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Abstract Background In a previous work (Dafilis et al. in Chaos 23(2):023111,
2013), evidence was presented for four-dimensional chaos in Liley’s mesoscopic
model of the electroencephalogram. The study was limited to one parameter set of
the model equations.
Findings In this report we expand that result by presenting evidence for the extension
of four-dimensional chaotic behavior to a large area of the biologically admissible
parameter space. A two-parameter bifurcation analysis highlights the complexity of
the dynamical landscape involved in the creation of such chaos.
Conclusions The extensive presence of high-order chaos in a well-established phys-
iological model of electrorhythmogenesis further emphasizes the applicability and
relevance of mean field mesoscopic models in the description of brain activity at the-
oretical, experimental, and clinical levels.
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1 Findings

1.1 Background

Chaos that requires at minimum four degrees of freedom to be adequately described is
known as “four-dimensional chaos” (FDC). Lorenz [2] was one of the first to describe
this phenomenon in 1984, and his results were given a firm numerical underpinning
by Sigeti [3]. Other examples of such behavior exist in the literature but are generally
rarely reported [4, 5].

Despite the complexity of human cognition and behavior, the focus on nonlinearity
and chaos to date in neuroscience has been on low-dimensional phenomena. Freeman
[6] provides a rare exception to this, describing a hierarchy of attractors, from point
attractor dynamics under deep anaesthesia, to chaos in perception. Nonetheless, the
importance of attractor dynamics in cortical activity is well documented, with signif-
icant implications for the brain at rest and while performing tasks [7–10].

Previous work shows evidence for FDC in Liley’s mesoscopic model of the
electroencephalogram, which is related to an inverse period doubling cascade [1].
That cascade also accounts for intermittent behavior, which is reminiscent of
burst-suppression-like phenomena occurring in anaesthesia [11] and epileptic en-
cephalopathies [12]. In this report, we extend those findings and reflect on the impor-
tance of high-dimensional chaos in mathematical neuroscience models.

1.2 The Liley Model

Liley’s theory of neural dynamics is a spatiotemporal theory of the electroencephalo-
gram (EEG). Its mesoscopic character implies that it does not focus on fine neuronal
detail, instead concerning itself with the dynamics of populations of neurons. The
macrocolumnar formulation of the model consists of ten first-order coupled nonlinear
ordinary differential equations parameterized by a significant number of physiolog-
ical constants, which describe the neural population properties in detail. For further
discussion of this formulation and a complete derivation, see [1, 13–15].

1.3 A Shortcut to Extensive Four-Dimensional Chaos Search

We assume that the n Lyapunov exponents of an n-dimensional dynamical system
described by ordinary differential equations (ODE) are ordered and given by λ1 ≥
λ2 ≥ · · · ≥ λn−1 ≥ λn. The largest integer D for which λ1 + λ2 + · · · + λD ≥ 0 is
called the topological dimension of the attractor [16]. The next highest dimension
(D + 1) is the minimum integer dimension is which the attractor can exist.

Previously [1], the parameter set investigated provided the following first four λ

values (base e, per second): λ1 = 9.6, λ2 = 0, λ3 = −6.4, and λ4 = −11.5. This
means that λ1 +λ2 +λ3 = 3.2, and λ1 +λ2 +λ3 +λ4 = −8.3. So, in that case D = 3
and D + 1 = 4, and the minimum integer dimension in which the attractor can exist
is four: this is why the claim of FDC holds. It is important to realize the difference
between the so-called hyper chaos, which has been studied extensively in maps and
ODEs, and FDC. In FDC the topological dimension is at least three as in the case of
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Fig. 1 Largest Lyapunov exponent values (LLE) plotted as a function of pee and pei . Blue is for
LLE ≤ −20, green is for LLE ≈ 0, and red is for LLE ≥ 20, all values per second, base e. Thalamic
inputs are expressed in units of ms−1

hyper chaos, but FDC is characterized by only a single positive Lyapunov exponent,
whereas hyper chaos is associated with two or more positive exponents (i.e. λ1 > 0
and λ2 > 0).

Building on the insights from previous work, we here look for cases where
λ1 > |λ3| and λ2 = 0. Since the exponents are ordered, we have λ1 + λ2 + λ3 > 0
and λ1 + λ2 + λ3 + λ4 < 0, with λ3 < 0 and λ4 < 0. As such, D will always be at
least three, and the minimum integer dimension that the attractor can exist in is at
least four. Also note that the Kaplan–Yorke (or Lyapunov) dimension DKY [16] is
given by

DKY = 3 − λ1 + λ2 + λ3

λ4
, (1)

hence, with the above λ’s, DKY > 3 always. In other words, for the purpose of our
investigation it here suffices to examine the largest three Lyapunov exponents, dra-
matically decreasing the computational burden associated with the search. It is in fact
possible to state that the chaos is at least four-dimensional, if λ1 > |λ3| when λ1 > 0
and λ2 = 0, without evaluating the full spectrum of ten exponents. This reduces the
original computation from 120 coupled nonlinear ODEs to only 43. The calculation
for the present report has been performed using the well-known Christiansen–Rugh
algorithm for the partial Lyapunov spectrum [17], under the same boundary condi-
tions and simulation lengths as discussed in previous studies [14].
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Fig. 2 LLE plotted as a function of pee and pei , with four-dimensional chaotic points in black. The
parameter set discussed in our previous work [1] is indicated by a white circle and corresponds to
pee = 24.2453 ms−1, pei = 2.299 ms−1

1.4 Extension of High-Order Chaotic Dynamics in the Liley Model

It is convenient to study the extension of the FDC respect to two important model
parameters, pee and pei , which are the excitatory and inhibitory input pulse densities
to the modeled excitatory neural population. These are expected to vary most consid-
erably and widely physiologically, capturing the effect of incoming thalamo-cortical
input. The other physiological parameters of the model are the same as in Ref. [1].

Investigation of 433,316 different pee and pei combinations, selected uniformly at
random from a biologically relevant section of the pee–pei plane (i.e. 0 < pee ≤ 30,
0 < pei ≤ 10), has been carried out. Selecting sets that show the largest Lyapunov
exponent (LLE) being positive, 158,013 of the total points showed a LLE ≥ 1 per
second, base e. We use this threshold to avoid ambiguity with exponents that have a
slow convergence to zero. Out of these clearly chaotic sets, 34,533 or 21.8 % of the
chaotic instantiation of the model had λ1 > |λ3|, exhibiting FDC, i.e. about 8 % of
the overall points that have been simulated.

Figure 1 illustrates the behavior of the LLEs of the system as a function of pee and
pei . The color scale is such that blue represents an LLE ≤ −20, red means LLE ≥ 20
and green corresponds to a value of approximately zero. Again, this is a consequence
of the slower rates of convergence for exponents associated with periodic orbit dy-
namics, which do not always correspond to exactly zero at the end of the simulation
run. The extensive nature of chaos in this plane is evident, as are the limit cycles
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Fig. 3 Continuation of codimension-two points associated with SNICs in the full pee–pei plane, i.e.
not limited to biologically relevant values. The inset shows the accumulation of SNICs lines in the area of
high-order chaos at low values of pee , pei . Strong resonance occurring inside the four-dimensional chaotic
set are shown as red squares. Other 1:1 resonances are shown as white squares

(LLE = 0, green) and point attractors (negative LLE, blue). Note also the periodic
windows interspersed among the chaotic fringes.

Superimposing the high-order chaotic points (in black), Fig. 2 gives an illustration
of the extension of the FDC region. The overall set of FDC points is made of three
different areas: one very extended and of irregular shape at large values of pee, one
limited and more regularly shaped at intermediate values of pee and a very small,
elongated collection of points at low pee , pei , far from the chaotic (red) region and
bordering with the sea of periodic activity (in green). This region is particularly inter-
esting, since it corresponds to small values of the thalamic input, which are associated
with ordinary thalamic activity. In our previous work, instead, we reported FDC for
a parameter set with a high value of pee, possibly corresponding to a pathological or
other abnormal state.

Using the bifurcation package AUTO [18], a continuation in the two model pa-
rameters for the saddle-node on invariant cycle (SNIC) points of the periodic orbits
allows for some speculation on the genesis of such intriguing, high-order phenomena.
Figures 3 and 4 show a partial and full analysis, in conjunction with the plot of LLEs.
Two 1:1 resonance points [19], highlighted in red in Fig. 3 and light blue in Fig. 4,
overlap with sections of the FDC area. Lines of SNICs also correspond to the finger-
shaped gaps (in green) for LLE ≈ 0. Further strong resonances often occur at the end
of such gaps. The complex bifurcation scenario that may arise from such strong res-
onances could be partially responsible for the FDC, in particular for the high-order
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Fig. 4 Overlapping of SNICs lines (light blue) with LLE plotted as a function of pee and pei . Points
in black are where the chaos is four-dimensional. The strong resonances inside the chaotic areas (in the
vicinity of (3.5,1.5) and (19.5,0.2)) are now indicated by light blue squares

chaos occurring at low pee values. Generation of FDC has also been associated with
an inverse period doubling cascade in our previous work, and it could be possible
that similar mechanisms control FDC for high pee values. A thorough analysis of the
processes involved is beyond the scope of this report.

1.5 Conclusions

The results presented here show the extent of four-dimensional chaos within a bio-
logically relevant parameter slice of Liley’s model. The fact that FDC is so extensive
suggests extreme caution when performing visual inspections or even nonlinear time-
series analyses to match experimental EEG traces with brain states or functions [20,
21]. In fact, the chaotic attractor associated with FDC dynamics for a specific param-
eter set at high pee shows an amorphous appearance [1], which may make it hard to
distinguish from noise. Combinations of noise and cortical activity already appear to
be very difficult to untangle for dynamics simpler than the one discussed here [22].

A novel, important finding is that high-dimensional chaos is not limited to patho-
logical or abnormal brain states but is present also for values of the thalamic input
well inside the ordinary range of thalamic activity, i.e. 0 < pee < 10 ms−1. Hence,
activity associated with high-dimensional strange attractors could occur more fre-
quently than so far assumed. This aspect has also relevance as regards multistable
behavior, given that Liley’s model can support multistable dynamics induced by dif-
ferent attractors [15]. Multistability has in fact been shown to capture aspects of brain
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activity in a variety of important neurological settings, including perceptual decision
making and critical behavior of the brain at rest [23–25]. We hope that our findings
may inspire further research work into the role of high-order chaotic dynamics in
brain activity.
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