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Abstract We introduce a new formalism for evaluating analytically the cross-
correlation structure of a finite-size firing-rate network with recurrent connections.
The analysis performs a first-order perturbative expansion of neural activity equations
that include three different sources of randomness: the background noise of the mem-
brane potentials, their initial conditions, and the distribution of the recurrent synaptic
weights. This allows the analytical quantification of the relationship between anatom-
ical and functional connectivity, i.e. of how the synaptic connections determine the
statistical dependencies at any order among different neurons. The technique we de-
velop is general, but for simplicity and clarity we demonstrate its efficacy by apply-
ing it to the case of synaptic connections described by regular graphs. The analytical
equations so obtained reveal previously unknown behaviors of recurrent firing-rate
networks, especially on how correlations are modified by the external input, by the
finite size of the network, by the density of the anatomical connections and by cor-
relation in sources of randomness. In particular, we show that a strong input can
make the neurons almost independent, suggesting that functional connectivity does
not depend only on the static anatomical connectivity, but also on the external inputs.
Moreover we prove that in general it is not possible to find a mean-field description à
la Sznitman of the network, if the anatomical connections are too sparse or our three
sources of variability are correlated. To conclude, we show a very counterintuitive
phenomenon, which we call stochastic synchronization, through which neurons be-
come almost perfectly correlated even if the sources of randomness are independent.
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Due to its ability to quantify how activity of individual neurons and the correlation
among them depends upon external inputs, the formalism introduced here can serve
as a basis for exploring analytically the computational capability of population codes
expressed by recurrent neural networks.

Keywords Functional connectivity · Neural networks · Firing-rate network model ·
Perturbative theory · Stochastic systems · Graph theory

1 Introduction

The brain is a complex system whose information processing capabilities critically
rely on the interactions between neurons. One key factor that determines interaction
among neurons is the pattern of their anatomical or structural connectivity, namely
the specification of all the synaptic wirings that are physically present between neu-
rons. However, communication among neurons appears to change dynamically [1],
suggesting the presence of not-yet understood network mechanisms that modulate
the effective strength of a given connection. Understanding how the functional con-
nectivity of a neural network (i.e. the set of statistical dependencies among different
neurons or neural populations [2]) depends upon the anatomical connectivity and is
further modulated by other network parameters has thus become a central problem in
systems neuroscience [3–8].

In this article we introduce a new formalism for evaluating analytically the struc-
ture of dependencies among neurons in the finite-size firing-rate network with recur-
rent connections introduced in [9]. Although these dependencies are computed from
neural activity in a number of ways [10], in most cases functional connectivity is
inferred from computing the correlation among neurons or populations of neurons
[2]. In this article, we therefore concentrate on computing the correlations among
neurons in a firing-rate network, although we also discuss how to compute, with the
same formalism, also other measures of functional connectivity (Sect. 5).

To our knowledge, the problem of determining analytically the correlation struc-
ture of a neural network has been begun to be investigated systematically only
recently. This is in part due to the new experimental insights into functional con-
nectivity among cortical neurons [3–8], and in part due to the focus on many pre-
vious mathematical studies of neural networks on the mean-field approximation.
This approximation exploits the fact that (under certain hypotheses) neurons be-
come independent in the thermodynamic limit when the number of neurons N in
the network goes to infinity. This kind of mean-field approximation has been de-
veloped by Sznitman [11–13], Tanaka [14–16], McKean [17, 18] and others. Ac-
cording to it, if the neurons are independent at time t = 0 (initial chaos), then
in the thermodynamic limit this independence propagates to every t > 0.1 This

1For completeness, it is worth clarifying that independence is a special case of a more general condition

that mathematicians call chaos. Let νt be a probability measure on R
d at time t . We suppose this space

is spanned by a vector variable x, which describes the state of a neuron. Then let μ
(N)
t be a sequence of

symmetric probability measures on R
d×N , where N is the number of neurons in the system. The sequence
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phenomenon of propagation of chaos has been studied in different kinds of neu-
ral network models [19–22]. However, recent studies have begun to investigate the
more interesting and rich structure of correlations arising in descriptions of net-
works dynamics beyond the thermodynamic limit. For example, new studies con-
sidered finite-size networks with excitatory and inhibitory populations, where the
firing rates are determined by a linear response theory [23–25]. These studies in-
cluded in the network sources of Poisson randomness in the spike times [23, 24],
as well as randomness originating from normal white noise in the background for
the membrane potentials [25]. Pioneer approaches [26] relied on estimating corre-
lation by using a perturbative expansion around the thermodynamic limit in the in-
verse number of neurons in the network. The method was developed for binary neu-
rons, where the sources of randomness were the transitions between the two states
of each neuron and the topology of the synaptic connections, and a similar model
was reintroduced recently in [27] for large networks. In [28] the author considered
an alternative way to calculate correlations as a function of the inverse number of
neurons (which is known as the linear noise approximation) and applied it to ho-
mogeneous populations of identical neurons with random fluctuations in the firing-
rates. In [29] the authors introduced a density functional approach adapted from
plasma physics to study correlations in large systems, and applied it to a hetero-
geneous network of phase neurons with random initial conditions. Another effective
approach is represented by large deviations theory. In [30–32] the authors consid-
ered a discrete-time network of rate neurons, whose sources of randomness were
background Brownian motions for the membrane potentials and normally distributed
synaptic weights.

Building on these previous attempts to study network correlations including finite-
size effects that go beyond the mean-field approximation, here we develop an ap-
proach based upon a first-order perturbative expansion of the neural equations. We
introduce randomness through three different sources: the background noise of the
membrane potentials, their initial conditions and the distribution of the recurrent
synaptic weights. These sources of variability are normally distributed and can be
correlated, and their standard deviations are used as perturbative parameters. Using

μ
(N)
t is said to be νt -chaotic if, for all integers k ≥ 1 and for all continuous and bounded test functions

ϕ1, . . . , ϕk , we have

lim
N→∞

∫
Rd×N

ϕ1(x1) · · ·ϕk(xk) dμ
(N)
t (x1, . . . ,xN)

=
(∫

Rd
ϕ1(x1) dνt (x1)

)
· · ·
(∫

Rd
ϕk(xk) dνt (xk)

)

If the sequence μ
(N)
t is νt -chaotic, the neurons are said to be chaotic at time t . Intuitively, we can think of

μ
(N)
t as the joint probability of N (exchangeable) neurons. The exchangeability condition is equivalent to

the above symmetry condition. We see that the case of independent and identically distributed neurons is a

special one. Indeed, if μ
(N)
t = ν⊗N

t (where ⊗ denotes the tensor product of measures), then it is obvious
that the above condition is satisfied ∀N . In turn, the tensor product of measures can be interpreted as the
factorization of the joint probability that defines independence in probability theory. The initial conditions
are said to be ν0-chaotic if the previous condition holds at time t = 0. The propagation of chaos refers to
the fact that if the initial conditions are ν0-chaotic, then, if the neurons are exchangeable, their joint law

μ
(N)
t is νt -chaotic for some probability measure νt on R

d for all times t ∈ [0, T ].
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this formalism and this model, we quantify analytically how synaptic connections
determine statistical dependencies at any order (not only at the pairwise level, as in
previous studies) among different neurons. The technique developed in this article
is general, but for simplicity we demonstrate its efficacy by applying it to the case
of synaptic connections described by regular graphs. A regular graph is a graph in
which each vertex has the same number of neighbors, so this means that we consider
networks where each neuron receives and makes the same number of connections.
While this assumption is of course biologically implausible, it is sufficient to show
interesting and non-trivial behaviors and will be relaxed to study more plausible con-
nections in our future studies. We use this formalism to investigate in detail how the
correlation structure depends on the strength of the external input to the network. We
find that external input exerts profound and sometimes counterintuitive changes in the
correlation among neurons: for example, a strong input can make the neurons almost
independent. Moreover, we prove that in general it is not possible to find a mean-field
description à la Sznitman of the neural network, due to the absence of chaos, if the
anatomical connections are too sparse or our three sources of variability are corre-
lated. This demonstrates the fairly limited range of applicability of the mean-field
approximation. Finally, we also show a very counterintuitive phenomenon, which
we call stochastic synchronization, through which neurons become almost perfectly
correlated even if the sources of randomness are independent.

This article is organized as follows. In Sect. 2 we describe the details of the firing-
rate network we use. We then develop a first-order perturbative expansion (Sect. 3)
that allows the approximate analytical calculation, for a generic anatomical connec-
tivity matrix, of the membrane potentials and the firing rates of the network. (In this
section we assume the reader to be familiar with stochastic calculus [33, 34].) Then
we use this formula for the membrane potentials and the firing rates in Sect. 4 to cal-
culate analytically the pairwise and higher-order correlation structure of the network
and the joint probability distribution for both the membrane potentials and the firing
rates. In Sect. 5 we briefly discuss how other measures of functional connectivity can
be evaluated analytically through our theory. In Sect. 6 we specialize to the case of
regular graphs and we investigate network dynamics using some explicit examples of
anatomical connectivity. We start by considering relatively simple cases, in particular
a block-circulant graph with circulant blocks (Sect. 6.1) and a more general case of
symmetric undirected graphs (Sect. 6.2). Then in Sect. 6.3 we conclude by showing
how to extend the theory to highly complex regular graphs and by discussing also
some possible extensions to irregular networks. In Sect. 7 we investigate the good-
ness of our perturbative approach by comparing it to the numerical simulation of the
network’s equations. In Sect. 8 we show that the correlation structure depends dy-
namically on the external input of the network. In Sect. 9 we demonstrate with coun-
terexamples that in general Sznitman’s mean-field approximation cannot be applied
to the network in the case when the sources of randomness are correlated (Sect. 9.1)
or when the anatomical connectivity matrix is too sparse (Sect. 9.2). In Sect. 10 we
introduce the phenomenon of stochastic synchronization. Finally, in Sect. 11 we dis-
cuss the implications of our results as well as the strengths and limitations of our
mathematical approach.
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2 Description of the Model

We suppose that the neural network is described by the following firing-rate model
[9]: ⎧⎪⎨

⎪⎩
dVi(t) = [− 1

τ
Vi(t) + 1

Mi

∑N−1
j=0 Jij (t)A (Vj (t)) + Ii(t)]dt

+ σ0 dBi (t),

Vi(0) = μi + σ1Ni ,

(2.1)

with i = 0, . . . ,N − 1, where the total number of neurons N is finite. Here Vi(t)

is the membrane potential of the ith neuron, Ii(t) is its external time-varying input
current and τ is the membrane time constant describing the speed of convergence of
the membrane potential to its resting state. Note that the external input can assume
both positive and negative values, modeling the effect of prevailingly depolarizing
or hyperpolarizing external influences, respectively. Moreover, Jij (t) is the synaptic
weight from the j th to the ith neuron, while Mi is the number of incoming connec-
tions of the ith neuron. In graph theory this quantity is called incoming vertex degree
and its role will be explained later in this section. A (·) represents a generic activation
function, which converts the membrane potential V of a neuron into its correspond-
ing firing rate ν = A (V ). A typical choice is to consider S-shaped (or sigmoidal)
activation functions, because they are biologically plausible and their saturation for
|V | → ∞ ensures the boundedness of the solutions of Eq. (2.1). Some classic exam-
ples are shown below:

A (V ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νmax
1+e−Λ(V −VT ) (Logistic),

νmax[ 1
2 + 1

π
arctan(π

4 Λ(V − VT ))] (Inverse Tangent),
νmax

2 [1 + erf(
√

π

4 Λ(V − VT ))] (Gauss Error),
νmax

2 [1 + (Λ/2)(V −VT )√
1+(Λ2/4)(V −VT )2

] (Algebraic),

νmax2−e−(Λ/(2 ln 2))(V −VT )
(Gompertz),

...

(2.2)

where in the above νmax is the maximum firing rate, Λ determines the speed with
which the neuron switches from a low (ν ≈ 0) to a high (ν ≈ νmax) firing rate, and VT

is the threshold between low and high firing rates, namely the value of the membrane
potential such that ν = νmax

2 . An example of the functions (2.2) is shown in Fig. 1 for
some particular values of νmax, Λ, and VT .

The functions Bi (t), the first of the three sources of randomness introduced in the
network, are non-fractional Brownian motions (or in other terms, Wiener processes
with independent increments). They can be equivalently interpreted as a background
noise for the membrane potentials Vi(t) or as the stochastic component of the external
input Ii(t). σ0 is the standard deviation (or intensity) of the noise, that for simplicity
is supposed to be the same for all the neurons and constant in time. This is the first
perturbative parameter that will be used in Sect. 3 to develop a first-order perturbative
expansion of the neural equations. In general the Brownian motions are correlated
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Fig. 1 Plot of the sigmoidal activation functions (2.2) for νmax = 3, Λ = 2, and VT = 1

according to the following covariance structure, chosen in order to keep the analysis
as simple as possible:

Cov

(
dBi (t)

dt
,
dBj (s)

ds

)
= CB

ij δ(t − s),

CB
ij =

{
1 if i = j,

C(0) otherwise,

(2.3)

or in other terms Cov(
dBi (t)

dt
,

dBj (s)

ds
) = [δij + C(0)(1 − δij )]δ(t − s). Here δij is the

Kronecker delta, δ(·) is the Dirac delta function and C(0) represents the correlation
between two different Brownian motions (the derivative of the Brownian motion with
respect to time here is meant in the weak sense of distributions and is interpreted as
white noise). The covariance matrix must be positive-semidefinite. Since it is sym-
metric, then it is positive-semidefinite if and only if its eigenvalues are non-negative.
Moreover, with our choice, the covariance matrix is circulant, therefore its eigenval-
ues are 1+C(0)(N −1) and 1−C(0), with algebraic multiplicity 1 and N −1, respec-
tively. Therefore the matrix is positive-semidefinite if and only if 1

1−N
≤ C(0) ≤ 1.

Note that there are no technical obstructions to increasing the complexity of this cor-
relation structure, if desired.

The initial conditions Vi(0) are normally distributed around their mean μi with
standard deviation σ1, the second of our perturbative parameters. The stochastic vari-
ables Ni (see Eq. (2.1)) are normally distributed with zero mean and covariance
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matrix:

Cov(Ni ,Nj ) =
{

1 if i = j,

C(1) otherwise,
(2.4)

namely Cov(Ni ,Nj ) = δij + C(1)(1 − δij ). The coefficient C(1) is the correlation
between pairs of membrane potentials at time t = 0. As before, the covariance matrix
must be positive-semidefinite, and this is true if and only if 1

1−N
≤ C(1) ≤ 1. Again,

it is possible to increase the complexity of this correlation structure, if desired.
The third and last source of randomness in the network is represented by the synap-

tic connectivity J (t). We assume that each entry Jij (t) is normally distributed around
its mean J ij (t) with standard deviation σ2 (the third perturbative parameter used in
Sect. 3), or in other terms:

Jij (t) = Tij

(
J ij (t) + σ2Wij

)
, (2.5)

Wij are zero mean normal stochastic variables (their covariance structure is shown
below, see Eq. (2.6)), while the matrix T represents the topology of the connectivity
matrix, namely the mere absence (Tij = 0) or presence (Tij = 1) of the synaptic
connection from the j th neuron to the ith neuron, for all the pairs of neurons (i, j).
So if the connection is present, its strength is given by J ij (t) + σ2Wij , otherwise it
is equal to zero. Below we show an example of connectivity matrix in a network of
four neurons and its corresponding topology:

J (t) =

⎡
⎢⎢⎣

0 0 7.1 + 2 cos(2t) 3.6
2.3 + sin(5t) 0 10.3 0

0.9 1.1 0 4.8 − arctan(3t)

0 5.4 − (1 + t)−5 7.5 + e−4t 0

⎤
⎥⎥⎦ ,

T =

⎡
⎢⎢⎣

0 0 1 1
1 0 1 0
1 1 0 1
0 1 1 0

⎤
⎥⎥⎦ .

In graph theory, T is known as the adjacency matrix of the unweighted graph of the
network, and in this article is supposed to be deterministic and time-independent.
Therefore the only source of randomness in the synaptic matrix is represented by
Wij , whose covariance structure is chosen as follows:

Cov(Wij ,Wkl) =

⎧⎪⎨
⎪⎩

0 if Tij = 0 and/or Tkl = 0,

1 if i = k and j = l and Tij = 1,

C(2) otherwise,

(2.6)

or in other terms Cov(Wij ,Wkl) = TijTkl[δikδjl + C(2)(1 − δikδjl)]. This simply
means that Wij has zero (unit) variance if the connection i ← j is absent (present),
while the covariance between Wij and Wkl is zero (C(2)) if at least one of the con-
nections i ← j and k ← l is absent (they are both present). As for the covariance
structures (2.3) and (2.4), also (2.6) can be made more complicated, if desired. With
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our choice, the range of allowed values of C(2) depends on the topology of the con-
nectivity matrix. In order to find this range, we start by vectorizing the matrices W

and T as follows:

W def= vec(W), T def= vec(T ).

This allows us to reinterpret the N × N matrix-variate random variable W as a N2-
dimensional multivariate vector W with a N2 ×N2 covariance matrix Cov(Wi ,Wj ).
Now we call Z the number of absent connections (i.e. the number of zeros in the ma-
trix T ), and we suppose that the vectorization is such that Ti = 0 for i = 0, . . . ,Z−1.
According to (2.6), if we call Θ the covariance matrix of W, we obtain

Θ =
[

0Z,Z 0Z,N2−Z

0N2−Z,Z Ω

]
, Ω =

⎡
⎢⎢⎣

1 C(2) · · · C(2)

C(2) 1 · · · C(2)

...
...

. . .
...

C(2) C(2) · · · 1

⎤
⎥⎥⎦

where 0X,Y is the X×Y null matrix. Since Θ is a 2×2 block matrix, its characteristic
polynomial is

det(Θ − λIdN2) = det(−λIdZ)det(Ω − λIdN2−Z)

= (−λ)Z
[
1 + C(2)

(
N2 − Z − 1

)− λ
](

1 − C(2) − λ
)N2−Z−1

where IdK is the K × K identity matrix. Therefore Θ has eigenvalues 0,
1 +C(2)(N2 −Z − 1) and 1 −C(2), with algebraic multiplicity Z, 1 and N2 −Z − 1,
respectively. This means that Θ is a true covariance matrix if and only if 1

1+Z−N2 ≤
C(2) ≤ 1, where Z depends on the topology of the network.

In order to avoid biologically unrealistic sign changes of the synaptic weights,
J ij (t) should not change sign during time evolution. Moreover, |J ij (t)| must be
much larger than σ2 for every i, j , and t , because in this way the probability that
J ij (t) + σ2Wij changes sign from trial to trial is small:

P
(
sgn
(
J ij (t) + σ2Wij

) �= sgn
(
J ij (t)

))

= 1

2

[
1 − erf

( |J ij (t)|√
2σ2

)]
≈ 1

2
√

π

σ2

|J ij (t)|
e−(J ij (t)/σ2)

2

having used an asymptotic expansion of the error function for
|J ij (t)|

σ2

 1.

Since in Sect. 3 we will solve perturbatively the system of equations (2.1), it is
clear that this cannot be accomplished with the current formulation of the synaptic
weights. Actually, even if our differential equations were linear, in general it would
not be possible to solve them exactly, since their coefficients are time dependent, due
to J ij (t). Linear differential equations with variable coefficients can be solved pertur-
batively in terms of a Magnus expansion [35], but this is not the approach followed
in our work. In order to unify the perturbative expansion introduced in this article
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with the problem of the variation of the coefficients, we rewrite the matrix J ij (t) as
follows:

J ij (t) = J
c

ij + σ3J
v

ij (t) (2.7)

where J
c

ij is constant in time, while J
v

ij (t) is variable. σ3 is assumed to be small and
will be used as a perturbative parameter in Sect. 3. In this way the time variability of
the synaptic matrix is treated perturbatively, as for the three sources of randomness
in the network, and this will allow us to find analytical solutions for the perturbative
expansion developed in the next section. Moreover, the variable part of the synaptic
weights should satisfy the constraint |J v

ij (t)| ∈ [0,1] for all t , because according to

(2.7) this implies maxt |J ij (t) − J
c

ij | ≤ σ3. In this way we ensure that at every time

instant J ij (t) is not too different from J
c

ij , and therefore that a first-order perturbative
expansion of the neural equations provides a good approximation of the real dynamics
of the network.

It is also important to observe that when a neuron receives more and more
connections from the other neurons (i.e. when Mi → ∞, see Eq. (2.1)), the sum∑N−1

j=0 Jij (t)A (Vj (t)) in (2.1) is divergent, therefore the limit of large and densely
connected networks would not be well defined. This explains the need to introduce
the factor 1

Mi
to normalize the divergent sum. For later purpose, it is useful to express

Mi in terms of the topology of the network:

Mi =
N−1∑
j=0

Tij . (2.8)

Finally, as we did for J ij (t), we suppose that the external input current is deter-
ministic (if we interpret Bi (t) as the background noise of the membrane potentials)
and given by

Ii(t) = I c
i + σ4I

v
i (t) (2.9)

where I c
i is constant in time, while I v

i (t) is variable. σ4 is our last perturbative pa-
rameter, and together with σ3 quantifies the time variability of the network. As for the
synaptic weights, we have the constraint |I v

i (t)| ∈ [0,1], because according to (2.9)
this implies maxt |Ii(t) − I c

i | ≤ σ4.
For simplicity, the three sources of randomness are supposed to be independent

from each other, namely:

Cov
(
Bi (t),Nj

)= Cov
(
Bi (t),Wkl

)= Cov(Nj ,Wkl) = 0. (2.10)

This assumption reduces considerably the complexity of the formula for the correla-
tion structure that we will calculate in Sect. 4, but can be relaxed if desired.

This concludes our description of the neural equations, so now we have all the
ingredients to develop a perturbative expansion of the system. This method is intro-
duced in the next section, and will allow us to find a series of new results for the
behavior of our stochastic neural network.
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3 Perturbative Expansion

As we said in the previous section, we want to develop a first-order perturbative
expansion of the neural network in terms of the perturbative parameters σ0–σ4. To this
purpose we define the following first-order expansion of the membrane potentials:

Vi(t) ≈ μi +
4∑

m=0

σmY
(m)
i (t). (3.1)

This ansatz will be used to obtain an approximate analytical solution of the system
(2.1). The terms μi are the mean initial conditions of the membrane potentials (see
Eq. (2.1)), while the functions Y

(m)
i have to be determined (here the superscript does

not mean differentiation). Intuitively, the terms σmY
(m)
i quantify the variation of the

membrane potentials from the stationary solution Vi = μi , due to the three sources
of randomness and the time variability of the synaptic weights and the external input
currents.

The functions Y
(m)
i can be determined by substituting the perturbative expansion

(3.1) and the expressions (2.5) + (2.7) and (2.9) for, respectively, the synaptic weights
and the external input current, into the system (2.1). If all the parameters σm are small
enough, we can expand the activation function A (Vi) in a Taylor series about μi . In
order to be rigorous, we have to determine the radius of convergence r(μi) of the
Taylor expansion for every value of μi and to check if the radius is big enough com-
pared to σm, because otherwise the series does not converge. Actually, the various σm

determine the order of magnitude of the fluctuations of Vi around μi , therefore it is
important to check if Vi lies inside the interval of convergence of the Taylor expan-
sion (this will be quantified more rigorously at the end of Sect. 4). In Appendix A we
evaluate r(μi) for two examples of A (Vi), namely the logistic and the inverse tan-
gent activation functions (see (2.2)). In both cases we obtain that the radius decreases
with the slope parameter Λ, and since all the sigmoidal functions are qualitatively
similar, it is reasonable to assume that this result holds for all of them. Therefore,
supposing that Λ is small enough, the Taylor expansion of A (Vi) truncated at the
first order is

A

(
μi +

4∑
m=0

σmY
(m)
i (t)

)
≈ A (μi) + A ′(μi)

4∑
m=0

σmY
(m)
i (t). (3.2)

Now we substitute this expansion inside the neural equations (2.1) and we equate the
terms with the same σ coefficients, obtaining

μi = τ

[
1

Mi

N−1∑
j=0

Tij J
c

ijA (μj ) + I c
i

]
, (3.3)

dY
(0)
i (t) =

[
N−1∑
j=0

Jij Y
(0)
j (t)

]
dt + dBi (t), (3.4)
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dY
(1)
i (t) =

[
N−1∑
j=0

Jij Y
(1)
j (t)

]
dt, (3.5)

dY
(2)
i (t) =

[
N−1∑
j=0

Jij Y
(2)
j (t) + 1

Mi

N−1∑
j=0

TijWijA (μj )

]
dt, (3.6)

dY
(3)
i (t) =

[
N−1∑
j=0

Jij Y
(3)
j (t) + 1

Mi

N−1∑
j=0

Tij J
v

ij (t)A (μj )

]
dt, (3.7)

dY
(4)
i (t) =

[
N−1∑
j=0

Jij Y
(4)
j (t) + I v

i (t)

]
dt (3.8)

where

Jij =
{− 1

τ
if i = j,

1
Mi

J eff
ij otherwise,

(3.9)

J eff
ij

def= Tij J
c

ijA
′(μj ). (3.10)

J is the Jacobian matrix of the network, while J eff can be interpreted as the real
anatomical connectivity matrix that the system would have if it were linear. For this
reason we call it the effective connectivity matrix of the network, and it should not be
confused with the effective connectivity discussed in [2].

Now we observe that equations (3.3) are algebraic and non-linear, therefore in
general they must be solved numerically. Eventually, it is possible to obtain analytical
solutions when the activation function is approximated by a piecewise linear function.
Moreover, (3.4) ((3.5)–(3.8)) are linear stochastic (ordinary) differential equations
with constant coefficients, therefore can be solved analytically as a function of μi ,
which are supposed to be known from the solution of (3.3). The fundamental matrix
Φ(t) of the system is

Φ(t) = eJ t

where J is given by (3.9). In this article we consider only cases when J is diagonal-
izable, so we can calculate the matrix exponential as follows:

eJ t = PD(t)P −1 (3.11)

where D(t) = diag(ẽλ0t , . . . , ẽλN−1t ) and λ̃i are the eigenvalues of J , while P is an
N ×N matrix whose columns are composed of the eigenvectors of J . The differential
equations (3.4)–(3.8) are linear with constant coefficients since, as explained in the
previous section, we have used the perturbative approach to fix the problem of the
time variability of the coefficients. So their solutions are obtained straightforwardly
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as follows:

Y
(0)
i (t) =

N−1∑
j=0

∫ t

0
Φij (t − s) dBj (s), (3.12)

Y
(1)
i (t) =

N−1∑
j=0

Φij (t)Nj , (3.13)

Y
(2)
i (t) =

N−1∑
j,k=0

1

Mj

TjkWjkA (μk)

∫ t

0
Φij (t − s) ds, (3.14)

Y
(3)
i (t) =

N−1∑
j,k=0

1

Mj

TjkA (μk)

∫ t

0
Φij (t − s)J

v

jk(s) ds, (3.15)

Y
(4)
i (t) =

N−1∑
j=0

∫ t

0
Φij (t − s)I v

j (s) ds. (3.16)

By substituting the solutions (3.12)–(3.16) inside (3.1), we obtain an approximate for-
mula for the membrane potentials of the neural network. Moreover, since ν = A (V ),
(3.2) provides a perturbative expression for the firing rates.

Now with these results we can determine analytically the behavior of the neural
network, starting from its correlation structure and probability density, which are
discussed in the next section.

4 Cross-Correlation and Probability Density

The aim of this section is to compute the statistical dependencies among the activity
of different neurons.

We first calculate the Pearson cross-correlation among pairs of neurons, which is
the simplest and most commonly used measure of functional connectivity [10]. This
is defined as follows:

Corr2
(
Vi(t),Vj (t)

)= Cov2(Vi(t),Vj (t))√
Var(Vi(t))Var(Vj (t))

.

The subscript “2” has been introduced to stress the fact that it is a pairwise correlation
between two neurons. We note that the above expression quantifies time-dependent
instantaneous correlations at any given time t . This equation can easily be extended
to higher-order correlations between triplets, quadruplets, etc. of neurons. The most
straightforward generalization of the pairwise covariance to the case of n neurons
would be

Covn

(
Vi0(t), . . . , Vin−1(t)

)=
n−1∏
j=0

(
Vij (t) − V ij (t)

)
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where the bar represents the statistical mean over trials computed at time t . This is
the multivariate moment M1,...,1 of the functions Vi0(t), . . . , Vin−1(t) about the mean
(V i0(t), . . . , V in−1(t)). However, this measure is not yet normalized to lie in the range
[−1,1]. To achieve this purpose, we observe that

∣∣∣∣∣
n−1∏
j=0

(
Vij (t) − V ij (t)

)∣∣∣∣∣≤
∣∣∣∣∣
n−1∏
j=0

(
Vij (t) − V ij (t)

)∣∣∣∣∣≤
[

n−1∏
j=0

∣∣Vij (t) − V ij (t)
∣∣n
]1/n

having used the fact that |x + y| ≤ |x| + |y| at the first step and a special case of the
Hölder inequality at the second. This means that the function

Corrn
(
Vi0(t), . . . , Vin−1(t)

) def=
∏n−1

j=0(Vij (t) − V ij (t))

n

√∏n−1
j=0 |Vij (t) − V ij (t)|n

(4.1)

is such that |Corrn(Vi0(t), . . . , Vin−1(t))| ≤ 1. Therefore, we will use Eq. (4.1) to
quantify correlations at any order. Note that Eq. (4.1) is equivalent for n = 2 to the
pairwise Pearson coefficient, and thus Eq. (4.1) includes also the pairwise correlation
as a special case.

From (3.12)–(3.14) and remembering that Bi (t) = N i = Wij = 0, we obtain

Y
(0)

i (t) = Y
(1)

i (t) = Y
(2)

i (t) = 0 therefore, by using (3.1), we have

Ni (t)
def= Vi(t) − V i(t) =

2∑
m=0

σmY
(m)
i (t). (4.2)

Clearly (Ni0(t), . . . ,Nin−1(t)) is a zero mean multivariate normal process, whose
covariance matrix is given by

Cov2
(
Ni (t),Nj (t)

)= Ni (t)Nj (t) =
2∑

m=0

σ 2
mY

(m)
i (t)Y

(m)
j (t) (4.3)

due to (2.10). The terms Y
(m)
i (t)Y

(m)
j (t) are calculated from the relations (2.3), (2.4)

and (2.6):

Y
(0)
i (t)Y

(0)
j (t) = (1 − C(0)

)N−1∑
k=0

∫ t

0
Φik(t − s)Φjk(t − s) ds

+ C(0)
N−1∑
k,l=0

∫ t

0
Φik(t − s)Φjl(t − s) ds, (4.4)
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Y
(1)
i (t)Y

(1)
j (t) = (1 − C(1)

)N−1∑
k=0

Φik(t)Φjk(t)

+ C(1)
N−1∑
k,l=0

Φik(t)Φjl(t), (4.5)

Y
(2)
i (t)Y

(2)
j (t)

= (1 − C(2)
)N−1∑

k=0

χk

M2
k

[∫ t

0
Φik(t − s) ds

][∫ t

0
Φjk(t − s) ds

]

+ C(2)
N−1∑
k,l=0

ψkψl

MkMl

[∫ t

0
Φik(t − s) ds

][∫ t

0
Φjl(t − s) ds

]
(4.6)

where

χi
def=

N−1∑
j=0

T 2
ijA

2(μj ),

ψi
def=

N−1∑
j=0

TijA (μj ).

(4.7)

Using the Isserlis theorem [36], and noting that we assumed that our sources of ran-
domness are normally distributed, we obtain that the numerator of (4.1) is equal to
zero when n is odd (in general this is false for non-normal processes), otherwise

n−1∏
j=0

(
Vij (t) − V ij (t)

)=∑∏
Nij (t)Nik (t) (4.8)

where
∑∏

means summing over all the distinct n!
2n/2(n/2)! ways of partitioning

Ni0(t), . . . ,Nin−1(t) into pairs. This completes the calculation of the numerator of
(4.1).

For the denominator we use the formula of the absolute moments of a normal
process, therefore for n even we obtain

n

√√√√√
n−1∏
j=0

∣∣Nij (t)
∣∣n = n!

2n/2(n/2)!
n−1∏
j=0

√
N2

ij
(t) (4.9)

where N2
i (t) is given by (4.3) and (4.4)–(4.6) for i = j . Finally, by substituting all

these results into the definition (4.1), we obtain the final formula for the higher-order
correlation of the network.
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We observe that computation of Eq. (4.8) leads to a combinatorial problem, whose
complexity is related to n and to the structure of the effective connectivity matrix J eff.
To simplify matters, in Appendix B we will calculate the higher-order correlation for
a generic n in the case of a complete graph (i.e. a fully connected network).

We also observe that in the special case n = 2 our formula reduces simply to

Corr2
(
Vi(t),Vj (t)

)=
∑2

m=0 σ 2
mY

(m)
i (t)Y

(m)
j (t)√

[∑2
m=0 σ 2

m[Y (m)
i (t)]2][∑2

m=0 σ 2
m[Y (m)

j (t)]2]
(4.10)

where again the terms Y
(m)
i (t)Y

(m)
j (t) and [Y (m)

i(j)(t)]2 are given by (4.4)–(4.6), so in
this case the combinatorial problem is absent. Due to its simplicity and in order to
keep the article as short as possible, in the next sections we will evaluate explicitly
only the pairwise correlation structure through (4.10) (therefore the subscript “2” in
the notation Corr2(·, ·) will be omitted). The interested reader could apply the general
Eq. (4.1) for the calculation of the correlation structure when n > 2.

Neuroscientists make use of measures of correlation between firing rates, rather
than between membrane potentials, to study cross-neuron communication. This is
because only spiking events (and not subthreshold membrane fluctuations) are trans-
mitted to other neurons. For this reason we also derive a formula for the correlation
of the firing rates ν. Since in this model νi = A (Vi), from (3.2) and (4.2) it is easy to
prove that νi(t) − νi(t) = A ′(μi)Ni (t). Therefore we have

n−1∏
j=0

(
νij (t) − νij (t)

) = ς

n−1∏
j=0

(
Vij (t) − V ij (t)

)
,

n

√√√√√
n−1∏
j=0

∣∣νij (t) − νij (t)
∣∣n = ς n

√√√√√
n−1∏
j=0

∣∣Vij (t) − V ij (t)
∣∣n,

ς =
n−1∏
j=0

A ′(μij ),

having used the fact that A ′(μij ) is always positive. This proves that

Corrn
(
νi0(t), . . . , νin−1(t)

)= Corrn
(
Vi0(t), . . . , Vin−1(t)

)
.

However, it is important to observe that the correlation structures of the firing rates
and the membrane potentials are equivalent only at the first perturbative order, namely
when all the parameters σm are relatively small. At higher orders this equivalence
does not hold anymore.

Now we have all the ingredients required to evaluate the joint probability distribu-
tion of the neural network. Since we have linearized the differential equations (2.1),
at the first perturbative order the joint probability density of the system is a multivari-
ate normal distribution. Denoting by ′ the matrix transposition operator and defining
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V def= (V0, . . . , VN−1), we obtain

p(V, t) = 1√
(2π)N |ΣV (t)|e

−(1/2)(V−V(t))′(ΣV (t))−1(V−V(t)),

V i(t) = μi +
4∑

m=3

σmY
(m)
i (t), (4.11)

ΣV
ij (t) =

2∑
m=0

σ 2
mY

(m)
i (t)Y

(m)
j (t).

In a similar way, if we define ν
def= (ν0, . . . , νN−1) and we remember that νi = A (Vi),

from (3.2) we obtain

p(ν, t) = 1√
(2π)N |Σν(t)|e

−(1/2)(ν−ν(t))′(Σν(t))−1(ν−ν(t)),

νi(t) = A (μi) + A ′(μi)

4∑
m=3

σmY
(m)
i (t), (4.12)

Σν
ij (t) = A ′(μi)A

′(μj )

2∑
m=0

σ 2
mY

(m)
i (t)Y

(m)
j (t).

This completes the description of the system at the first perturbative order.
Now, if we suppose that, for given values of σ0–σ4, the perturbative corrections of

order higher than one are negligible, Eq. (4.11) can be used to evaluate the probability
P(t) that, at the time instant t , all the activation functions in (2.1) can be expanded in
a Taylor series according to (3.2). Since A (Vi) can be expanded only if |Vi − μi | <

r(μi), where r(μi) is the radius of convergence of the activation function evaluated
at the point Vi = μi (see Appendix A), then P(t) is defined as follows:

P(t)
def=
∫

Υ

p(V, t) dV, Υ
def=

N−1×
i=0

]
μi − r(μi),μi + r(μi)

[
(4.13)

where×represents the Cartesian product of subsets. For a multivariate normal distri-
bution, an analytical expression of P(t) is not known, therefore it must be evaluated
numerically (see Sect. 7). So if P(t) ≈ 1, we can safely expand the activation func-
tion by using Eq. (3.2), therefore under this constraint all the results found in this
article are justified. In other terms, this can be considered as a self-consistency check
of the theory, which can be further refined if higher-order corrections are taken into
account.

5 Other Measures of Functional Connectivity

In order to illustrate the generality of our approach, here we briefly describe how it
can be extended to compute two other symmetric quantities commonly used to mea-
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sure the functional connectivity, namely the mutual information and the magnitude-
squared coherence [10, 37, 38].

The mutual information between the membrane potentials (a similar formula holds
for the firing rates) of two neurons i, j is defined as follows:

Iij (t)
def=
∫
R2

p(Vi,Vj , t) log

(
p(Vi,Vj , t)

p(Vi, t)p(Vj , t)

)
dVi dVj

= −1

2
log
(
1 − Corr2(Vi(t),Vj (t)

))

where the last identity holds only for normal probability distributions, which is indeed
our case. This shows that the mutual information is a simple function that depends
trivially on the pairwise correlation between the neurons, which in turn implies that
it can be evaluated directly from the results obtained in the previous section.

A similar result holds for the magnitude-squared coherence between the mem-
brane potentials (or the firing rates) of two neurons i, j . If we call Cij (t,ω) the Fourier
transform of the time-shifted cross-correlation:

Cij (t,ω)
def=
∫ +∞

−∞
Cov
(
Vi(t),Vj (t + s)

)
e−ιωs ds

(the imaginary unit is denoted by ι, to avoid confusion with the neural index i), then
the magnitude-squared coherence is defined as follows:

Cohij (t,ω)
def= C2

ij (t,ω)

Cii (t,ω)Cjj (t,ω)
.

It is straightforward to extend Eqs. (4.4)–(4.6) to include the temporal shift s, which
allows us to calculate Cov(Vi(t),Vj (t + s)). This means that the functional con-
nectivity inferred from the correlation, the mutual information and the coherence is
qualitatively the same. This further justifies our decision to focus this article only on
cross-correlations.

We note that our formalism lends itself in principle also to the calculation of di-
rected asymmetric measures of functional connectivity, such as those based upon
transfer entropy [39, 40] or the Granger causality [41–43]. However, an analytical
calculation of these directed quantities is beyond the scope of this article.

6 Examples

Now we consider some explicit examples of calculation of the correlation structure.
First of all, it is important to observe that in this article we consider only cases when
the Jacobian matrix J (see (3.9)) is diagonalizable, so we can calculate the funda-
mental matrix Φ as shown by Eq. (3.11). For this reason we need to know the eigen-
quantities of J . However, due to the eventual inhomogeneities of the static synaptic
weights J

c

ij and of the incoming vertex degree Mi , and to the non-linearity of the
network introduced by the activation function A , in general it is not possible to find
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a simple relation between the eigenquantities of J and those of the underlying topol-
ogy T . This means that, even if the matrix T has some special structure like circularity
or symmetry, in general this cannot be exploited to calculate the eigenquantities of
J , because the same structure is not preserved in J due to the term 1

Mi
J

c

ijA
′(μj )

(see (3.9) + (3.10)). However, it is important to observe that this is not a problem
per se. Actually the method introduced in this article has been applied to the study of
relatively generic connectivity matrices, but these results will be published in other
papers. For the sake of clarity, here we want to avoid complicated algebraic calcu-
lations of the eigenquantities, therefore we will consider the simplest case possible,
namely neural networks where the term 1

Mi
J

c

ijA
′(μj ) does not depend on the indices

i, j . So first of all we suppose that J
c

ij = Γ ∀i, j and Mi = M ∀i, where Γ is a free
parameter that describes the strength of the synaptic connection (if present), while
M is the number of incoming connections per neuron. Under these assumptions, the
condition μi = μ ∀i can be satisfied for symmetry reasons if we also suppose that
I c
i = I c ∀i. In this case, from (2.8) + (3.3), it is easy to verify that the parameter μ

is given by

μ = τ
[
Γ A (μ) + I c

]
. (6.1)

Since now the term 1
Mi

J
c

ijA
′(μj ) does not depend on i, j anymore, the eigenval-

ues and eigenvectors of T , which we call, respectively, λi and vi , and those of J ,
respectively, λ̃i and ṽi , are trivially related to each other as follows:

λ̃k = − 1

τ
+ Γ A ′(μ)

M
λk,

ṽk = vk;
(6.2)

therefore now the fundamental matrix Φ can be calculated in terms of the eigenquan-
tities of T .

It is important to observe that (directed) regular graphs with uniform input satisfy
the assumptions above, and for this reason they will be considered from now on, even
if the hypothesis of regularity is not strictly required, since we do not need to have
also the same number of outgoing connections for each neuron. We also observe
that even if under our assumptions the neurons have the same J

c

ij , I c
i (and, as a

consequence, also the same μi ), this does not mean that they all behave identically.
For example, from (4.11) we see that the mean of the membrane potentials is V i(t) =
μ +∑4

m=3 σmY
(m)
i (t) and that Y

(3,4)
i depend on J

v
(t) and I v(t), which in general

are not uniform. This proves that V i(t) depends on the index i, or in other terms that
the neurons are not identical in this network.

To conclude, it is interesting to observe that if we choose A (μ) to be the algebraic
activation function (see (2.2)), then Eq. (6.1) can be solved analytically, since it can
easily be reduced to a fourth-order polynomial equation. Notwithstanding, in every
numerical simulation of this article we will use the logistic activation function, since
its properties are ideal for studying the phenomenon of stochastic synchronization
introduced in Sect. 10. Now we are ready to start with the first example.
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6.1 Block-Circulant Matrices with Circulant Blocks

Given two positive integers F and G, with 1 ≤ F,G ≤ N , here we suppose that the
topology of the network is given by an N ×N block-circulant matrix (with N = FG)
of the form

T =

⎡
⎢⎢⎣

B(0) B(1) · · · B(F−1)

B(F−1) B(0) · · · B(F−2)

...
...

. . .
...

B(1) B(2) · · · B(0)

⎤
⎥⎥⎦

where B(0), . . . ,B(F−1) are G × G circulant matrices:

B
(i) =

⎡
⎢⎢⎢⎢⎣

b
(i)
0 b

(i)
1 · · · b

(i)
G−1

b
(i)
G−1 b

(i)
0 · · · b

(i)
G−2

...
...

. . .
...

b
(i)
1 b

(i)
2 · · · b

(i)
0

⎤
⎥⎥⎥⎥⎦ .

All the entries b
(i)
j , for i = 0, . . . ,F − 1 and j = 0, . . . ,G − 1, can only be equal

to 0 or 1, with only the exception of b(0)
0 that must always be equal to 0 in order to

avoid self-connections in the recurrent network. F can be interpreted as the number
of neural populations, and G as the number of neurons per population. Due to this
particular structure of the connectivity matrix, all the neurons have the same number
of incoming connections M , as required.

According to Eqs. (4.4)–(4.6), the correlation structure depends on Φij (t) and∑N−1
k=0 Φik(t)Φjk(t) = [Φ(t)Φ ′(t)]ij , therefore now we want to calculate the ma-

trices Φ(t) and Φ(t)Φ ′(t) in terms of the eigenquantities of T . Since T is block-
circulant, its eigenvalues are those of the following matrices [44]:

B̃
(i) =

F−1∑
j=0

B
(j)e(2π/F)ij ι.

In a similar way, since the matrices B̃(i) are circulant, we can compute their eigen-
values λ

(i)
j as follows:

λ
(i)
j =

G−1∑
k=0

[
B̃

(i)
]

0k
e(2π/G)jkι =

G−1∑
k=0

F−1∑
l=0

b
(l)
k e2π(jk/G+il/F )ι. (6.3)

Furthermore the matrix of the eigenvectors of T is

P =RF ⊗ RG,

[RK ]ij = 1√
K

e(2π/K)ij ι, K = F,G, i, j = 0, . . . ,K − 1,
(6.4)
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where ⊗ is the Kronecker product of matrices. Since in this article we suppose that
the matrix exponential that defines Φ(t) could be calculated according to (3.11), we
obtain

Φ(t)Φ ′(t) = eJ t
([

eJ (t)
]′)∗ = PD(t)P ∗PD∗(t)P ∗ = PD(t)D∗(t)P ∗.

∗ is the element-by-element complex conjugation, and D(t) = diag(ẽλ0t , . . . , ẽλN−1t ),
where λ̃k for k = 0, . . . ,N − 1 are the eigenvalues of J (namely the collection of all
the λ̃

(i)
j , as given by (6.2) in terms of the λ

(i)
j , for k = iG+ j ). Here we have used the

fact that D(t) and P are symmetric matrices (see (6.4)) and also the identity:

P ∗P = (R∗
F ⊗ R∗

G

)
(RF ⊗ RG) = (R∗

F RF

)⊗ (R∗
GRG

)= IdFG = IdN

due to the mixed-product property of the Kronecker product and to the elementary
identity R∗

KRK = IdK . Now, since

[RF ⊗ RG]ij = [RF ]mn[RG]pq = 1√
N

e2π(mn/F+pq/G)ι,

m =
⌊

i

G

⌋
, n =

⌊
j

G

⌋
, p = i − mG, q = j − nG,

we conclude that

Φij (t) = 1

N

N−1∑
k=0

fijkẽ
λkt ,

[
Φ(t)Φ ′(t)

]
ij

= 1

N

N−1∑
k=0

fijke
2�(̃λk)t

(6.5)

where �(̃λk) = − 1
τ

+ Γ
M

A ′(μ)�(λk) is the real part of λ̃k , while

fijk
def= N [RF ⊗ RG]ik[RF ⊗ RG]∗kj = e2π[(1/F )�k/G�(�i/G�−�j/G�)+(k/G)(i−j)]ι.

We also observe that
N−1∑
j=0

fijk = Nδ0k; (6.6)

therefore
∑N−1

k=0 Φik(t) = ẽλ0t , so from Eqs. (4.4)–(4.6) we obtain

Y
(0)
i (t)Y

(0)
j (t) = 1

N

(
1 − C(0)

)N−1∑
k=1

fijk

e2�(̃λk)t − 1

2�(̃λk)

+
[

1

N
+ C(0)

(
1 − 1

N

)]
e2̃λ0t − 1

2̃λ0
,
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Y
(1)
i (t)Y

(1)
j (t) = 1

N

(
1 − C(1)

)N−1∑
k=1

fijke
2�(̃λk)t

+
[

1

N
+ C(1)

(
1 − 1

N

)]
e2̃λ0t ,

(6.7)

Y
(2)
i (t)Y

(2)
j (t) = A 2(μ)

(
1

MN

(
1 − C(2)

)N−1∑
k=1

fijk

∣∣∣∣ ẽ
λkt − 1

λ̃k

∣∣∣∣
2

+
[

1

MN
+ C(2)

(
1 − 1

MN

)](
ẽλ0t − 1

λ̃0

)2
)

,

and finally through (4.10) we obtain an explicit expression for the pairwise correlation
structure of the network. It is interesting to observe that Eq. (6.6) is a consequence
of the regularity of the graph. Actually, it is well known that ṽ0 = (1, . . . ,1) is an
eigenvector of any regular graph, and that the other eigenvectors are orthogonal to ṽ0,
so that

∑N−1
j=0 [̃vk]j = 0 ∀k �= 0. Since P is the matrix whose columns are composed

of the eigenvectors of J , this means that

N−1∑
j=0

Pjk = Nδ0k, (6.8)

of which Eq. (6.6) is a particular case.
Now we show an explicit example of this technique, namely the case when the

blocks of the matrix T have the following symmetric circulant band structure:

B
(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − δi0 1 · · · 1 0 · · · 0 1 · · · 1

1 1 − δi0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 1

1
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . . 1

1
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 1 − δi0 1

1 · · · 1 0 · · · 0 1 · · · 1 1 − δi0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.9)
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where, supposing for simplicity that G ≥ 3, the first row of B(i) (excluding the term
b

(i)
0 , which is 0 for i = 0 and 1 for i > 0) can be written explicitly as

{
b

(i)
j = 1, (1 ≤ j ≤ ξi) ∨ (�i ≤ j ≤ G − 1),

b
(i)
j = 0, ξi < j < �i,

�i = G − ξi + H

(
ξi −

⌊
G

2

⌋
+ (−1)G

)
,

H(x) =
{

0, x ≤ 0,

1, x > 0,

where 1 ≤ ξi ≤ �G
2 �, while H(·) is the Heaviside step function. Here we have to

suppose that G ≥ 3 because otherwise it is not possible to distinguish the diagonal
band from the corner elements. Now, the bandwidth of B(i) is 2ξi + 1, so this defines

the integer parameters ξi . Moreover, M0
def= 2ξ0 − H(ξ0 − �G

2 � + (−1)G) represents
the number of connections that every neuron in a given population receives from the

neurons in the same population. Instead Mi
def= 2ξi + 1 − H(ξi − �G

2 � + (−1)G), for
i = 1, . . . ,F −1, is the number of connections that every neuron in the kth population
receives from the neurons in the (i +k)th modF population, for k = 0, . . . ,F −1. So
the total number of incoming connections per neuron is M = F − 1 +∑F−1

i=0 [2ξi −
H(ξi −�G

2 �+ (−1)G)]. The graph with this special block-circulant adjacency matrix
will be represented by the notation BCF,G(M0, . . . ,MF−1), and some examples are
shown in Fig. 2 for different values of F and ξ . This can be considered as a toy
model for describing a network of F cortical columns containing G neurons each.
The parameters ξi can be adjusted in order to generate M0 local and Mi long-range
connections compatible with recent neuroanatomical studies [45], providing a rough
description of a wide area of neural tissue. This idea will be extended to the case of
irregular graphs in Sect. 6.3.2. Moreover, it is important to observe that even if in this
case all the matrices B(i) are symmetric, the matrix T is not, since the number of
connections in every block is different (the case of symmetric connectivity matrices
is studied in Sect. 6.2).

Now, by using Eqs. (6.3) + (6.9), we obtain

λmG+n =
{

F − 1 +∑F−1
k=0 g(n, ξk,G), m = 0,∀n,

−1 +∑F−1
k=0 e(2π/F)mkιg(n, ξk,G), m �= 0,∀n,

g(n, ξk,G) =

⎧⎪⎨
⎪⎩

2ξk − H(ξk − �G
2 � + (−1)G), n = 0,∀ξk,

−1, n �= 0, ξk = �G
2 �,

sin(πn(2ξk+1)/G)
sin(πn/G)

− 1, n �= 0, ξk < �G
2 �,

(6.10)

with m = 0, . . . ,F − 1 and n = 0, . . . ,G − 1. In general a closed form for∑F−1
k=0 g(n, ξk,G) and

∑F−1
k=0 e(2π/F)mkιg(n, ξk,G) is not known, since it depends

on the sequence (ξ0, . . . , ξF−1).



Journal of Mathematical Neuroscience  (2015) 5:6 Page 23 of 53

Fig. 2 Examples of the block-circulant graphs for different values of F and ξ , with G

fixed. The figure on the top represents the case BC3,10(4,5,5), obtained for F = 3, G = 10,
and ξ0 = ξ1 = ξ2 = 2. The figure at the bottom shows some examples of the special case
CiN(1,2, . . . , ξ ) = BC1,N (2ξ − H(ξ − �N

2 � + (−1)N )) (circulant graph) for N = 10, namely

CN = CiN(1) (cyclic graph), CiN(1,2), and finally KN = CiN(1,2, . . . , �N
2 �) (complete graph)

However, many different special cases can be studied. The simplest one is obtained

for ξ0 = · · · = ξF−1
def= ξ (see the example BC3,10(4,5,5) in Fig. 2, obtained for

F = 3, G = 10, and ξ0 = ξ1 = ξ2 = 2), and in this case Eq. (6.10) gives:

λmG+n =
{

F − 1 + Fg(n, ξ,G), m = 0,∀n,

−1, m �= 0,∀n,
(6.11)

with M = F − 1 + F [2ξ − H(ξ − �G
2 � + (−1)G)]. Therefore in this case all the

eigenvalues are real, as it must be, since with this special choice of the parameters the
matrix T is symmetric. For F = 1 and ξ < �N

2 � we have M = 2ξ and Eq. (6.11) gives
the eigenvalues of the circulant graph (see the example CiN(1,2, . . . , ξ) in Fig. 2):

λn =
{

2ξ, n = 0,

sin(πn(2ξ+1)/N)
sin(πn/N)

− 1, n �= 0.
(6.12)

Now, the cyclic graph CN is obtained in the special case ξ = 1, and due to the Dirich-
let kernel identity, (6.12) reduces to:

λn = 2 cos

(
2πn

N

)
. (6.13)
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Instead for ξ = �G
2 � (full band) and ∀F,G we have M = N − 1 and Eq. (6.11) gives

the eigenvalues of the complete graph KN :

λn =
{

N − 1, n = 0,

−1, n �= 0.
(6.14)

By replacing Eqs. (6.10)–(6.14) in (6.7), we obtain the pairwise correlation struc-
ture of the corresponding network topology. In general there is no closed form for
the finite sums in (6.7), with only the exception of the complete graph, for which we
obtain

Y
(0)
i (t)Y

(0)
j (t) =

[
1

N
+ C(0)

(
1 − 1

N

)]
e2̃λ0t − 1

2̃λ0

+ (1 − C(0)
)(

δij − 1

N

)
e2̃λ1t − 1

2̃λ1
,

Y
(1)
i (t)Y

(1)
j (t) =

[
1

N
+ C(1)

(
1 − 1

N

)]
e2̃λ0t

+ (1 − C(1)
)(

δij − 1

N

)
e2̃λ1t ,

(6.15)

Y
(2)
i (t)Y

(2)
j (t) = A 2(μ)

N − 1

{[
1

N
+ C(2)

(
N − 1 − 1

N

)](
ẽλ0t − 1

λ̃0

)2

+ (1 − C(2)
)(

δij − 1

N

)(
ẽλ1t − 1

λ̃1

)2}

where

λ̃0 = − 1

τ
+ Γ A ′(μ), λ̃1 = − 1

τ
− Γ

N − 1
A ′(μ).

Some interesting consequences of these formulas, for the complete graph and
other kinds of topologies, will be analyzed in Sects. 8, 9, 10. However, before that,
in the next section we want to show the effectiveness of this perturbative method by
applying it to another class of topologies, that of symmetric connectivity matrices.

6.2 Symmetric Matrices

Another case where the matrices Φ(t) and Φ(t)Φ ′(t) can be computed easily is when
T is a general symmetric matrix. Since its entries are real, it can be diagonalized by
an orthogonal matrix P (namely a matrix such that P −1 = P ′), therefore we have
Φ(t) = PD(t)P ′. Since in this case the matrix J is symmetric, we also obtain

Φ(t)Φ ′(t) = e2J t = PD2(t)P ′
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Fig. 3 Three examples of the hypercube Qn

and so

Φij (t) =
N−1∑
k=0

PikPjkẽ
λkt ,

[
Φ(t)Φ ′(t)

]
ij

=
N−1∑
k=0

PikPjke
2̃λkt .

(6.16)

Now we show an explicit example, by applying equations in (6.16) to the case
when the neurons are connected according to a hypercube graph Qn. The hypercube
can be defined in terms of the Cartesian product of graphs [46] (see also Sect. 6.3.1):

Qn = K2 � · · ·�K2︸ ︷︷ ︸
n-times

, 2n = N, (6.17)

where n is an integer and K2 is the complete graph with 2 vertices. Some examples
of Qn for different values of n are shown in Fig. 3. Clearly in this case M = n, and
from (6.17) and by definition of the Cartesian product, the topology of the hypercube
can be expressed as follows:

TQ1 =
[

0 1
1 0

]
,

TQn =
[
TQn−1 Id2n−1

Id2n−1 TQn−1

]
, n ≥ 2.

(6.18)

It is easy to check that the eigenvalues of the matrix TQn are n−2m, for m = 0, . . . , n

and with algebraic multiplicity
( n

m

)
. If we rewrite these eigenvalues with the follow-

ing order:

λk =
n−1∑
l=0

(−1)�k/2l�, k = 0, . . . ,N − 1,

then the corresponding eigenvectors are the columns of the matrix:

P = 1√
N

HN (6.19)
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where HN is an N × N Hadamard matrix, defined as follows:

H1 = [1],

H2 =
[

1 1
1 −1

]
, (6.20)

H2n = H2 ⊗ H2n−1 , n ≥ 2.

From the property HNH ′
N = N IdN it is clear that the matrix P defined by (6.19) is

orthogonal. Now, from (6.19) + (6.20) we obtain

PikPjk = 1

N
fijk,

fijk
def= (−1)Sijk ,

Sijk
def=

n−1∑
l=0

(
hl(i) − hl(j)

)
hl(k),

hl(x)
def=
⌊

x

2n−l−1

⌋
− 2

⌊
x

2n−l

⌋
.

The reader can check that
∑N−1

j=0 (−1)Sijk = Nδ0k , as it must be according to (6.8),
so we get

Y
(0)
i (t)Y

(0)
j (t) = 1

N

(
1 − C(0)

)N−1∑
k=1

fijk

e2̃λkt − 1

2̃λk

+
[

1

N
+ C(0)

(
1 − 1

N

)]
e2̃λ0t − 1

2̃λ0
,

Y
(1)
i (t)Y

(1)
j (t) = 1

N

(
1 − C(1)

)N−1∑
k=1

fijke
2̃λkt

+
[

1

N
+ C(1)

(
1 − 1

N

)]
e2̃λ0t ,

(6.21)

Y
(2)
i (t)Y

(2)
j (t) = A 2(μ)

(
1

nN

(
1 − C(2)

)N−1∑
k=1

fijk

(
ẽλkt − 1

λ̃k

)2

+
[

1

nN
+ C(2)

(
1 − 1

nN

)](
ẽλ0t − 1

λ̃0

)2
)

.

We observe that Eqs. (6.7) and (6.21) are very similar. This is clearly a consequence
of the regularity of the corresponding graphs.
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6.3 Examples with More Complex Connectivity Matrices

Now we briefly discuss some more complex examples of connectivity. In particu-
lar, in Sect. 6.3.1 we focus on examples of more complex regular graphs, while in
Sect. 6.3.2 we relax the hypothesis of regularity.

6.3.1 Product of Regular Graphs

In Sects. 6.1 and 6.2 we showed some relatively simple examples of regular graphs.
It is possible to build more complicated topologies by means of graph operations that
transform a graph into another while allowing us to calculate easily the spectrum of
the new graph from that of the old one. There are two main kinds of graph operations:
unary and binary. An example of unary operation is the graph complement that trans-
forms a graph G into its complement G, namely in the graph with the same vertices
of G and such that two distinct vertices of G are connected if and only if they are
disconnected in G. For example, the complement of C4 is the disjoint union of two
graphs K2. On the other side, binary operations create a new graph from two initial
graphs G, H. In this section we discuss only graph products, namely a particular kind
of binary operations that prove very useful for studying networks made of different
interconnected populations.

In all the examples that follow, the new graph resulting from the product of G and
H has a vertex set V(G) ×V(H), where × is the Cartesian product of sets and V(G),
V(H) represent the collection of vertices of G, H, respectively. A well-known exam-
ple that has already been introduced in Sect. 6.2 is the Cartesian product G�H. This
represents a new graph, where any two vertices (g,h) and (g′, h′) in V(G) × V(H)

are connected if and only if either g = g′ and h is connected to h′ in H, or h = h′ and
g is connected to g′ in G. Due to this rule, G�H has the following topology:

TG�H = TG ⊗ IdNH + IdNG ⊗ TH

where, as usual, ⊗ is the Kronecker product of matrices, and NG , NH are the number
of vertices of G, H, respectively. From this definition and by means of the mixed-
product property of the Kronecker product, it is easy to prove that, if we call λGi
(for i = 0, . . . ,NG − 1), λHj (for j = 0, . . . ,NH − 1) the eigenvalues of G, H, re-

spectively, then the eigenvalues of G�H are λGi +λHj for all the possible pairs (i, j).

Moreover, if vGi , vHj are the corresponding eigenvectors, it is straightforward to prove

that the eigenvectors of G�H are vGi ⊗ vHj for all (i, j). This result is true for every
pair of graphs that are combined through the Cartesian product. However, if G, H are
regular with vertex degrees MG , MH, respectively, then G�H is also regular, with
degree MG +MH. This is a consequence of the fact that a graph is regular if and only
if (1, . . . ,1) is an eigenvector (with the vertex degree as corresponding eigenvalue),
and the fact that the tensor product vGi ⊗ vHj between two all-ones vectors vGi , vHj
is itself an all-ones vector with λGi + λHj = MG + MH as corresponding eigenvalue.
Therefore we conclude that, given graphs with known spectra, it is possible to build
more complex graphs whose spectra are easily determined through the rules shown
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above. This proves that the theory introduced in this article can easily be used to cal-
culate analytically the correlation structure of neural networks with highly complex
connectivity matrices. Typical examples of the Cartesian product are the hypercube
(see Eq. (6.17)), the circular ladder CLN = CN �K2 (also known as prism graph),
the d-dimensional torus T (N0, . . . ,Nd−1) = CN0 � · · ·�CNd−1 , and so on.

Another case is the tensor product G ⊗ H, where any two vertices (g,h) and
(g′, h′) are connected if and only if g is connected to g′ in G and h is connected
to h′ in H. From this rule we get the following topology:

TG⊗H = TG ⊗ TH

so it follows that the eigenvalues of G ⊗ H are λGi λHj for all (i, j), while vGi ⊗ vHj
are their corresponding eigenvectors. Again, this result is true for any G, H, but if the
graphs are both regular, then G ⊗ H is also regular, with vertex degree MGMH. An
example of tensor product is the crown graph S0

N = KN ⊗ K2.
Now we consider the strong product G � H, where any two vertices (g,h) and

(g′, h′) are connected whenever g and g′ are equal or connected in G, and h and h′
are equal or connected in H. So we get

TG�H = (TG + IdNG ) ⊗ (TH + IdNH) − IdNGNH .

From this formula it follows that the eigenvalues of G �H are (λGi + 1)(λHj + 1) − 1

for all (i, j), while vGi ⊗vHj are their corresponding eigenvectors. Again, this result is
true for any G, H, but if the graphs are both regular, then G �H is also regular, with
vertex degree (MG +1)(MH +1)−1. A trivial example is KNG+NH = KNG �KNH ,
from which it is possible to prove in an alternative way Eq. (6.14) by iteration.

Finally, we show the lexicographic product G • H, where any two vertices (g,h)

and (g′, h′) are connected if and only if either g is connected to g′ in G, or g = g′ and
h is connected to h′ in H. Therefore the topology matrix is

TG•H = TG ⊗ INH + IdNG ⊗ TH

where INH is the NH × NH all-ones matrix. In general there is no simple expression
for the spectrum of G • H. However, if H is regular, from (6.8) it is easy to prove
that λGi NH + MH and λHj are eigenvalues of G •H, with eigenvectors vGi ⊗ vH0 and

vGi ⊗ vHj (for j > 0), respectively, where vH0 = (1, . . . ,1). If also G is regular, then
G • H is regular with vertex degree MGNH + MH. An example of lexicographic
product is the so called double graph of G, namely D[G] = G • K2 [47], where K2 is
the complement of K2, or in other terms the graph on 2 vertices without edges.

A more complex example of the graph products introduced so far is shown in
Fig. 4. This example clearly shows that the products can be used to generate easily
networks with sub-populations connected in different ways, increasing the biological
plausibility of the connectivity matrix. In other terms, this can be interpreted as a way
to build more complex connections between the neural populations compared to the
case BCF,G(M0, . . . ,MF−1) studied in Sect. 6.1. We conclude by observing that
it is also possible to define many other kinds of products, which are not considered
here. The interested reader is referred to the literature.
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Fig. 4 Examples of graph products: K4 �C8 (top-left panel), K4 ⊗C8 (top-right), K4 �C8 (bottom-left),
K4 • C8 (bottom-right). The figure shows the differences between the different products, in particu-
lar the number of connections per neuron, which is, respectively, MK4 + MC8 = 5, MK4MC8 = 6,
(MK4 + 1)(MC8 + 1) − 1 = 11, MK4NC8 + MC8 = 26 (some connections may be overlapping). In gen-
eral, a product between two graphs G, H can be interpreted as a system of NG neural populations with
NH neurons each, interconnected in different ways according to the graph product that has been chosen

6.3.2 Irregular Graphs

Up to now we have studied only regular graphs, because for this class it is possible
to calculate easily the eigenquantities of J from those of T by means of Eq. (6.2).
In this section we show that this is not a strict requirement of our theory and that
it can be applied also to irregular graphs. Regularity can be broken in two different
ways: either by introducing non-uniform weights (since, by definition, regular graphs
are unweighted), or by considering vertices with different (incoming or outgoing)
degrees. In both cases we show how to calculate the eigenquantities of the Jacobian
matrix in a relatively simple way.

First of all, in Sect. 6 we observed that Eq. (6.2) could be applied more widely
also to irregular graphs with uniform weights and the same number of incoming con-
nections, but with different outgoing connections for each neuron. In this section we
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generalize that result. Indeed, if for a given collection of input currents, we consider
those graphs with a generally irregular topology T and a non-uniform weight ma-

trix J
c

such that the ratio R def= A ′(μj )

Mi
does not depend on the indices i, j , we can

easily see that Jij = RTij J
c

ij . Therefore for this class of graphs the eigenquantities
of the Jacobian matrix depend trivially on those of the (unperturbed) weight matrix
T ◦ J

c
(here ◦ represents the Hadamard product of matrices), which are supposed

to be known. An example of such connectivity is represented by the ring model of
Hansel and Sompolinsky [48], which is a well-known model for feature selectivity
in primary visual cortex. In this model each cortical hypercolumn is modeled as a
collection of F minicolumns with G neurons each that respond to a particular feature
of the stimulus, namely the orientation of bars in the visual scene. If we introduce
the function p(·), which maps each neuron i to the minicolumn it belongs to, then we
call θp(i) the preferred orientation of that neuron. In this way all the neurons in the
same minicolumn have the same preferred orientation. According to experimental
evidence, Hansel and Sompolinsky proposed the following connectivity matrix for
the hypercolumn, where the strength of the synaptic interaction between two neurons
depends on the difference between their preferred orientations:

Tij J
c

ij = Γ + Δ cos
(
2(θp(i) − θp(j))

)
.

Here Γ , Δ are free parameters that define the strength of the synaptic connections
within and among the minicolumns. We also observe that this formula defines a non-
uniform weight matrix, therefore the corresponding graph is irregular. Now, in the
primary visual cortex the preferred orientations are organized in a circular scheme
around special points of the orientation map, known as pinwheels, in order to rep-
resent all the possible bar orientations in the range [0,π). For this reason, we can
choose θp(i) = ϑ + π

F
� i

G
� where ϑ is an arbitrary angle, so the connectivity matrix

of the system can be rewritten as follows:

T ◦ J
c =

⎡
⎢⎢⎢⎢⎣

B
(0)

B
(1) · · · B

(F−1)

B
(F−1)

B
(0) · · · B

(F−2)

...
...

. . .
...

B
(1)

B
(2) · · · B

(0)

⎤
⎥⎥⎥⎥⎦

where B
(0)

, . . . ,B
(F−1)

are G × G matrices (with FG = N ) of the form

B
(k) = Jk

⎡
⎢⎢⎣

1 − δ0k 1 · · · 1
1 1 − δ0k · · · 1
...

...
. . .

...

1 1 · · · 1 − δ0k

⎤
⎥⎥⎦ , Jk = Γ + Δ cos

(
2π

F
k

)
,

for k = 0, . . . ,F − 1. In [48] the authors also considered an external current of the
form Ii = C[1 − ε + ε cos(2(θp(i) − θ̃ ))], where C is the maximum amplitude of the
external input, 0 ≤ ε ≤ 0.5 measures the degree of modulation of Ii , and θ̃ is the
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orientation for which the external input is maximum. We also observe that, if ε is
small enough, ε[−1 + cos(2(θp(i) − θ̃ ))] in the formula of Ii can be interpreted as the
term σ4I

v
i in Eq. (2.9), so that we can identify I c

i = C ∀i.
Clearly this is an extension to the irregular case of the topology studied in Sect. 6.1,

which can be re-obtained for Δ = 0. It is easy to verify that Mi = N − 1 ∀i (so in this
case the topology T is regular, but the graph is not, due to the non-uniform weight
matrix J

c
), and, moreover,

S def=
N−1∑
j=0

Tij J
c

ij = (G − 1)J0 + G

F−1∑
j=1

Jj = (N − 1)Γ − Δ ∀i,

since we have used the identity
∑F−1

j=1 cos( 2π
F

j) = −1. So this connectivity satisfies

the condition introduced above, with R = A ′(μ)
N−1 , where for symmetry reasons μ is

the solution of equation μ = τ [ S
N−1A (μ) + C] (so for Δ = 0 we re-obtain Eq. (6.1),

as it must be). Moreover, the eigenquantities of T ◦ J
c

are known, since this is a
block-circulant matrix, therefore those of J can be obtained straightforwardly.

Finally, this neural network can be extended to the case of multiple populations
with different sizes and vertex degrees (of which a very special example is the com-
plete k-partite graph, whose topology is generally irregular). The analysis is beyond
the purpose of this work and will be developed in upcoming articles.

7 Numerical Comparison

In this section we show that our first-order perturbative expansion is in good agree-
ment with the real behavior of the neural network obtained from the simulation of the
system (2.1). These stochastic differential equations have been solved numerically
10,000 times with the Euler–Maruyama scheme, and this collection of trials has been
used to calculate the correlation by a Monte Carlo method (the code, running under
Python 2.6, is available in the Supplementary Material). This result is then compared
to the perturbative formula of the correlation obtained in the previous sections. The
topologies that have been chosen for this comparison are C10, K10, BC3,10(4,5,5)

and Q4 (see Figs. 2 and 3), while the values of the parameters used in the numerical
simulations are shown in Table 1. Moreover, the variable part of the synaptic weights
and the external input currents have been chosen as follows:

J v
ij (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
1+t2 , i, j = 0, . . . , N

2 − 1,

1
2 [1 + erf(2t)], i = 0, . . . , N

2 − 1, j = N
2 , . . . ,N − 1,

1
2 [1 + e−t cos(3t)], i = N

2 , . . . ,N − 1, j = 0, . . . , N
2 − 1,

1, i, j = N
2 , . . . ,N − 1.

I v
i (t) =

{
sin(4t), i = 0, . . . , N

2 − 1,

1 − e−2t , i = N
2 , . . . ,N − 1.

(7.1)
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Table 1 Parameters used for the numerical simulations of Figs. 5, 6, 7 and the right-hand side of Fig. 8.
For the left-hand side of Fig. 8 and for Fig. 9 the parameters are the same, with only the exception of C(0),
C(1) and C(2), which have been set to zero

Neuron Initial conditions Synaptic weights External input Logistic function

τ = 1 Γ = 1 I c = 1 νmax = 1
Λ = 1
VT = 0

C(0) = 0.4 C(1) = 0.5 C(2) = 0.6

We plot this comparison as a function of time (Fig. 5) and also the percentage-relative
error

ε% = 100 ×
∣∣∣∣numerical Corr − first order perturbative Corr

numerical Corr

∣∣∣∣
as a function of the perturbative parameters (left-hand side of Fig. 6). In order to

avoid high dimensional plots, we assume that σ0 = · · · = σ4
def= σ .

Figure 5 has been obtained for σ = 0.1 and it clearly shows that the membrane
potential follows very closely its numerical counterpart, while for the correlation the
difference between the numerical simulation and the perturbative formula is of or-
der 10−2. This is compatible with the law of large numbers, according to which the
statistical error introduced by a Monte Carlo method with T trials is of order

√
T .

The error ε% has been calculated as a function of the perturbative parameter, for
σ = 10−3 − 1. Since we want to take into account also the error introduced by the
perturbative expansion with respect to the initial conditions, whose effect quickly
vanishes due to the time constant τ , the error ε% has been calculated at a small
time instant, namely t = 1. The result is shown in the left-hand side of Fig. 6, which
confirms the goodness of the perturbative approximation, since the error is always
smaller than 3.5% if calculated over 10,000 trials. ε% could be even smaller if T is
increased.

The right-hand side of Fig. 6 shows the numerical evaluation of the probability
P(t) for t = 1 (see (4.13)) according to the algorithm introduced in [49]. From the
figure it is easy to check that for σ = 10−3 − 1 we obtain P ≈ 1, which further
confirms the validity of our results.

To conclude, in Fig. 7 we show a comparison between the numerical and analytical
probability density for both the membrane potential and the firing rate, in networks
with topologies K8 and Q3. Again, the parameters used in the simulations are t = 1,
σ = 0.1, and those of Table 1 and Eq. (7.1). For the sake of clarity we have consid-
ered only the single-neuron marginal probability, since it facilitates the comparison.
The numerical probability has been calculated by solving the system (2.1) 1,000,000
times and by applying a Monte Carlo method, while the analytical density has been
evaluated by integrating Eqs. (4.11) + (4.12) over all but one dimension. The figure
confirms that at the first order the neural network can be described by a normal pro-
cess, even if small deviations from the normal distribution, due to the non-linearity
introduced by A (V ), can be observed.
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Fig. 5 Comparison between the first-order perturbative expansion and the real behavior of the network,
for the topologies C10, K10, BC3,10(4,5,5) and Q4. The parameters used for the simulation are σ = 0.1
and those shown in Table 1 and by Eq. (7.1). Correlation has been calculated by simulating equations
in (2.1) 10,000 times with the Euler–Maruyama scheme and then by applying a Monte Carlo method.
Finally, this result is compared to the first-order analytical formula of the correlation. The figure shows
good agreement, which validates the use of the perturbative approach

8 Correlation as a Function of the Strength of the Network’s Input

In this section we consider how the cross-correlation among neurons depends upon
a crucial network parameter, namely the strength of the external input current I c.
As explained above, I c represents the external input to the network (for example,
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Fig. 6 Percentage-relative error of the correlation calculated between the first-order perturbative expan-
sion and the numerical simulation of the neural network (left) and the probability P defined by (4.13)
(right), for σ = 10−3 − 1. The error is small (<3.5%) even for relatively large values of the perturbative
parameter (σ ∼ 1), which proves the goodness of the perturbative approach. ε% increases considerably for
σ 
 1, but this result has not been shown, since such values correspond to biologically unrealistic levels of
randomness for a neural network. On the other hand, the figure shows that P ≈ 1, which further confirms
the legitimacy of the Taylor expansion (3.2) and therefore the validity of our results. Clearly P decreases
with σ because a larger variance brings the membrane potential closer to the borders defined by the radius
of convergence

a feed-forward input from the sensory periphery, or a top-down modulatory input)
that drives or inhibits the activity of our network. Studying how the network prop-
erties depend on the parameter I c is important for many reasons. From the mathe-
matical and theoretical point of view, this is important because this parameter may
profoundly affect network dynamics. For example, the input can change the dynam-
ical behavior of the system from a stationary to an oscillatory activity, because the
eigenvalues of the Jacobian matrix (3.9) depend on μ, which in turn is determined by
I c through Eq. (6.1). So changing I c can transform real eigenvalues into imaginary
ones (in non-symmetric connectivity matrices) and therefore generate oscillations,
or change the sign of the real part of an eigenvalue from negative to positive, giv-
ing rise to an instability. From the neural coding point of view, characterizing the
dependence of different aspects of network activity upon the external input is neces-
sary to understand and quantify how different aspects of network activity take part
in the encoding of external stimuli [50–53]. Here we investigate specifically how the
correlations among neurons depend on I c .

The dependence of correlation on I c is shown in Fig. 8. In this figure, the top
panels show correlations for any pair of neurons in a network with a complete con-
nectivity graph (in which case, the correlation has the same value for all pairs of
neurons and so is independent of the neural indices i, j ). The bottom panels show the
correlation values for a pair of directly connected neurons in a hypercube graph (in
this network, the correlation value depends only on the distance between two vertices,
i.e. the number of edges in a shortest path connecting them, which can range between
the value of 1 which corresponds to directly connected vertices, and the maximal
value of log2 N ).

We first examined the case when the sources of variability are independent (left
panels of Fig. 8), i.e. when C(0), C(1), and C(2) are equal to zero. Considering (3.10),
it is apparent that this behavior originates from the sigmoidal shape of the activation
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Fig. 7 Single-neuron marginal-probability density for the membrane potential (left) and the firing rate
(right) in a network with topology K8 (top) and Q3 (bottom). The parameters used for the simulation are
t = 1, σ = 0.1, and those of Table 1 and Eq. (7.1). The numerical probability density has been calculated
by simulating equations in (2.1) 1,000,000 times with the Euler–Maruyama scheme and then by applying
a Monte Carlo method, while the analytical density has been evaluated by integrating Eqs. (4.11) + (4.12)
over all but one dimension. From the comparison it is easy to observe that the mean and the variance of
the numerical simulations are in good agreement with the corresponding analytical quantities, even if the
numerical probability density is not perfectly normal, due to relatively small higher-order corrections that
have been neglected in our first-order perturbative approach

function: when |I c| is large, then |μ| is large as well, therefore A ′(μ) and the entries
of the effective connectivity matrix are small. In other words, the neurons become
effectively disconnected, due to the saturation of the sigmoidal activation function.
An important consequence of this phenomenon is that the neurons become indepen-
dent, even if the size of the network is finite. This result holds for both the complete
(top-left panel) and the hypercube graph (bottom-left panel of Fig. 8). An impor-
tant implication of this result is that, taking into account that ν increases with I c, in
general Corr(νi(t), νj (t)) is not a monotonic function of the firing rate.

When the sources of variability are correlated, we found (for both network topolo-
gies; see right panels of Fig. 8) that the dependence of the correlation upon the param-
eter I c was very different from the case of uncorrelated sources of variability. In this
case, for both considered topologies, Corr(νi(t), νj (t)) increases with the firing rate
provided that the sources of randomness were sufficiently correlated and the network
is large enough (see the case N = 32 in the right panels of Fig. 8).
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Fig. 8 Correlation at t = 10 and for σ = 0.1, as a function of the external input current I c , in the case of
the complete (top) and hypercube (bottom) graph. The figure has been obtained for both independent (left)
and correlated (right) sources of randomness. In a more detail, for the correlated case these results have
been obtained with the parameters of Table 1, while for the independent case the parameters are the same,
with only the exception of C(0), C(1), and C(2), which have been set to zero. This figure shows that the
correlation is strongly modulated by I c , confirming its relation with the effective connectivity matrix J eff

9 Failure of Sznitman’s Mean-Field Theory

In this section we take advantage of our ability to study generic networks to investi-
gate the ranges of applicability of Sznitman’s mean-field theory for the mathematical
analysis of a neural network. A neural network is generally described by a large set
of stochastic differential equations, which makes it hard to understand the underlying
behavior of the system. However, if the neurons become independent, their dynamics
can be described with the mean-field theory using a highly reduced set of equations
that are much simpler to analyze. For this reason the mean-field theory is a power-
ful tool that can be used to understand the network. One of the mechanisms through
which the independence of the neurons can be obtained is the phenomenon known
as propagation of chaos [19–22]. Propagation of chaos refers to the fact that, if we
choose chaotic initial conditions for the membrane potentials, then any fixed num-
ber of neurons are independent ∀t > 0 in the so called thermodynamic limit, namely
when the number of neurons in the system grows to infinity. Therefore the term prop-
agation refers to the “transfer” of the chaotic distribution of the membrane potentials
from t = 0 to t > 0. Under simplified assumptions as regards the nature of the net-
work (namely that the other sources of randomness in the system, in our case the
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Brownian motions and the synaptic weights, are independent), propagation of chaos
does occur. However, in Sects. 9.1, 9.2 and 10 we show that in many cases of practical
interest, e.g. for a system with either correlated Brownian motions, initial conditions
and synaptic weights, or with a sufficiently sparse connectivity matrix, or with an
arbitrarily large (but still finite) size, the correlation between pairs of neurons can be
high. Therefore in general any fixed number of neurons are not independent, which
invalidates the use of Sznitman’s mean-field theory for analyzing such networks.

9.1 Chaos Does not Occur if the Sources of Randomness Are not Independent

Here the proof is provided through a simple counterexample, namely the complete
graph. From (6.15) we obtain, in the limit N → ∞:

Corr
(
Vi(t),Vj (t)

)

=
(

σ 2
0 C(0) e

2̃λ0t − 1

2̃λ0
+ σ 2

1 C(1)e2̃λ0t + σ 2
2 C(2)A 2(μ)

(
ẽλ0t − 1

λ̃0

)2)

/(
σ 2

0

[
C(0) e

2̃λ0t − 1

2̃λ0
− τ

2

(
1 − C(0)

)(
e−2t/τ − 1

)]

+ σ 2
1

[
C(1)e2̃λ0t + (1 − C(1)

)
e−2t/τ

]+ σ 2
2 C(2)A 2(μ)

(
ẽλ0t − 1

λ̃0

)2)
.

From this formula it is easy to see that if at least one of the parameters C(0), C(1),
and C(2) is not equal to zero, then Corr(Vi(t),Vj (t)) �= 0 (absence of chaos), even if
we are in the thermodynamic limit. In particular, this means that:

• if C(0),C(2) �= 0, then C(1) = 0 does not imply Corr(Vi(t),Vj (t)) = 0 (i.e. there is
no propagation of initial chaos);

• at every finite t , if C(1) �= 0, then C(0),C(2) = 0 does not imply Corr(Vi(t),

Vj (t)) = 0 (i.e. absence of initial chaos does not lead to chaos).

Therefore Corr(Vi(t),Vj (t)) = 0 can be obtained only for C(0) = C(1) = C(2) = 0,
which is compatible with Sznitman’s mean-field theory. However, in the next sec-
tion we will see that even under the last condition, namely even if all the sources
of randomness are independent, propagation of chaos may not occur if the neurons
are not densely connected. Clearly the fully connected network has the largest num-
ber of connections possible, for this reason it does show propagation of chaos in the
thermodynamic limit. Other topologies may not satisfy this requirement.

9.2 Propagation of Chaos Does not Occur in Sufficiently Sparse Networks

Again, we show this through a counterexample. Since in this section we are interested
in sparse systems, we study propagation of chaos in the thermodynamic limit as a
function of the number of connections in a circulant and block-circulant network. To
this purpose, we set C(0) = C(1) = C(2) = 0 (see previous section). For N → ∞ and
finite M , the right-hand sides of equations in (6.7) do not converge to zero, therefore
for every finite value of M propagation of chaos does not occur.
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Fig. 9 Correlation at t = 10 and for σ = 0.1, as a function of the number of incoming connections M ,
in the case of the circulant connectivity matrix CiN(1,2, . . . , ξ ) (left) and of the block-circulant matrix
BC2,N/2(M0,M1), with M0 = M1 − 1 = 2ξ − H(ξ − N

4 + 1) (right). The number of incoming con-

nections is, respectively, M = 2ξ −H(ξ − N
2 + 1) with 1 ≤ ξ ≤ �N

2 �, and M = 1 + 4ξ − 2H(ξ − N
4 + 1)

with 1 ≤ ξ ≤ �N
4 �. These results have been obtained by using Eq. (6.7) with C(0) = C(1) = C(2) = 0

(while all the remaining parameters are those of Table 1). The figure shows that correlation does not go to
zero in the thermodynamic limit (absence of propagation of chaos) if limN→∞ M is finite, namely if the
network is sufficiently sparse

However, from Fig. 9 we see that correlation decreases with M , therefore prop-
agation of chaos occurs only in the thermodynamic limit and if M is an increas-
ing function of N , namely if limN→∞ M = ∞. For example, in the complete graph
M = N − 1, so it explains why in this case correlation goes to zero in the thermo-
dynamic limit. Instead in a network with a cyclic topology, propagation of chaos is
never possible, also for N → ∞, since M = 2. In other words, having infinitely many
neurons is not a sufficient condition for getting independence, because also infinite
connections per neuron are required.

10 Stochastic Synchronization

Finally, we use our formalism to demonstrate a theoretically interesting regime of
network dynamics. In particular, we show that for every finite and arbitrarily large
number of neurons in the network, it is possible to choose special values of the pa-
rameters of the system such that, at some finite and arbitrarily large time instant, cor-
relation is (approximately) equal to one. In other terms, the stochastic components of
the membrane potentials become perfectly synchronized, therefore from now on we
refer to this phenomenon as stochastic synchronization. This is a very counterintuitive
behavior of the network, since it does occur even when all the sources of randomness
are independent (namely C(0) = C(1) = C(2) = 0). It is important to observe that this
phenomenon requires a precise tuning of the parameters of the network, which is re-
ally hard to find by chance through numerical simulations. For this reason we need a
rigorous theory that tells us how to set the parameters: such a theory is developed in
the next section.
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10.1 The General Theory

More precisely, here we show that even when C(0) = C(1) = C(2) = 0, if the Jacobian
matrix (3.9) has an eigenvalue of algebraic multiplicity one with non-negative real
part, while all the other eigenvalues have negative real parts, then correlation goes
to one for t → ∞, for every finite N . This is proved for a generic anatomical con-
nectivity, therefore the assumption of regularity is relaxed. To prove this result, we
suppose that J has an eigenvalue λ̃max with non-negative real part and with a generic
algebraic multiplicity m > 0, while all the other eigenvalues have negative real parts.
Now from (3.11) we recall that D(t) is the diagonal matrix of the eigenvalues of eJ t ,
and P is the matrix of its eigenvectors. If λ̃maxs are the first m eigenvalues of J , for
t → ∞ we have

D(t) ≈ diag
(
ẽλmaxt , . . . , ẽλmaxt︸ ︷︷ ︸

m-times

,0, . . . ,0
)

because all the eigenvalues have negative real part but λ̃max. Therefore

PD(t)P −1 ≈ ẽλmaxt

⎡
⎢⎢⎣

P0,0 · · · P0,m−1 0 · · · 0
P1,0 · · · P1,m−1 0 · · · 0

...
. . .

...
...

. . .
...

PN−1,0 · · · PN−1,m−1 0 · · · 0

⎤
⎥⎥⎦

×

⎡
⎢⎢⎢⎣

[P −1]0,0 . . . [P −1]0,N−1

[P −1]1,0 . . . [P −1]1,N−1
...

. . .
...

[P −1]N−1,0 . . . [P −1]N−1,N−1

⎤
⎥⎥⎥⎦

and, moreover,

eJ t ≈ ẽλmaxtE,

Epq =
m−1∑
l=0

Ppl

[
P −1]

lq
.

According to Eqs. (4.4)–(4.6) for C(0) = C(1) = C(2) = 0, this means that

Cov
(
Vi(t),Vj (t)

)

= σ 2
0

N−1∑
k=0

∫ t

0

[
eJ (t−s)

]
ik

[
eJ (t−s)

]
jk

ds + σ 2
1

N−1∑
k=0

[
eJ t
]
ik

[
eJ t
]
jk

+ σ 2
2

A 2(μ)

M

N−1∑
k=0

(∫ t

0

[
eJ (t−s)

]
ik

ds

)(∫ t

0

[
eJ (t−s)

]
jk

ds

)

≈
(

σ 2
0

e2̃λmaxt − 1

2̃λmax
+ σ 2

1 e2̃λmaxt + σ 2
2

A 2(μ)

M

(
ẽλmaxt − 1

λ̃max

)2)N−1∑
k=0

EikEjk
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where for λ̃max = 0 we mean eγ λ̃max t−1
γ λ̃max

= t , given γ ∈ {1,2}. Therefore

lim
t→∞ Corr

(
Vi(t),Vj (t)

)=
∑N−1

k=0 EikEjk√
[∑N−1

k=0 (Eik)2][∑N−1
k=0 (Ejk)2]

.

Now, in the special case m = 1 we obtain

Epq = Pp0
[
P −1]

0q
,

N−1∑
k=0

EikEjk =
√√√√
[

N−1∑
k=0

(Eik)2

][
N−1∑
k=0

(Ejk)2

]
= Pi0Pj0

N−1∑
k=0

([
P −1]

0k

)2
,

so we conclude that limt→∞ Corr(Vi(t),Vj (t)) = 1. In other terms, the neurons be-
come perfectly correlated even if the sources of randomness are independent, which
is what we wanted to prove.

It is interesting to observe that, due to the Perron–Frobenius theorem [54], if the
matrix with entries 1

Mi
J eff

ij (see Eq. (3.9)) is non-negative and irreducible (namely if
its corresponding directed graph is strongly connected, which means that it is possi-
ble to reach each vertex in the graph from any other vertex, by moving on the edges
according to their connectivity directions), then it has a unique largest positive eigen-
value, which can be used to generate stochastic synchronization.

To conclude, it is important to observe that we must be careful when we use
the perturbative expansion to describe stochastic synchronization. Actually the di-
vergence of the term eγ λ̃maxt implies a fast growth of the variance of the membrane
potential, therefore the first-order approximation may not be good enough due to a
possibly larger magnitude of the higher-order perturbative corrections. However, this
problem can easily be fixed by choosing sufficiently small values of σm that ensure
the variance is still small when the correlation is close to one. Another possibility
is to choose the parameters of the network in order to have λ̃max negative but very
close to zero. For continuity, in this case correlation will be very close to one, and the
variance cannot diverge since λ̃max < 0.

Now we are ready to see an explicit example of stochastic synchronization, which
will be developed in the next section for the complete and the hypercube graphs.

10.2 Examples: The Complete and the Hypercube Graphs

For both these topologies, the largest eigenvalue is λ̃max = − 1
τ

+ Γ A ′(μ) with al-
gebraic multiplicity one. According to Sect. 10.1, we have to set λ̃max ≥ 0 in order
to obtain stochastic synchronization. In particular, we consider the case λ̃max = 0
and we use the logistic function A (V ) = X(V ), since we can take advantage of the
following property:

X′(μ) = Λ

[
X(μ) − X2(μ)

νmax

]
.
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Now, the condition λ̃max = 0 can be rewritten as Γ X′(μ) = 1
τ

, namely

Γ Λ

[
X(μ) − X2(μ)

νmax

]
= 1

τ
.

The solutions of this algebraic equation are

X(μ1,2) = νmax
1 ± √

1 − 4/(τΓ Λνmax)

2
(10.1)

where μ1,2 are two possible stationary solutions of the membrane potential. More-
over, from Eq. (6.1) we know that

μ1,2 = τ
[
Γ X(μ1,2) + I c

]
. (10.2)

Putting together Eqs. (10.1) and (10.2) we obtain

μ1,2 = τ

(
Γ νmax

1 ± √
1 − 4/(τΓ Λνmax)

2
+ I c

)
.

Replace this value of μ1,2 in (10.2) to obtain the final result:

νmax
1 ± √

1 − 4/(τΓ Λνmax)

2
= X

(
τ

(
Γ νmax

1 ± √
1 − 4/(τΓ Λνmax)

2
+ I c

))
.

This non-linear algebraic equation is the constraint that must be satisfied by all the
parameters of the system in order to have correlation equal to 1 in the limit t → ∞.
An example of solution of this equation is

Λ = νmax = 1, VT = 0,

Γ = −2I c, τ = − 2

I c
, ∀I c < 0.

(10.3)

In this case μ1,2 = 0 and it should be used as initial condition in order to ensure the
stationarity of the system.

In Fig. 10 we show the phenomenon of stochastic synchronization only in the case
of the complete graph (for the hypercube the results are qualitatively similar). As we
can see, correlation goes to one more and more slowly if we increase the number
of neurons N in the network or if we decrease the current I c. Therefore in the limit
N → ∞ and/or I c → 0 the system has correlation 0 at every finite time instant.
Actually, from (6.15) it is possible to prove that, given t 
 1, the time instant t∗ such
that Corr(Vi(t

∗),Vj (t
∗)) = C is

t∗ ≈ − 1

2̃λ1

1 + C(N − 1)

1 − C
,

λ̃1 = − 1

τ
− Γ A ′(μ)

N − 1
= I c

2(1 − 1/N)
,
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Fig. 10 Stochastic synchronization in a fully connected network. These results have been obtained with
the exact non-linear equations in (2.1) for 10,000 trials. The parameters used in the simulation have been
chosen according to the constraint (10.3), while for the sources of randomness we have σ = 0.01 and
C(0) = C(1) = C(2) = 0. In the example with I c = −1, the figure shows that correlation gets closer and
closer to one with a speed that depends on the number of neurons N in the system (left), and also stochastic
synchronization as a function of I c in a network with N = 8 (right)

having used the fact that Γ A ′(μ) = 1
τ

and τ = − 2
I c . From this result we see that, for

C fixed, t∗ increases linearly with N for large networks and is inversely proportional
to I c , as obtained numerically in Fig. 10. In particular, this proves that in the ther-
modynamic limit there is still propagation of chaos at every finite time instant. This
is in agreement with Sznitman’s mean-field theory and the results on propagation of
chaos proved in [20–22].

Moreover, from (B.1), it is interesting to observe that if there is a perfect stochas-
tic synchronization between pairs of neurons, then it is “transmitted” to all the
higher-order correlations with even order, at least for the complete graph. In other
terms, if the neurons are all-to-all connected, then Corr2(Vi(t),Vj (t)) = 1 implies
Corrn(Vi0(t), . . . , Vin−1(t)) = 1, ∀n even.

11 Discussion

In this article we developed a novel formalism for evaluating analytically the cross-
correlation structure of a finite-size firing-rate network with recurrent connections,
using a first-order perturbative expansion of the neural equations. Importantly, the
network we considered is stochastic and includes three distinct sources of random-
ness, namely the background noise of the membrane potentials, their initial condi-
tions and the distribution of the recurrent synaptic weights. With this approach we
succeeded in calculating analytically correlations at any order among all groups of
neurons in the network. This formalism is general and in principle can be applied
to networks with any kind of topology of the anatomical connections, but here we
applied it to the case of regular graphs. In upcoming articles this technique will be
employed to study more general kinds of anatomical connections. In other terms,
the present article represents a proof of concept of the ability of our theory to relate
analytically the anatomical and functional connectivity.

The cases we have decided to study are networks with block-circulant and hyper-
cube topologies. Clearly some of the results we have obtained could be specific for
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these special graphs. Nevertheless, our formalism applied to these cases has shown a
series of (to our knowledge) new results, whose generality or specificity can be later
determined by comparison with other kinds of anatomical connections.

11.1 Dependence of the Correlation Structure on the Parameters of the System

First of all we quantified analytically how the correlation depends dynamically on the
external input of the network. This has revealed a number of new and partly coun-
terintuitive insights. We have shown that a strong input can make the neurons almost
independent, and this reveals a simple mechanism to achieve network decorrelation
that adds to those, such as the balance of excitation and inhibition (e.g. [27, 55]) or the
use of purely inhibitory feedback (e.g. [56]), that were recently proposed. Moreover,
we have shown that it is not possible to obtain a mean-field description à la Sznit-
man of the neural network, if the anatomical connections are too sparse or our three
sources of variability are correlated. We have also proved that correlation depends not
only on the input, but also on the topology of the network and on the correlation struc-
ture of the sources of randomness. To conclude, we have shown that for very special
values of the parameters, the neurons become almost perfectly correlated even if the
sources of randomness are independent. We have called this phenomenon stochastic
synchronization, and we stress the fact that the formalism developed in this article is
able to prove its existence for a completely generic anatomical connectivity whose
eigenvalues satisfy a bland condition.

The dependence of network correlations on the neuron’s firing rates has been the
subject of extensive investigations in recent years [57–59]. Our study of the depen-
dence of the correlation on the strength of the external input allowed us to consider
analytically this problem in our network. It is interesting to compare our results to
those obtained in [57] for in-vitro real networks and for model integrate-and-fire net-
works. They reported that Corr(νi(t), νj (t)) increases with the geometric mean of
the firing rates. However, in our model, this is not always the case. This happened in
our case for strongly correlated inputs and relatively large networks (a scenario com-
patible with the cases studied in [57]). However, in our model the network showed
a non-monotonic dependence of the correlation on the firing rates in other instances.
A consequence of this non-monotonic dependence is that rates and correlations ex-
pressed by recurrent networks can indeed act as separate information channels for
the encoding of the strength of the external stimuli. We would also like to underline
the fact that, according to those authors, the correlation between the firing rates is
bounded by the correlation between the inputs. According to our model, this is gener-
ally correct, but in some cases the neural network is able to generate almost perfectly
correlated firing rates even if the inputs are independent. This is the phenomenon of
stochastic synchronization discussed in Sect. 10.

11.2 Strengths and Weaknesses of the Presented Approach

As discussed in Sect. 1, our approach presents some advantages when compared to
other methods based on linear response theory [23–25], networks of stochastic binary
neurons [26, 27], the linear noise approximation [28], the density functional approach
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[29], and large deviations theory [30–32]. These advantages consist in the possibil-
ity to use different sources of variability, to study synchronization and the effect of
axonic delays, and to quantify finite-size effects also for small-size networks. This
means that our formalism lends itself to the possibility of multiple generalizations
and extensions. Additional sources of stochasticity, such as a random threshold VT in
the activation function or a stochastic membrane time constant τ , can be introduced in
the model even including correlations among different sources. As we stated above,
delays in the transmission of the electric signal through the axons can be taken into
account as well, following [60, 61]. Another possibility of further extensions of this
study is the introduction of Hebbian learning. In this article we assumed for simplic-
ity that the dynamics of the synaptic weights is already known, through the functions
(2.5). However, in the case of synaptic plasticity the time evolution of the matrix J (t)

depends on the membrane potentials V (t), so the system of differential equations
(2.1) should be extended to include the differential version of Hebb’s learning rule.
We also observe that in this article we have considered a deterministic topology T

for the anatomical connectivity, which means that T is fixed from trial to trial. An
interesting extension is the study of random topologies, in particular random regular
graphs [62], but this problem will be tackled in another article.

A detailed analysis of the limits of our formalism for different values of all the pa-
rameters of the model and many graph topologies is beyond the purpose of the article.
Nevertheless, being a perturbative approach, in general it is possible to assert that our
method presents the same limits and advantages elucidated by (non-singular) pertur-
bation theory, to which the interested readers are referred. Our formalism can be ap-
plied also to other neural equations, such as the Wilson–Cowan model [63]. However,
it is important to observe that it requires the existence of a stable equilibrium point,
around which the neural equations are linearized. Therefore this technique cannot be
used to study the correlation structure of spiking neurons, like those described by
FitzHugh–Nagumo [64, 65] or the Hodgkin–Huxley [66] or integrate-and-fire [67]
neurons, because in these systems spikes are generated by periodic orbits. For ex-
ample, for FitzHugh–Nagumo and Hodgkin–Huxley neurons, stable periodic orbits
occur around unstable equilibria, therefore our method predicts the divergence of the
covariance matrix for t → ∞, which is clearly a consequence of the linearization of
the neural equations. This also means that our formalism cannot be used to evaluate
the correlation structure when equations (2.1) undergo neural oscillations generated
through Hopf bifurcations, but can still describe damped oscillations around a stable
focus in the phase space when the connectivity matrix has complex eigenvalues.

Another difficulty of our formalism is the need for an analytical expression of the
eigenquantities of the Jacobian matrix J , of which we have shown a biologically rel-
evant example in Sect. 6.3.2. Clearly spectra of brain areas that accomplish complex
functions are difficult to evaluate analytically. For this reason we are forced to intro-
duce some simplifications of the structural connectivity that we want to study. An-
other possibility is to determine the eigenquantities numerically, and then Eqs. (4.4)–
(4.6) provide an algorithm for evaluating numerically the correlation structure of the
network. Clearly even with this method the eigenquantities cannot be calculated for
very large networks, since the matrix J is N × N and therefore grows quickly with
the network size. However, the advantage of evaluating numerically Eqs. (4.4)–(4.6)
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is evident, compared to the Monte Carlo approach. Actually, if the randomness of
the synaptic weights is taken into account (namely if σ2 �= 0), one needs to generate
numerically by a random generator the N2 entries of the matrix W , according to the
covariance matrix (2.6), which has N4 entries. This calculation must be repeated for
a sufficiently high number of trials, according to the Monte Carlo method, so it is
computationally much more expensive in terms of time and memory consumption.

It is important to observe that in this article we focused mainly on regular graphs
for the sake of clarity, since for this class of connectivity matrices the eigenquantities
of J can be evaluated easily from those of T ◦ J

c
through Eq. (6.2). For a general

connectivity this relation is harder to find, but we underline that this is in part due
to our choice to use a biologically realistic activation function A (·) (see Eqs. (3.9)
and (3.10)). Usually, in order to obtain analytical results, in the literature there is a
wide use of piecewise linear activation functions (e.g. in [48, 68, 69]). Clearly in
this case it is much easier to evaluate the eigenquantities of J from those of T ◦ J

c
,

taking some care at the connection points between the segments of A (·), where the
piecewise linear function is not differentiable.

Another useful feature of our approach is that it allowed the calculation of the
dependence on the strength of the external input of correlations of arbitrary order
(not only pairwise correlations). This feature will be useful for the evaluation of the
ability of networks to encode genuinely additional information in the variations with
inputs of higher-order correlations, a subject that has been under intense theoretical
[70] and experimental debate in recent years [71, 72].

11.3 Analyzing the Consequences of Structural Damage

Similarly to spectral graph theory, where the properties of a graph are studied in
relationship to its characteristic polynomial and eigenquantities, in this article we
have found the relation between the functional connectivity and the spectrum of the
underlying structural connectivity. This, in principle, allows one to study the effect
on the functional connectivity caused by lesions to the synaptic connections. These
structural damages can be modeled as perturbations to the topology matrix. Thus, in
principle they can be studied by perturbative techniques such as those described in
[73–77]. This branch of graph theory deals with discrete perturbations (such as the
removal of connections or vertices from a given graph), as opposed to the Rayleigh–
Schrödinger theory from quantum mechanics, that studies the effect of continuous
perturbations to the generalized eigenvalue problem. This approach would help to
understand abnormal functional behavior, complementing other studies of the conse-
quences of structural damage, e.g. [78].

11.4 Possible Extensions to Other Measures of Communication Among
Neurons

It is also interesting to observe that the correlation structure can be used to estimate
causal relations between neurons or neural populations. This can be achieved in many
ways. However, in our view a promising direction is to take advantage of hierarchi-
cal clustering techniques already used in economics, whose potential application is
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briefly described as follows. According to [79], the correlation structure can be used

to define a distance measure dij (t)
def= √2(1 − Corr(Vi(t),Vj (t))) between every pair

of neurons. Clearly we are not interested in the hierarchical structure of single neu-
rons, but rather in that of mesoscopic or macroscopic areas. For this reason, from
dij (t) we have to define an arbitrary distance between these areas of the brain (e.g.
the mean distance between all the pairs of neurons). Then, from the distance matrix
of the areas, we can determine the minimum spanning tree of the system, a concept
introduced in the context of graph theory to find the most relevant (or more informa-
tive) connections in a network. Finally, on the minimum spanning tree it is possible
to define an ultrametric distance, which in turn allows us to build a dendrogram (i.e. a
hierarchical tree) in an unambiguous way, by using techniques such as UPGMA [80].

11.5 Concluding Statement

We have shown that the formalism introduced in this article can be effectively used to
calculate the functional connectivity of neurons within a firing-rate network model.
In this article we concentrated mostly on computing the Pearson correlation among
all pairs of neurons in the network. However, the work reported in this paper also
lays the basis for computing more refined measures of functional connectivity (such
as those based on information theory). This in turn will allow in future studies the
analytical quantification of the transmission of information among the elements of
this recurrent network and of how information transmission is modulated by factors
such as the strength and dynamics of external inputs.
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Appendix A: Radius of Convergence of Some Activation Functions

In this section we compute the radius of convergence of the logistic and inverse tan-
gent function (see (2.2)). For simplicity we consider only the case with νmax = 1 and
VT = 0, but the analysis can be extended easily to the most general case.

A.1 The Logistic Function

According to [81], the nth-order derivative of the logistic function X(V ) is

DnX(V ) = Λn
n∑

k=1

(−1)k−1A(n, k − 1)
[
X(V )

]k[1 − X(V )
]n+1−k (A.1)

where A(n, k) are the so called Eulerian numbers [82]. After some algebra, we can
rewrite this expression as follows:

DnX(V ) = ΛnX(V )
[
1 − X(V )

]n n−1∑
k=0

A(n, k)
(−e−ΛV

)−k
.

Now from [83], we know that

Li−n(V ) = V n

(1 − V )n+1

n−1∑
k=0

A(n, k)V −k, ∀n > 0, |V | < 1,

where Li−n(·) represents the so called polylogarithm (with negative order). Here we
have omitted the nth term of the sum since A(n,n) = 0 ∀n > 0. So we obtain

DnX(V ) = (−Λ)n Li−n

(−e−ΛV
)
. (A.2)

This result is true as far as |−e−ΛV | < 1, i.e. only for V > 0. Instead, for V < 0, we
can use the relation X(−V ) = 1 − X(V ), from which we deduce that:

• DnX(−V ) = (−1)n−1DnX(V ), ∀n > 0;
• X(−V ) has the same radius of convergence of X(V ).

So Eq. (A.2) can be used to express DnX(V ) ∀V �= 0. Instead for V = 0, according to
(A.2), we have to evaluate Li−n(−1), which is defined by an analytical continuation
of the polylogarithm. In this way we can determine DnX(0). Another method is to
use Eq. (A.1) and the following property of the Eulerian numbers:

n∑
k=1

(−1)k−1A(n, k − 1) = 2n+1(2n+1 − 1
)Bn+1

n + 1

where Bn are the so called Bernoulli numbers [84], from which we obtain

DnX(0) = Λn
(
2n+1 − 1

)Bn+1

n + 1
.
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Now we can compute the radius of convergence r(μ) of the Taylor series

X(V ) =
∞∑

n=0

DnX(μ)

n! (V − μ)n

using the Cauchy-root test:

r(μ) = 1

lim supn→∞ n
√|DnX(μ)/n!| . (A.3)

First of all we obtain r(0) = π
Λ

. This can be proved for example by performing the
substitution n → 2n − 1 (which is motivated by the fact that B2n+1 = 0 ∀n > 0) and
by using the following asymptotic expansion of the Bernoulli numbers:

B2n ∼ (−1)n−14
√

πn

(
n

πe

)2n

, n → ∞,

and the Stirling approximation of (2n − 1)!.
For μ �= 0, from the relation between the polylogarithm and the Hurwitz zeta func-

tion [85], we recall the following result, valid for n → ∞:

Li−n

(−e−Λμ
)∼ n!

[
1

(Λμ − ιπ)n+1
+ 1

(Λμ + ιπ)n+1

]
;

therefore from (A.3) we obtain

r(μ) = 1

Λ lim supn→∞ n
√|1/(Λμ − ιπ)n+1 + 1/(Λμ + ιπ)n+1| .

Now, since

n

√∣∣∣∣ 1

(Λμ − ιπ)n+1
+ 1

(Λμ + ιπ)n+1

∣∣∣∣= 1

ρ1+1/n

n

√∣∣2 cos
(
(n + 1)θ

)∣∣

where ρ =√(Λμ)2 + π2 and θ = arctan( π
Λμ

), and, moreover,

lim
n→∞

n

√∣∣2 cos
(
(n + 1)θ

)∣∣= 1,

then we finally conclude that

r(μ) = 1

Λ

√
(Λμ)2 + π2.

Figure 11 shows the result for different values of Λ. From it we can see that the
radius of convergence of the Taylor series of X(V ) around the point V = μ increases
with μ. This is reasonable, since the logistic function becomes flat when |V | is large.
Moreover, for large Λ it converges to r(μ) = |μ| and therefore it is equal to zero only
for μ = 0, as it must be. Actually, for Λ → ∞ the function X(V ) converges to the
Heaviside step function, which has a vertical jump at V = 0.
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Fig. 11 Radius of convergence
r of the Taylor series of the
logistic function X(V ), as a
function of the point V = μ

about which the expansion is
performed. For large μ the
radius of converge increases
linearly since the logistic
function is asymptotically flat.
Instead for Λ → ∞ we obtain
r(0) → 0, because in this limit
the logistic function becomes a
Heaviside step function with a
discontinuity in V = 0

A.2 The Inverse Tangent Function

Now we calculate the radius of convergence of the inverse tangent function. Accord-
ing to [86], its nth-order derivative is

Dn

[
1

2
+ 1

π
arctan

(
π

4
ΛV

)]

= 1

π

(
π

4
Λ

)n
(−1)n−1(n − 1)!

[1 + ((π/4)ΛV )2]n/2
sin

(
n arcsin

(
1√

1 + ((π/4)ΛV )2

))
.

So from the root test we obtain

r(μ) =
√

1 + ((π/4)Λμ)2

(π/4)Λ lim supn→∞(
n

√
| sin(n arcsin(1/

√
1 + ((π/4)Λμ)2))|/ n

√
πn)

.

Now, since

lim
n→∞

n

√∣∣∣∣sin

(
n arcsin

(
1√

1 + ((π/4)Λμ)2

))∣∣∣∣= 1

for Λμ finite, and, moreover, limn→∞ n
√

πn = 1, we obtain finally

r(μ) = 1

(π/4)Λ

√
1 + ((π/4)Λμ)2.

Therefore the radius of convergence increases with μ, as it must be. Moreover, in the
limit Λ → ∞ it gives r(μ) = |μ|, as with the logistic function. The same result can
be proved for other sigmoidal functions and is left as an exercise for the reader.
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Appendix B: Higher-Order Correlations for a Fully Connected Neural
Network

Here we calculate the higher-order correlation in the case of the complete graph. For
this network topology, the combinatorial calculus required by the numerator of (4.1)
is very simple:

∑∏
Nij (t)Nik (t) = n!

2n/2(n/2)!
(
Ni (t)Nj (t)

)n/2

where the covariance Ni (t)Nj (t) is the same for every pair (i, j) of neurons such
that i �= j , since they are all-to-all connected. For the denominator, Eq. (4.9) gives

n

√√√√√
n−1∏
j=0

∣∣Nij (t)
∣∣n = n!

2n/2(n/2)!
(
N2

i (t)
)n/2

.

Again, since the neurons are all-to-all connected, the variance N2
i (t) is the same for

every neuron. Now, since

Ni (t)Nj (t)

N2
i (t)

= Corr2
(
Vi(t),Vj (t)

)
,

we obtain the following compact formula:

Corrn
(
Vi0(t), . . . , Vin−1(t)

)=
{

0, n odd,

[Corr2(Vi(t),Vj (t))]n/2, n even,
(B.1)

where Corr2(Vi(t),Vj (t)) is given by (4.10) and (6.15).
We stress the fact that having zero correlation for n odd is a consequence of

the normal distribution of our three sources of randomness. For non-normal distri-
butions this result is not true anymore. For n even, Eq. (B.1) proves that for the
complete graph the higher-order correlations depend only on n and the pairwise
correlation. This in general may not be true for other kinds of topologies. More-
over, since Corr2(Vi(t),Vj (t)) ∈ [−1,1], then Corrn(Vi0(t), . . . , Vin−1(t)) ∈ [−1,1]
as well, therefore the higher-order correlations are correctly normalized, as it must
be.
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51. Shea-Brown E, Josić K, De La Rocha J, Doiron B. Correlation and synchrony transfer in integrate-
and-fire neurons: basic properties and consequences for coding. Phys Rev Lett. 2008;100:108102.

52. Quiroga RQ, Panzeri S. Extracting information from neuronal populations: information theory and
decoding approaches. Nat Rev Neurosci. 2009;10(3):173–85.

53. Cavallari S, Panzeri S, Mazzoni A. Comparison of the dynamics of neural interactions in integrate-
and-fire networks with current-based and conductance-based synapses. Front Neural Circuits.
2014;8:12.

54. Pillai SU, Suel T, Cha S. The Perron–Frobenius theorem: some of its applications. IEEE Signal Pro-
cess Mag. 2005;22(2):62–75.

55. Renart A, Moreno-Bote R, Wang X-J, Parga N. Mean-driven and fluctuation-driven persistent activity
in recurrent networks. Neural Comput. 2007;19(1):1–46.

56. Tetzlaff T, Helias M, Einevoll GT, Diesmann M. Decorrelation of neural-network activity by in-
hibitory feedback. PLoS Comput Biol. 2012;8(8):e1002596.



Journal of Mathematical Neuroscience  (2015) 5:6 Page 53 of 53
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