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Abstract Mathematical models of cellular physiological mechanisms often involve
random walks on graphs representing transitions within networks of functional states.
Schmandt and Galán recently introduced a novel stochastic shielding approximation
as a fast, accurate method for generating approximate sample paths from a finite state
Markov process in which only a subset of states are observable. For example, in
ion-channel models, such as the Hodgkin–Huxley or other conductance-based neu-
ral models, a nerve cell has a population of ion channels whose states comprise the
nodes of a graph, only some of which allow a transmembrane current to pass. The
stochastic shielding approximation consists of neglecting fluctuations in the dynam-
ics associated with edges in the graph not directly affecting the observable states.
We consider the problem of finding the optimal complexity reducing mapping from a
stochastic process on a graph to an approximate process on a smaller sample space, as
determined by the choice of a particular linear measurement functional on the graph.
The partitioning of ion-channel states into conducting versus nonconducting states
provides a case in point. In addition to establishing that Schmandt and Galán’s ap-
proximation is in fact optimal in a specific sense, we use recent results from random
matrix theory to provide heuristic error estimates for the accuracy of the stochastic
shielding approximation for an ensemble of random graphs. Moreover, we provide
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a novel quantitative measure of the contribution of individual transitions within the
reaction graph to the accuracy of the approximate process.

Keywords Markov process · Complexity reduction · Ion channel · Hodgkin–Huxley
model · Networks · Random graphs

1 Introduction

Many biological systems exhibit a combination of stochastic (chance, random, noisy)
and deterministic dynamics [1–3]. For example, mathematical models involving
stochastic processes arise in physiology [4–7], ecology [8–10], and genetic regula-
tory systems [11–13]. Such mathematical models often originate as intrinsically com-
plex, high-dimensional systems with many degrees of freedom, and many sources
of variability. This inherent complexity presents two related challenges. First, the
essential dynamics of such systems may be hard to discern, and model reduction
based on first principles for stochastic systems on complex networks is difficult. Sec-
ond, in order to predict the behavior of such systems under normal, pathological
or experimental conditions, one must usually resort to numerical simulation stud-
ies. Even with the tremendous progress in computing power over the last decades,
intrinsically high-dimensional stochastic systems remain prohibitive to simulate ex-
haustively. Moreover, because of their dimensionality, the results of ensembles of
stochastic simulations can be challenging to interpret. Therefore, there is demand for
efficient dimension reduction methods, both to provide high quality approximate nu-
merical solutions to the stochastic evolution equations arising in high-dimensional
systems, and to provide an efficient conceptual framework for interpretation of the
behavior of such systems.

In [14], Schmandt and Galán introduced a stochastic shielding approximation as a
fast, accurate method for generating sample paths from a finite state Markov process
in which only a subset of states are observable. For example, in ion-channel models,
such as the Hodgkin–Huxley or other conductance-based neural models, a nerve cell
has a population of ion channels whose configurational states comprise the nodes of
a graph, only some of which allow a transmembrane current to pass. That is, each
vertex of the ion-channel state graph is labeled with a scalar “conductance”, which
is either zero (nonconducting) or one (conducting). In a population of ion channels,
the flux of individual channels making the transition from a state i to a state j is a
stochastic process with mean rate, and it has fluctuations around the mean rate that
depend on the population at state i. The stochastic shielding approximation consists
of neglecting fluctuations associated with edges in the graph not directly affecting
the observable states. Specifically, the random fluxes along edges connecting iden-
tically labeled states are replaced by the mean fluxes along those edges, while the
random fluxes associated with edges connecting distinguishable states are left un-
changed. This approximation is an example of complexity reduction, in the sense of
reducing a stochastic process generated by K independent processes to a process on
a smaller sample space, i.e. generated by K ′ < K processes. Schmandt and Galán
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observe that, remarkably, the variance of the observable state (the membrane con-
ductance) is almost identical in the reduced and the unreduced system.1 While the
approximate process does not faithfully reproduce all aspects of the full process, it
reproduces those features relevant to the neurophysiologist as well as to the larger
biological system in which it is embedded.

Here we consider the problem of finding the optimal complexity reducing mapping
from a stochastic process on a graph to an approximate process on a smaller sample
space, as determined by the choice of a particular linear measurement functional on
the graph. The partitioning of ion-channel states into conducting versus nonconduct-
ing states provides a case in point. In this paper we establish that Schmandt and
Galán’s approximation is in fact optimal in a specific sense. We derive a quantitative
measure of the contributions of individual edges in the graph to the accuracy of the
approximation, relative to the chosen measurement functional. This approach allows
quantitative comparison of edge importance, and sheds light on the parametric de-
pendence of relative edge importance, for instance in a voltage-gated ion channel.
In addition, we provide heuristic error estimates for the accuracy of the stochastic
shielding approximation for an ensemble of symmetric random graphs.

Motivated by [14], we consider a multidimensional Ornstein–Uhlenbeck process
on a graph G = (V,E) with n nodes and m edges (reactions), and a linear measure-
ment functional M ∈ R

n. We show that the stochastic shielding approximation is the
most accurate dimension reduction possible among those neglecting fluctuations in
the same number of underlying processes. Neglecting a set of reactions in the full
stochastic process X creates an approximate process X̃ which matches the behavior
of the full process in the mean but deviates from the full process in the fluctuations.

Extending this idea for an ensemble of symmetric directed graphs G = (V,E),
we establish two main results. Lemma 1, our first main result, allows us to find the
optimal complexity reducing mapping from a stochastic process on a graph to an ap-
proximate process on a smaller sample space, as determined by the measurement M .
Neglecting the fluctuations associated with a subset E ′ of the edge set E defines a
new process X̃(t) that deviates from the full process X(t) by an amount that we call
the deficiency, U(t) = X̃(t) − X(t). The observed error, given M , is then MᵀU ; its
mean is zero by construction, and its variance is R = E[(MᵀU)2]. In Lemma 1 we
provide an exact formula for the contribution of the kth edge to this error. This for-
mula, which arises from a spectral decomposition of the graph Laplacian associated
with the full process, gives an explicit criterion for choosing the k most important
edges in the graph, for any 0 < k < m.

Our second main result, Theorem 2, applies this criterion to networks gener-
ated from a broad class of random graph ensembles with a randomly chosen binary
measurement vector M . We show that the importance measures of individual edges
cluster tightly around one of two values. For moderately large graphs, these clus-
ters correspond with very high accuracy to Schmandt and Galán’s stochastic shield-
ing heuristic; an extremely accurate, reduced complexity approximation is obtained
by neglecting fluctuations associated with edges connecting states that are indistin-
guishable under the measurement M . We illustrate this result with a sample from the
Erdös–Rényi random graph ensemble in Sect. 3.3.

1Cf. [14], Supplemental Material Sect. 5.
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The analysis of Schmandt and Galán focused on an accurate, efficient approxima-
tion of Markov processes arising from ion-channel models. In Sect. 4 we apply our
analysis to processes on two graphs arising from the classical Hodgkin–Huxley sys-
tem of ion channels: the 5-state model for the voltage-gated potassium channel, and
the 8-state model for the voltage-gated sodium channel. In a more general setting,
the transition rates connecting adjacent states in these models are voltage-dependent.
Here we restrict attention to the stationary case, corresponding biologically to the
behavior of the channels under “voltage clamped” conditions. For both the voltage-
gated potassium and voltage-gated sodium channel state graphs we show that our
ranking reproduces the Schmandt–Galán stochastic shielding heuristic over all phys-
iologically relevant voltages. This example also demonstrates that our results apply
to graphs with non-symmetric adjacency matrices, as well as to the symmetric case.

In Sect. 5 we discuss possible extensions of our results to examples including
signal transduction networks and calcium-induced calcium release models, as well as
systems with graded rather than binary measurement functionals.

2 Model

2.1 Connection to the Population Process

We develop our results in the context of stationary Ornstein–Uhlenbeck processes.
In contrast, Schmandt and Galán [14] introduced stochastic shielding in the broader
context of density dependent random walks on a graph from which our OU process
arises as a large population approximation. To set the stage before moving to the OU
process framework, we briefly describe a population process on a graph of the type
considered by Schmandt and Galán. In particular, we consider a stationary stochastic
process on a directed graph G = (V,E) where |V| = n and |E | = m, the number of
nodes and edges in the graph, respectively. Each directed edge corresponds to one
reaction in the system. The kth edge ij (k) = (i(k), j (k)) ∈ E is defined to start at
node i(k) and end at node j (k), so that the kth reaction effects a transition from state
i to state j . Following [15, 16], we let ζk be the stoichiometry vector associated with
edge ij (k) ∈ E . That is, the ith component of ζk is −1, the j th component is 1, and
all other components are zero.

ζk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζk(1)
...

ζk(i)
...

ζk(j)
...

ζk(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

−1
...

1
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

Under stationary conditions, such as a population of ion channels under voltage
clamp, the occupancy numbers of different states of a continuous time Markov pro-
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cess can be represented as the solution of the stochastic equation obtained from a ran-
dom time change representation in terms of Poisson processes [17]. If αk gives the
instantaneous per capita transition rate from state i(k) to state j (k), then the full
Markov process is specified by a collection of independent standard (unit rate) Pois-
son processes Yk each representing the occurrence of i(k) → j (k) transitions as fol-
lows. Letting N(t) ∈ N

n be the nonnegative integer-valued vector representing the
number of individuals in each of n states, we may write N(t) as a sum of transitions
occurring at random times specified by the collection of Yk .

N(t) = N(0) +
∑
k∈E

ζkYk

(∫ t

0
αkNi(k)(s)ds

)
. (2)

Because each transition preserves the total number of individuals (i.e. the components
of ζk sum to zero for each k), we have

∑
i Ni(t) = Ntot =∑i Ni(0) for all t > 0.

In Appendix B we show that, provided Ntot is sufficiently large, we can approxi-
mate the deviation of N(t) from its mean N̄ ∈ R

n by a multidimensional, Gaussian,
Ornstein–Uhlenbeck process X(t) ∈R

n, X(t) ≈ N(t) − N̄ which satisfies a stochas-
tic differential equation of the form given in Eq. 4 below. In particular, we show that
X(t) can be approximated by an SDE of the form

dX(t) =
∑
k∈E

ζk

(
Xi(k)(t)αk dt +

√
N̄i(k)αk dWk(t)

)
. (3)

2.2 Multidimensional Ornstein–Uhlenbeck Process

To obtain our main mathematical result, we consider a multidimensional Ornstein–
Uhlenbeck process X ∈ R

n on the directed graph G = (V,E) where |V| = n and
|E | = m. The state of the system at time t , X(t), satisfies Eq. 3, which we write in the
equivalent form

dX = LXdt + BdW. (4)

Here L = (A − D)ᵀ is the graph Laplacian (A is the weighted adjacency matrix of G
with entries Aij = αk > 0 if there is an edge from node i(k) to j (k) and zero other-
wise, and D is the diagonal matrix such that entry Dii =∑j Aij is the out-degree of
node i). B is an n × m matrix, and W ∈ R

m is an m-dimensional Brownian motion,
i.e. each component dWk represents the increment of an independent standard Brow-
nian motion capturing the fluctuations of the kth reaction about its mean.2 Matrix B

decomposes into a sum over the m reactions

B =
m∑

k=1

Bk (5)

such that the kth column of matrix Bk = σkζk and all other columns of Bk are zero.

2If Q = (qij ) is the generator matrix of the stochastic process on the graph, with qij = αk whenever k is
the edge leading from i to j , then L = Qᵀ .
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The stochastic shielding approximation for a system of the form given in Eq. 4
amounts to preserving the mean, but neglecting the fluctuations, for the processes
driving a subset of the reactions, i.e. replacing B with an alternative matrix B̃ ob-
tained by replacing a subset of columns in B with null vectors. The trajectories of
the resulting SDE, X̃(t) (see Eq. 7), are approximations of the trajectories of the full
system.

In order to compare different complexity reduction choices, we define the defi-
ciency of an approximation to be the difference between the true and approximate
trajectories, U(t) = X̃(t) − X(t), when projected onto the measurement functional
of interest M . As suggested by Schmandt and Galán, the stationary variance of
the projection of the deficiency on the measurement vector provides an appropri-
ate measure for comparing the quality of alternative reductions. That is, we use
R = Var[MᵀU ] = Var[Mᵀ(X̃ − X)] as our error measure. We focus on reductions
that preserve the behavior of the system (Eq. 4) relative to a given linear measurement
functional M ∈ R

n. In the case of ion channels, M ∈ {0,1}n represents the conduc-
tance of each channel state. We consider the case of graded rather than binary mea-
surements in Sect. 5. Whether binary or graded, the measurement vector identifies
the stochastic process of interest as the projection Y(t) = MᵀX(t).

Formally, we consider two processes X(t) (full process) and X̃(t) (reduced pro-
cess) defined on a common probability space (Ω,Ft , P ). The sample space Ω =
C [0,∞) n, filtration Ft , and Wiener measure P are those associated with m indepen-
dent copies of the standard Brownian process. The approximate process X̃(t) has the
same sample space Ω and is measurable with respect to the same filtration Ft , but
also with respect to a smaller filtration F̃t ⊂ Ft generated by the Wiener processes
associated with a subset of edges of the graph. The covariance of the deficiency, then,
is well defined in terms of the underlying measure P on the full probability space.

In Appendix C.1 we show the standard result [18] that the stationary covariance
matrix of the full process decomposes into a sum of the contributions from the m

different reaction processes:

Cov
[
X(t),Xᵀ(t)

]= lim
t→∞

∫ t

0

m∑
k=1

σ 2
k exp

[
L
(
t − t ′

)]
ζkζ

ᵀ
k exp

[
Lᵀ(t − t ′

)]
dt ′. (6)

Similarly, the variance of the projection Y(t) = MᵀX(t) also decomposes into a sum,
because Var[Y ] = Mᵀ Cov[X]M .

Because the (left) eigenvector corresponding to the leading (0) eigenvalue of L has
constant components, it is orthogonal to ζk for each k. (If L is symmetric, the right
and left eigenvectors are interchangeable.) Therefore the corresponding eigenspace
is contained in the kernel of the matrix BkB

ᵀ
k , for each k, which guarantees that the

limit on the RHS of Eq. 6 remains finite.
Neglecting a set of reactions E ′ ⊂ E creates an approximate processes, X̃(t), which

matches the behavior of the full process in the mean, but deviates from the full process
in the fluctuations. This reduced process satisfies the following SDE

dX̃ = LX̃dt + B̃dW, (7)
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where B̃ =∑k∈E\E ′ Bk sums over the edges we keep. Given the linear measurement

functional M ∈ R
n above, we define the approximate projection Ỹ (t) = MᵀX̃(t).

Note that in the case of an ion-channel system, M is binary so Y and Ỹ just pull out
the observable (i.e., conducting) states of each system. In Sect. 2.3, for instance, we
consider a 3-state chain with one observable state (state 3) as a simple model of an
ion-channel system. In that case, M = [0,0,1]ᵀ and Y(t) = MᵀX(t) = X3(t).

Neglecting a subset of reactions also introduces an error in the representation of
the measurement Y(t) versus Ỹ (t) due to the difference between X(t) and X̃(t).
Recall that U(t) = X̃(t) − X(t) is the deficiency of the reduced model compared to
the full model. Then Ỹ (t) − Y(t) = MᵀU(t), and U(t) satisfies the SDE

dU = LUdt + (B̃ − B)dW. (8)

It is important to note that the noise source dW that appears in Eqs. 4 and 7 refers to
the same noise process W in both cases. The deficiency of the approximation relative
to the full process is given by taking the limit of the mean squared error (MSE) of
Ỹ − Y (equivalent to the stationary variance of Ỹ − Y ), which, as shown in the proof
of Lemma 1, is an expression of the sum over all neglected reactions.

Lemma 1 For an irreducible graph with a symmetric Laplacian L, let X and X̃ be
the full and reduced processes defined by Eqs. 4 and 7, respectively, and let M ∈R

n.
Let E ′ ⊂ E be the subset of edges neglected in the definition of X̃. Let L be diag-
onalizable with eigenpairs {(λi, vi)}ni=1 listed with eigenvalues λi in order of de-
creasing real part and ‖vi‖2 = 1. Then the stationary variance of the discrepancy
Ỹ − Y = Mᵀ(X̃ − X) satisfies

R
[
E ′]≡ lim

t→∞ Var(Ỹ − Y) =
∑
k∈E ′

Rk, (9)

where

Rk = σ 2
k

n∑
i=2

n∑
j=2

( −1

λi + λj

)(
Mᵀvi

)(
v
ᵀ
i ζk

)(
ζ
ᵀ
k vj

)(
v
ᵀ
j M
)
. (10)

We can rank the error terms Rk in descending order, thereby ordering the corre-
sponding reactions in terms of their “importance”. The most important reaction is
the one with the largest value of Rk ; if neglected, it would introduce the largest er-
ror. See Appendix C.2 for the proof of Lemma 1. Note that an individual term in
the sum (10) will be zero if either ζk ⊥ vi or if M ⊥ vi for a given eigenvector vi .
Typically, however, these vectors will not be orthogonal. Therefore, it is of interest
to know how the values of Rk are distributed for different examples: graphs of actual
ion-channel states such as those in the classical Hodgkin–Huxley model, and more
generally, ensembles of random graphs. In Sect. 4, we compute the distribution of Rk

for the graphs of the potassium and sodium channel states in the Hodgkin–Huxley
model. In Sect. 3, we consider an ensemble of random graphs such as the Erdös–
Rényi ensemble with randomly assigned binary measurement vector M and prove
our main result, which is a statement about the expected value of Rk . Should our
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random graph ensemble produce a graph that does not consist of a single connected
component, then we may apply Lemma 1 to each isolated component of the graph
separately. However, for the random graph ensembles we consider, the probability of
drawing a disconnected graph decays very rapidly as n → ∞. We discuss this point
further in Appendix D.

For a random graph ensemble, the eigenvectors of the graph Laplacian are dis-
tributed randomly on the unit sphere [19, 20]. Hence, they are unlikely to be exactly
orthogonal to either ζk or M . Given a series of assumptions (see Sect. 3.1) that are
true for naturally occurring random ensembles such as the symmetric Gaussian and
Erdös–Rényi ensembles, we state our main result.

Theorem 2 Given an ensemble of symmetric directed graphs G = (V,E) with n

nodes satisfying assumptions A0–A5 (see Sect. 3.1), a binary measurement vector
M ∈ {0,1}n satisfying 0 <

∑
i Mi ∼ O(1) as n → ∞, and a stoichiometry vector ζk

corresponding to the kth reaction, the mean squared error Rk resulting from neglect-
ing the kth reaction has expected value

E[Rk|M] = σ 2
k |Mᵀζk|

nC
+ O

(
n−q

)
, as n → ∞, for some q > 1, (11)

where the constant C depends on the mean edge weight.

This result shows that the edges in the graph naturally decompose into two classes,
distinguished by their asymptotic behavior for large n. The first class of edges rep-
resents connections between differently labeled nodes, in terms of the measurement
vector M . The first class comprises the “important” edges in the graph, in the sense
that these edges have mean Rk values that scale as order 1/n. The second class of
edges connects identically labeled nodes. These edges have mean Rk values of order
less than n−q , where q > 1 is driven by the fourth moment of the eigenvector com-
ponents (see assumption A4a in Sect. 3.1 for details). As n increases, these edges
become relatively “unimportant” and, hence, can be neglected under the stochastic
shielding approximation with minimal loss of accuracy. For the case of the Gaussian
ensemble, q = 2. Empirically, for the Erdös–Rényi random graph ensemble, q ≈ 5/3
(see discussion in Sect. 3.3 and also Fig. 4). The proof of Theorem 2 is given in
Sect. 3.2. Before discussing more complicated examples, we illustrate the decompo-
sition of the full process into approximate subprocesses for a simple 3-state example
in the next subsection.

2.3 3-State Example

We illustrate Schmandt and Galán’s [14] stochastic shielding heuristic with the fol-
lowing simple example they considered. Figure 1 shows a 3-state chain which has
adjacency matrix entries Aij = αk = 1 if there is an edge from i(k) to j (k) and zero
otherwise. State 3 is designated as the only observable state. We think of this as the
conducting state in an ion-channel model. Table 1 illustrates the notation introduced
in Eq. 1 for this case.
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Fig. 1 3-state chain. Graph with three nodes and four reactions (edges) such that a transition from state
i(k) to state j (k) happens at rate αk . For this example, we assume that only state 3 is observed. This is the
system shown in Fig. 1 of Schmandt and Galán [14]

Table 1 Indexing of nodes and edges for the 3-state process, cf. Eq. 1 and Fig. 1. The first column gives
the reaction number, the middle column gives the direction of the reaction, and the last column gives the
contribution of the reaction to the measurement Y = MᵀX

k i(k) → j (k) Mᵀζk

1 1 → 2 0

2 2 → 1 0

3 2 → 3 +1

4 3 → 2 −1

In this case, we suppose σk = 1 in the matrix B and use the linear measurement
functional M = [0,0,1]ᵀ to pull out the third component of X(t), yielding the pro-
jection Y(t) = MᵀX(t) = X3(t). The vector X(t) = (X1(t),X2(t),X3(t))

ᵀ gives
the occupancy of the system states at time t and satisfies the constant coefficient SDE
given in Eq. 4 with

L = (A − D)ᵀ =
⎛
⎝−1 1 0

1 −2 1
0 1 −1

⎞
⎠ , (12)

B = (σ1ζ1 σ2ζ2 σ3ζ3 σ4ζ4
)=

⎛
⎝−1 1 0 0

1 −1 −1 1
0 0 1 −1

⎞
⎠ , (13)

W(t) =

⎛
⎜⎜⎝

W1(t)

W2(t)

W3(t)

W4(t)

⎞
⎟⎟⎠ , (14)

where the Wk(t) are independent and identically distributed standard Brownian mo-
tions, and

A =
⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , D =

⎛
⎝1 0 0

0 2 0
0 0 1

⎞
⎠ . (15)

Since we are assuming σk = 1 for all k, the kth column of B is exactly the stoichiom-
etry vector associated with the kth reaction, and in particular, BkB

ᵀ
k = ζkζ

ᵀ
k .

The full process X(t) has four stochastic transitions and a reduced process X̃(t)

is defined by keeping a subset of the four stochastic transitions. We use the notation
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Fig. 2 Deficiency between the full and approximate processes for the 3-state chain. Comparison of the
deficiency U(i,j)(t) = X(i,j)(t) − X(t) projected onto each component of the system of trajectories of

an OU process on R
3. Top panel: U(3,4) is essentially zero which shows that reduced process X(3,4) is

optimal for preserving the accuracy of the first component. Second panel: no reduced process is optimal for
preserving the accuracy of the second component. Third panel: U(1,2) is essentially zero which shows that
X(1,2) is optimal for preserving the accuracy of the third component (the conducting state in our 3-state

example). Bottom panel: squared norm of the deficiency ‖U(i,j)‖2 = ‖X(i,j) − X‖2

X̃ = X(i,j,k) to explicitly define which columns of the full matrix B are neglected
in the approximate process, i.e. which stochastic transitions are neglected. We are
interested in the accuracy of the approximation of the trajectory itself.

Figure 2 illustrates the deficiency U(i,j)(t) = X(i,j)(t) − X(t) between the full
process and all possible two noise source reductions X(i,j) on the 3-state chain, as
projected onto each of the three components in the system. The “optimal complexity
reduction” is not well defined in general because it is underspecified. For example,
asking to reduce the norm of the deficiency U while eliminating two of the four noise
sources gives no preference between the six possible reductions. Asking for the best
reduction to preserve a specific component may give an answer: to preserve the tra-
jectory as projected onto the first component, keep the two noise sources that directly
affect it (transitions between edges 1 and 2); for the third component, keep the other
two (transitions between edges 3 and 4); for the second component there is no prefer-
ence since it is affected directly by all transitions. This gives an intuitive explanation
of stochastic shielding consistent with Schmandt and Galán’s explanation.
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Table 2 Table of discrepancies
MᵀU(i,j,k) = Mᵀ(X(i,j,k) −X)

for the 3-state Markov process.
The discrepancy MᵀU(1,2)

(marked by ∗) corresponds to
reduced process X(1,2)

projected onto the third
component, which is the optimal
two-edge-neglecting
approximation of X for this
example, in agreement with
Schmandt and Galán [14]

MᵀU(i,j,k)

∑
Rk′ Value

MᵀU(1) R1 0.0417

MᵀU(2) R2 0.0417

MᵀU(3) R3 0.2917

MᵀU(4) R4 0.2917

MᵀU(1,2) R1 + R2 0.0833*

MᵀU(3,4) R3 + R4 0.583

MᵀU(1,3) R1 + R3 0.3333

MᵀU(1,4) R1 + R4 0.3333

MᵀU(2,3) R3 + R3 0.3333

MᵀU(2,4) R2 + R4 0.3333

MᵀU(1,2,3) R1 + R2 + R3 0.375

MᵀU(1,2,4) R1 + R2 + R4 0.375

MᵀU(1,3,4) R1 + R3 + R4 0.625

MᵀU(2,3,4) R2 + R3 + R4 0.625

If we fix a point in the underlying sample space (a choice of four Poisson processes
Yk(t) in the system N(t) or a choice of four white noise processes dWk(t) in the
system X(t)) and then choose to neglect the fluctuations in two of the four, i.e. by
replacing Yk(t) with E[Yk(t)] or dWk(t) with zero, respectively, then the question is:
which choice leads to the most accurate representation of the process as seen by the
measurement?

By Lemma 1, we have the following expression for the edge importance terms Rk :

Rk =
3∑

i=2

3∑
j=2

( −1

λi + λj

)(
Mᵀvi

)(
v
ᵀ
i ζk

)(
ζ
ᵀ
k vj

)(
v
ᵀ
j M
)
. (16)

Evaluating this expression for the measurement functional M = [0,0,1]ᵀ yields

R1 = R2 = 0.0417,

R3 = R4 = 0.2917.

Table 2 shows the stationary variance of the discrepancy MᵀU(i,j,k) = Mᵀ(X(i,j,k) −
X) for all possible reduced processes X(i,j,k). For instance, X(1,2) is the reduced
process that neglects fluctuations in reactions 1 and 2 and the stationary variance
of MᵀU(1,2) is R1 + R2 = 0.0833. Note that X(1,2) is the optimal reduced process
in terms of the Schmandt and Galán stochastic shielding approximation (among all
approximations neglecting exactly two edges) for the 3-state chain.

Figure 3 shows the mean squared error as a function of time for MᵀU(i,j)(t) cor-
responding to the three classes of reduced processes X(i,j)(t) on the 3-state chain
(i.e., the classes are X(1,2), X(3,4), and {X(1,3),X(1,4),X(2,3),X(2,4)}, corresponding
to the three different MᵀU(i,j)(t) values shown in Table 2 above). The error func-
tion is shown with the theoretical MSE (

∑
k∈E ′ Rk) for each case. Therefore, since
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Fig. 3 Mean squared errors for
the 3-state chain. Comparison of
mean squared errors of
MᵀU(i,j) in the 3-state chain,
i.e. the projection of U(i,j) onto
the third component. The
theoretical MSE values are
computed by summing the
appropriate edge importance
values Rk . MᵀU(1,2) has the
smallest MSE out of the three
classes of 2-noise source
reduced process, showing that,
as observed by Schmandt and
Galán, X(1,2) is optimal at
preserving the accuracy of the
full process with respect to the
third component of the system

Mζ1 = Mζ2 = 0, Mζ3 = 1, and Mζ4 = −1 we confirm the claim made by Schmandt
and Galán [14] that reactions 3 and 4 are important whereas reactions 1 and 2 are
unimportant in terms of stochastic shielding for this 3-state example.

3 Analysis of Stochastic Shielding for a Random Graph Ensemble

For any particular Ornstein–Uhlenbeck process on a graph, Lemma 1 provides the
edge importance values Rk (Eq. 10), which may be used to compute explicitly the
contribution to the deficiency made by neglecting any particular reaction, relative
to a given measurement vector M . In order to make general observations about the
stochastic shielding approximation, we now consider an ensemble of random graphs.
The proof of our main result (Theorem 2, restated below) will rely on properties
of the joint distribution of components of eigenvectors of L, the graph Laplacian.
Previously, we used i and j to refer to the source and destination nodes in a reaction.
In this section, we will adapt the notation so that edge k is a reaction from node l− to
node l+, denoted by l±(k) ∈ E (see Eq. 17). In this section, i and j will instead index
eigenvectors of L.

ζk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζk(1)
...

ζk(l−)
...

ζk(l+)
...

ζk(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

−1
...

1
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

Because our methods combine heuristic numerical evidence with probabilistic calcu-
lations, we use “≈” to represent “heuristic equality”. Where precise order estimates
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are available, we use “O” notation. For the reader’s convenience, we restate Theo-
rem 2.

Theorem 2 Given an ensemble of symmetric directed graphs G = (V,E) with n

nodes satisfying assumptions A0–A5 (see Sect. 3.1), a binary measurement vector
M ∈ {0,1}n satisfying 0 <

∑
i Mi ∼ O(1) as n → ∞, and a stoichiometry vector ζk

corresponding to the kth reaction, the mean squared error Rk resulting from neglect-
ing the kth reaction has expected value

E[Rk|M] = σ 2
k |Mᵀζk|

nC
+ O

(
n−q

)
, as n → ∞, for some q > 1, (18)

where the constant C depends on the mean edge weight.

In other words, since

∣∣Mᵀζk

∣∣=
{

1, if reaction k connects nodes with different M values,

0, if reaction k connects nodes with the same M value
(19)

reactions connecting nodes with identical values of M have a small contribution to
the error, so these reactions can be neglected under the stochastic shielding approxi-
mation. This result relies on a list of assumptions which are described in detail below.
The proof of this theorem requires Lemma 3, which is stated after the assumptions
and proved in Appendix C.3.

3.1 Assumptions on the Random Graph Ensemble

We state a sequence of assumptions on the random graph ensemble needed to estab-
lish our main result. Each assumption is reasonable for a broad class of graphs of
interest, for reasons articulated in the Remarks following each assumption. In several
instances we impose on our random graph ensemble, as assumptions, properties that
are known to hold for broad classes of random matrices, such as the Wigner ensemble
[19, 20]. The ensemble we consider is not equivalent to a generalized Wigner ensem-
ble. Nevertheless, for the reasons detailed below, it appears reasonable, that certain
aspects of the eigenvector and eigenvalue distribution may be similar in the two cases.

We consider an ensemble of symmetric directed graphs G = (V,E) with |V| = n.
Let ζk be the stoichiometry vector corresponding to the kth reaction (Eq. 17) and
let (λi, vi) denote the eigenpairs of the graph Laplacian L = (A − D)ᵀ listed with
eigenvalues in descending order. We assume that the eigenvector components are l2-
normalized with mean 0 and variance 1/n, and we assume the following:

A0. (Following [21].) Let aij ≥ 0, the entries of the adjacency matrix, be random
variables defined on a common probability space, with {aij ,1 ≤ i < j ≤ n} in-
dependent (but not necessarily identically distributed), with aij = aji , E[aij ] =
μA, V [aij ] = σ 2

A > 0 for all 1 ≤ i < j ≤ n, and sup1≤i<j≤n E|(aij − μA)/

σA|κ < ∞ for some κ > 0.
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A1a. The graph is drawn from a random ensemble with the property that the eigen-
values λi and eigenvectors vi of the associated graph Laplacian are nearly in-
dependent. That is, for any i, j, k, l ∈ {1, . . . , n} and arbitrary measurable func-
tions f :R2 → R and g :Rn ×R

n → R

E
[
f (λi, λj )g(vk, vl)

]= E
[
f (λi, λj )

]
E
[
g(vk, vl)

]
+ O

(
1

n4

)
, as n → ∞. (20)

Remark 1a: Assumption A1 holds for the symmetric Gaussian ensemble as well
as for the more general Wigner ensemble [19, 20]. Indeed for these ensembles
the eigenvalues and eigenvectors are independent. The weaker assumption, that
they are at most weakly correlated, appears reasonable for e.g. the ensemble
of graph Laplacians obtained from the symmetric Erdös–Rényi random graph
ensemble.

A1b. The graph is drawn from a random ensemble with the property that the joint
(eigenvalue, eigenvector) distribution is nearly invariant under permutation of
eigenvectors. That is, for any i, j, k, l ∈ {1, . . . , n}

E
[
f (λi, λj )g(vi, vj )

]= E
[
f (λi, λj )g(vk, vl)

]
+ O

(
1

n4

)
, as n → ∞. (21)

Remark 1b: The symmetric Gaussian and Wigner ensembles are fully invariant
under permutation of eigenvectors, and the weaker assumption of near invari-
ance appears reasonable for the Erdös–Rényi ensemble. In particular, the pair
( −1
λi+λj

), (Mᵀviv
ᵀ
i ζkζ

ᵀ
k vj v

ᵀ
j M) appearing in the definition of Rk (Lemma 1)

are assumed to be approximately uncorrelated. This assumption is reasonable
by virtue of the approximate rotational symmetry of the eigenvector distribu-
tion under our choice of random graph model, which we expect to be close
(heuristically) to the eigenvector distribution of the symmetric Gaussian en-
semble [19, 20].

A2. E[vi(l)] = 0 for any i, l ∈ {1, . . . , n} where vi(l) denotes the lth component of
the ith eigenvector.
Remark 2a: Note that E[vi(l)

2] = 1/n by the l2-normalization of the eigen-

vectors because ‖v‖2 =
√∑n

l=1 v(l)2 = 1 for each eigenvector v. This normal-
ization leaves a 2-fold ambiguity in the choice of eigenvector v. Since +v and
−v both have ‖v‖2 = 1, we choose randomly between them so that the first
non-zero component is positive with probability 1/2.3

Remark 2b: By the symmetry of our random graph ensemble under the symmet-
ric group acting on the change of labels, assumption A2 holds not just for the
Gaussian and Wigner ensembles, but for any reasonable symmetric ensemble.
In particular, it holds for the symmetric Erdös–Rényi random graph ensemble.

3In contrast, Tao and Vu [20] always choose the first non-zero component to be positive to remove this
ambiguity.
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Fig. 4 Covariance sizes for the Erdös–Rényi random graph ensemble. Pairwise and fourth order covari-
ance sizes of the eigenvector components of the graph Laplacian for the Erdös–Rényi random graph en-
semble. To evaluate the fourth moment and the mixed moments listed in the legend, we computed the
average value over ≥ 100 independent samples for each value of n. Empirically, the expected value of
vi (l)

4 is approximately
√

2n−5/3 (black); the dashed line is
√

2n−5/3. The absolute value of the expec-
tation of vi (l1)vj (l2) is n−2 if i = j (blue) and essentially 0 if i �= j (data not shown; the average value

was 10−19 or smaller). The expectation of vi(l1)2vi(l2)2 is approximately n−2 (red). The absolute value
of the expectation of vi(l1)2vi(l2)vi (l3) and vi (l1)vi (l2)vi (l3)vi (l4) are both of order n−3 (green and
magenta). This is numerical evidence for assumptions A3–A5 below

A3. For any i, j ∈ {2, . . . , n} and l, l′ ∈ {1, . . . , n},
a. E[vi(l)vj (l

′)] = O(n−3) as n → ∞, for i �= j .
b. E[vi(l)vi(l

′)] = O(n−2) as n → ∞, for l �= l′.
Remark 3: Figure 4 provides numerical evidence for the plausibility of assump-
tion A3 in the Erdös–Rényi case. As described in the figure, the empirical ex-
pectation of vi(l)vi(l

′) scales as O(n−2) for 10 ≤ n ≤ 1000; over this range the
empirical expectation of vi(l)vj (l

′), i �= j , is within machine error (≤ 10−19)
of zero.

A4. For any i ∈ {2, . . . , n} and l, l′ ∈ {1, . . . , n},
a. E[vi(l)

4] = O(n−q) as n → ∞, for some q > 1.
b. E[vi(l)

2vi(l
′)2] = O(n−2) as n → ∞, for l �= l′.

Remark 4: Assumption A4a holds for the Gaussian case for q = 2. For the
Erdös–Rényi case, empirically we see that assumption A4a holds for q ≈ 5/3
as shown in Fig. 4. Specifically, empirical evidence suggests that E[vi(l)

4] ≈√
2n−5/3 in this case.

A5. Suppose that p1, p2, p3, and p4 are nonnegative integers with
∑4

m=1 pm = 4,
at least three of which are non-zero. Then for any i ∈ {2, . . . , n} and for any
distinct components {l1, l2, l3, l4}

E
[(

vi(l1)
)p1
(
vi(l2)

)p2
(
vi(l3)

)p3
(
vi(l4)

)p4
]= O

(
n−3) as n → ∞. (22)

Remark 5: The reason for this assumption will become clear in the proof of
Theorem 2. It is similar in spirit to the four moment theorem for eigenvector
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Table 3 Total number of states (n) and number of conducting states (n1) for different ion-channel models.
Empirically based model refinements have led to increasing numbers of channel states, without dramati-
cally increasing the number of conducting states

Ion-channel type n n1 Reference

Potassium (Hodgkin–Huxley) 5 1 Hodgkin and Huxley [22]

Sodium (Hodgkin–Huxley) 8 1 Ibid.

Sodium (“resurgent”) 13 1 Raman and Bean [23]

Sodium (“slowly inactivating”) 26 2 Milescu et al. [24]

Sodium (“allosteric”) 12 1 Carter et al. [25]

components of a Wigner or Gaussian random matrix, different versions have
been established by Tao and Vu [20] and Knowles and Yin [19]. Figure 4 pro-
vides numerical evidence for the plausibility of assumption A5 in the Erdös–
Rényi case.

In addition to assumptions A0–A5 on the random graph ensemble, the statement
of Theorem 2 places an assumption on the measurement vector M ∈ {0,1}n. This
vector contains n1 > 0 ones and n0 > 0 zeros such that n1 + n0 = n. We assume
n1 = O(1) as n → ∞, that is, we exclude the case where n1 grows without bound as
n grows. (If M has the same value for all nodes, the output is constant and the error is
identically zero. The expression in Theorem 2 holds trivially so we ignore this case.)

To motivate this assumption, Table 3 shows the total number of states (n) and the
number of conducting states (n1) for representative ion-channel models. Model re-
finements driven by empirical evidence have tended to increase the total number of
states relative to Hodgkin and Huxley’s original model, without significantly increas-
ing the number of conducting states.

Although assuming that n1 = O(1) is biologically plausible, we make this as-
sumption mainly for technical reasons as indicated in the proof of Theorem 2. We
note, however, that in the numerical example in Sect. 3.3, the conclusions of Theo-
rem 2 appear to hold equally well when n1 = n2 = n/2.

Lemma 3 If assumptions A0–A5 hold and M ∈ {0,1}n satisfies 0 <
∑

i Mi ∼ O(1)

as n → ∞. Then as n → ∞,

A. E[Mᵀviv
ᵀ
i ζk] = E[∑l∈1M

vi(l)(vi(l+) − vi(l−))] = 1
n
Mᵀζk + O(n−2).

B. E[Mᵀviv
ᵀ
i ζk]2 = E[∑l∈1M

vi(l)(vi(l+) − vi(l−))]2 = 1
n2 |Mᵀζk| + O(n−4).

C. E[(Mᵀviv
ᵀ
i ζk)

2] = E[(∑l∈1M
vi(l))

2(vi(l+) − vi(l−))2] = O(n−q) for some
q > 1.

Note that the exponent q > 1 in part C is governed by the fourth moment of the
eigenvector components of the graph Laplacian (see assumption A4a). The proof of
Lemma 3 is given in Appendix C.3.
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3.2 Proof of Main Theorem

Suppose assumptions A0–A5 hold and M ∈ {0,1}n satisfies 0 <
∑

i Mi ∼ O(1) as
n → ∞. By Lemma 1, Rk denotes the contribution of the kth reaction to the defi-
ciency of the approximate process. Given the measurement vector M , we have (ex-
actly)

E[Rk|M] = E

[
σ 2

k

n∑
i=2

n∑
j=2

( −1

λi + λj

)(
Mᵀviv

ᵀ
i ζk

)(
ζ
ᵀ
k vj v

ᵀ
j M
)]

. (23)

This expectation is taken over the space of symmetric directed graphs G = (V,E)

where edge k is chosen at random from the set of
(
n
2

)
possible bidirectional edges. If

l±(k) /∈ E , then E[Rk|M] = 0.
If the graph Laplacian were drawn from a symmetric Gaussian ensemble (or

Wigner ensemble; see [19, 20]), then the eigenvalues and the eigenvectors would
be independent. For other ensembles we impose the weaker condition of near inde-
pendence (assumption A1a), which in this case means that for each i ≥ 2 and j ≥ 2,
we assume

E

[( −1

λi + λj

)(
Mᵀviv

ᵀ
i ζk

)(
ζ
ᵀ
k vj v

ᵀ
j M
)]

= E

[( −1

λi + λj

)]
E
[(

Mᵀviv
ᵀ
i ζk

)(
ζ
ᵀ
k vj v

ᵀ
j M
)]+ O

(
1

n4

)
, as n → ∞. (24)

Under assumption A1b, the joint distribution of eigenvalues and eigenvectors is
approximately separable into the product of two measures, one for the eigenvalues
and a second for the eigenvectors. In this case the expectation E[( −1

λi+λj
)] in the sum

(23) can be replaced by its average,

S ≡ 1

(n − 1)2

n∑
i=2

n∑
j=2

−1

λi + λj

, (25)

to obtain

E[Rk|M] = σ 2
k E[S]E

[
n∑

i=2

n∑
j=2

(
Mᵀviv

ᵀ
i ζk

)(
ζ
ᵀ
k vj v

ᵀ
j M
)]+ O

(
1

n2

)
. (26)

As shown in [21], assumption A0 implies that the empirical eigenvalue distribution
for the graph Laplacian L,

F̃n(x) = 1

n

n∑
i=1

I

{
λi + nμA√

nσA

≤ x

}
, (27)

converges weakly (with probability one) as n → ∞ to the free convolution γ of the
semicircle law, ρsc(x) = 1

2π

√
4 − x2I (|x| ≤ 2), with the standard Gaussian, g(x) =

exp[−x2/2]/√2π . The measure γ becomes concentrated around λi ≈ −nμA as n

grows. In particular, most terms in the sum (Eq. 25) concentrate around 1/(2nμA),
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Fig. 5 Approximating the
sum S. Numerical evidence
showing that the mean
of S = 1

(n−1)2 ×∑n
i=2

∑n
j=2

( −1
λi+λj

)
is well

approximated by 1/(2pn), for
the Erdös–Rényi ensemble with
p ≥ 0.3. For a given value of p,
the colored asterisks show the
sample mean of S as a function
of n over 10 realizations (with
error bars showing the standard
deviation) and the black curve is
1/(2pn)

as n → ∞. Therefore, by imposing assumption A0 and setting C = 2μA, we have
E[S] → 1/(nC), as n → ∞, yielding in the limit

E[Rk|M] = σ 2
k

nC
E

[
n∑

i=2

n∑
j=2

(
Mᵀviv

ᵀ
i ζk

)(
ζ
ᵀ
k vj v

ᵀ
j M
)]+ O

(
1

n2

)
. (28)

For the Erdös–Rényi ensemble with n nodes and edge probability p, we have
E[S] → 1/(nC) for C = 2p. Figure 5 shows that the sample mean of S over 10
realizations (i.e. 10 different Erdös–Rényi random graph configurations with the same
parameters) rapidly approaches 1/(2pn), as n increases, for values of p ranging from
0.3 to 0.9. As the factor of 1/n is common across all k, it does not affect the stochastic
shielding argument.

To prove Theorem 2, we will show that

E

[
n∑

i=2

n∑
j=2

(
Mᵀviv

ᵀ
i ζk

)(
ζ
ᵀ
k vj v

ᵀ
j M
)]

=
{

1 + O(n1−q), |Mᵀζk| = 1,

O(n1−q), |Mᵀζk| = 0,
as n → ∞, (29)

for some q > 1, corresponding to the parameter q appearing in assumption A4.
This dichotomy is the basis for neglecting the edges k such that Mᵀζk = 0, as in
the stochastic shielding approximation. To do this, we will use assumption A3a and
Lemma 3 to show the following:

E

[
n∑

i=2

n∑
j=2

(
Mᵀviv

ᵀ
i ζk

)(
ζ
ᵀ
k vj v

ᵀ
j M
)]

(30)

=
n∑

i=2

∑
j �=i

E
[(

Mᵀviv
ᵀ
i ζk

)(
Mᵀvjv

ᵀ
j ζk

)]+ n∑
i=2

E
[(

Mᵀviv
ᵀ
i ζk

)2] (31)
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=
n∑

i=2

∑
j �=i

E
[
Mᵀviv

ᵀ
i ζk

]
E
[
Mᵀvjv

ᵀ
j ζk

]

+
n∑

i=2

E
[(

Mᵀviv
ᵀ
i ζk

)2]+ O

(
1

n

)
, as n → ∞ (32)

= ∣∣Mᵀζk

∣∣+ O
(
n1−q

)
, as n → ∞. (33)

It suffices to show that the first term in Eq. 32 is

n∑
i=2

∑
j �=i

E
[
Mᵀviv

ᵀ
i ζk

]
E
[
Mᵀvjv

ᵀ
j ζk

]= ∣∣Mᵀζk

∣∣+ O

(
1

n

)
, as n → ∞, (34)

and the second term is

n∑
i=2

E
[(

Mᵀviv
ᵀ
i ζk

)2]= O
(
n1−q

)
, as n → ∞. (35)

Starting with the first term in Eq. 31, it follows from assumption A3a that, as
n → ∞,

E
[(

Mᵀviv
ᵀ
i ζk

)(
Mᵀvjv

ᵀ
j ζk

)]
= E

[
Mᵀviv

ᵀ
i ζk

]
E
[
Mᵀvjv

ᵀ
j ζk

]+ O

(
1

n3

)
(36)

which means

n∑
i=2

∑
j �=i

E
[(

Mᵀviv
ᵀ
i ζk

)(
Mᵀvjv

ᵀ
j ζk

)]

=
n∑

i=2

∑
j �=i

E
[
Mᵀviv

ᵀ
i ζk

]
E
[
Mᵀvjv

ᵀ
j ζk

]+ O

(
1

n

)
. (37)

We can expand the left hand side of Eq. 34 by using the definitions Mᵀvi =∑
l∈1M

vi(l) and v
ᵀ
i ζk = vi(l+) − vi(l−), which yield

n∑
i=2

∑
j �=i

E
[
Mᵀviv

ᵀ
i ζk

]
E
[
Mᵀvjv

ᵀ
j ζk

]
(38)

= (n − 1)(n − 2)E
[
Mᵀviv

ᵀ
i ζk

]
E
[
Mᵀvjv

ᵀ
j ζk

]
(39)

= (n − 1)(n − 2)E

[∑
l∈1M

vi(l)
(
vi(l+) − vi(l−)

)]2

. (40)
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Fig. 6 Erdös–Rényi random
graph. Realization of an
Erdös–Rényi random graph with
n = 50 nodes and edge
probability p = 0.5

By Lemma 3 part B, we have that E[∑l∈1M
vi(l)(vi(l+) − vi(l−))]2 = 1

n2 |Mᵀζk| +
O(n−4), as n → ∞. Continuing Eq. 40 above we have

= (n − 1)(n − 2)

[
1

n2

∣∣Mᵀζk

∣∣+ O
(
n−4)] (41)

= ∣∣Mᵀζk

∣∣+ O
(
n−1) (42)

as n → ∞, which establishes the first term (Eq. 34).
We now focus on the second term in Eq. 32. In Lemma 3 part C, we establish that

as n → ∞

E
[(

Mᵀviv
ᵀ
i ζk

)2]= E

[(∑
l∈1M

vi(l)

)2(
vi(l+) − vi(l−)

)2]= O
(
n−q

)
. (43)

Hence, (n − 1)E[(∑l∈1M
vi(l))

2(vi(l+) − vi(l−))2] = O(n1−q) as n → ∞, which
establishes the second term (Eq. 35). Therefore, we have established Theorem 2.

3.3 Symmetric Erdös–Rényi Random Graph Ensemble

Many varieties of random graphs have been used to describe biological systems [26,
27]. Here, we restrict attention to an ensemble of symmetric Erdös–Rényi random
graphs G(n,p) on n nodes, for which each of (n2 −n)/2 possible bidirectional edges
occurs independently with probability p [28, 29]. Consider a graph drawn from the
Erdös–Rényi ensemble for n = 50 and p = 0.5. See Fig. 6 for an example. Take A to
be the unweighted adjacency matrix (αk ∈ {0,1}) and let σk = 1 for all reactions k so
that the kth column of the matrix B is exactly the stoichiometry vector for reaction k.
Specifying any measurement vector M ∈ {0,1}50 induces a partition of edges into
“important” (type 0–1) or “unimportant” (types 0–0 or 1–1) classes. Let EI be the set
of important edges and EU be the set of unimportant edges. Clearly, E = EI ∪ EU . In
the following example, we consider a vector M such that half the entries are 1 and
other half are 0.
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Fig. 7 Rank order of edge
importance for the Erdös–Rényi
ensemble. Edge importance
values Rk plotted in descending
order for the process on an
Erdös–Rényi random graph with
50 nodes, edge probability 0.5,
and measurement functional M

such that half the nodes are
labeled 1 and the other half
are 0. There is a clear separation
between the important edges
(type 0–1) and unimportant
edges (types 0–0 and 1–1). The
cluster of important edges has a
mean Rk value of 1/50 = 0.02
whereas the unimportant cluster
lies below the line at√

2n−5/3 ≈ 0.0021

Theorem 2 says that if the matrix of eigenvector components of the Erdös–Rényi
graph Laplacian is sufficiently similar to a random matrix drawn from the Gaussian
ensemble (in terms of assumptions A0–A5) then one would expect the partitioning of
the Rk into two clusters. One cluster, containing the important edges, will be centered
at 1/n. A second cluster, containing the unimportant edges, will have smaller Rk

values (O(n−q) where q > 1 is governed by the fourth moment; see assumption A4a
in Sect. 3.1). To the extent to which this similarity to the Gaussian ensemble holds,
our calculation of Rk involves projecting the measurement vector M and the vectors
ζk onto randomly chosen subspaces of Rn.

As shown in Fig. 4, assumptions A0–A5 appear to be satisfied for the symmetric
Erdös–Rényi random graph ensemble. In particular, the fourth moment of the eigen-
vector components (assumption A4a) appears to hold empirically for q ≈ 5/3; in
particular, we find that, empirically, E[vi(l)

4] ≈ √
2n−5/3. This behavior suggests

that the unimportant edges should have a mean Rk value �
√

2n−5/3. Setting n = 50,
for example, we would expect one cluster of Rk values centered at 1/50 = 0.02 for
k ∈ EI and another cluster close to

√
2 · 50−5/3 ≈ 0.0021 for k ∈ EU . Figure 7 shows

the rank order of edge importance values Rk corresponding to the m reactions in
the Erdös–Rényi random graph. The top cluster is centered at 0.02 (upper horizon-
tal red line) and the bottom cluster is bounded above by 0.0021 (lower horizontal red
line) consistent with Theorem 2 for the Erdös–Rényi random graph ensemble with 50
nodes and edge probability p = 0.5. Since the measurement functional M is binary,
we see a significant gap between the two clusters, as expected. If the components of
M are graded, i.e. drawn uniformly from the unit interval, then this curve appears to
be smooth (see discussion in Sect. 5).

Figure 8 illustrates the distribution of eigenvector components of the Erdös–Rényi
graph Laplacian in comparison with a Gaussian random matrix (i.e., each entry has
mean 0 and variance 1/n). The quantile–quantile plots show good agreement within
one standard deviation and begin to deviate in the second standard deviation. This
is consistent with the observation that the fourth moment in the Erdös–Rényi case
deviates from the Gaussian case (q ≈ 5/3 for Erdös–Rényi and q = 2 for Gaussian).
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Fig. 8 Comparison of eigenvector components of the graph Laplacian in the Erdös–Rényi and Gaussian
ensembles. Numerical evidence illustrating that the eigenvector components of the graph Laplacian for
the symmetric Erdös–Rényi random graph ensemble are close to Gaussian distributed (to one standard
deviation). Left: quantile–quantile plot for a Gaussian random matrix with N (0,1/50) entries. Right:
quantile–quantile plot of eigenvector components for the Erdös–Rényi case with n = 50 nodes and edge
probability p = 0.5

Nevertheless, Theorem 2 predicts that there will be two clusters of Rk values as de-
scribed above and shown in Fig. 7 for the Erdös–Rényi case with n = 50 and p = 0.5.

4 Application: Stochastic Shielding of Hodgkin–Huxley Channels Under
Voltage Clamp

Hodgkin and Huxley’s (HH) model for the generation and propagation of action
potentials along the giant axon of the squid Loligo lies at the foundations of mod-
ern neuroscience [22, 30]. In the classic HH model, action potentials are generated
through the interaction of a leak current and two voltage-gated ionic currents, carried
by a sodium ion specific channel and a potassium ion specific channel. The potas-
sium channel comprises four identical subunits that open and close independently
with voltage-dependent rates. The channel carries a current when all four subunits
are in the open state. At the molecular level, a single channel can be represented as
a continuous time Markov jump process on a chain of five states, the fifth of which
has non-zero conductance. Of the eight transitions connecting states along this chain,
only the last two connect states with different conductances, therefore the stochastic
shielding approximation would preserve the fluctuations of these transitions and not
the other six.

The sodium channel involves two types of subunits, an activation subunit (“m”)
present in three identical copies, and an inactivation subunit (“h”) present in a single
copy.4 The resulting graph has eight distinct states connected by 20 different transi-
tions, each occurring with a voltage-dependent rate [31–33]. Four of these 20 tran-

4Modern measurements of purified sodium channel preparations suggest the presence of four activation

gates [39]; for consistency with common usage we will restrict attention here to the classical n4 potassium
channel and m3h sodium channel formulations of the model.
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sitions connect states with differing conductance values (zero versus non-zero); the
fluctuations of the remaining 16 transitions are ignored under the stochastic shielding
approximation.

Schmandt and Galán compared simulations of a system comprising 5000 individ-
ual potassium channels and 25000 individual sodium channels, both with and without
the stochastic shielding approximation. It is possible to construct an exact simulation
scheme, analogous to Gillespie’s stochastic simulation algorithm [34], that takes into
account the nonstationarity of the transition rates (propensities) arising from their
voltage dependence [35]. However, Schmandt and Galán used a discrete time ap-
proximation to this process. Appendix A discusses Schmandt and Galán’s approach
in more detail. Here we apply our analysis to evaluate the edge importance Rk of
each transition in the graph for the classic HH potassium and sodium channels, re-
spectively. Rather than consider the case of time-varying transition rates, we restrict
attention to the “voltage clamped” case. If the membrane potential is experimentally
held constant for a given cell, the per capita transition rates remain constant and the
fluctuating ion-channel population forms a stationary Markov process. In particular,
our analysis approximates this stationary population process with a linear multidi-
mensional Ornstein–Uhlenbeck process (see Appendix B); this approximation is rea-
sonable given the large numbers of individual channels considered in Schmandt and
Galán’s simulations.

In general, the ion-channel state graphs for the potassium and sodium channels in
the HH model have graph Laplacians L that are not symmetric. Therefore, we need to
modify our definition of the edge importance Rk (Eq. 10) in order to apply our results.
When L is not symmetric, we will assume that L is nevertheless diagonalizable, i.e.
that there are eigenvalues λi and a biorthogonal system of vectors vi , wi (right and
left eigenvectors) satisfying

Lvi = λivi,

w
ᵀ
i L = λiw

ᵀ
i , (44)

w
ᵀ
i vj = δij .

In this case the decomposition of L becomes L =∑i λiviw
ᵀ
i , and the definition of

Rk is modified as follows:

Rk = σ 2
k

n∑
i=2

n∑
j=2

( −1

λi + λj

)(
Mᵀvi

)(
w

ᵀ
i ζk

)(
ζ
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k wj

)(
v
ᵀ
j M
)
. (45)

4.1 Hodgkin–Huxley Potassium Channel

The potassium channel state graph in the Hodgkin–Huxley model is a 5-state chain
with one conducting state. Following the tau-leaping construction (Appendix B) we
consider a stationary OU process X(t) ∈ R

5, with linear measurement functional
M = [0,0,0,0,1]ᵀ. See Fig. 9 for an illustration of this channel. The corresponding
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Fig. 9 Illustration of the Hodgkin–Huxley potassium channel state graph. This is a 5-state chain where
state 5 is the conducting state. The eight reactions are labeled in blue and are used to define the edge
importance values Rk in the figures below. The reaction rates αn and βn are voltage-dependent as defined
by Eqs. 47–48

(weighted) adjacency matrix A is

A =

⎛
⎜⎜⎜⎜⎝

0 4αn(V ) 0 0 0
βn(V ) 0 3αn(V ) 0 0

0 2βn(V ) 0 2αn(V ) 0
0 0 3βn(V ) 0 αn(V )

0 0 0 4βn(V ) 0

⎞
⎟⎟⎟⎟⎠ , (46)

which is evidently not symmetric. The voltage-dependent transition rates are given
by

αn(V ) = 0.01(V + 55)

1 − e(−0.1(V +55))
, (47)

βn(V ) = 0.125e−(V +65)/80. (48)

Then the graph Laplacian L = (A − D)ᵀ is voltage-dependent and is given by

L =

⎛
⎜⎜⎝

−4αn(V ) βn(V ) 0 0 0
4αn(V ) −(βn(V ) + 3αn(V )) 2βn(V ) 0 0

0 3αn(V ) −2(βn(V ) + αn(V )) 3βn(V ) 0
0 0 2αn(V ) −(3βn(V ) + αn(V )) 4βn(V )

0 0 0 αn(V ) −4βn(V )

⎞
⎟⎟⎠ ,

since the entries in the diagonal matrix D are the weighted out-degrees of each node
for a given voltage V , i.e. Dii(V ) =∑5

j=1 Aij (V ). The matrix B is also voltage-
dependent. Recall that the kth column of B corresponds to the kth reaction, and this
can be written as σk(V )ζk . If rk is the per capita rate of reaction k (transition from
node i(k) to j (k)), then σk(V ) =

√
rk(V )N̄i(V ) where N̄i(V ) is the average number

of channels at state i at equilibrium for voltage V . Hence, B is given by

B = (√r1(V )N̄i(1)(V )ζ1, . . . ,

√
rk(V )N̄i(k)(V )ζk, . . . ,

√
rm(V )N̄i(m)(V )ζm

)
. (49)

Figure 10 shows the edge importance Rk as a function of voltage for each reaction
k ∈ {1, . . . ,8} in the potassium channel state graph. Note that since the process is at
steady state, and respects detailed balance, the mean flux due to the two reactions
connecting the same pair of nodes will be equal and opposite. Thus, in this case,
R1 = R2, R3 = R4, R5 = R6, and R7 = R8. The blue curve (R7 = R8) corresponds
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Fig. 10 Hodgkin–Huxley
potassium channel: edge
importance. This figure shows
edge importance Rk as a
function of voltage in the range
[−100,100] mV for each
reaction k ∈ {1, . . . ,8}. The blue
curve corresponds to edges 7
and 8 (R7 = R8), the transitions
between state 4 and conducting
state 5, which is the largest Rk

value in the voltage range above.
If neglected, these two reactions
would have the highest
contribution to the error

to edges 7 and 8, the transitions between state 4 and conducting state 5, and has
the largest edge importance value in the voltage range [−100,100] mV. This says
that if either or both of these reactions are neglected, they would have the highest
contribution to the error.

Physically, it is the current rather than the state occupancy that holds the greatest
interest. The current through a population of potassium channels with net conduc-
tance g is I = g(V − Vk); here Vk = −77 mV is the potassium reversal potential,
and the conductance g = goNo is the product of the unitary or single channel con-
ductance go with the total number of channels in the open state, No. The variance of
the current is therefore (go(V − Vk))

2 times the variance of the occupancy number,
meaning that near the reversal potential, the current can have low variance even if the
channel state has high variance. For convenience we set go = 1, which amounts to a
change of nominal units for measuring the conductance.

Figure 11 shows the variance of the nominal current, Rk ∗ (V −Vk)
2 as a function

of voltage V for each reaction k for the potassium channel. In addition to having the
highest edge importance curve, the blue curve R7 = R8 also has the highest variance
(left panel). The right panel shows the probability of being in each state as a function
of voltage.

4.2 Hodgkin–Huxley Sodium Channel

The sodium channel state graph in the Hodgkin–Huxley model consists of two
linked 4-state chains, for a total of eight states, including one conducting state,
and 20 reactions. Again following the tau-leaping construction (Appendix B) we
consider a stationary OU process X(t) ∈ R

8, with linear measurement functional
M = [0,0,0,0,0,0,0,1]ᵀ. See Fig. 12 for an illustration.
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Fig. 11 Hodgkin–Huxley potassium channel: variance of current and state occupancy. Left: variance of
the current Rk ∗ (V − Vk)2 as a function of voltage V for each reaction k where Vk = −77 mV is the
reversal potential for the potassium channel. The blue curve R7 = R8 has the highest variance. Right:
leading eigenvector components (normalized so that the components sum to 1) as a function of voltage

Fig. 12 Illustration of the Hodgkin–Huxley sodium channel. This channel has eight states, where state 8
is the conducting state, and 20 reactions. The reactions are labeled in blue and are used to define the edge
importance values Rk in the figures below. The reaction rates αm, αh , βm, and βh are voltage-dependent,
defined in Eqs. 51–52

The adjacency matrix in this case is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 3αm(V ) 0 0 αh(V ) 0 0 0
βm(V ) 0 2αm(V ) 0 0 αh(V ) 0 0

0 2βm(V ) 0 αm(V ) 0 0 αh(V ) 0
0 0 3βm(V ) 0 0 0 0 αh(V )

βh(V ) 0 0 0 0 3αm(V ) 0 0
0 βh(V ) 0 0 βm(V ) 0 2αm(V ) 0
0 0 βh(V ) 0 0 2βm(V ) 0 αm(V )

0 0 0 βh(V ) 0 0 3βm(V ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(50)

where the voltage-dependent entries are defined by

αm(V ) = 0.1(V + 40)

1 − e−(V +40)/10
, βm(V ) = 4e−(V +65)/18, (51)
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Fig. 13 Hodgkin–Huxley
sodium channel: edge
importance. This figure shows
edge importance Rk as a
function of voltage in the range
[−100,100] mV for each
reaction k ∈ {1, . . . ,20}. The
magenta curve corresponds to
edges 11 and 12 and the yellow
curve corresponds to edges 19
and 20 (transitions between the
conducting state 8 and its two
nearest neighbors, states 7 and
4, respectively). Note that
R11 = R12 (magenta) has the
highest edge importance in the
voltage range [−100,−25] mV
and R19 = R20 (yellow) has the
highest value in the range
[−25,100] mV

αh(V ) = 0.07e−(V +65)/20, βh(V ) = 1

1 + e−(V +35)/10
. (52)

The graph Laplacian L = (A − D)ᵀ is

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−D11(V ) βm(V ) 0 0
3αm(V ) −D22(V ) 2βm(V ) 0

0 2αm(V ) −D33(V ) 3βm(V )

0 0 αm(V ) −D44(V )

αh(V ) 0 0 0
0 αh(V ) 0 0
0 0 αh(V ) 0
0 0 0 αh(V )

βh(V ) 0 0 0
0 βh(V ) 0 0
0 0 βh(V ) 0
0 0 0 βh(V )

−D55(V ) βm(V ) 0 0
3αm(V ) −D66(V ) 2βm(V ) 0

0 2αm(V ) −D77(V ) 3βm(V )

0 0 αm(V ) −D88(V )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Dii(V ) =∑8
j=1 Aij (V ) from the adjacency matrix above (Eq. 50). The matrix

B is also voltage-dependent and is given by the general expression in Eq. 49.
Figure 13 shows the edge importance Rk as a function of voltage for each reaction

k ∈ {1, . . . ,20} for the sodium channel state graph. The sodium channel also satisfies
detailed balance, so each pair of complementary reactions ki , ki+1 connecting the
same pair of nodes will have equal edge importance values Rki

= Rki+1 . The magenta
curve corresponds to edges 11 and 12 and the yellow curve corresponds to edges
19 and 20, which are the transitions between state 7 and conducting state 8, and
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Fig. 14 Hodgkin–Huxley sodium channel: variance of current and state occupancy. Left: variance of the
current Rk ∗ (V − Vk)2 as a function of voltage V for each reaction k where Vk = 45 mV is the reversal
potential for the sodium channel. The magenta curve (R11 = R12, corresponding to the transitions between
state 7 and conducting state 8) has the largest variance in the voltage range [−100,−25] mV and the yellow
curve (R19 = R20, corresponding to the transitions between state 4 and conducting state 8) has the largest
variance in the voltage range [−25,100] mV. Right: leading eigenvector components (normalized so that
the components sum to 1) as a function of voltage. This shows the probability of being in each state and
how that changes with voltage

the transitions between state 4 and conducting state 8, respectively. Note that R11 =
R12 > Rk (magenta) for all other reactions k in the voltage range [−100,−25] mV
and then it switches so that R19 = R20 > Rk (yellow) for all other reactions k in the
range [−25,100] mV. This means that if any of these four reactions are neglected,
they would have the highest contribution to the error.

Figure 14 shows the variance of the nominal current Rk ∗ (V − Vk)
2 as a func-

tion of voltage V for each reaction k where Vk = 45 mV is the reversal potential
for the sodium channel. Again, we choose units for conductance such that the uni-
tary channel conductance equals 1. As before, we see that the edges with the highest
edge importance have the largest variance (left panel). The switch between the dom-
inant curves (magenta vs. yellow) agrees with the switch in Fig. 13 which occurs at
−25 mV. The right panel in Fig. 14 shows the probability of being in each state and
how that changes with voltage.

In summary, our analysis fully supports the accuracy of Schmandt and Galán’s
stochastic shielding algorithm for the Hodgkin–Huxley system, at least for the volt-
age clamped case that we consider. More significantly, our analysis allows one to cal-
culate the relative importance of each transition in a network of first-order reactions,
allowing a new quantitative basis for reduction of complexity of stochastic network
models. In the case of a simple chain of states such as the Hodgkin–Huxley potassium
channel, the rank ordering of transitions by importance Rk is the same for all volt-
ages. As shown in Fig. 13, however, for more complicated gating schemes, such as
the Hodgkin–Huxley sodium channel, the rank ordering of transitions by importance
can differ at different voltages.

For instance, the most important transition at subthreshold voltages (V �
−40 mV) is the transition connecting the [m = (1,1,0), h = 1] state (state 7 in
Fig. 12) to the [m = (1,1,1), h = 1] state (state 8, the conducting state). This tran-
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sition corresponds biophysically to the nonconducting-to-conducting transition that
occurs via activation or deactivation [22], that is, the opening (or closing) of the last
of three m-activation gates in the ion channel. It is significant that this transition is
the most “important” for subthreshold voltages, because the activation transition is
typically the last subthreshold event during spike generation.

On the other hand, at suprathreshold voltages the most important transition is that
connecting the [m = (1,1,1), h = 1] state (state 8) with the [m = (1,1,1), h = 0]
state (state 4). Biophysically, this transition corresponds to inactivation and deinacti-
vation, or the closing (and opening) of the h-inactivation gate. During action poten-
tial generation this transition plays an essential role in terminating the voltage spike
upstroke, and it is significant that it should be most “important” at suprathreshold
voltages.

For more general channel schemes, and more elaborate stochastic processes in
general, the identification of the relative quantitative importance of different transi-
tions or edges to the observable behavior of the system is a powerful new tool for
principled complexity reduction.

5 Discussion

In the ongoing race between growth of empirical data sets and growth of available
computing power, conceptual understanding of complex dynamical systems can get
left behind. Finding efficient lower-dimensional representations of high-dimensional
systems, that accurately capture relevant aspects of system behavior, not only takes
better advantage of computational resources, but can provide insights into the es-
sential components of a system. Hence, there has been a significant effort in recent
years to develop principled complexity reduction techniques for naturally occurring
complex networks.

Schmandt and Galán [14] developed a method for efficient simulation of stochastic
ion-channel gating in the membrane of a neuron. The random gating of ion channels
provides an important class of biological processes which are naturally represented as
Markov chains on graphs [33, 35]. The graphs in this case arise from the different con-
figurations of ion-channel subunits or “gates”. Typically each state carries one of two
functional labels: open or closed. This coarse-grained representation of the ion chan-
nel corresponds to a linear measurement functional, in the sense that current flowing
through open channels can be measured experimentally, and individual ion channels
typically exhibit binary all-or-none conductance. Schmandt and Galán implemented
a novel form of coarse graining technique that ignores fluctuations between indis-
tinguishable transitions (open-to-open or closed-to-closed) while preserving fluctua-
tions between distinguishable states. In order to gain a deeper understanding of why
their “stochastic shielding approximation” works so well, we analyzed it in the con-
text of a multidimensional Ornstein–Uhlenbeck process on a variety of networks.
First, we showed that this form of model reduction can be represented as a mapping
from a many-dimensional sample space to a lower-dimensional sample space, rather
than as a mapping from a many-node network to a few-node network, and that one
can formulate the problem as a search for the optimal such mapping. Second, we
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showed that for the specific 3-state example presented in Schmandt and Galán’s pa-
per, their approximation is indeed optimal in a specific sense. Third, we obtained a
theoretical result showing that stochastic shielding works for an ensemble of random
graphs with arbitrarily chosen binary measurement vectors, analogous to the identifi-
cation of nodes as conducting versus nonconducting in ion-channel models. Finally,
we evaluated the stochastic shielding approach for the graph representing the ion-
channel states of the classical Hodgkin–Huxley model, and showed that this approach
is optimal for a wide range of fixed voltages under “voltage clamped” conditions.

5.1 Relationship Between Different Levels of Modeling

The underlying description of Schmandt and Galán’s model [14] is given by the pop-
ulation process described in Sect. 2.1, a more general framework than the Ornstein–
Uhlenbeck process that we study. The OU process connects to the population process
via a tau-leaping approximation, as described in Appendix B. The tau-leaping method
involves two key assumptions. First, assuming that the transition propensities αij (k)

do not change dramatically in an interval of length τ , we can approximate the number
of transitions in each interval by a collection of independent Poisson processes. This
approach is closely related to the framework of Schmandt and Galán, except that they
use a binomial distribution instead of a multinomial distribution (see Appendix A).
Second, if the expected number of occurrences of each reaction is sufficiently large
(i.e. 10 s or 100 s) in time τ , then it is reasonable to use a Gaussian approximation to
the Poisson process. The resulting model comprises the standard chemical Langevin
formulation, in which the size of the fluctuations associated with each transition is
state dependent. These two constraints can always be satisfied by taking a sufficiently
large number of individuals in the population. The Ornstein–Uhlenbeck process is ob-
tained by linearizing about the mean field steady state distribution of the tau-leaping
model (see Appendix B). The intensity of the noise terms is determined by the mean
steady state occupancy of each state, resulting in a linear OU process. A technical
obstacle to extending our results beyond the linear OUP setting is the lack of an ex-
plicit closed form expression for the stationary covariance of the population process
analogous to Eq. 6. Although our analysis is limited to the OU process version of the
system, it is reasonable to expect that stochastic shielding will apply more broadly.
For example, in the full population process one can decompose the fluxes in the model
into a sum of a mean component and a mean zero fluctuating component. In this case,
stochastic shielding amounts to setting the fluctuating component to zero while pre-
serving the mean for those transitions connecting observationally equivalent states.

Limiting the investigation to voltage clamped conditions facilitated a more thor-
ough mathematical analysis of the stochastic shielding approximation, but also re-
stricted the biological applicability of the results. By approximating the population
process with a closely related Ornstein–Uhlenbeck process we effectively linearized
the system about a fixed point given by the mean field behavior. Therefore our
analysis does not address important nonlinear dynamical behaviors arising in many
physical and biological systems, such as noise driven transport between multiple
quasiequilibria, fluctuation induced spiking in excitable systems (including noise in-
duced spiking in nerve cells), or limit cycle oscillations (including regular spiking in
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nerve cells). On the one hand, we anticipate that transitions in a state graph corre-
sponding to directly observable state changes, such as between conducting and non-
conducting ion-channel states, will remain “important” under more general measures
accounting for global, nonlinear behaviors. On the other hand, it is certainly possible
that additional transitions may also become important with respect to more general
measures, if the linear measurement vectors employed here fail to capture their con-
tribution to global dynamics.

5.2 Broader Applications

The stochastic shielding approximation can be directly applied to various biological
networks, not just ion-channel models. For instance, Lu et al. [13] describe a signal
transduction network in which the phosphorylation and transport events are arranged
with a ladder topology. The two sides of the ladder denote molecules in the nucleus
and in the cytoplasm, respectively. On each side, there are M + 1 species having
different levels of phosphorylation (see Fig. 1 of [13] for an illustration). This is a
more elaborate Markov process than a simple ion-channel state model, but it can still
be described with a binary measurement vector. The readout is 1 if the system is both
in the nucleus and in a specific phosphorylated state, and 0 otherwise. The application
of stochastic shielding to such a system is quite natural.

Another broad class of examples includes calcium-induced calcium release
Markov models. Nguyen, Mathias and Smith [36] studied a stochastic automata net-
work description of instantaneously coupled intracellular calcium channels which
they derived from Markov models of single channel gating that include calcium ac-
tivation, inactivation, or both. This high-dimensional system involves a large num-
ber of functional transitions; the transition probabilities of one channel depend on
the local calcium concentration which is typically influenced in turn by the state of
other channels in the population. Such models can easily become very high dimen-
sional. For example, DeRemigio et al. [37] considered a discrete state continuous
time Markov model of coupled calcium channels, taking explicit channel position in
to account, which yields up to 1.6 million distinct states. Similarly, in order to in-
vestigate the relationship between single-molecule stochastic events and whole-cell
behavior, Skupin et al. [38] implemented a multi scale calcium signaling and spike
generation model. Their model connects channel state transitions on a millisecond
time scale with interspike interval fluctuations on the scale of tens of seconds, and
involves a large number of chemical states. For systems of such complexity, any re-
duction of the complexity of the stochastic process by stochastic shielding will likely
be advantageous, both for simulation and for analysis.

We have focused here on discrete state ion-channel models with binary measure-
ment vectors. However, it is possible that some ion channels may have a richer than
binary readout structure. For example, Catterall [39] provides structural evidence that
activation of a bacterial sodium channel may possess multiple non-equivalent con-
ducting states, raising the possibility that conductance could be graded rather than
binary. As another example which could lead to graded measurement vectors, adap-
tive evolution can be represented as a random walk on a graph representing genomic
variants connected by possible mutation routes [40, 41]. While the stochastic process
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Fig. 15 Edge importance distribution for graded measurement vector M . The effect of neglecting the
fluctuations associated with the kth edge in an Erdös–Rényi network with n = 50 nodes and edge proba-
bility p = 0.5, as a function of the difference in measurement M at the two ends of the edge, Mᵀζk . In
this example, the components of M were assigned from the uniform distribution on [0,1], independently
of the presence or absence of edges in the graph. Left: Rank order plot of edge importance Rk . Compare
to Fig. 7; note the absence of a clear gap distinguishing “important” from “unimportant” edges. Right:
Horizontal axis, x = |Mᵀζk |. Vertical axis, Rk . The superimposed curve shows the quadratic y ≈ x2/n,
for n = 50

representing the evolution of a human pathogen such as influenza may have an enor-
mous number of degrees of freedom [42, 43], the dynamics of interest may comprise
a smaller number of dimensions, such as a strain’s virulence or fitness, which may
naturally be graded rather than discrete quantities.

Stochastic shielding in a modified form would still apply even if the measure-
ment functional were graded continuously. As an example, consider an Erdös–Rényi
random graph on n nodes with edge probability p, with graded measurement vec-
tor M ∈ [0,1]n instead of binary M ∈ {0,1}n. The left panel of Fig. 15 shows the
edge importance distribution for the case n = 50 and p = 0.5 where the compo-
nents of M are chosen uniformly at random from the unit interval. The right panel of
Fig. 15 illustrates the difference in measurement between nodes connected by edge
k, x = |Mᵀζk|, versus the edge importance Rk , and shows good agreement with the
curve y ≈ x2/n for the case n = 50.

This empirical result (Fig. 15, right panel) suggests the following generalization
of Theorem 2:

E[Rk|M] = σ 2
k (Mᵀζk)

2

nC
+ O

(
n−q

)
, as n → ∞, (53)

for some q > 1 (e.g., q = 2 for the Gaussian unitary ensemble, and q ≈ 5/3 for the
Erdös–Rényi ensemble, empirically). In the case of a binary measurement vector,
M ∈ {0,1}, this formula would revert to the result given in Theorem 2. A rigorous
derivation of Eq. 53 is beyond the scope of the present paper.

The behavior of stochastic processes arising in first-order reaction networks has
been explored in broad generality by Cadgil, Lee and Othmer [44]. They used a spec-
tral approach to analyze a general system of first-order reaction networks, and studied
the effect of changes in the network topology on the distribution of the number of re-
actant molecules, as well as the difference between conversion and catalytic networks
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with the same topology. Exploring sample space reductions conditioned on a linear
measurement functional for such general classes of networks would be of interest.

5.3 Different Levels of Model Simplification

Model simplification is an important goal for Markov chain models in many scientific
contexts, and complexity reduction has been pursued through a corresponding vari-
ety of approaches. Newman and others have extensively developed techniques based
on community structure, aggregating or lumping nodes together based on topological
considerations [45, 46]. When applied to a stochastic process on a graph, the aggre-
gation of N � n to n nodes is equivalent to a projection of the original process onto
a subspace in which the process components on the aggregated fine-grained nodes
are averaged. In most cases, the resulting coarsened process is no longer Markov,
although in some cases exact dimension reduction to a lower-dimensional Markov
processes can be accomplished [47–49]. Other aggregation schemes, such as spectral
coarse graining [50–52], have been proposed based on the spectral properties of the
graph Laplacian. Approaches based on topological or abstract spectral properties do
not necessarily take into account functional properties of the system to be simplified.
Because stochastic shielding simplifies the representation of a stochastic process tak-
ing into account the function of the system, namely by distinguishing conducting ver-
sus nonconducting ion-channel states, it may provide insights not afforded by graph
aggregation based on modularity or graph spectra.

As another example of simplification based on functional properties, Bruno, Yang
and Pearson [53] used independent open-closed transitions to describe a canonical
form that can express all possible reaction schemes for binary ion channels.

Not all prior approaches to simplification of random processes on graphs proceed
by aggregating nodes. For instance, Ullah, Bruno and Pearson [54] proposed model
simplification by the elimination of nodes with low equilibrium occupancy probabil-
ity using time scale separation arguments. The reduced system has fewer parameters,
and the dynamics of the reduced system are identical to those of the original system
except on very fast time scales. Other simplifications based on graph sparsification
have been proposed by Koutis, Levin and Peng [55].

In this paper we have investigated a novel form of simplification of stochastic
processes on graphs. Stochastic shielding is based on replacing a high-dimensional
stochastic process defined on a graph with a lower-dimensional process on the same
graph, rather than replacing a complex network with a simpler one. Specifically, we
consider mappings from the original process to an approximate process defined on
a significantly smaller sample space. In one sense, we can think of the full and
a reduced system as two systems with partially shared stochastic input, and par-
tially independent stochastic input of different magnitudes (magnitude zero, in one
case). Structurally, this situation is analogous to the kind of mixed common-noise
and independent-noise scenario studied in the context of neuronal synchronization
[56–58]. In another sense, stochastic shielding can be seen as a different kind of pro-
jection, vs. that induced by lumping or pruning nodes. The latter methods simplify
the graph, whereas stochastic shielding leaves the graph unchanged and simplifies the
sample space on which the approximate process lives.
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Appendix A: Stochastic Shielding Construction of Schmandt and Galán

In [14], Schmandt and Galán considered discrete time simulations approximating a
continuous time, finite state Markov chain

Ni(t) = Ni(0) +
∑
j �=i

(
Ñji(t) − Ñij (t)

)
, (54)

where Ni(t) is the number of individuals in a population (of size Ntot) in state i at
time t , and Ñij (t) counts the number of i → j transitions that have occurred as of
time t . The transition counts Ñij (t) may be written using the random time change
representation [17] as

Ñij (t) = Yij

[∫ t

s=0
Ni(s)αij (s)ds

]
. (55)

By convention we take Nii(t) ≡ 0 and αii(t) ≡ 0. The Yij are independent unit rate
Poisson processes driving the different state-to-state transitions. The transition from
state i to state j occurs with per capita rate αij . In a conductance-based model,
such as a discrete stochastic version of the Hodgkin–Huxley equations, the vector
(N1(t), . . . ,NK(t)) would represent the number of ion channels in each of K dis-
tinct states, and the transition rates could vary with time, e.g. through dependence
on membrane potential or second messenger concentration. Although Schmandt and
Galán consider both the stationary and time-varying case, we restrict attention to
the stationary case, which corresponds experimentally to a voltage clamped prepara-
tion.

One may (approximately) simulate trajectories of the Markov chain using a dis-
crete time step approach. Following [14], we fix a time step h > 0 and define Nij as
Nij (t) = Ñij (t + h) − Ñij (t), that is, the number of i → j transitions occurring in
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the interval (t, t +h]. The net increments in the state-occupancy numbers Ni are then
given by

�i(t) ≡ Ni(t + h) − Ni(t) =
∑
j �=i

Nji(t) − Nij (t). (56)

To obtain a practical algorithm, Schmandt and Galán set Nij (t) ∼ Binom[Ni(t),

αij (t)h]. Since there is then a finite probability that Ni(t + h) < 0, one must include
an iterative resampling scheme to force Ni(t + h) ≥ 0. As an alternative, we con-
sider instead a multinomial representation of the destinations of all Ni(t) individuals
beginning the time step at node i. That is, for each i, 1 ≤ i ≤ K , we set

(Ni1, . . . ,Nii, . . . ,NiK)

∼ Multi

[
Ni(t),

(
αi1h, . . . ,

(
1 −

∑
j �=i

αij h

)
, . . . , αiKh

)]
. (57)

The multinomial distribution produces an integer-valued random vector with mean
and marginal distributions the same as that given by the binomial distribution; the
only difference is that transitions emanating from a common node are not assumed to
be independent.

The first and second moments arising from the multinomial transition distribution
are

E
[
Nij | �N(t)

] = Ni(t)αijh, for i �= j, (58)

E
[
Nii | �N(t)

] = Ni(t)

(
1 −

∑
j �=i

αij h

)
= Ni(t) −

∑
j �=i

E[Nij ], (59)

V
[
Nij | �N(t)

] = Ni(t)αijh(1 − αijh), for i �= j, (60)

V
[
Nii | �N(t)

] = Ni(t)

(∑
j �=i

αij h

)(
1 −

∑
j �=i

αij h

)
, (61)

Cov
[
Nij ,Nij ′ | �N(t)

] = −Ni(t)αijαij ′h2, for j �= j ′, j �= i, j ′ �= i, (62)

Cov
[
Nij ,Nii | �N(t)

] = −Ni(t)αijh

(
1 −

∑
j ′ �=i

αij ′h

)
, for j �= i. (63)

Here all expectations are conditioned on the current state of the system,

�N(t) = (N1(t), . . . ,Ni(t), . . . ,NK(t)
)
.

The mean increment given the current distribution of the population, �̄i(t) ≡
E[�i(t)| �N(t)], is written in terms of the mean transitions as

�̄i(t) =
∑
j �=i

(
E
[
Nji(t)

∣∣Nj(t)
]− E

[
Nij (t)

∣∣Ni(t)
])

=
∑
j �=i

(
Nj(t)αjih − Ni(t)αijh

)
. (64)
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The deviation of the actual number of i → j transitions from the expected number is

δ�i(t) ≡ �i(t) − �̄i(t)

=
∑
j �=i

((
Nji(t) − Nj(t)αjih

)− (Nij (t) − Ni(t)αij h
))

=
∑
j �=i

(
δNji(t) − δNij (t)

)
, (65)

where δNij (t) = Nij (t) − E[Nij (t)| �N(t)] is the deviation of the number of i → j

transitions from the expected number. The mean of δNij (t) is zero for all i, j , and all
t , by construction. The stochastic shielding approximation amounts to setting δNij (t)

to zero for selected i → j transitions, namely for those transitions between “unob-
servable states”, or (equivalently) between any two states with the same value of
the measurement observable, i.e. the conductance. Since E[δNij (t)| �N(t)] = 0 al-
ready, the only error introduced by suppressing the fluctuations associated with the
i → j transition comes from the propagation of the fluctuations through the net-
work to the observable states. But the fluctuations in the transitions, Nij , are only
weakly correlated with the fluctuations in the occupancy numbers of observable
states, Nk(t), when i and j have the same conductance. To introduce this shielding
effect, Schmandt and Galán calculate the second moments for the population incre-
ments δ�i(t). As an example, in the three node case, for the multinomial transition
model, the variances are given by

E
[
δ�2

1(t)| �N(t)
] = V

[
N12
∣∣ �N(t)

]+ V
[
N21
∣∣ �N(t)

]
= N1(t)α12h(1 − α12h) + N2(t)α21h(1 − α21h), (66)

E
[
δ�2

2(t)| �N(t)
] = V

[
N12| �N(t)

]+ V
[
N21| �N(t)

]+ V
[
N23| �N(t)

]+ V
[
N32| �N(t)

]
+ 2 Cov

[
N21,N23| �N(t)

]
(67)

= N1(t)α12h(1 − α12h) + N2(t)α21h(1 − α21h)

+ N2(t)α23h(1 − α23h) + N3(t)α32h(1 − α32h)

− 2N2(t)α21α23h
2, (68)

E
[
δ�2

3(t)| �N(t)
] = V

[
N23| �N(t)

]+ V
[
N32| �N(t)

]
= N2(t)α23h(1 − α23h) + N3(t)α32h(1 − α32h), (69)

and the covariances are given by

E
[
δ�1(t)δ�2(t)| �N(t)

] = −V
[
N12| �N(t)

]− V
[
N21| �N(t)

]− Cov
[
N21,N23| �N(t)

]
= −N1α12h(1 − α12h) − N2α21h(1 − α21h)

+ N2α21α23h
2, (70)

E
[
δ�1(t)δ�3(t)| �N(t)

] = Cov
[
N21,N23| �N(t)

]= −N2(t)α21α23h
2, (71)
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E
[
δ�2(t)δ�3(t)| �N(t)

] = −V
[
N23| �N(t)

]− V
[
N32| �N(t)

]− Cov
[
N21,N23| �N(t)

]
= −N2α23h(1 − α23h) − N3α32h(1 − α32h)

+ N2α21α23h
2. (72)

Schmandt and Galán obtain similar expressions that agree up to order O(h); the
difference between the binomial and multinomial expressions only appears in the
O(h2) terms. For example, they assert that E[δ�1(t)δ�3(t)| �N(t)] ≡ 0, while under
the multinomial model this covariance is equal to −N2(t)α21α23h

2. Fortunately, this
difference does not undermine the main argument.

From this point, Schmandt and Galán obtain an expression for the stationary co-
variance matrix of the reduced process (compare Eq. (8) in [14] with our Lemma 1)
and decompose the covariance into a sum over direct and indirect connections to a
single conducting or observable state. This situation corresponds, in our analysis, to
the case where the measurement vector M contains a single non-zero entry. Schmandt
and Galán argue that suppressing the fluctuations associated with transitions not di-
rectly affecting the observable state decrease their contribution to the variance of
the observable state occupancy, while increasing the contribution of the direct tran-
sitions to the same variance. In addition, they show through numerical comparisons
that Hodgkin–Huxley equations with a full Markov process and the reduced process
are practically indistinguishable both under voltage clamp (stationary transition rates)
and current clamp (time-varying transition rates) conditions.

Appendix B: Derivation of Tau-Leaping for an Arbitrary Finite Graph

B.1 Tau-Leaping: General Case

We will use standard tau-leaping arguments [59–61] to derive the multidimensional
Ornstein–Uhlenbeck process in Sect. 2.2 (Eq. 4). Given a symmetric directed graph
G = (V,E) with n nodes, let N(t) ∈ N

n be the population process (Markov jump
process) representing the number of individuals in each of n states at time t . Let
Ntot ≥ 1 be the total number of individuals in the system. Recall the random time
change representation in terms of Poisson processes given in Eq. 2:

N(t) = N(0) +
∑
k∈E

ζkYk

(∫ t

0
αkNi(k)(s)ds

)
. (73)

Each Yk is an independent unit rate Poisson process counting the occurrence of re-
action k (transition from state i(k) to j (k)); αk is the per capita transition rate of
reaction k; Ni(k)(s) is the number of individuals at state i(k) at time s, and ζk is
the stoichiometry vector for reaction k. For simplicity, we will suppress “k” in our
notation so that state i means state i(k).

In the case Ntot = 1, let pi(t) = P(X(t) = i) be the probability that a single ran-
dom walker occupies state i at time t . Clearly,

∑n
i=1 pi(t) = 1 for each t . The time
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evolution of the probability vector p(t) = [p1(t), . . . , pn(t)] is given by the following
master equation

dp

dt
= pL, (74)

where

L = −
∑
k∈E∗

αkζkζ
ᵀ
k (75)

is the graph Laplacian which can be represented as the sum over all undirected edges
(denoted by the set E∗) given in Eq. 75.

Let π represent the steady state distribution, i.e. the row vector satisfying πL = 0
with entries such that

∑n
i=1 πi = 1. Suppose we represent N(t) as the deviation from

its mean, N̄ = πNtot, so that N(t) = N̄ +X(t), where X(t) is a mean zero stochastic
process. Then

X(t) = N(t) − N̄ (76)

= N(0) − N̄ +
∑
k∈E

ζkYk

(∫ t

0
αkNi(s)ds

)
(77)

= X(0) +
∑
k∈E

ζkYk

(∫ t

0
αk

[
N̄i + Xi(s)

]
ds

)
(78)

= X(0) +
∑
k∈E

ζkYk

(
tαkN̄i +

∫ t

0
αkXi(s)ds

)
, (79)

since Ni(s) = N̄i(s) + Xi(s) and αk and N̄i are constants.
Now following standard tau-leaping results [59–61],

X(t + τ) − X(t) =
∑
k∈E

ζk

[
Yk

(
(t + τ)αkN̄i +

∫ t+τ

0
αkXi(s)ds

)

− Yk

(
tαkN̄i +

∫ t

0
αkXi(s)ds

)]

≈
∑
k∈E

ζkỸk

(
ταkN̄i + ταkXi(t)

)
(80)

=
∑
k∈E

ζkỸk

(
ταk

[
N̄i + Xi(t)

])
, (81)

which says that we can approximate Eq. 80 using an almost equivalent set of Poisson
processes Ỹk where each Ỹk at time t is approximately Gaussian distributed with
mean and variance ταk[N̄i +Xi(t)]. Note that if X is a stationary irreducible Markov
process on a finite state space, then the occupancy probability of state i, πi > 0. By
choosing Ntot � 1/(min{πi}), we may guarantee that the mean population X̄i for
each i is as large as necessary for the Gaussian approximation to hold. Since we
are assuming that |Xi(t)| � N̄i (uniformly in time), and since we want the noise
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amplitude to be independent of X, we further approximate

Ỹk

(
ταk

[
N̄i + Xi(t)

])≈ N
(
ταk

[
N̄i + Xi(t)

]
, ταkN̄i

)
(82)

by dropping the dependence of the variance on X.
Dividing by τ and taking the limit as τ → ∞ yields the SDE

dX =
∑
k∈E

ζk

([N̄i + Xi]αkdt +
√

N̄iαkdWk

)
. (83)

Recalling that the kth reaction is from node i(k) to j (k), then the kth reaction in
the first term in the RHS of Eq. 83 can be written as

ζk(N̄l + Xl)αkdt =

⎧⎪⎨
⎪⎩

−(N̄l + Xl)αkdt if component l = i(k),

(N̄i + Xi)αkdt if component l = j (k),

0 otherwise.

(84)

Keeping track of components, we sum over the source and destination nodes for each
reaction. Then for the lth component of X we have

dXl =
∑

i

(N̄i + Xi)αildt − (N̄l + Xl)
∑
j

αlj dt (85)

which yields

dX = (N̄ + X)Qdt, where (Q)ij =
{

αij if i �= j,

−∑j �=i αij if i = j,
(86)

where Q is the generator matrix. Note that we changed notation slightly to illustrate
that αij is the transition rate from state i to j rather than indexing by reaction k.
The graph Laplacian we consider in Eq. 4 is actually L = Qᵀ so we have dX =
L(N̄ + X)dt . Since N̄ is proportional to the stationary distribution π , we have that
LN̄ = 0, and hence the first term in the SDE is dX = LXdt .

Now the second term in the RHS of Eq. 83 can be written as

ζk

√
N̄lαkdWk =

⎧⎪⎨
⎪⎩

−
√

N̄lαkdWk if component l = i(k),√
N̄iαkdWk if component l = j (k),

0 otherwise.

(87)

Keeping track of components, here we sum over all m reactions to find

dX =
(√

N̄l(1)α1ζ1,

√
N̄l(2)α2ζ2, . . . ,

√
N̄l(m)αmζm

)
⎛
⎜⎜⎜⎝

dW1
dW2

...

dWm

⎞
⎟⎟⎟⎠ (88)

= BdW, (89)

where σk =
√

N̄i(k)αk in the definition of matrix B .
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Therefore, putting the first and second terms together, we have derived the OU
process dX = LXdt + BdW given in Eq. 4.

B.2 Tau-Leaping: 3-State Example

Here we will explicitly derive the OU process from the population process given in
Sect. 2.1 by using the tau-leaping argument above for the 3-state example in Sect. 2.3.
We have N(t) ∈N

3 and by Eq. 73,

N1(t) = N1(0) − Y1

[∫ t

0
N1(s)α1ds

]
+ Y2

[∫ t

0
N2(s)α2ds

]
, (90)

N2(t) = N2(0) + Y1

[∫ t

0
N1(s)α1ds

]
− Y2

[∫ t

0
N2(s)α2ds

]

− Y3

[∫ t

0
N2(s)α3ds

]
+ Y4

[∫ t

0
N3(s)α4ds

]
, (91)

N3(t) = N3(0) + Y3

[∫ t

0
N2(s)α3ds

]
− Y4

[∫ t

0
N3(s)α4ds

]
, (92)

following the notation given in Sect. 2.3, specifically the labeling of reactions given
in Table 1. Note that αk could be time dependent αk(t).

The tau-leaping approximation above gives

X1(t) = X1(0) −
∫ t

0
X1(s)α1ds −

∫ t

0

√
X1(s)α1dW1(s)

+
∫ t

0
X2(s)α2ds +

∫ t

0

√
X2(s)α2dW2(s), (93)

X2(t) = X2(0) +
∫ t

0
X1(s)α1ds +

∫ t

0

√
X1(s)α1dW1(s)

−
∫ t

0
X2(s)α2ds −

∫ t

0

√
X2(s)α2dW2(s)

−
∫ t

0
X2(s)α3ds −

∫ t

0

√
X2(s)α3dW3(s)

+
∫ t

0
X3(s)α4ds +

∫ t

0

√
X3(s)α4dW4(s), (94)

X3(t) = X3(0) +
∫ t

0
X2(s)α3ds +

∫ t

0

√
X2(s)α3dW3(s)

−
∫ t

0
X3(s)α4ds −

∫ t

0

√
X3(s)α4dW4(s). (95)

Equivalently, we could write these integral equations in differential form

dX1 = −X1α1dt −√X1α1dW1 + X2α2dt +√X2α2dW2, (96)
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dX2 = X1α1dt +√X1α1dW1 − X2α2dt −√X2α2dW2

− X2α3dt −√X2α3dW3 + X3α4dt +√X3α4dW4, (97)

dX3 = X2α3dt +√X2α3dW3 − X3α4dt −√X3α4dW4. (98)

These equations are nonlinear since the noise intensity depends on Xi . Note that for
any t , X1(t)+X2(t)+X3(t) = Ntot so that the total population is constant. The mean
X̄ satisfies

dX̄

dt
= X̄

⎛
⎝−α1 α1 0

α2 −(α2 + α3) α3
0 α4 −α3

⎞
⎠ (99)

where the matrix above is the generator Q, or our Lᵀ. In the case where Q is fixed, X̄
is proportional to the null left eigenvector of Q; biologically, this is the voltage clamp
case. Let (X̄1, . . . , X̄n) be the corresponding stationary vector. Now we linearize Eqs.
96–98 around the stationary vector.

Let V = X − X̄ and assume that |V |
X̄

� 1. Then since
√

Xiαk =
√

(X̄i + Vi)αk =√
X̄iαk + O(

Vi

X̄i
), we have

dV1 = (−V1α1 + V2α2)dt −√X1α1dW1 +√X2α2dW2 + O

( |V |
Ntot

)
, (100)

dV2 = (V1α1 − V2α2 − V2α3 + V3α4)dt +√V1α1dW1 −√V2α2dW2

−√V2α3dW3 +√V3α4dW4 + O

( |V |
Ntot

)
, (101)

dV3 = (V2α3 − V3α4)dt +√V2α3dW3 −√V3α4dW4 + O

( |V |
Ntot

)
. (102)

Neglecting the O(
|V |
Ntot

) terms gives us the multidimensional Ornstein–Uhlenbeck pro-

cess of Eq. 4 for the 3-state example.

Appendix C: Proofs and Calculations

C.1 Stationary Covariance of a Multidimensional OU Process

The SDE for X(t) in Eq. 4 has the explicit solution (see [18], Chap. 4.5)

X(t) = exp(Lt)X(0) +
∫ t

0
exp
(
L
(
t − t ′

))
BdW

(
t ′
)
. (103)

Assuming the initial condition is either deterministic or Gaussian, then X(t) is Gaus-
sian with mean

E
[
X(t)

]= exp(Lt)E
[
X(0)

]
(104)



Page 42 of 52 D.R. Schmidt, P.J. Thomas

and correlation function

Cov
[
X(t),Xᵀ(s)

] = exp(Lt)E
[
X(0),Xᵀ(0)

]
exp(Ls)

+
∫ t∧s

0
exp
[
L
(
t − t ′

)]
BBᵀ exp

[
Lᵀ(s − t ′

)]
dt ′, (105)

where t ∧ s means the minimum of t and s. Setting s = t and taking the limit as
t → ∞, we obtain the stationary covariance function

Cov
[
X(t),Xᵀ(t)

]= lim
t→∞

∫ t

0
exp
[
L
(
t − t ′

)]
BBᵀ exp

[
Lᵀ(t − t ′

)]
dt ′. (106)

We exploit the fact that not only does B decompose into the sum B =∑m
k=1 Bk , but

in the case of a first-order reaction process, BBᵀ also decomposes into the following
sum:

BBᵀ =
m∑

k=1

BkB
ᵀ
k , (107)

and further, BkB
ᵀ
k = σ 2

k ζkζ
ᵀ
k for each edge (reaction) k ∈ E . Therefore, the stationary

covariance of the full process decomposes into a sum of the contributions from the m

different reaction processes:

Cov
[
X(t),Xᵀ(t)

]= lim
t→∞

∫ t

0

m∑
k=1

σ 2
k exp

[
L
(
t − t ′

)]
ζkζ

ᵀ
k exp

[
Lᵀ(t − t ′

)]
dt ′. (108)

We note that the (left) eigenvector corresponding to the leading (0) eigenvalue of L

has constant components, therefore it lies in the kernel of the matrix BkB
ᵀ
k for each

k, which guarantees finite covariance in Eq. 108.

C.2 Computation of Edge Importance Rk and Proof of Lemma 1

Using the spectral properties of the graph Laplacian L, we can rewrite the stationary
covariance of X(t) (Eq. 106) by replacing each expression involving a matrix expo-
nential by the sum over the orthogonal eigendecomposition of L. Let vi be the ith
eigenvector of L (written as a column vector), with eigenvalue λi , i.e. Lvi = λivi .
Summing over each eigenvalue, we can write L =∑n

i=1 λiviv
ᵀ
i . Note that this de-

composition is only valid when L is symmetric; the non-symmetric case is discussed
in Sect. 4. Then we have the following expression from Eq. 106:

exp
[
L
(
t − t ′

)]
BBᵀ exp

[
Lᵀ(t − t ′

)]
(109)

=
(

n∑
i=1

eλi(t−t ′)viv
ᵀ
i

)
BBᵀ

(
n∑

j=1

eλj (t−t ′)vj v
ᵀ
j

)
(110)

=
n∑

i,j=1

e(λi+λj )(t−t ′)(viv
ᵀ
i

)(
BBᵀ)(vjv

ᵀ
j

)
. (111)
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Using the decomposition of matrix B (Eqs. 5 and 107), it follows that

BBᵀ =
m∑

k=1

BkB
ᵀ
k =

m∑
k=1

σ 2
k ζkζ

ᵀ
k . (112)

The covariance of the full process X is therefore given by

Cov
[
X(t),Xᵀ(t)

]
=
∫ t

0

n∑
i,j=1

e(λi+λj )(t−t ′)(viv
ᵀ
i

)(
BBᵀ)(vjv

ᵀ
j

)
dt ′ (113)

=
m∑

k=1

σ 2
k

n∑
i=2

n∑
j=2

(
1 − e(λi+λj )t

−(λi + λj )

)(
viv

ᵀ
i

)(
ζkζ

ᵀ
k

)(
vjv

ᵀ
j

)
. (114)

By construction of the graph Laplacian, its leading eigenvalue λ1 ≡ 0. The corre-
sponding (right) eigenvector has constant components, v1 = (1, . . . ,1)ᵀ/

√
n. There-

fore, for each stoichiometry vector we have ζ
ᵀ
k v1 ≡ 0. Consequently the terms in the

inner summation (114) with index i = 1 or j = 1 vanish, and may be omitted without
changing the result. Taking the limit as t → ∞ of the covariance function gives us
the stationary covariance

Cov
[
X(t),Xᵀ(t)

]
= lim

t→∞

m∑
k=1

σ 2
k

n∑
i=2

n∑
j=2

(
1 − e(λi+λj )t

−(λi + λj )

)(
viv

ᵀ
i

)(
ζkζ

ᵀ
k

)(
vjv

ᵀ
j

)
(115)

=
m∑

k=1

σ 2
k

n∑
i=2

n∑
j=2

( −1

λi + λj

)(
viv

ᵀ
i

)(
ζkζ

ᵀ
k

)(
vjv

ᵀ
j

)
. (116)

Recall that we are interested in the linear measurement functional M ∈ R
n projected

onto X(t), i.e. the projection Y(t) = MᵀX(t). For edges k ∈ E ′ neglected in the
approximation Ỹ = MᵀX̃(t), we take the limit as t → ∞ of the mean squared error
of Ỹ (t) − Y(t) = MᵀU(t) to get

R
[
E ′] = lim

t→∞E
[∥∥(Ỹ (t) − Y(t)

)∥∥2
2

]
(117)

= lim
t→∞E

[∥∥MᵀU(t)
∥∥2

2

]
(118)

= lim
t→∞

(
Mᵀ Cov

[
U(t),Uᵀ(t)

]
M
)

(119)

=
∑
k∈E ′

σ 2
k

n∑
i=2

n∑
j=2

( −1

λi + λj

)(
Mᵀvi

)(
v
ᵀ
i ζk

)(
ζ
ᵀ
k vj

)(
v
ᵀ
j M
)

(120)

=
∑
k∈E ′

Rk. (121)
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C.3 Proof of Lemma 3

Suppose that assumptions A0–A5 given in Sect. 3.1 hold. We assume that M ∈ {0,1}n
is an arbitrary measurement vector consisting of n1 > 0 ones and n0 > 0 zeros such
that n1 + n0 = n, and n1 = O(1) as n → ∞. That is, we exclude the case where n1
grows without bound as n grows. If we look at the corresponding measurement value
of the l−th and l+th components of ζk (see Eq. 17), we have three possible cases:

1. l± ∈ 1M , i.e. M(l−) = M(l+) = 1;
2. l± /∈ 1M , i.e. M(l−) = M(l+) = 0;
3. l− ∈ 1M and l+ /∈ 1M , i.e. M(l−) = 1 and M(l+) = 0 (respectively, M(l−) = 0

and M(l+) = 1, equivalent up to a sign change).

For each part of Lemma 3, we will prove the result for these three cases. If we let n∗
1

denote the number of terms in the set 1M\{l±}, then

n∗
1 =

⎧⎪⎨
⎪⎩

n1 − 2, if l± ∈ 1M (Case 1),
n1, if l± /∈ 1M (Case 2),
n1 − 1, if l− ∈ 1M and l+ /∈ 1M (Case 3),

(122)

and we can consider all three cases at once using this notation where now n∗
1 = O(1)

as n → ∞, by our assumption on M .
Let a = vi(l−), b = vi(l+), and c =∑l∈1M\{l±} vi(l). By assumption A2, we have

that E[a] = E[b] = E[c] = 0 and E[a2] = E[b2] = n−1 from the normalization
of the eigenvectors, and it follows from assumption A3b that E[c2] = (n∗

1)n
−1 +

O(n−3), as n → ∞. Assumption A3 gives conditions on second order terms. As-
sumptions A4 and A5 give conditions on fourth order moments and fourth order
products of a, b, and c.

C.3.1 Proof of Part A

We will show that, as n → ∞,

E
[
Mᵀviv

ᵀ
i ζk

]= 1

n

(
Mᵀζk

)+ O

(
1

n2

)
. (123)

By definition

E
[
Mᵀviv

ᵀ
i ζk

]= E

[∑
l∈1M

vi(l)
(
vi(l+) − vi(l−)

)]
(124)

since Mᵀvi =∑l∈1M
vi(l) and v

ᵀ
i ζk = vi(l+)− vi(l−). We compute this expectation

for the three cases listed at the beginning of Sect. C.3.
Using the notation introduced above, we note that this expectation has the form

E
[
(a + b + c)(b − a)

]
for Case 1, (125)

E
[
c(b − a)

]
for Case 2, (126)

E
[
(a + c)(b − a)

]
for Case 3. (127)



Journal of Mathematical Neuroscience (2014) 4:6 Page 45 of 52

Case 1: l± ∈ 1M . Expanding the expected value yields

E
[
(a + b + c)(b − a)

] = E
[
b2 − a2 + bc − ac

]
(128)

= E
[
b2]− E

[
a2]+ E[bc] − E[ac] (129)

= 1

n
− 1

n
+ E[bc] − E[ac], (130)

since E[a2] = E[b2] = n−1 by assumption A2 (eigenvector normalization). Note
that E[ac] = E[bc], and each contains n∗

1 terms with the following expectation as
n → ∞:

E[ac] = E

[
vi(l−)

∑
l∈1M\{l±}

vi(l)

]

=
∑

l∈1M\{l±}
E
[
vi(l−)vi(l)

]

= n∗
1O
(
n−2) (131)

= O
(
n−2). (132)

This follows from the assumptions that, as n → ∞, E[vi(l)vi(l
′)] = O(n−2) for

l �= l′ (assumption A3b) and n∗
1 = O(1) (by assumption on M). Thus, since Mᵀζk =

−1 + 1 = 0 in this case, as n → ∞,

E
[
(a + b + c)(b − a)

]= 1

n

(
Mᵀζk

)+ O
(
n−2). (133)

Case 2: l± /∈ 1M . Expanding the expected value yields

E
[
c(b − a)

]= E[bc] − E[ac] = O
(
n−2) (134)

as n → ∞, by Eq. 131 in Case 1 above, which follows from assumption A3b and the
assumption on M . Thus, since Mᵀζk = 0 in this case, as n → ∞,

E
[
c(b − a)

]= 1

n

(
Mᵀζk

)+ O
(
n−2). (135)

Case 3: l− ∈ 1M and l+ /∈ 1M . Expanding the expected value yields

E
[
(a + c)(b − a)

] = E
[−a2 + ab + bc − ac

]
(136)

= −E
[
a2]+ E[ab] + E[bc] − E[ac] (137)

= −1

n
+ O

(
n−2) (138)

as n → ∞, which follows by Eq. 131 from Case 1 and by the assumptions that
E[vi(l)vi(l

′)] = O(n−2) for l �= l′ (assumption A3b) and n∗
1 = O(1) (by the assump-
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tion on M), as n → ∞. Since Mᵀζk = −1 in this case, then as n → ∞,

E
[
(a + c)(b − a)

]= 1

n

(
Mᵀζk

)+ O
(
n−2). (139)

Similarly, the alternate Case 3 where l+ ∈ 1M and l− /∈ 1M gives, as n → ∞,

E
[
(b + c)(b − a)

] = E
[−a2 + ab + bc − ac

]
(140)

= E
[
b2]− E[ab] + E[bc] − E[ac] (141)

= 1

n
+ O

(
n−2), (142)

and since Mᵀζk = 1 in this case, we have as n → ∞

E
[
(b + c)(b − a)

]= 1

n

(
Mᵀζk

)+ O
(
n−2). (143)

C.3.2 Proof of Part B

We will show that, as n → ∞,

E
[
Mᵀviv

ᵀ
i ζk

]2 = 1

n2

∣∣Mᵀζk

∣∣+ O

(
1

n4

)
, (144)

where now we take the absolute value of the term Mᵀζk . By definition (see Eq. 124),
we have

E
[
Mᵀviv

ᵀ
i ζk

]2 = E

[∑
l∈1M

vi(l)
(
vi(l+) − vi(l−)

)]2

. (145)

Using the notation introduced above, this expectation has the following structure
in each case:

E
[
(a + b + c)(b − a)

]2 for Case 1, (146)

E
[
c(b − a)

]2 for Case 2, (147)

E
[
(a + c)(b − a)

]2 for Case 3. (148)

By Lemma 3 part A, we have, as n → ∞,

E
[
(a + b + c)(b − a)

] = 0 + O
(
n−2), (149)

E
[
c(b − a)

] = 0 + O
(
n−2), (150)

E
[
(a + c)(b − a)

] = −1

n
+ O

(
n−2), (151)

E
[
(b + c)(b − a)

] = 1

n
+ O

(
n−2), (152)
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where the last two equations fall under Case 3. Squaring these terms yields, as
n → ∞,

E
[
(a + b + c)(b − a)

]2 = 0 + O
(
n−4), (153)

E
[
c(b − a)

]2 = 0 + O
(
n−4), (154)

E
[
(a + c)(b − a)

]2 = 1

n2
+ O

(
n−4), (155)

E
[
(b + c)(b − a)

]2 = 1

n2
+ O

(
n−4). (156)

In this case, both versions of Case 3 are positive so we multiply 1/n2 by |Mᵀζk|
which gives us the desired result in Eq. 144.

C.3.3 Proof of Part C

We will show that, as n → ∞,

E
[(

Mᵀviv
ᵀ
i ζk

)2]= O
(
n−q

)
for some q > 1. (157)

It follows by definition that

E
[(

Mᵀviv
ᵀ
i ζk

)2]= E
[(

Mᵀvi

)(
v
ᵀ
i ζkζ

ᵀ
k vi

)(
v
ᵀ
i M
)]

= E

[(∑
l∈1M

vi(l)

)2(
vi(l+) − vi(l−)

)2]
, (158)

since Mᵀvi = v
ᵀ
i M =∑l∈1M

vi(l) and v
ᵀ
i ζkζ

ᵀ
k vi = (vi(l+) − vi(l−))2.

Note that this term has the following structure in each case:

E
[
(a + b + c)2(b − a)2] for Case 1, (159)

E
[
c2(b − a)2] for Case 2, (160)

E
[
(a + c)2(b − a)2] for Case 3. (161)

Expanding the sums above (Eqs. 159–161), we see that all but one term for Cases 2
and 3 also appear in Case 1, and that the term E[a3b] is of smaller order of magnitude
than E[a3c], which appears in Case 1. Thus, it suffices to consider only Case 1.
Expanding the sum (Eq. 159) gives

E
[
(a + b + c)2(b − a)2]
= E

[(
a2 + b2 + c2 + 2ab + 2ac + 2bc

)(
a2 − 2ab + b2)] (162)

= E
[
a4 − 2a2b2 + b4 + a2c2 − 2abc2 + b2c2 (163)

− 2ab2c − 2a2bc + 2a3c + 2b3c
]

(164)

= E
[
a4]+ E

[
b4]+ O

(
n−2), as n → ∞. (165)
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The leading order terms are E[a4] = E[b4] = O(n−q) as n → ∞ for some q > 1
by assumption A4a and the term E[a2b2] = O(n−2) as n → ∞ by assumption A4b.
Note that all terms involving powers of c carry an extra factor of n∗

1 (or (n∗
1)

2), but
this does not change the order of magnitude since n∗

1 = O(1) as n → ∞ by our
assumption on M . Therefore, the terms E[a2c2] and E[b2c2] are also O(n−2), as
shown below. As n → ∞

E
[
a2c2] = E

[
a2
( ∑

l∈1M\{l±}
vi(l)

)2]
(166)

= E

[
a2vi(l1)

2 + · · · + a2vi(ln∗
1
)2 +

∑
lj ,lk∈1M\{l±},j �=k

a2vi(lj )vi(lk)

]
(167)

= n∗
1E
[
a2vi(l1)

2]+(n∗
1

2

)
E
[
a2vi(l1)vi(l2)

]
(168)

= O
(
n∗

1n
−2)+ O

((
n∗

1

)2
n−3) by assumptions A4b and A5 (169)

= O
(
n−2) since n∗

1 = O(1). (170)

The same holds for E[b2c2] since E[a2c2] = E[b2c2]. We can do a similar cal-
culation for E[abc2], replacing a2 with ab, and noting that assumption A5 holds for
terms of the form abvi(l1) and abvi(l1)vi(l2) with distinct eigenvector components.
Hence, E[abc2] = O(n−3) as n → ∞.

All other cross terms (E[ab2c], E[a2bc], E[a3c], E[b3c]) are of order
O(n∗

1n
−3) = O(n−3) as n → ∞ by assumption A5. Therefore, since the leading

order terms are O(n−q), it follows that

E
[
(a + b + c)2(b − a)2]= O

(
n−q

)
, as n → ∞, for some q > 1. (171)

Appendix D: Disconnected Graphs

Our general results (Lemma 1 and Theorem 2) implicitly assume that zero is a simple
eigenvalue of the graph Laplacian L, or, equivalently, that the graph is irreducible. If
we consider a random graph ensemble for which the entries of the adjacency matrix
are independent, there can be a strictly positive probability of drawing a disconnected
graph. To address this case, suppose the graph G = (V,E) decomposes into G dis-
connected components, i.e.

G =
G⊕

g=1

Gg (172)

where Gg = (Vg,Eg) and the gth component contains ng vertices. For each g ∈
{1, . . . ,G} we have the corresponding graph Laplacian Lg restricted to the gth com-
ponent. If we neglect fluctuations associated with edges E ′ =∐G

g=1 E ′
g , then the re-
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sulting error, Var[Mᵀ(X̃ − X)], depends on which component the initial condition
X(0) = x0 = X̃(0) belongs to. That is,

Rg
[
E ′]≡ Var

[
Mᵀ(X̃ − X)|x0 ∈ Vg

]= ∑
k∈E ′

g

R
g
k (173)

and

R
g
k = σ 2

k

n∑
i=2

n∑
j=2

( −1

λ
g
i + λ

g
j

)(
Mᵀ(vg

)
i

)((
vg
)ᵀ
i
ζk

)(
ζ
ᵀ
k

(
vg
)
j

)((
vg
)ᵀ
j
M
)
. (174)

Here the eigenpairs (λ
g
i , v

g
i ) refer to the eigenvalues of the gth Laplacian, and quan-

tities such as ζ
ᵀ
k (vg)j and (vg)

ᵀ
j M are interpreted with vectors ζk and M restricted

to those components that lie in the appropriate subspace of Rn.
For the random graph ensembles we consider, the probability of drawing a discon-

nected graph, P[¬C], decreases so rapidly that taking it into account does not affect
our main result (Theorem 2). For example, consider the Erdös–Rényi ensemble with
fixed edge probability p ∈ (0,1) as n grows. It is well known that pn = ln(n)/n is a
sharp threshold for connectedness as n → ∞. E.g. if pn ≥ 2 ln(n)/n, then P(C) → 1
as n → ∞. Here we show that, if p ∈ (0,1) is fixed, then P[¬C] goes to zero faster
than any power of p, as n → ∞.

Draw a graph G from the standard Erdös–Rényi ensemble with parameters n

and p. We call a subgraph of G an isolated k-graph if it is a connected subgraph,
with k components, that is disconnected from the rest of the graph. Let Pk be the
probability that G has an isolated k-graph, conditioned on G not having any isolated
k′-graph for k′ < k. Thus P1 is the probability that G contains an isolated singleton,
P2 is the probability that G contains an isolated pair, given that it does not contain
any isolated singletons, and so on. We set P0 ≡ 0. If G is reducible, then it contains
an isolated k-graph for some 1 ≤ k ≤ [n/2], where [·] denotes the integer part of its
argument. The probability that G is disconnected is thus

P[¬C] =
[n/2]∑
k=1

Pk(1 − Pk−1). (175)

For any collection of k vertices to be disconnected from the remaining n − k ver-
tices in the graph requires k independent events, each of which has probability
(1 − p)(n−k). A crude estimate suffices for our purposes, namely, for all 1 ≤ k ≤
[n/2],

Pk(1 − Pk−1) ≤ Pk ≤ n(1 − p)k(n−k) ≤ n(1 − p)n−1. (176)

Therefore we may conclude that

P[¬C] ≤
[n/2]∑
k=1

Pk ≤ n2

2
(1 − p)n−1, (177)
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which decays exponentially fast as n → ∞, for any fixed p in the open interval (0,1).
For example, in Sect. 3.3 we illustrate our results with a sample taken from the Erdös–
Rényi ensemble with n = 50 and p = 0.5. The chance of drawing a reducible graph
from this ensemble does not exceed (502)/(250) � 2.3 × 10−12.
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57. Josić K, Shea-Brown E, Doiron B, de la Rocha J: Stimulus-dependent correlations and population
codes. Neural Comput 2009, 21(10):2774-2804. doi:10.1162/neco.2009.10-08-879.
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