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Abstract We consider applications of path-integral methods to the analysis of a
stochastic hybrid model representing a network of synaptically coupled spiking neu-
ronal populations. The state of each local population is described in terms of two
stochastic variables, a continuous synaptic variable and a discrete activity variable.
The synaptic variables evolve according to piecewise-deterministic dynamics de-
scribing, at the population level, synapses driven by spiking activity. The dynamical
equations for the synaptic currents are only valid between jumps in spiking activ-
ity, and the latter are described by a jump Markov process whose transition rates
depend on the synaptic variables. We assume a separation of time scales between
fast spiking dynamics with time constant τa and slower synaptic dynamics with time
constant τ . This naturally introduces a small positive parameter ε = τa/τ , which can
be used to develop various asymptotic expansions of the corresponding path-integral
representation of the stochastic dynamics. First, we derive a variational principle for
maximum-likelihood paths of escape from a metastable state (large deviations in the
small noise limit ε → 0). We then show how the path integral provides an efficient
method for obtaining a diffusion approximation of the hybrid system for small ε. The
resulting Langevin equation can be used to analyze the effects of fluctuations within
the basin of attraction of a metastable state, that is, ignoring the effects of large devi-
ations. We illustrate this by using the Langevin approximation to analyze the effects
of intrinsic noise on pattern formation in a spatially structured hybrid network. In
particular, we show how noise enlarges the parameter regime over which patterns oc-
cur, in an analogous fashion to PDEs. Finally, we carry out a 1/ε-loop expansion of
the path integral, and use this to derive corrections to voltage-based mean-field equa-
tions, analogous to the modified activity-based equations generated from a neural
master equation.
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1 Introduction

One of the major challenges in neuroscience is developing our understanding of how
noise at the molecular and cellular levels affects dynamics and information process-
ing at the macroscopic level of synaptically coupled neuronal populations. It is well
known that the spike trains of individual cortical neurons in vivo tend to be very noisy,
having interspike interval (ISI) distributions that are close to Poisson [1, 2]. Indeed,
one observes trial-to-trial variability in spike trains, even across trials in which exter-
nal stimuli are identical. On the other hand, neurons are continuously bombarded by
thousands of synaptic inputs, many of which are uncorrelated, so that an application
of the law of large numbers would suggest that total input fluctuations are small. This
would make it difficult to account for the Poisson-like behavior of individual neurons,
even when stochastic ion channel fluctuations or random synaptic background activ-
ity is taken into account. One paradigm for reconciling these issues is the so-called
balanced network [3–5]. In such networks, each neuron is driven by a combination
of strong excitation and strong inhibition, which mainly cancel each other out, so
that the remaining fluctuations occasionally and irregularly push the neuron over the
firing threshold. Even in the absence of any external sources of noise, the resulting
deterministic dynamics is chaotic and neural outputs are Poisson-like. Interestingly,
there is some experimental evidence that cortical networks can operate in a balanced
regime [6].

Another emergent feature of balanced networks is that they can support an asyn-
chronous state characterized by large variability in single neuron spiking, and yet
arbitrarily small pairwise correlations, even in the presence of substantial amounts
of shared inputs [7]. Thus there is a growing consensus that the trial-to-trial irregu-
larity in the spiking of individual neurons is often unimportant, and that information
is typically encoded in firing rates. There is then another level of neural variability,
namely, trial-to-trial variations in the firing rates themselves. Recent physiological
data shows that the onset of a stimulus reduces firing-rate fluctuations in cortical
neurons, while having little or no effect on the spiking variability [8]. Litwin-Kumar
and Doiron have recently shown how these two levels of stochastic variability can
emerge in a balanced network of randomly connected spiking neurons, in which a
small amount of clustered connections induces firing-rate fluctuations superimposed
on spontaneous spike fluctuations [9].

Various experimental and computational studies of neural variability thus motivate
the incorporation of noise into rate-based neural network models [10]. One approach
is to add extrinsic noise terms to deterministic models resulting in a neural Langevin
equation [11–15]. An alternative approach is to assume that noise arises intrinsically
as a collective population effect, and to describe the stochastic dynamics in terms
of a neural master equation [16–20]. In the latter case, neurons are partitioned into
a set of M local homogeneous populations labeled α = 1, . . . ,M , each consisting
of N neurons. The state of each population at time t is specified by the number
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Nα(t) of active neurons in a sliding window (t, t + �t], and transition rates between
the discrete states are chosen so that standard rate-based models are obtained in the
mean-field limit, where statistical correlations can be ignored. There are two versions
of the neural master equation, which can be distinguished by the size of the sliding
window width �t . (Note that the stochastic models are keeping track of changes
in population activity.) One version assumes that each population operates close to
an asynchronous state for large N [18, 19], so that one-step changes in population
activity occur relatively slowly. Hence, one can set �t = 1 and take N to be large
but finite. The other version of the neural master equation assumes that population
activity is approximately characterized by a Poisson process [17, 20]. In order to
maintain a one-step jump Markov process, it is necessary to take the limits �t → 0,
N → ∞ such that N�t = 1. Thus, one considers the number of active neurons in an
infinite background sea of inactive neurons, which is reasonable if the networks are
in low activity states. (Note that it is also possible to interpret the master equation of
Buice et al. in terms of activity states of individual neurons rather than populations
[17, 20].)

One way to link the two versions of the neural master equation is to extend the
Doi–Peliti path-integral representation of chemical master equations [21–23] to the
neural case; the difference between the two versions then reduces to a different choice
of scaling of the underlying action functional [18]. Buice et al. [17, 20] used dia-
grammatic perturbations methods (Feynman graphs) to generate a truncated moment
hierarchy based on factorial moments, and thus determined corrections to mean-
field theory involving coupling to two-point and higher-order cumulants. They also
used renormalization group methods to derive scaling laws for statistical correlations
close to criticality, that is, close to a bifurcation point of the underlying deterministic
model [17]. On the other hand, Bressloff [18, 19] showed how the path-integral rep-
resentation of the master equation can be used to investigate large deviations or rare
event statistics underlying escape from the basin of attraction of a metastable state,
following along analogous lines to previous work on large deviations in chemical
master equations [24–26].

One limitation of both versions of the neural master equation is that they neglect
the dynamics of synaptic currents. The latter could be particularly significant if the
time scale τ of synaptic dynamics is larger than the window width �t . Therefore, we
recently extended the Buice et al. neural master equation by formulating the network
population dynamics in terms of a stochastic hybrid system also known as a ‘velocity’
jump Markov process [27]. The state of each population is now described in terms
of two stochastic variables Uα(t) and Nα(t). The synaptic variables Uα(t) evolve
according to piecewise-deterministic dynamics describing, at the population level,
synapses driven by spiking activity. These equations are only valid between jumps in
spiking activity Nα(t), which are described by a jump Markov process whose transi-
tion rates depend on the synaptic variables. We also showed how asymptotic methods
recently developed to study metastability in other stochastic hybrid systems, such
as stochastic ion channels, motor-driven intracellular cargo transport, and gene net-
works [28–32], can be extended to analyze metastability in stochastic hybrid neural
networks, in a regime where the synaptic dynamics is much slower than the spiking
dynamics. In the case of ion channels, Nα would represent the number of open chan-
nels of type α, whereas Uα would be replaced by the membrane voltage V . On the
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other hand, for intracellular transport, Nα would be the number of motors of type α

actively transporting a cargo and Uα would be replaced by spatial position along the
track.

In this paper we show how a path-integral representation of a stochastic hybrid
neural network provides a unifying framework for a variety of asymptotic perturba-
tion methods. The basic hybrid neural network model is described in Sect. 2, where
we consider several limiting cases. In Sect. 3, we reprise the path-integral construc-
tion of Bressloff and Newby [33], highlighting certain features that were not covered
in the original treatment, including the connection with large-deviation principles
[34], and potential difficulties in the thermodynamic limit N → ∞. In Sect. 4, we
derive the basic variational principle that can be used to explore maximum-likelihood
paths of escape from a metastable state, and relate the theory to the underlying Hamil-
tonian structure of the path-integral representation. In Sect. 5, we show how the path-
integral representation provides an efficient method for deriving a diffusion approxi-
mation of a stochastic hybrid neural network. Although the diffusion approximation
breaks down when considering escape problems, it provides useful insights into the
effects of fluctuations within the basin of attraction of a given solution. We illustrate
this by using the diffusion approximation to explore the effects of noise on neural
pattern formation in a spatially structured network. In particular, we show how noise
expands the parameter regime over which patterns can be observed, in an analogous
fashion to stochastic PDEs. Finally, in Sect. 6, we use the path-integral representation
to derive corrections to voltage-based mean-field equations, along analogous lines to
the analysis of activity-based mean-field equations arising from the neural master
equation [17, 20].

2 Stochastic Hybrid Network Model

We first describe a stochastic neural network model that generalizes the neural master
equation [17, 18, 20] by incorporating synaptic dynamics. (A more detailed derivation
of the model can be found in [27].) Note that there does not currently exist a complete,
rigorous derivation of population rate-based models starting from detailed biophysi-
cal models of individual neurons, although some significant progress has been made
in a series of papers by Buice and Chow on generalized activity equations for theta
neurons [35–37]. Therefore, the construction of the stochastic rate-based model is
phenomenological in nature. However, it is motivated by the idea that finite-size ef-
fects in local populations of neurons acts as a source of intrinsic noise. Consider a
set of M homogeneous populations labeled α = 1, . . . ,M , with N neurons in each
population. (A straightforward generalization would be for each population to consist
of O(N ) neurons.) The output activity of each population is taken to be a discrete
stochastic variable Aα(t) given by

Aα(t) = Nα(t)

N�t
, (2.1)

where Nα(t) is the number of neurons in the αth population that fired in the time
interval [t − �t, t], and �t is the width of a sliding window that counts spikes. The
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discrete stochastic variables Nα(t) are taken to evolve according to a one-step jump
Markov process:

Nα(t)
ω+/τa→ Nα(t) + 1, Nα(t)

ω−/τa→ Nα(t) − 1 (2.2)

with corresponding transition rates

ω+ = N�tF(Uα), ω− = Nα. (2.3)

Here F is a sigmoid firing-rate or gain function

F(u) = F0

1 + e−γ (u−κ)
, (2.4)

where γ , κ correspond to the gain and threshold, respectively, F0 is the maximum
firing rate, and Uα(t) is the effective synaptic current into the αth population, which
evolves (for exponential synapses) according to

τ dUα(t) =
[
−Uα(t) +

M∑
β=1

wαβAβ(t)

]
dt. (2.5)

We will assume that N is large but finite and take N�t = 1. In the dual limits
N → ∞ and τ → 0, our model then reduces to the Buice et al. [17, 20] version
of the neural master equation. The resulting stochastic process defined by (2.1)–(2.5)
is an example of a stochastic hybrid system based on a piecewise-deterministic pro-
cess. That is, the transition rate ω+ depend on Uα , with the latter itself coupled to the
associated jump Markov according to (2.5), which is only defined between jumps,
during which Uα(t) evolves deterministically. It is important to note that the time
constant τa cannot be identified directly with membrane or synaptic time constants.
Instead, it determines the relaxation rate of a local population to the instantaneous
firing rate.

Introduce the probability density

Prob
{
Uα(t) ∈ (uα,uα + du),Nα(t) = nα;α = 1, . . . ,M

}
= p(u,n, t |u0,n0,0) du,

with u = (u1, . . . , uM) and n = (n1, . . . , nM). It follows from (2.1)–(2.5) that the
probability density evolves according to the differential Chapman–Kolmogorov (CK)
equation (dropping the explicit dependence on initial conditions)

∂p

∂t
+ 1

τ

∑
α

∂[vα(u,n)p(u,n, t)]
∂uα

= 1

τa

∑
α

(Tα − 1)
(
nαp(u,n, t)

)

+ 1

τa

∑
α

(
T

−1
α − 1

)(
F(uα)p(u,n, t)

)
, (2.6)
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with

vα(u,n) = −uα +
∑
β

wαβnβ, (2.7)

and Tα the translation operator: T±1
α f (n) = f (nα±) for any function f with nα±

denoting the configuration with nα replaced by nα ± 1. Equation (2.6) can be re-
expressed in the more general form

∂p

∂t
= − 1

τ

M∑
α=1

∂

∂uα

(
vα(u,n)p(u,n, t)

) + 1

τa

∑
m

W(n,m;u)p(u,m, t). (2.8)

The drift ‘velocities’ vα(u,n) for fixed n represent the piecewise-deterministic synap-
tic dynamics according to

τ
duα

dt
= vα(u,n), α = 1, . . . ,M, (2.9)

and W is defined in terms of the u-dependent transition matrix T for the jump Markov
process, that is,

W(n,m;u) = T (n,m;u) − δn,m

∑
k

T (k,m;u).

It follows from (2.6) that W can be written as

W(n,m;u) =
M∑

α=1

Wα(nα,mα;uα)
∏
β �=α

δnβ,mβ

with Wα the tridiagonal matrix

Wα(n,n − 1;u) = F(u), Wα(n,n + 1;u) = n + 1,

Wα(n,n;u) = −F(u) − n.

For fixed u, the matrix Wα is irreducible (which means that there is a non-zero proba-
bility of transitioning, possibly in more than one step, from any state to any other state
in the jump Markov process). Moreover, all off-diagonal elements are non-negative.
It follows that the full transition matrix W(n,m;u) also has these properties and,
hence, we can apply the Perron–Frobenius theorem to show that there exists a unique
invariant measure for the Markov process. That is, the master equation

dp(u,n, t)

dt
= 1

τa

∑
m

W(n,m;u)p(u,m, t),

has a globally attracting steady state ρ(u,n) such that p(u,n, t) → ρ(u,n) as
t → ∞.
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The Perron–Frobenius theorem states that [38] a real square matrix with positive
entries has a unique largest real eigenvalue (the Perron eigenvalue) and that the corre-
sponding eigenvector has strictly positive components. If we define a new transition

matrix Ŵ (n,m;u) by

Ŵ (n,m;u) = W(n,m;u) + δn,mW ∗, W ∗ = max
m

W(m,m;u) + κ,

for an arbitrary κ > 0, then we can apply the Perron–Frobenius theorem directly to Ŵ

and thus to W . Since
∑

n W(n,m;u) = 0 for all m, that is, η(n) = (1,1, . . . ,1)T is
a left null-vector, it follows that the Perron eigenvalue is λ = 0. The unique invariant
measure then corresponds to the right null-vector of W for fixed u:∑

m

W(n,m;u)ρ(u,m) = 0. (2.10)

The steady-state solution ρ(u,n) of (2.6) can be factorized as ρ(u,n) =∏M
β=1 ρ0(uβ,nβ) with

0 =
M∑

α=1

[∏
β �=α

ρ0(uβ,nβ)

][
J (uα,nα + 1) − J (uα,nα)

]
, (2.11)

where

J (u,n) = nρ0(u,n) − F(u)ρ0(u,n − 1).

A sufficient condition for (2.11) to hold is

J (u,n + 1) − J (u,n) = 0.

Since ρ0(u,−1) ≡ 0, it then follows that J (u,0) = 0 and thus J (u,n) = 0 for all n.
Hence, we obtain the positive steady-state solution

ρ0(u,n) = ρ0(u,0)

n∏
m=1

F(u)

m
= ρ0(u,0)

F (u)n

n! . (2.12)

The Perron–Frobenius theorem ensures that this is the unique positive solution. The
fact that the steady state factorizes is a consequence of the fact that the transition
rates do not involve any coupling between populations—the only coupling appears
in the drift terms of (2.6). Strictly speaking, the Perron–Frobenius theorem applies
to finite-dimensional matrices, so we are assuming that N is finite. Nevertheless, in
the thermodynamic limit N → ∞, the corresponding normalized density reduces to
a Poisson process with rate F(u):

ρ0(u,n) = e−F(u) F (u)n

n! . (2.13)

There are two time scales in the CK equation (2.8), the synaptic time constant
τ and the time constant τa , which characterizes the relaxation rate of population
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activity. In the limit τ → 0, (2.5) reduces to the neural master equation of Buice et al.
[17, 20]. First, note that the synaptic variables Uα(t) are eliminated by setting vα = 0,
that is, Uα(t) = ∑

β wαβAβ(t). This then leads to a pure birth-death process for the
discrete variables Nα(t). That is, let P(n, t) = Prob[N (t) = n] denote the probability
that the network of interacting populations has configuration n = (n1, n2, . . . , nM) at
time t , t > 0, given some initial distribution P(n,0). The probability distribution then
evolves according to the birth-death master equation [17, 18, 20]

dP (n, t)

dt
=

∑
α

[
(Tα − 1)

(
Ω−

α (n)P (n, t)
)

+ (
T

−1
α − 1

)(
Ω+

α (n)P (n, t)
)]

, (2.14)

where

Ω+
α (n) = 1

τa

F

(∑
β

wαβnβ

)
, Ω−

α (n) = nα

τa

. (2.15)

Buice et al. [20] show that the network operates in a Poisson-like regime in which the
rates of the Poisson process are stochastic variables whose means evolve according
to the activity-based mean-field equation

τα

dAα

dt
= −Aα(t) + F

(∑
β

wαβAβ(t)

)
. (2.16)

On the other hand, if τa → 0 for fixed τ , then we obtain deterministic voltage or
current-based mean-field equations

τ
duα

dt
=

∑
n

vα

(
u(t),n

)
ρ
(
u(t),n

)

= −uα(t) +
M∑

β=1

wαβ

∑
n

nβρ
(
u(t),n

)
. (2.17)

Since ρ(u,n) is given by a product of independent Poisson processes with rates
F(uα), consistent with the operating regime of the Buice et al. master equation [17,
20], it follows that

〈nβ〉 = F(uβ), (2.18)

and (2.17) reduces to the standard voltage or current-based activity equation

τ
duα

dt
= −uα(t) +

M∑
β=1

wαβF(uβ). (2.19)

Note that the limit τa → 0 is analogous to the slow synapse approximation used
by Ermentrout [39] to reduce deterministic conductance-based neuron models to
voltage-based rate models. Now suppose that the network operates in the regime
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0 < τa/τ ≡ ε 
 1. There is then a natural small parameter in the system, ε, which
allows a variety of perturbation methods to be used:

(i) A quasi-steady-state (QSS) diffusion approximation of the stochastic hybrid sys-
tem, in which the CK equation (2.6) reduces to a Fokker–Planck equation [27].
This exploits the fact that for small ε there are typically a large number of tran-
sitions between different firing states n while the synaptic currents u hardly
change at all. This implies that the system rapidly converges to the (quasi) steady
state ρ(u,n), which will then be perturbed as u slowly evolves.

(ii) The diffusion approximation captures the Gaussian-like fluctuations within the
basin of attraction of a fixed point of the mean-field equations. However, for
small ε this yields exponentially large errors for the transition rates between
metastable states. (A similar problem arises in approximating chemical and
neural master equations by a Fokker–Planck equation in the large N limit
[19, 24, 40].) However, one can use a Wentzel–Kramers–Brillouin (WKB) ap-
proximation of solutions to the full CK equation to calculate the mean first pas-
sage time for escape [27].

(iii) Another way to analyze the dynamics of a stochastic hybrid network is to de-
rive moment equations. However, for a nonlinear system, this yields an infinite
hierarchy of coupled moment equations, resulting in the problem of moment
closure. In the case of small ε, one can expand the moment equations to some
finite order in ε.

In this paper, we show how a path-integral representation of a stochastic hybrid sys-
tem provides a unifying framework for carrying out all three perturbation schemes
highlighted above.

3 Path-Integral Representation

3.1 One-Population Model

We now derive the path-integral representation of a stochastic hybrid neural net-
work using the construction introduced in [33]. For ease of notation, we consider
a one-population model (M = 1); the generalization to multiple populations is then
straightforward (see Sect. 3.4). We first discretize time by dividing a given interval
[0, T ] into N equal subintervals of size �t such that T = N�t and set uj = u(j�t),
nj = n(j�t). (Note that the infinitesimal time interval �t used in path discretiza-
tion is distinct from the width of the moving window used in the construction of
the stochastic neural network; see Sect. 2. One should also take care to distinguish
between the discrete time label j and the population label α.) The conditional prob-
ability density for u1, . . . , uN , given u0 and a particular realization of the stochastic
discrete variables nj , j = 0, . . . ,N − 1, is

P(u1, . . . , uN |u0, n0, . . . , nN−1) =
N−1∏
j=0

δ
(
uj+1 − uj − vnj

(uj )�t
)
,
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where

vn(u) ≡ v(u,n) = −u + wn. (3.1)

Inserting the Fourier representation of the Dirac delta function gives

P(u1, . . . , uN |u0, n0, n1, . . . , nN−1)

=
N−1∏
j=0

[∫ ∞

−∞
e−ipj (uj+1−uj −vnj

(uj )�t) dpj

2π

]
.

On averaging with respect to the intermediate states nj , j = 1,N − 1, we have

P(u1, . . . , uN |u0, n0)

=
[

N−1∏
j=0

∫ ∞

−∞
dpj

2π

] ∑
n1,...,nN−1

N−1∏
j=0

Tnj+1,nj
(uj )e

−ipj (uj+1−uj −vnj
(uj )�t)

, (3.2)

where

Tnj+1,nj
(uj ) =

(
δnj+1,nj

+ Wnj+1,nj
(uj )

�t

ε

)
+ o(�t)

and Wnm(u) ≡ W(n,m;u) such that

Wn,n−1 = F(u), Wnn = −F(u) − n, Wn,n+1 = n + 1. (3.3)

In order to evaluate the above path integral, we introduce the eigenvalue equation∑
m

[
Wnm(u) + qδn,mvm(u)

]
R(s)

m (u, q) = λs(u, q)R(s)
n (u, q), (3.4)

and let ξ
(s)
m be the adjoint eigenvector satisfying∑

n

ξ (s)
n (u, q)

[
Wnm(u) + qδn,mvm(u)

] = λs(u, q)ξ (s)
n (u, q). (3.5)

In our original construction of the path-integral representation [33], we arrived at
(3.4) and its adjoint through trial and error, based on our previous work on WKB
methods. It turns out that the principal eigenvalue of the linear equation (3.4) can
be related to the rate function of large-deviation theory, as we explain in Sect. 3.2.
A basic result from linear algebra is that R(s) and ξ (s) form a bi-orthonormal set for
fixed u, q . First, rewrite (3.4) and (3.5) in the compact form

L†ξ (s) = λsξ
(s), LR(s) = λsR

(s).

Defining the inner product 〈ξ (s),R(s′)〉 = ∑
n ξ

(s)
n R

(s′)
n , we see that

0 = 〈
ξ (s),LR(s′)〉 − 〈

L†ξ (s),R(s′)〉 = (λs − λs′)
〈
ξ (s),R(s′)〉.
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Thus, for distinct eigenvalues (λs �= λs′ ) the eigenvectors R(s′) and ξ (s) are orthog-
onal, and this can be extended to degenerate eigenvalues by Schmidt orthogonaliza-
tion. Now suppose that we expand a general vector v according to v = ∑

s csR
(s) for

coefficients cs . Biorthogonality implies that cs = 〈ξ (s), v〉. Substituting back into the
eigenvector expansion of v gives

vn =
∑

s

〈
ξ (s), v

〉
R(s)

n =
∑

s

∑
m

ξ(s)
m ξ (s)

m R(s)
n ,

which leads to the completeness relation

∑
s

ξ (s)
m (u, q)R(s)

n (u, q) = δm,n (3.6)

for all u, q .
Now suppose that we insert multiple copies of the identity (3.6) into the path

integral (3.2) with q = qj at the (j + 1)th time step. That is, taking

Tnj+1nj
(uj ) =

∑
m

Tmnj
(uj )δm,nj+1

=
∑
sj ,m

R
(sj )
nj+1(uj , qj )ξ

(sj )
m (uj , qj )

(
δnj ,m + Amnj

(uj )
�t

ε

)

=
∑
sj

(
1 + [

λsj (uj , qj ) − qjvnj
(uj )

]�t

ε

)
R

(sj )
nj+1(uj , qj )ξ

(s)
nj

(uj , qj )

∼
∑
sj

exp

([
λsj (xj , qj ) − qjvnj

(xj )
]�t

ε

)
R

(sj )
nj+1(xj , qj )ξ

(sj )
nj

(xj , qj )

we find that

P(u1, . . . , uN |u0, n0)

=
[

N−1∏
j=0

∫ ∞

−∞
dpj

2π

] ∑
n1,...,nN−1

∑
sj

exp

([
λsj (uj , qj ) − iεpj

uj+1 − uj

�t

]
�t

ε

)

× exp

([
iεpjvnj

(uj ) − qjvnj
(uj )

]�t

ε

)
R

(sj )
nj+1(uj , qj )ξ

(sj )
nj

(uj , qj ), (3.7)

to leading order in O(�u,�t). It is important to note that the total path integral is in-
dependent of the qj , since performing the summations over sj recovers the Kronecker
deltas. Let us now introduce the probability density

P(uN,nN |u0, n0) =
[

N−1∏
j=1

∫ ∞

−∞
duj

]
P(u1, . . . , uN ,nN |u0, n0). (3.8)
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Substituting for P using (3.2) and (3.7), leads to

P(uN,nN |u0, n0)

=
[

N−1∏
j=1

∫ ∞

−∞
duj

][
N−1∏
j=0

∫ ∞

−∞
dpj

2π

]

×
∑

n1,...,nN−1

∑
s0,...,sN−1

[
N−1∏
j=0

R
(sj )
nj+1(uj , qj )ξ

(sj )
nj

(uj , qj )

]

× exp

(∑
j

[
λsj (uj , qj ) − iεpj

uj+1 − uj

�t

]
�t

ε

)

× exp

([
iεpjvnj

(uj ) − qjvnj
(uj )

]�t

ε

)
.

By inserting the eigenfunction products and using the Fourier representation of the
Dirac delta function, we have introduced sums over the discrete labels sj and new
phase variables pj . However, this allows us to obtain a simple action principle in
the limit ε → 0. Since the path integral is ultimately independent of the qj , we are
free to set qj = iεpj for all j , thus eliminating the final exponential factor. (Fixing
the qj is analogous to gauge-fixing in field theory.) This choice means that we can
perform the summations with respect to the intermediate discrete states nj using the
orthogonality relation

∑
n

R(s)
n (uj , qj−1)ξ

(s′)
n (uj+1, qj ) = δs,s′ + O(�u,�q).

We thus obtain the result that sj = s for all j , which means that we can then take
the continuum limit of (3.9) to obtain the following path integral from u(0) = u0 to
u(τ) = u (after performing the change of variables iεpj → pj , that is, performing a
contour deformation in the complex p-plane):

P(u,n, τ |u0, n0,0) =
∑

s

∫ u(τ)=u

u(0)=u0

exp

(
−1

ε

∫ τ

0

[
pu̇ − λs(u,p)

]
dt

)

× R(s)
n

(
u,p(τ)

)
ξ (s)
n0

(
u0,p(0)

)
D[p]D[u]. (3.9)

Applying the Perron–Frobenius theorem to the linear operator on the left-hand side
of (3.4) for fixed u and q , shows that there exists a real, simple Perron eigenvalue. We
assume that the eigenvalues are ordered such that λ0 > Re(λ1) ≥ Re(λ2) . . . with λ0

the Perron eigenvalue. Since λ0 is the only eigenvalue with a positive eigenfunction,
we require on physical grounds that the initial and final states are only non-vanishing
for s = 0. It follows that the sum over s in (3.9) projects to the single term s = 0.
Also note that the factor R

(0)
n (u,p(τ))ξ

(0)
n0 (u0,p(0)) in (3.9) essentially projects on

to stochastic trajectories that start in the discrete state n0 and terminate in the discrete
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state n. We will ignore any restrictions on these discrete states and simply consider
the probability density (for fixed u(0) = u0)

P(u, t) =
∫ u(τ )=u

u(0)=u0

e−S[u,p]/εD[p]D[u], (3.10)

with the action

S[u,p] =
∫ τ

0

[
pu̇ − λ0(u,p)

]
dt, (3.11)

and λ0 the Perron eigenvalue of the linear equation

∑
m

[
Wnm(u) + pδn,mvm(u)

]
R(0)

m (u,p) = λ0(u,p)R(0)
n (u,p). (3.12)

Formally comparing to classical mechanics, we have a path integral in a phase space
(u,p) consisting of a dynamical variable u(t) and its ‘conjugate momentum’ p(t)

with the Perron eigenvalue λ0(u,p) interpreted as a Hamiltonian. This underlying
Hamiltonian structure of a stochastic hybrid system has also been identified using
large-deviation theory [34, 41]; see below.

3.2 Large-Deviation Principles

It is important to point out that the formal derivation of the path integral (3.10), see
also [33], involves a few steps that have not been justified rigorously. First, we ‘gauge
fix’ the path integral by setting qj = εpj with pj pure imaginary. However, when
we carry out steepest descents, we assume that the dominant contribution to the path
integral in the complex p-plane occurs for real pj . (There is an assumption as regards
analytic continuation.) This then allows us to apply the Perron–Frobenius theorem
to the linear operator of the eigenvalue equation. Second, we have not established
that the discrete path integral converges to a well-defined functional measure in the
continuum limit. Nevertheless, it turns out that the resulting action S[u,p] is identical
to one obtained using large-deviation theory [41–43]. This connection has recently
been established by Bressloff and Faugeras [34]. We briefly summarize the main
results here.

Following [34], we take as our starting point a Lagrangian large-deviation prin-
ciple of Faggionato et al. [42, 43], which applies to a wide class of stochastic hy-
brid systems. Here we state the LDP for the particular one-population neural model.
Let M+([0, T ]) denote the space of non-negative finite measures on the interval
[0, T ] and take the K-dim. vector {ψ(t)}t∈[0,T ] to be an element of the product
space M+([0, T ])Γ where Γ = {0, . . . ,N } and K = N + 1. In other words, for
each t ∈ [0, T ], ψ(t) = (ψ1(t), . . . ,ψK(t)) such that

ψn(t) ≥ 0,
∑
n∈Γ

ψn(t) = 1.
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A particular realization of the stochastic process, {(x(t), n(t))}t∈[0,T ], then lies in the
product space C([0, T ]) ×M+([0, T ])Γ with

ψn(t) = 1{n(t)=n} ≡
{

1, if n(t) = n,

0, if n(t) �= n,
(3.13)

and

u(t) = u0 +
∫ t

0

∑
n∈Γ

ψn(s)vn

(
u(s)

)
ds. (3.14)

Let Yu0 denote the subspace of C([0, T ])×M+([0, T ])Γ for which (3.14) holds but
ψ is now a general element of M+([0, T ])Γ . Such a space contains the set of trajec-
tories of the stochastic hybrid system with ψn(t) given by (3.13) and n(t) evolving
according to the Markov chain. Finally, take P ε

u0,n0
to be the probability density func-

tional or law of the set of trajectories in Yu0 . The following large-deviation principle
then holds [42, 43]:

For any (u,ψ) ∈ C([0, T ]) × [0,1]Γ define

j (u,ψ) = sup
z∈(0,∞)Γ

∑
(n,n′)∈Γ ×Γ

ψnWn′n(u)

[
1 − zn′

zn

]
. (3.15)

Then, for any given path {(u(t),ψ(t))}t∈[0,T ] ∈ Yu0 ,

P
ε
u0,n0

[{(
u(t),ψ(t)

)}
t∈[0,T ]

] ∼ e−JT ({(u(t),ψ(t))}t∈[0,T ])/ε, (3.16)

where the rate function JT : Yu0 → [0,∞) is given by

JT

({(
u(t),ψ(t)

)}
t∈[0,T ]

) =
∫ T

0
j
(
u(t),ψ(t)

)
dt. (3.17)

Here the symbol ∼ means asymptotic logarithmic equivalence in the limit ε → 0.

A key idea behind the LDP is that a slow dynamical process coupled to the fast
Markov chain on Γ rapidly samples the different discrete states of Γ according to
some non-negative measure ψ . In the limit ε → 0, one has ψ → ρ, where ρ is the
ergodic measure of the Markov chain. On the other hand, for small but non-zero ε, ψ

is itself distributed according to the LDP (3.16), whereby one averages the different
functions vn(x) over the measure ψ to determine the dynamics of the slow system. In
our population model, we are interested in the synaptic current u (for a current-based
or voltage-based model). Eliminating ψ(t) using a contraction principle then leads to
the following LDP for {u(t)}t∈[0,T ] alone [41, 43]:

Given an element {u(t)}t∈[0,T ] ∈ C([0, T ]), we have

P
ε
u0,n0

[{
u(t)

}
t∈[0,T ]

] ∼ e−JT ({u(t)}t∈[0,T ])/ε,

where the rate function J[0,T ] : C([0, T ],Ω) → [0,∞) is given by

JT

({
u(t)

}
t∈[0,T ]

) = inf
{ψ(t)}t∈[0,T ]:u̇(t)=∑

n vn(u)ψn

JT

({(
u(t),ψ(t)

)}
t∈[0,T ]

)
. (3.18)
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Roughly speaking, one can understand the contraction principle in terms of steep-
est descents. That is

P
ε
x0,n0

[{
u(t)

}
t∈[0,T ]

] =
∫

P
ε
u0,j0

[{(
u(t),ψ(t)

)}
t∈[0,T ]

]
D[ψ]

∼
∫

e−JT ({(u(t),ψ(t))}t∈[0,T ])/εD[ψ],

where D[ψ] is the appropriate functional measure on M+([0, T ])Γ . The path inte-
gral is then dominated by the infimum of the rate function in the limit ε → 0.

In [34], it is proven that the rate function (3.18) can be written in the form of an
action

JT

({
u(t)

}
t∈[0,T ]

) =
∫ T

0
L(u, u̇) dt, (3.19)

with Lagrangian given by

L(u, u̇) = μ(u, u̇)u̇ − λ0
(
u(t),μ(u, u̇)

)
, (3.20)

where λ0(x,μ) is the Perron eigenvalue of the linear equation∑
m

Wnm(u)R(0)
m + μvn(u)R(0)

n = λ0R
(0)
n ,

and μ = μ(u, u̇) the solution of the equation

u̇ = ∂λ0

∂μ
≡

∑
m

R(0)
m (u,μ)ξ (0)

m (u,μ)vm(u) (3.21)

with ξ (0) the adjoint eigenvector of R(0). Note that μ is a Lagrange multiplier which
is introduced in order to impose the constraint u̇ = ∑

m vn(u)ψn when evaluating
the infimum of (3.18). Given the Lagrangian L, we can determine a corresponding
Hamiltonian H according to the Fenchel–Legendre transformation

H(u,p) = sup
y

[(
p − μ(u,y)

)
y + λ

(
u,μ(u, y)

)]
. (3.22)

Minimizing the right-hand side yields the equation

p − μ(u,y) +
[

∂λ

∂μ
− y

]
∂μ

∂y
= 0. (3.23)

Since ∂μλ = y, we see that p = μ i.e., we can identify the Lagrange multiplier μ in
the construction of the Lagrangian as the conjugate momentum p of the Hamiltonian

H = λ0(u,p), (3.24)

where λ0(u,p) is the Perron eigenvalue of the linear equation (3.12). It follows that
the action obtained from a large-deviation principle is identical to the action (3.11)
derived using formal path-integral methods.
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3.3 Calculation of Perron Eigenvalue

In our previous work [32, 33], we obtained an explicit solution for the Perron eigen-
value and the associated positive eigenvector by taking the number of discrete states
in each population to be infinite, that is, N → ∞. However, the classical Perron–
Frobenius theorem applies to finite-dimensional Markov processes. One consequence
of this is that the Perron eigenvalue develops singularities in the thermodynamic limit.
In order to explore this issue, let us return to the one-population eigenvalue equation
(3.12), which takes the explicit form

0 = F(u)R
(0)
n−1(u,p) − [

λ0 + F(u) + pu + n(1 − wp)
]
R(0)

n (u,p)

+ (n + 1)R
(0)
n+1(u,p). (3.25)

In the infinite-dimensional case, one can formally solve this equation using the trial
positive solution

R(0)
n (u,p) = Λ(u,p)n

n! , Λ(u) = λ0 + F(u) + pu. (3.26)

This yields the following equation relating Λ and p:[
F(u)

Λ
− 1

]
n + Λ − F(u) − λ0 = −p(−u + wn).

We now collect terms independent of n and linear in n, respectively, to obtain the pair
of equations

p = − 1

w

[
F(u)

Λ
− 1

]
, Λ = F(u) + pu + λ0.

It follows that

Λ = F(u)

1 − wp
, λ0 = pw

F(u)

1 − wp
− pu. (3.27)

There is clearly a singularity at p = 1/w such that Λ(u,p) < 0 for p > 1/w, contra-
dicting the requirement that the eigenfunction R

(0)
n is positive.

The origin of the singularity can be understood by considering a large, but finite
population size N . The Perron–Frobenius theorem then holds but the solution of
the eigenvalue equation becomes non-trivial. The basic difficulty arises because the
above ansatz for R

(0)
n does not satisfy the boundary condition at n = N . That is,

setting n = N − 1 and n = N in (3.25) with R
(0)

N+1 = 0 gives

F(u)R
(0)

N−2(u,p) − [
Λ(u) + (N − 1)(1 − wp)

]
R

(0)

N−1(u,p) +NR
(0)

N (u,p) = 0

and

F(u)R
(0)

N−1(u,p) − [
Λ(u) − F(u) +N (1 − wp)

]
R

(0)

N (u,p) = 0.
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Assuming that R
(0)
n = Λn/n! for 0 ≤ n < N , with Λ given by (3.26) and p < 1/w

(positive solution), we see that the first equation is satisfied by taking R
(0)

N = ΛN /N !.
However, the second equation requires

R
(0)

N = F(u)

Λ(u) − F(u) +N (1 − wp)
R

(0)

N−1(u).

In the large-N limit with p < 1/w, we set

R
(0)

N → F(u)

N (1 − wp)
R

(0)

N−1(u) = Λ(u)

N R
(0)

N−1(u).

This shows that the given ansatz is a good approximation to the eigensolution for
large N and p < 1/w. Clearly, the given ansatz breaks down as p crosses p = 1/w.
Although the Perron–Frobenius theorem guarantees a unique positive solution for
finite N , it does not have a simple expression in the large N limit. In conclusion, our
expression (3.27) for the Perron eigenvalue only holds for p < 1/w. This does not
affect our subsequent analysis because we evaluate the path integral in regions for
which p < 1/w.

3.4 Multi-population Model

Following along identical lines to the one-population model, we can derive a path-
integral representation of the solution of the multi-population CK equation (2.6):

p(u, τ ) =
∫ u(τ )=u

u(0)=u0

D[p]D[u] exp

(
−1

ε
S[u,p]

)
(3.28)

with the action

S[u,p] =
∫ τ

0

[
M∑

α=1

pαu̇α − λ0(u,p)

]
dt. (3.29)

Here λ0 is the Perron eigenvalue of the following linear operator equation (cf. (3.4)):

∑
m

W(n,m;u)R(0)(u,p,m)

=
[
λ0(u,p) −

M∑
α=1

pαvα(u,n)

]
R(0)(u,p,n), (3.30)

and ξ (0) is the corresponding adjoint eigenvector. For sufficiently small pαs, (3.30)
can be solved for the Perron eigenvalue in the thermodynamic limit N → ∞ using
the ansatz

R(0)(u,p,n) =
M∏

α=1

Λα(u,p)nα

nα! . (3.31)
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Substituting into (3.30) and using the explicit expressions for W and vα , we find that

M∑
α=1

([
F(uα)

Λα

− 1

]
nα + Λα − F(uα)

)
− λ0

= −
M∑

α=1

pα

[
−uα +

∑
β

wαβnβ

]
. (3.32)

Collecting terms in nα for each α yields

F(uα)

Λα

− 1 = −
M∑

β=1

pβwβα, (3.33)

and collecting terms independent of all nα gives

λ0 =
M∑

α=1

[
Λα − F(uα) − uαpα

]
. (3.34)

Solving for each Λα in terms of p, we have

λ0(u,p) ≡
M∑

α=1

[
F(uα)

1 − ∑M
β=1 pβwβα

− uαpα − F(uα)

]
. (3.35)

As in the one-population model, the Perron eigenvalue has singularities, reflecting the
possible breakdown of the Perron–Frobenius theorem in the thermodynamic limit.

4 A Variational Principle and Optimal Paths of Escape

It is clear from the formal structure of the path integral (3.28) that each synaptic vari-
able uα has a ‘conjugate momentum’ pα with λ0(u,p) the corresponding ‘Hamilto-
nian’ H . Applying steepest descents to the path integral for small ε yields a varia-
tional principle in which maximum-likelihood paths minimize the action (3.29). As
is well known from classical mechanics, the least action principle leads to Hamilton’s
equations

u̇ = ∇pH(u,p), ṗ = −∇uH(u,p), (4.1)

describing a ‘classical particle’ moving in the phase space (u,p). What is the phys-
ical interpretation of the solutions to Hamilton’s equations? In order to address this
question, suppose that the underlying deterministic mean-field equation (2.19) has a
stable fixed point us with some basin of attraction Ω , as illustrated in Fig. 1. If the
system starts within Ω , then on relatively short time scales we expect the system to
rapidly converge to us along a classical deterministic trajectory, with noise generat-
ing Gaussian-like fluctuations about this trajectory. However, on a longer time scale,
a rare event (large fluctuation) will generate a path of escape from us to the boundary
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Fig. 1 a Deterministic trajectories of a multistable dynamical system. The subset Ω is contained within
the basin of attraction of a fixed point us . The boundary of the basin of attraction consists of separatrices,
which are also solution trajectories. Paths that start in a neighborhood of a separatrix are attracted by
different fixed points, depending whether they begin on the left or right of the separatrix. b Random
trajectories of the stochastic system. Escape from the domain Ω occurs when a random trajectory hits the
boundary ∂Ω

of Ω . It turns out that both classical trajectories and the maximum-likelihood paths
of escape correspond to zero energy solutions of Hamilton’s equations of motion;
this follows from the fact that the action vanishes at fixed points of the deterministic
mean-field equation. We will illustrate this by considering the simpler one-population
model.

Setting λ0 = 0 in the eigenvalue equation (3.12) gives

∑[
Wnm(u) + pδn,mvm(u)

]
R(0)

m (u,p) = 0 (4.2)

with R
(0)
m required to be a positive function. One solution is p = 0 and R

(0)
m (u,0) =

ρm(u) with ∑
m

Wnm(u)ρm(u) = 0.

Differentiating the eigenvalue equation with respect to p and then setting p = 0,
λ0 = 0 shows that

∂λ0(u,p)

∂p

∣∣∣∣
p=0

ρn(u) = vn(u)ρn(u) +
∑
m

Wnm(u)
∂R

(0)
m (u,p)

∂p

∣∣∣∣
p=0

.

Summing both sides with respect to n and using
∑

n Wnm = 0,

∂λ0(u,p)

∂p

∣∣∣∣
p=0

=
∑
n

vn(u)ρn(u).

Similarly, one finds that ∂λ0(u,p)/∂u vanishes at p = 0. Hence, Hamilton’s equa-
tions

u̇ = ∂λ0(u,p)

∂p
, ṗ = −∂λ0(u,p)

∂u
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reduce to

u̇ =
∑
n

vn(u)ρn(u), ṗ = 0 for p = 0.

It follows that (us,0) is a fixed point in the full phase space with the line p = 0
a stable manifold. Along this manifold, u converges to us according to the scalar
version of the mean-field equation (2.19). From the explicit expression for λ0(u,p),
(3.27), we see that there exists another zero energy solution given by

p = φ(u) ≡ 1

w
− F(u)

u
,

which is the unique, non-trivial solution of the equation

∑
m

[
Wnm(u) + φ(u)δn,mvm(u)

]
ψm(u) = 0 (4.3)

for positive functions ψm(u). (Note that p < 1/w so that we do not have to worry
about the singular nature of the Perron eigenvalue in the limit N → ∞.) It corre-
sponds to the trajectory along the unstable manifold of (us,0) and is the optimal path
of escape from us . Along this optimal path λ0 = 0, so that the corresponding action
is given by the quasipotential

Φ(u) =
∫ t

−∞
[
pu̇ − λ0(u,p)

]
dt

∣∣∣∣
p=φ(u)

=
∫ t

−∞
φ(u)u̇ dt =

∫ u

us

φ(y) dy (4.4)

and

P ∼ e−Φ(u)/ε. (4.5)

A similar situation holds for the higher-dimensional case, except that there are now
multiple maximum-likelihood paths of escape from a metastable state [27, 33].

5 The Diffusion Approximation and Neural Pattern Formation

Another useful application of the multi-population path integral (3.28) is that it pro-
vides a direct method for obtaining a Gaussian or diffusion approximation of the
stochastic hybrid system, equivalent to the one obtained using the more complicated
QSS reduction [27]. Performing the rescaling p → ip/ε gives

P(u, t) =
∫ u(τ )=u

u(0)=u0

D[u]D[p]

× exp

(
−

∫ τ

0
i
∑
α

pα

[
u̇α + uα −

∑
β

wαβF (uβ)

1 − iε
∑

γ wγβpγ

]
dt

)
.
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The Gaussian approximation involves Taylor expanding the Lagrangian to first order
in ε, which yields a quadratic in p:

P(u, t) =
∫ u(τ )=u

u(0)=u0

D[u]D[p] exp

(∫ τ

0
i
∑
α

pα

(
u̇α + uα −

∑
β

wαβF (uβ)

))

× exp

(
−iε

∫ τ

0

∑
α,γ

pαQαγ (u)pγ dt

)
,

where Qαγ (u) = ∑
β wαβF (uβ)wγβ . Performing the Gaussian integration then

yields

P(u, t) =
∫

D[u]e−A[u]/ε,

with action functional

A[u] = 1

4

∫ τ

0

∑
α,β

(
u̇α(t) − Vα

(
u(t)

))
Q−1

αβ (u)
(
u̇β(t) − Vβ

(
u(t)

))
dt, (5.1)

where Vα(u) = −uα + ∑
β wαβF (uβ). This path integral is identical in form to

the Onsager–Machlup path-integral representation [44] of solutions to the Langevin
equation

dUα(t) = Vα(U) dt + √
2ε

∑
β

wαβ

√
F(uβ)dWβ(t), (5.2)

where the Wα(t) are independent Wiener processes. Since there is no additional Jaco-
bian factor in the Onsager–Machlup path integral, it follows that the Langevin equa-
tion is of the Ito form. As we have discussed extensively elsewhere [27, 33], the
diffusion or Gaussian approximation breaks down when solving escape problems.
On the other hand, it provides useful information when analyzing the effects of fluc-
tuations within the basin of attraction of a metastable state. For example, it is well
known within the context of PDEs that fluctuations can enlarge the parameter regime
over which time-periodic (limit cycles) or spatially periodic (Turing patterns) can
occur. A similar phenomenon exists for stochastic hybrid neural networks. We will
illustrate this by considering Turing-like instabilities in a spatially structured hybrid
neural network under the diffusion approximation.

5.1 Noise-Induced Pattern Formation

Consider a system of coupled homogeneous neural populations that are distributed
on a regular d-dimensional lattice L, with lattice spacing �α and site index α ∈ L.
Following recent studies of stochastic pattern formation in RD systems [45–51], we
investigate the occurrence of stochastic neural patterns by linearizing the spatially
discrete Langevin equation (5.2) about a homogeneous stationary solution u0 of the
mean-field equation (2.19) and calculating the resulting power spectrum using dis-
crete Fourier transforms. In order to reflect the homogeneous structure of the weights
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we also set

wαα′ = w
(∣∣α − α′∣∣).

Substituting

Uα(t) = u0 + √
εΦα(t)

into (5.2) and Taylor expanding to first order in Φ gives the multivariate Ornstein–
Uhlenbeck process

dΦα

dt
=

∑
α′

J0
(∣∣α − α′∣∣)Φα′(t) +

∑
α′

B0
(∣∣α − α′∣∣)ξα′(t), (5.3)

with

J0
(∣∣α − α′∣∣) = ∂Vα

∂Uα′

∣∣∣∣
u0

= −δα,α′ + w
(∣∣α − α′∣∣)F ′(u0), (5.4)

and

B0
(∣∣α − α′∣∣) = w

(∣∣α − α′∣∣)√2F(u0). (5.5)

Considerable insight into the behavior of the system can now be obtained by trans-
forming to Fourier space [45, 51]. For simplicity, consider a 1D lattice with peri-
odic boundary conditions, uα+N = uα for α = 1, . . . ,N and set the lattice spacing
�α = 1. Introduce the discrete Fourier transforms

Φ̂(k) =
∑
α

e−ikαΦα, Φα = 1

N

∑
k

eikαΦ̂(k)

with k = 2πm/N , m = 0, . . . ,N − 1. Using the following result for convolutions:∑
α,α′

e−ikαJ
(
α − α′)Φα′ = Ĵ (k)Φ̂(k),

the discrete Fourier transform of the Langevin equation is

dΦ̂(k, t)

dt
= Ĵ0(k)Φ̂(k, t) + B̂0(k)̂ξ (k, t) (5.6)

with

Ĵ0(k) = −1 + ŵ(k)F ′(u0), B̂0(k) = ŵ(k)
√

2F(u0) (5.7)

and 〈̂ξ(k, t)〉 = 0, 〈̂
ξ(k, t )̂ξ

(
k′, t ′

)〉 = δk,−k′δ
(
t − t ′

)
.

Note that the homogeneous equation

dΦ̂(k, t)

dt
= Ĵ0(k)Φ̂(k, t) (5.8)
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determines the stability of the fixed point u0 in the absence of noise. It follows that
the deterministic system is stable provided that Ĵ0(k) < 0 for all k. Suppose that the
gain μ = F ′(u0) is treated as a bifurcation parameter. Clearly if ŵ(k) is bounded and
μ is sufficiently small, then J̃0(k) < 0 for all k. However, if maxk{ŵ(k)} = ŵ(kc) > 0
then the fixed point becomes marginally stable at μ = μc = 1/ŵ(kc), resulting in the
growth of a spatially periodic pattern of wavenumber kc as μ crosses μc. A standard
neural mechanism for inducing a Turing-like instability is to have a combination of
short-range excitation and longer-range inhibition [52, 53]. This can implemented in
the 1D scalar model by taking w to be the difference-of-Gaussians

wD(x) = e−x2/2 − Ae−x2/2σ 2
. (5.9)

(More precisely, in order to match the periodic boundary conditions, we should take
w(α) = ∑

n wD(α − nN).)
Spectral theory can now be used to determine the effects of noise on pattern for-

mation. First, Fourier transforming the Langevin equation (5.6) with respect to time
gives

Λ(k,Ω)Φ̂(k,Ω) = B̂0(k)̂ξ (k,Ω)

with

Λ(k,Ω) = −iΩ − Ĵ0(k)

and 〈̂
ξ(k,Ω)

〉 = 0,
〈̂
ξ(k,Ω)̂ξ

(
k′,Ω ′)〉 = δk,−k′δ

(
Ω + Ω ′).

It follows that

〈
Φ̂(k,Ω)Φ̂

(
k′,Ω ′)〉 =

〈[
B̂0(k)

Λ(k,Ω)
ξ̂(k,Ω)

][
B̂0(k

′)
Λ(k′,Ω ′)

ξ̂
(
k′,Ω ′)]〉

= δk,−k′δ
(
Ω + Ω ′) |B0(k)|2

|Λ(k,Ω)|2 .

Defining the power spectrum by〈
Φ̂(k,Ω)Φ̂

(
k′,Ω ′)〉 = S(k,Ω)δk,−k′δ

(
Ω + Ω ′),

we deduce that

S(k,Ω) = |B0(k)|2
|Λ(k,Ω)|2 . (5.10)

From the deterministic theory, we know that the system undergoes a Turing instability
(stationary patterns) rather than a Turing–Hopf instability (oscillatory patterns) so we
can set Ω = 0 and determine conditions under which S(k,0) has a peak at a non-
zero, finite value of k, which is an indication of a stochastic pattern. Substituting the
explicit expression for Λ(k,0) and B0(k), we have

S(k,0) = 2ŵ(k)2F(u0)

[−1 + ŵ(k)F ′(u0)]2
= 2F(u0)

F ′(u0)2

[
1 + λ(k)−1]2

. (5.11)
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Fig. 2 Stochastic pattern
formation in a scalar neural
network. a Plot of Fourier
transformed weight distribution
as a function of wavenumber k

for various values of gain
μ = f ′(u0):
μ = 0.12,0.15,0.18,0.2,0.22.
b Sketch of corresponding
power spectra S(k,0), showing
the peak in the spectrum at the
critical wavenumber kc for
μ < μc . Parameter values are
σ 2 = 4, A = 0.5, F0 = 20,
η = 2, κ = 0

Suppose that μ ≡ F ′(u0) < μc so the system is below the deterministic critical point
for a Turing instability. Clearly S(k,0) becomes singular as μ → μc, consistent with
the fixed point becoming unstable. The main new result is that S(k,0) has a peak
at the critical wavenumber kc for all μ, 0 < μ < μc = ŵ(kc)

−1. This follows from
the fact that λ(k) < 0 for all k in the subcritical regime with mink{|λ(k)|} = |λ(kc)|.
Hence, S(k,0) will have a peak at k = kc provided that

0 <
∣∣λ(kc)

∣∣ ≡ 1 − μŵ(kc) < 1 =⇒ μ < μc. (5.12)

This is illustrated in Fig. 2.

5.2 Continuum Limit

The above stochastic model of a spatially structured lattice of neural populations
can be reduced to a stochastic neural field by taking a continuum limit. A heuristic
derivation proceeds as follows. Suppose that there is a uniform density ρ of popu-
lations distributed in R

d . We then reinterpret uα as the mean current averaged over
the ρ�αd populations in the infinitesimal volume �αd centered at the lattice point
α ∈ L. If an individual population in the set of populations centered at α is labeled
by the pair (α, j), then

uα =
∑

j uα,j

ρ�αd
.
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We will assume that the weights are slowly varying on the length-scale �α so that
wαj,α′j ′ = wαα′ . (Relaxing this assumption can lead to additional sources of stochas-
ticity as explored in [12, 14].) The deterministic mean-field (2.19) for an individual
population becomes

τ
duαj

dt
= −uαj (t) +

∑
α′

wαα′
∑
j ′

F(uα′j ′).

Averaging with respect to j gives

τ
duα

dt
= −uα(t) + ρ�αd

∑
α′

wαα′
1

ρ�αd

∑
j ′

F(uα′j ′)

= −uα(t) + ρ�αd
∑
α′

wαα′F(uα)

under the approximation that all local populations are in a similar state so

1

ρ�αd

∑
j ′

F(uα′,j ′) ≈ F

(
1

ρ�αd

∑
j ′

uα′,j ′
)

.

Effectively, we are scaling the population firing-rate function by a factor ρ�αd . Fi-
nally, setting α = x, uα(t) = u(x, t), ρwαα′ = w(x,x′), and taking the continuum
limit �α → 0 yields the deterministic neural field equation

τ
∂u

∂t
= −u(x, t) +

∫
Rd

w
(
x,x′)F (

u
(
x′, t

))
dx′. (5.13)

Applying a similar analysis to the diffusion matrix, we have

Qαj,α′j ′ =
∑
α1,j1

wαα1wα′α2F(uα1,j1) = ρ�αd
∑
α1

wαα1wα′α2F(uα1).

Hence, Q is independent of the local population labels j , j ′ and the Langevin equa-
tion (5.2) becomes

dUαj

dt
= V αj (U) +

√
2ερ�αd

∑
α′

Bαα′(U)ξα′(t). (5.14)

Averaging with respect to j and taking the continuum limit yields the following neu-
ral field model with spatiotemporal Gaussian white noise:

dU(x, t)

dt
= −U(x, t) +

∫
Rd

w
(
x,x′)F (

U
(
x′, t

))
dx′

+ √
ε

∫
Rd

B
(
x,x′)ξ(

x′, t
)
dx′, (5.15)
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where

B
(
x,x′) = w

(
x,x′)√2F

(
U

(
x′, t

))
(5.16)

and 〈η(x, t)〉 = 0, 〈
η(x, t)η

(
x′, t ′

)〉 = δ
(
x − x′)δ(t − t ′

)
. (5.17)

For finite �α, we have introduced the scaling ηα(t)/
√

�αd = η(x, t).
From a numerical perspective, any computer simulation would involve rediscretiz-

ing space and then solving a time-discretized version of the resulting stochastic neu-
ral field equation. On the other hand, in order to investigate analytically the effects
of noise on spatiotemporal dynamics such as traveling waves, it is more useful to
work directly with stochastic neural fields. One can then adapt various PDE meth-
ods for studying noise in spatially extended systems [15, 54–58]. Finally, note that
a large-deviation principle for a stochastic neural field with additive noise has been
developed in [59].

6 Generating Functionals and the 1/ε Loop Expansion

One step beyond the Gaussian approximation is to consider corrections to the mean-
field equation (2.19), which couple the mean synaptic current with higher-order mo-
ments. As demonstrated previously for neural master equations [17, 18, 20], path inte-
grals provide a systematic method for generating the hierarchy of moment equations.
We will illustrate this by calculating the lowest-order correction to mean-field theory
based on coupling to second-order correlations. One could then take investigate the
bifurcation structure of the higher-dimensional dynamical system along analogous
lines to Touboul and Ermentrout [13]. However, certain caution must be exercised,
since one does not keep track of the validity of the truncated moment equations. Note
that the path-integral methods used in this section were originally introduced within
the context of stochastic processes by Martin–Siggia–Rose [60], and have previously
been applied to stochastic neural networks by Sompolinsky et al. [61, 62] and Buice
et al. [17, 20].

6.1 Generating Functional and Moments

First note that the average synaptic current Uα is given by

〈〈
Uα(t1)

〉〉 = ∫
uα(t1)p[u, t1]du =

∫
D[u]D[p]uα(t1)e

−S[u,p]/ε (6.1)

and two-point correlations are

〈〈
Uα(t1)Uβ(t2)

〉〉 = ∫
D[u]D[p]uα(t1)uβ(t2)e

−S[u,p]/ε. (6.2)

Another important characterization of the system is how the mean synaptic cur-
rent responds to small external inputs. Suppose that we add a small external source
term hα(t) onto the right-hand side of the deterministic rate equation (2.19). Lin-
earizing about the time-dependent solution of the unperturbed equation (h ≡ 0)
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leads to the following (non-autonomous) linear equation for the perturbed solution
uα(t) = uh

α(t) − u0
α(t):

τ
duα

dt
= −uα +

∑
β

wαβF ′(u0
β

)
uβ + hα(t). (6.3)

Introducing the Green’s function or propagator G0
αβ(t, t ′) according to the adjoint

equation

−τ
dG0

αγ (t, t ′)
dt ′

= −G0
αγ

(
t, t ′

) +
∑
β

wαβF ′(u0
β

)
G0

βγ

(
t, t ′

)

+ δα,γ δ
(
t − t ′

)
, (6.4)

we can express the linear response as

uα(t) =
∫ t ∑

γ

G0
αγ

(
t, t ′

)
hγ

(
t ′
)
dt ′. (6.5)

In other words, in terms of functional derivatives

δuα(t)

δhγ (t ′)
= G0

αγ

(
t, t ′

)
. (6.6)

Now suppose that we add a source term to the path-integral representation. This cor-
responds to adding a term

∫ ∑
γ hγ (t)pγ (t) dt to the action (3.29). It follows that the

associated Green’s function for the full stochastic model is given by

Gαγ

(
t, t ′

) ≡ δ〈〈Uα(t)〉〉
δhγ (t ′)

= 〈〈
Uα(t)Pγ

(
t ′
)〉〉

. (6.7)

The above analysis motivates the introduction of the generating functional

Z[J, J̃] =
∫

D[u]D[p]

× exp

(
−S[u,p]

ε
+

∫
dt

∑
α

[
uα(t)J̃α(t) + Jα(t)pα(t)

])
. (6.8)

Various moments of physical interest can then be obtained by taking functional
derivatives with respect to the ‘current sources’ J, J̃. For example,

〈〈
Uα(t)

〉〉 = δ

δJ̃α(t)
Z[J, J̃]

∣∣∣∣
J=̃J=0

,

〈〈
Uα(t)Uβ

(
t ′
)〉〉 = δ

δJ̃α(t)

δ

δJ̃β(t)
Z[J, J̃]

∣∣∣∣
J=̃J=0

,

〈〈
Uα(t)Pβ

(
t ′
)〉〉 = δ

δJ̃α(t)

δ

δJβ(t)
Z[J, J̃]

∣∣∣∣
J=̃J=0

.
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6.2 Effective Action and Corrections to Mean-Field Equations

Let us rescale the currents according to J → J/ε and J̃ → J̃/ε so that we can apply a
loop expansion of the path integral (6.8), which is a diagrammatic method for carry-
ing out an ε expansion based on steepest descents or the saddle-point method. First,
we introduce the exact means

να = 〈〈Uα〉〉, ν̃k = 〈〈Pα〉〉,
and we shift the variables by

uα(t) → uα(t) + να(t), pα(t) = pα(t) + ν̃α(t).

Expanding the action in (6.8) to second order in the shifted variables u, p yields an
infinite-dimensional Gaussian integral, which can be formally evaluated to give

Z[J, J̃] ≈ Det
[
D[ν, ν̃]]−1/2

× exp

(
−S[ν, ν̃]

ε
+ 1

ε

∫
dt

∑
α

[
να(t)J̃α(t) + Jα(t )̃να(t)

])
,

where D[ν, ν̃] is the matrix with components

D[ν, ν̃]rα,sβ

(
t, t ′

) = δ2S

δur
α(t)δus

β(t ′)

∣∣∣∣
u=ν,p=ν̃

. (6.9)

We have introduced the vectors ur , r = 1,2 with u1 = u, u2 = p. Using the following
identity for a matrix M:

Det M = eTr log M,

we obtain the O(ε) approximation

Z[J, J̃] ≈ e−Seff[ν ,̃ν]/εe
∫

dt
∑

α[να(t)J̃α(t)+Jα(t )̃να(t)]/ε, (6.10)

where

Seff[ν, ν̃] = S[ν, ν̃] + ε

2
Tr log

[
D[ν, ν̃]]. (6.11)

In order to use the above expansion to determine corrections to the mean-field
equations, it is first necessary to introduce a little more formalism. First, consider the
Legendre transformation

Γ [ν, ν̃] = W [J, J̃] +
∫

dt
∑
α

[
να(t)J̃α(t) + Jα(t )̃να(t)

]
, (6.12)

where W [J, J̃] = −N−1 logZ[J, J̃] and Γ is known as the effective action. Since

να(t) = − δW

δJ̃α(t)
, ν̃α(t) = − δW

δJα(t)
, (6.13)
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it follows from functionally differentiating (6.12) that

J̃α(t) = δΓ

δνα(t)
, Jα(t) = δΓ

δ̃να(t)
. (6.14)

Dynamical equations for the physical mean fields να(t) are then generated by setting
J = 0 = J̃ in (6.14). Another useful result is obtained by functionally differentiating
(6.13) with respect to the mean fields ν, ν̃:

δ
(
t − t ′

)
δr,sδα,β = δνr

α(t)

δνs
β(t ′)

= − δ2W

δJ r
α(t)δνs

β(t ′)

= −
∑

q=1,2

M∑
γ=1

∫
δ2W

δJ r
α(t)δJ

q
γ (τ )

δJ
q
γ (τ )

δνs
β(t ′)

dτ,

where ν1
α = να , ν2

α = ν̃α and J 1
α = J̃α , J 2

α = Jα . Differentiating (6.14) with respect to
J, J̃ then shows that

∑
q=1,2

M∑
γ=1

∫
δ2W

δJ r
α(t)δJ

q
γ (τ )

δ2Γ

δν
q
γ (τ )δνs

β(t ′)
dτ = −δr,sδk,lδ

(
t − t ′

)
.

In other words, defining the infinite-dimensional matrix D̂[ν, ν̃] according to

D̂[ν, ν̃]r,s
(
α, t;β, t ′

) = δ2Γ

δνr
α(t)δνs

β(t ′)
, (6.15)

we see that D̂[ν, ν̃] is the inverse of the two-point covariance matrix with components

Crα,sβ

(
t, t ′

) ≡ − δ2W

δJ r
α(t)δJ s

β(t ′)
= [〈〈

Ur
α(t)Us

β

(
t ′
)〉〉 − 〈〈

Ur
α(t)

〉〉〈〈
Us

β

(
t ′
)〉〉]

.

It now follows from (6.10) and (6.12) that Γ [ν, ν̃] = Seff[(ν, ν̃)] + O(ε2). More-
over, (6.9) and (6.15) imply that D̂[ν, ν̃] = D[ν, ν̃] + O(ε), that is, we can take
D[ν, ν̃] to be the inverse of the two-point covariance matrix. The first-order cor-
rection to the mean-field equation (2.19) is then obtained from (6.14) after setting
J = J̃ = ν̃ = 0:

0 = δΓ [ν, ν̃]
δνα(t)

∣∣∣∣̃
ν=0

= δS[u,p]
δpα(t)

∣∣∣∣
u=ν,p=0

+ ε

2
TrD[u,p]−1 δD[u,p]

δpα(t)

∣∣∣∣
u=ν,p=0

,

with

TrD[u,p]−1 δD[u,p]
δpα(t)

∣∣∣∣
u=ν,p=0

=
∫

dt ′
∫

dt ′′
∑
rβ,sγ

Crβ,sγ

(
t ′, t ′′

) δ

δpα(t)

δ2S[u,p]
δur

β(t ′)us
γ (t ′′)

∣∣∣∣
u=ν,p=0

.
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The functional derivative in the above equation forces t = t ′ = t ′′ (see also [20]).
Since the only non-vanishing, equal-time two-point correlation function when p = 0
is for r = s = 1, it follows that

TrD[u,p]−1 δD[u,p]
δpα(t)

∣∣∣∣
u=ν,p=0

=
∑
β,γ

Cβγ (t)Sα
γβ(t),

where

Cβγ (t) = [〈〈
Uβ(t)Uγ (t)

〉〉 − 〈〈
Uβ(t)

〉〉〈〈
Uγ (t)

〉〉]
,

and

δ

δpα(t)

δ2S[u,p]
δuβ(t ′)uγ (t ′′)

∣∣∣∣
u=ν,p=0

= Sα
γβ(t)δ

(
t − t ′

)
δ
(
t − t ′′

)
.

Evaluating the functional derivative of the action S given by (3.29) and (3.35) finally
yields the lowest-order correction to the mean-field equation (2.19), which could not
be obtained from the Langevin equation (5.2):

τ
duα

dt
= −uα(t) +

M∑
β=1

wαβF(uβ) − ε

2

∑
β

wαβCββ(t)F ′′(uβ(t)
) +O

(
ε2). (6.16)

It is also possible to derive a corresponding dynamical equation for the two-point
correlation function by extending the definition of the effective action along the
lines of Buice et al. [20]. However, the lowest-order equation for C can be obtained
from (5.2). One finds that

dCαβ

dt
= Qαβ(u) +

∑
γ

[
∂V α(u)

∂uγ

Cγβ + Cαγ

∂V β(u)

∂uγ

]

=
∑
γ

wαγ F (uγ )wβγ +
∑
γ

[−δα,γ + wαγ F ′(uγ )
]
Cγβ

+
∑
γ

[−δβ,γ + wβγ F ′(uγ )
]
Cαγ

= −2Cαβ +
∑
γ

wαγ F (uγ )wβγ

+
∑
γ

F ′(uγ )[wαγ Cγβ + wβγ Cαγ ]. (6.17)

The corrections to mean-field theory for a stochastic hybrid neural network differ
significantly from those derived for the Buice et al. master equation [17, 20]. There
are two primary sources of such differences. One arises from the fact that the mean
equation is in ‘Amari form’ (with the weight matrix outside the nonlinearity). This
accounts for all the difference in (6.16) for the mean, which would otherwise be
identical to that of Buice et al., and the last term involving C in (6.17). The other
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difference is in the non-homogeneous source term for the C equation, which appears
as

∑
γ wαγ F (uγ )wβγ . Whereas the Buice et al. correlations are determined by mul-

tiple network motifs (with the lowest order being the direct connection wαβ from β

to α), our result for the hybrid model indicates that the source term is given by di-
vergent motifs indicating common input from a third population (population γ →
populations α, β).

7 Discussion

In conclusion, we have constructed a path-integral representation of solutions to a
stochastic hybrid neural network, and shown how this provides a unifying framework
for carrying out various perturbation schemes for analyzing the stochastic dynam-
ics, namely, large deviations, diffusion approximations, and corrections to mean-field
equations. We highlighted the fact that the path-integral action can be expressed in
terms of a Hamiltonian, which is given by the Perron eigenvalue of an appropriately
defined linear operator. The latter depends on the transition rates and drift terms of
the underlying hybrid system. The resulting action is consistent with that obtained
using large-deviation theory.

In terms of the theory of stochastic neural networks, our hybrid model extends
the neural master equation to include the effects of synaptic currents. In the limit
of fast synapses one recovers the neural master equation, which can be viewed as
a stochastic version of the ‘Wilson–Cowan’ rate equations (with the weight matrix
inside the nonlinearity). On the other hand, in the case of slow synapses, one obtains
a stochastic version of the ‘Amari’ rate equations. This leads to significant differences
in the corrections to the mean-field equations. Finally, it should be noted that the
path-integral formulation presented here can be applied to more general stochastic
hybrid systems such as stochastic ion channels, molecular motors, and gene networks
[28–32]. Thus one can view our path-integral construction as the hybrid analog of the
Doi–Peliti path integral for master equations.
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