑
i=1

Cai −Cadesyn

))
, (10d)

where the new function φsyn is given by

φsyn(σ ) = 1

1+ exp(−(ρsyn/α)(σ − ασon))
. (11)

Changing σ to ασ , and using the relation

φsyn(ασ) = φsyn(σ ) = 1

1+ exp(−ρsyn(σ − σon))
, (12)

one obtains precisely system (6a)–(6d) with former parameters (σ0, σon, ρsyn). �
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Remark 1 As explained at the beginning of the section, the value of ρsyn is chosen
large enough so that the activation of φsyn is almost immediate. It is worth noticing
that a change in this value, provided that it remains large (typically greater than 10),
does not affect the qualitative features of the model outputs (periodic episodes of syn-
chronization) and has a limited impact on the period between two successive episodes
of synchronization. Proposition 1 shows that, for ρsyn large enough and a fixed value
of δ, the period of the synchronization episodes depends mainly on the ratio σon/σ0.
On the other hand, the value of these parameters can be chosen arbitrarily (provided
that σ0 < σon) and the synchronization period can be adjusted by choosing the value
of δ as proved in Proposition 2.

Proposition 2 In the case ρσ = ∞, for γ large enough relative to ε and δ, the period
between two successive episodes of synchronization in system (6a)–(6d) is approxi-
mated by

Tsyn = 1

τεδ
ln

σon

σ0
. (13)

Remark 2 If the values of all the parameters of system (6a)–(6d), except δ, are fixed,
we can adjust the synchronization period in the Caj pattern to any value Tsyn > 0 by
choosing

δ = 1

τεTsyn
ln

σon

σ0

Proof of Proposition 2 As explained above, each episode of synchronization results
in a decrease of σ , under the influence of the calcium dependent part of its dynamics.
For a value of γ large compared to ε and δ, the σ dynamics, in the period when φσ

is active, is much faster than the Caj dynamics. Since ρσ = ∞, σ decreases quickly
down to a value very close to the singular point σ of its dynamics defined by

δεσ − γ (σ − σ0) = 0

i.e.,

σ = γ σ0

γ − δε
= σ0 + O

(
εδ

γ

)
.

Hence, the time Tsyn between two successive synchronization episodes is approxi-
mately given by the time needed for σ to increase from σ0 up to σon. Let us recall
that the cells are asynchronous during this phase and

φ∞
σ

(
1

N

N∑
i=1

Cai −Cadesyn

)
= 0.

It follows that, for σ < σon, the σ dynamics is given by its linear part: σ ′ = δεσ . By
direct integration, one obtains

σ0 exp(τεδTsyn) = σon ⇔ Tsyn = 1

τεδ
ln

σon

σ0
. (14)

�
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Table 2 Parameter values of the network model (6a)–(6d) for generating full synchronization episodes

δ = 0.05,
ρsyn = 5,

γ = 20,
ρσ = 30,

ηj = 3,
σon = 60,

Cadesyn = 350,
σ0 = 0.1.

5 Three Types of Synchronization Episodes

In this section, we first show the ability of the model described by system (6a)–(6d)
to reproduce sequences of synchronization events separated by asynchronous oscil-
lations of the individual cells. We apply the results of Propositions 1 and 2 to control
the periods and patterns of both the individual oscillations and the synchronized cal-
cium peaks. Subsequently, we consider the question of introducing heterogeneity in
the values of parameters ηj , since they modulate the influence of the global variable
σ on the j th cell. This heterogeneity allows us to account for the additional feature
of partial recruitment. We also show that parameters ηj can be selected so that the
desynchronization mechanism is weaker, which may lead to doublets of synchroniza-
tion. In Sect. 5.1, we discuss the case of full synchronization with no doublets, which
corresponds to equal, sufficiently large values of ηj . In Sect. 5.2, to obtain partial syn-
chronization, we introduce unequal values of ηj including ones that are sufficiently
small, so that the corresponding cells are not recruited by the synchronization mech-
anism. In Sect. 5.3, in order to obtain doublets of synchronization, we choose the
values of ηj so that the xj and yj nullclines intersect near the upper fold of the xj

nullcline. In this case, we choose in addition a relatively small value of parameter γ

to impose a slow decrease of the global variable σ .

5.1 Full Synchronization of Intracellular Calcium Peaks in a Network of GnRH
Cells

In Table 2, we introduce the values of the network level parameters for system (6a)–
(6d). The value δ = 0.05 is obtained from equation (13) using Tsyn = 60 min and
the parameter values of Table 2. Moreover, for now, the same value is used for all
parameters ηj , so that the effect of σ on each cell is the same. The value of Cadesyn
is chosen just above the mean calcium peak height of individual Caj pattern (i.e.,
the one generated by the three-dimensional system (1a)–(1c) with parameter values
in Table 1). This ensures that random synchronization between few cells will not
interrupt the slow increase of σ as the mean calcium level among all cells will not
exceed Cadesyn. This happens only if a sufficient number of cells generate at the same
time a greater calcium peak than usual.

Panel (a) of Fig. 5 displays in the same graph the Caj patterns generated by sys-
tem (6a)–(6d) with N = 50 along a 180 minute interval. Outside the synchronization
episodes, the oscillations are asynchronous, with each cell producing calcium peaks
at its own frequency. Synchronization episodes take place every 61 minutes (at minute
17, 78, and 139). Panel (b) is a magnified view of the Caj patterns during the unsyn-
chronized phase (over a 15 minute interval). Note that, due to the variability in the kj

values, the heights of the calcium peaks and the IPIs differ from one cell to another.
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Fig. 5 Patterns of calcium oscillations in a network of 50 GnRH neurons. Ten different colors have been
used; each color is used to represent the activity of 5 individual cells. a represents the 50 individual Caj
patterns along a 180 minute period. Note that synchronization occurred at minute 17, 78, and 139, which
gives 61 minute intervals between synchronizations. The height of the synchronized peaks is larger than
the height of normal peaks, and the postexcitatory suppressions are seen right after each synchronization
episode. b displays a magnified view of the asynchronous phase occurring between successive episodes
of synchronization. The Caj patterns display variability in IPI and height of the peaks between cells.
Depending on the phases of each cell when the synchronization is triggered, the calcium peaks may be
more or less tightly synchronized as emphasized in c and d

Panels (c) and (d) show magnified views of two synchronization episodes. All cells
are recruited in both episodes, resulting in higher calcium peaks than usual for all
cells followed by complete postexcitatory suppression.

Note that the calcium peaks can be more or less tightly synchronized from one syn-
chronization episode to another along the same trajectory of system (6a)–(6d). The
extent of tightness can be assessed, following [4], as the length of the time interval
with end points given by the time instances of the earliest and latest peak correspond-
ing to a given synchronization event. In the synchronization episodes displayed in
panels (c) and (d), this length equals 37 and 13 seconds, respectively. The variability
in the tightness between different synchronization episodes is related to the maximum
of the phase differences between each couple of oscillators (6a)–(6c) when the syn-
chronization is triggered. Moreover, the time needed by each Caj to decrease back to
the quiescent phase also depends on the relative positions of the xj and yj nullclines
when φsyn(σ ) is activated. These positions are mainly characterized by the values of
parameters ηj . Hence, the tightness of synchronization episodes is also related to the
sensitivity of each cell to the synchronization mechanism. Since the time scale differ-
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Fig. 6 Patterns of calcium oscillations in the 50 GnRH cells of a network with various sensitivity to the
synchronization process. Ten different colors have been used; each color is used to represent the activity
of 5 individual cells. In a, the Caj patterns in all cells are shown for a period of 100 minutes. Only a
part of the cells participates in the synchronization episodes at t � 17 minutes and t � 76 minutes. The
three other panels display magnified views of the second synchronization episodes by assembling the Caj
patterns in cells, which are completely recruited in this event (b), recruited with no significant increase in
the peak level (c) or not recruited at all (d)

ences between cells and the sensitivity to the synchronization mechanism interact in
an intricate way, the precise study of the tightness of synchronization is a challenging
problem.

5.2 Partial Recruitment

As mentioned in the preceding section, parameter ηj tunes the impact of variable
σ upon the corresponding 3D system (6a)–(6c). Hence, it represents the sensitivity
of the cell to the impact of the network state. One can mimic the variability in this
sensitivity among cells by choosing different values of ηj .

Panel (a) of Fig. 6 shows the Caj patterns generated by system (6a)–(6d) with
parameter values given by Tables 1 and 2, with the exception of ηj whose values
have been chosen randomly in [0,3]. Only 20 cells with sufficiently large value of ηj

are completely recruited in the synchronization episodes and generate calcium peaks
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Table 3 Parameter values of the network model (6a)–(6d) for generating synchronization as doublets

δ = 0.05,
ρsyn = 5,

γ = 0.3,
ρσ = 30,

ηj = 1.12,
σon = 60,

Cadesyn = 380,
σ0 = 0.1.

significantly higher than usual: their Caj patterns are assembled in panel (b). For 18
other cells (panel (c)), the Caj peaks are not significantly higher than usual, even if
they are synchronized with those in panel (b). These cells corresponds to intermediate
values of ηj . Moreover, in these Caj patterns, the last IPI before the synchronization
episode is much shorter than usual, which indicates that it does not result from a
random coincidence but the cells actually undergo the effect of the synchronization
process. Finally, the Caj patterns of the 12 remaining cells with low values of ηj

(panel (d)) are not recruited by the synchronization mechanism: their peak heights
are unchanged, their IPI remains constant during the synchronization episode and the
calcium level can even be at the baseline.

5.3 Doublets

As explained in Sect. 4, the reset mechanism of σ is introduced through a fast part
of the dynamics activated by the synchronization of the calcium peaks. The strength
of this mechanism is controlled by the value of parameter γ and, in contrast with a
classical reset, the decrease of σ can be tuned by choosing the range of γ values.
In the preceding simulations, the values of γ were chosen large enough (compared
to ε) so that, through the reset mechanism, σ can decrease down to a value very
close to σ0 before the mean calcium level decreases below the threshold Cadesyn. In
the following, we show how to reproduce doubled episodes of synchronization by
slowing down the σ decrease induced by the synchronization of calcium peaks, i.e.
by choosing a smaller value of γ .

To ensure that, after the episode of synchronization, the mean calcium level de-
creases as soon as σ starts to decrease, we select small enough values of ηj . For
the sake of simplicity, we consider the same value for all ηj , j = 1, . . . ,N , since
the phenomenon of synchronization as doublet does not require variability in the cell
sensitivity to synchronization. Hence, we consider the set of parameter values given
in Table 3.

Figure 7 represents the outputs of system (6a)–(6d) using the parameter values
given in Table 3. The Caj patterns show synchronization episodes occurring as dou-
blets. The first episode of synchronization occurs around minute 19 when σ becomes
greater than σon. The tightness of this synchronization event is quite long, around 50
seconds. Consequently, the corresponding peak in the mean calcium level is not much
higher than the asynchronous peaks. When σ decreases below σon, the mean cal-
cium level decreases and quickly becomes smaller than Cadesyn. Parameter γ is small
enough so that the σ reset mechanism is not entirely completed: σ starts increasing
again from a value much greater than σ0. Hence, a second episode of synchroniza-
tion occurs few minutes later (at minute 23) and the corresponding synchronization is
tighter than the preceding one, with the calcium peaks occurring in a time interval of
25 second length. The second mean calcium peak of a synchronization doublet is thus
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Fig. 7 Synchronization as doublets in patterns of calcium oscillations in the 50 GnRH cells of a network.
The parameter values of system (6a)–(6d) are given in Tables 1 and 3. In a, ten different colors have been
used to represent the Caj patterns, hence each color is used to represent the activity of 5 individual cells.
b represents the corresponding patterns of σ as well as the synchronization threshold σon (dotted line).
c represents the mean calcium level 1

N

∑N
i=1 Cai as well as the threshold Cadesyn (dotted line) which

triggers the decrease of σ . Doublets of synchronization occur at minutes 19–26 and minutes 78–86: the
two first episodes of synchronization are separated by a 60 minute period. The doublets occur because,
after the first episode has been triggered, the mean calcium value stays above the threshold Cadesyn only
during a short time and, since the γ value is small, σ starts increasing again before reaching σ0 vicinity.
Consequently, the subsequent synchronization episode occurs only 7 minutes afterward. It is worth notic-
ing that the synchronization during the second episode of each doublet is tighter than during the first one.
Hence, the subsequent decrease in σ is stronger than the preceding one, which results into a 56 minute
period before the following doublet

higher than the first one. Subsequently, the time needed for the mean calcium level to
decrease below Cadesyn is long enough for the σ reset mechanism to be completed.
Since variable σ slowly increases again from a value close to σ0, the subsequent
asynchronous phase lasts 56 minutes. The second doublet of synchronization results
from the same mechanism.



Journal of Mathematical Neuroscience (2013) 3:4 Page 21 of 24

Note that the time separating two synchronization episodes of a doublet depends
strongly on the value of parameter γ and the tightness of synchronization of the first
episode. There is a strong variability in this duration from one doublet to another in a
same set of Caj patterns. Hence, reproducing a given sequence of doublet is a chal-
lenging problem. It is worth noticing that the variability in the doublets reproduced
with the model is consistent with the variability observed in the experimental data
[4].

6 Discussion

In this paper, we have presented a network model capable of reproducing the salient
features of calcium oscillations that were observed by Terasawa and coworkers [3–
5] in their experiments on GnRH neurons in placode cultures. As observed in the
experiments and recovered by our model, individual cells oscillate independently,
with a significant variation in the oscillatory pattern. Superimposed on the individ-
ual oscillations are synchronized events that can be described as almost simultaneous
occurrences of calcium peaks, typically higher than in the absence of synchroniza-
tion. Our model can reproduce these features in a very efficient way: By changing
the parameters according to very simple rules, we can design the individual patterns
of oscillation as well as control the frequency of the synchronization events. In addi-
tion, we can reproduce the phenomena of partial recruitment and irregularities of the
synchronization patterns, for example doubled episodes of synchronization.

To reproduce the irregularity of the individual oscillations a set of parameters con-
trolling the individual patterns is drawn at random before each simulation. As the cells
are coupled only during the synchronization episodes, the individual phases appear
from the simulation to be completely ergodic. This may also be related to our choice
of the parameters, corresponding to the sensitive dynamics of MMOs. Introducing
even weak coupling between the cells might lead to some phase locking between the
patterns, thus making the phases less irregular. This in turn could be destroyed by
adding external noise. In this study, we have chosen not to include these effects.

In this work, we have used experimental specifications as a guide for finding and
tuning the model. One of the main challenges of our work was to design a model
pertinent to the slow and the super-slow time scales. The key idea behind reproduc-
ing the synchronization episodes was to introduce a global variable whose increase
would result in a significant increase of calcium peaks and which would then be
“reset” by high level of calcium. There is a parallel between this approach and the
phenomenon of Calcium Induced Calcium Release (CICR), which can be understood
as a self amplification of calcium release involving the depletion of intracellular cal-
cium stores (sometimes following a depolarizing current); see [24] for more details
and [1] for the available information on CICR in different types of GnRH neurons. In
the model, the individual CICR mechanism is not embedded as such in the calcium
dynamics of individual neurons. However, the network dynamics enables individual
neurons to sustain a prolonged elevation in intracellular calcium levels at the time
of the synchronized peaks, so that one can be tempted to interpret this effect as a
CICR-like phenomenon. Due to the lack of precise information on the physical cou-
pling between cultured neurons as well as on the nature of calcium stores that are
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effectively mobilized in embryonic neurons [25], we can only speculate on that issue.
Following [26], we could conjecture that this effect is mediated through the nonneu-
ronal cells that also exhibit calcium oscillations [5] and signal to GnRH neurons via
ATP (Adenosine Triphosphate) through the ionotropic receptor P2X (a ligand-gated
ion channel). The pharmacological control of ATP levels alters both synchronized
calciums peaks and GnRH release. Hence, the synchronized peaks in GnRH neurons
might be associated with a CICR mechanism induced by ATP inputs coming from
the nonneuronal cells.

Other works have dealt with modeling the individual dynamics of GnRH neurons,
representing the activity of the membrane potential and the ionic channels, in the
style of the Hodgkin–Huxley system; see [27] for a study of GnRH neurons in brain
slices from adult mice. A way to link our study to microscopic modeling of this kind
could be by means of developing a firing rate model that would, in a similar way
as our model, accurately reproduce the slow and super-slow timescales of individual
and synchronized calcium oscillations as well as could be derived from a detailed
microscopic model by means of averaging.

The main goal of this paper has been to design a model of coupled oscillators that
could reproduce the experimental results of Terasawa [3] and in which we could iden-
tify the parameters controlling the most relevant features of the experimental obser-
vations, mainly the durations of the intervals separating the individual calcium peaks
and synchronization events. Similar results may have been obtained by a different ap-
proach, for example by adapting a model of population spikes [28], in which episodic
synchronous spikes arise due to the presence of slowly varying parameters that make
the system oscillate between the regions of synchronization and asynchronous behav-
ior. A very useful feature of our model that may be difficult to obtain in such settings
is the simple dependence of both the periods of the individual calcium peaks and
synchronization events on the system parameters.

Finally, we would like to mention an aspect of the dynamics that our model was
not designed to reproduce, namely a spatial structure in the patterns of spatial syn-
chronization; see Fig. 4 in [4]. Spatial structures of calcium dynamics can be studied
in continuous models; see, e.g., [29] for a study in the context of CICR. Spatial pat-
terns registered by Terasawa and coworkers could possibly be understood in a mean
field model derived from our network system.
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