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Abstract With the advances in biochemistry, molecular biology, and neurochem-
istry there has been impressive progress in understanding the molecular properties of
anesthetic agents. However, there has been little focus on how the molecular prop-
erties of anesthetic agents lead to the observed macroscopic property that defines
the anesthetic state, that is, lack of responsiveness to noxious stimuli. In this pa-
per, we use dynamical system theory to develop a mechanistic mean field model for
neural activity to study the abrupt transition from consciousness to unconsciousness
as the concentration of the anesthetic agent increases. The proposed synaptic drive
firing-rate model predicts the conscious–unconscious transition as the applied anes-
thetic concentration increases, where excitatory neural activity is characterized by a
Poincaré–Andronov–Hopf bifurcation with the awake state transitioning to a stable
limit cycle and then subsequently to an asymptotically stable unconscious equilib-
rium state. Furthermore, we address the more general question of synchronization
and partial state equipartitioning of neural activity without mean field assumptions.
This is done by focusing on a postulated subset of inhibitory neurons that are not
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themselves connected to other inhibitory neurons. Finally, several numerical experi-
ments are presented to illustrate the different aspects of the proposed theory.

Keywords Dynamical systems · Hopf bifurcation · Biological networks · Spiking
neuron models · Synaptic drives · Mean field models · Syncrhonization ·
Equipartition · Consciousness · General anesthesia

1 Introduction

The in vitro effects of anesthetic agents have been intensely investigated, and the
actions of anesthetic agents on single neurons have been described [1, 2]. There is
compelling evidence that at least some modern anesthetics alter postsynaptic poten-
tials. A key goal of anesthetic and neuroscience research is to understand how this
effect on the single neuron translates into an abrupt transition from consciousness to
unconsciousness as the concentration of the agent increases [3–7].

A rigorous analysis of the effect of anesthetic agents ideally would be within the
context of the Hodgkins–Huxley nonlinear differential equations describing the elec-
trical characteristics of neurons [8, 9]. However, the complexity of this model lim-
its its tractability for systems of multiple neurons. Since the seminal publication of
Wilson and Cowan [10] it has been common to instead utilize firing-rate models.
However, even with the considerable mathematical simplifications afforded by the
assumptions of firing-rate models, the immense dimensionality of the brain requires
further assumptions and approximations. Typically, firing-rate models are simplified
further by either mean field assumptions, which postulate that the brain is organized
into a limited number of populations of identical neurons, or by assuming that the
strength of connections between neurons have a specific (typically normal) distri-
bution. In some instances the firing-rate model is further simplified by postulating
specific network architectures [11].

While firing-rate models have been extensively investigated in the neuroscience
literature, there has been limited applications of these models to the effects of anes-
thetic agents. One of the earlier investigations came from Steyn-Ross et al. [12],
who extended a generalized mean field firing-rate model that postulates specific short
range and long range connections between cortical neurons. This model was orig-
inally developed by Liley et al. [13] to analyze the effects of anesthetic agents on
the mean electrical potential of the cell body of neurons. The model proposed in
[12] predicts that the transition from consciousness to unconsciousness induced by
anesthetic agents can be characterized as a first-order phase transition to a state of
decreased neural activity. However, the significance of decreased neural activity for
the transition from consciousness to unconsciousness is unclear.

Anesthetic agents typically cause paradoxical increases in the activity of the brain,
sometimes to the point of seizure activity, before leading to decreased activity. A pri-
mary experimental modality for investigating the induction of anesthesia is the elec-
troencephalogram (EEG). This is manifested in the EEG where anesthetic agents typ-
ically cause an increase in the amplitudes of certain frequency bands at the point of
transition to unconsciousness with subsequent burst suppression and eventually a flat
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line EEG as the anesthetic concentration increases. There has been significant inter-
est in understanding the effects of anesthetic agents on the EEG [2–4, 14–17] and the
theoretical models can predict this paradoxical increase in neural activity observed
experimentally.

In contrast to the phase transition model proposed in [12], another general the-
ory of the loss of consciousness is that it reflects loss of information flow between
different parts of the brain [18]. John and Prichep [19] have proposed a model of spe-
cific sequential neuroanatomic targets for anesthetic agents, originating in the retic-
ular activating system and progressing through the mesolimbic system, with closure
of thalamic gates and blockade of thalamocortical reverberations and uncoupling of
parietal-frontal interactions with loss of consciousness. It is plausible that a decrease
of neural activity in specific segments or neuronal populations of the brain could lead
to the loss of information flow and there is experimental evidence to support this
hypothesis [20].

In this paper, we use dynamical system theory to develop a mechanistic mean field
model for neural activity. Our focus here is to understand general neural activity with-
out attempting to predict the anatomic specificity of the John and Prichep theory [19].
Specifically, using the notion of synaptic drive—a measure of neuronal population
activity that captures the influence of a given neuron population on the behavior of
the neuronal network—and topological system stability, we show that this simplified
model predicts decreasing mean excitatory neural activity with increasing anesthetic
potency at the level of the single neuron. We seek conditions that lead to decreas-
ing excitatory neural activity despite the reservations noted above around the role of
decreasing activity for the induction of anesthesia for two reasons. First, as noted
above, it is plausible that decreasing excitatory activity in selected subpopulations
of the brain could lead to the interruption of information flow that may characterize
unconsciousness. Second, anesthetic agents do eventually lead to decreased activ-
ity as the concentration of the anesthetic agent increases. While we would expect this
of any phenomenological model for addressing how anesthesia suppresses conscious-
ness, the novelty of the model is the additional prediction of a conscious–unconscious
transition as the applied anesthetic concentration increases, where excitatory neural
activity is characterized by a stable limit cycle. Then, as the anesthetic concentration
increases further, the proposed dynamical system model undergoes a supercritical
reverse Hopf bifurcation and transitions from a limit cycle behavior to an asymptoti-
cally stable equilibrium corresponding to an anesthetized state, where the excitatory
neuron activity is very low.

Next, we extend our mean field theory to incorporate a more complex model for
the postsynaptic potential. Specifically, by using an Erlang-type time multiplied ex-
ponential decay model for the postsynaptic potential rather than a simple exponential
decay [11, 13], we can account for the delay in peak amplitude of the postsynaptic
potential that occurs after a neuron discharges ([11], Fig. 8.5). In this case, we see
biphasic responses in the mean neural activity that seems to parallel the rise and de-
cay of the postsynaptic potential. The mean field synaptic drive model we present
is based on the assumption that, within the populations of excitatory and inhibitory
neurons, second-order terms reflecting the variation of synaptic connection strengths
and the variation of synaptic drives can be ignored [5].
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Finally, we investigate the synaptic drive model without mean field assumptions
by postulating the existence of a subpopulation of inhibitory neurons that themselves
do not receive inputs from other inhibitory neurons. In this case, we provide sufficient
conditions for global asymptotic and exponential partial synaptic drive equipartition-
ing for our excitatory and inhibitory cortical neuronal network. Specifically, we show
that as the inhibitory time constants increase (one of the demonstrated in vitro effects
of some anesthetic agents [1, 2]), the excitatory neurons that are coupled to inhibitory
neurons all approach a zero synaptic drive state, whereas the inhibitory neurons that
themselves are not coupled to inhibitory neurons converge to a constant synaptic drive
state.

The notation used in this paper is fairly standard. Specifically, for x ∈ R
n, we write

x ≥≥ 0 (respectively, x � 0) to indicate that every component xi of x is nonnega-
tive (respectively, positive). In this case, we say that x is nonnegative or positive,
respectively. Likewise, A ∈ R

n×m is nonnegative or positive if every entry of A is
nonnegative or positive, respectively, which is written as A ≥≥ 0 or A � 0, respec-
tively. For A ∈ R

n×n, we write A ≥ 0 (respectively, A > 0) to indicate that A is
nonnegative (respectively, positive) definite. Furthermore, we write R

n

+ and R
n+ to

denote the nonnegative and positive orthants of Rn, that is, if x ∈ R
n, then x ∈ R

n

+
and x ∈ R

n+ are equivalent, respectively, to x ≥≥ 0 and x � 0. In addition, we write
0n×m to denote the n × m zero matrix, In to denote the n × n identity matrix, and
en ∈ R

n to denote the ones vector of order n, that is, en = [1,1, . . . ,1]T; if the order
of en is clear from the context we simply write e for en. Finally, we write (·)T to
denote the transpose, tr(·) to denote the trace, det(·) to denote the determinant, and
(·)′ to denote the Fréchet derivative.

2 A Model for Excitatory and Inhibitory Neural Populations

Biological neural network models predict a voltage in the receiving or postsynaptic
neuron given by [7, 9]

vX
i (t) =

nE∑

j=1

AXE
ij

∑

k

αE
j (t − tk) +

nI∑

j ′=1

AXI
ij ′
∑

k′
αI

j ′(t − tk′), (1)

where vX
i (·), i = 1, . . . , nX, X ∈ {E, I}, is the excitatory (X = E) and inhibitory (X =

I) voltage in the ith receiving neuron, AXY
ij , X, Y ∈ {E, I}, are constants representing

the coupling strengths (in volts) of the j th neuron on the ith neuron, k, k′ = 1, . . . ,
enumerate the action potential or firings of the excitatory and inhibitory transmitting
(presynaptic) neurons at firing times tk and tk′ , respectively, and αE

j (·) and αI
j ′(·)

are dimensionless functions describing the evolution of the excitatory and inhibitory
postsynaptic potentials, respectively. Using a (possibly discontinuous) function fi(·)
to represent the firing rate (in Hz) of the ith neuron that determines the instantaneous
number of spikes that a neuron fires over an infinitesimal time interval [t, t + dt], and
assuming that the firing rate is a function of the voltage vE

i (·) (resp., vI
i (·)) across the
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membrane of the ith neuron given by fi(v
E
i ) (resp., fi(v

I
i )), it follows from (1) that

vE
i (t) =

nE∑

j=1,j �=i

AEE
ij

∫ t

−∞
αE

j (t − τ)fj

(
vE
j (τ )

)
dτ

+
nI∑

j ′=1

AEI
ij ′

∫ t

−∞
αI

j ′(t − τ)fj ′
(
vI
j ′(τ )

)
dτ + vE

thi (t),

i = 1, . . . , nE, (2)

vI
i (t) =

nE∑

j=1

AIE
ij

∫ t

−∞
αE

j (t − τ)fj

(
vE
j (τ )

)
dτ

+
nI∑

j ′=1,j ′ �=i

AII
ij ′

∫ t

−∞
αI

j ′(t − τ)fj ′
(
vI
j ′(τ )

)
dτ + vI

thi (t),

i = 1, . . . , nI, (3)

where fj (v
X
j (t))dt , X ∈ {E, I}, is the probability of a spike occurring in the time in-

terval [t, t + dt], and AXY
ij , X,Y ∈ {E, I}, are neural connectivity weights, with units

of volts, representing the coupling strength of the j th neuron on the ith neuron such
that AXE

ij > 0 and AXI
ij < 0, X ∈ {E, I}, if the j th neuron is connected (i.e., contributes

a postsynaptic potential) to the ith neuron, and AXY
ij = 0, otherwise. Alternatively,

fi(·) can represent an ensemble average of firing rates of neurons in a single popula-
tion i over [t, t + dt]. In this case, the firing rate of the population is exactly the same
as that of an individual neuron and (2) and (3) represent excitatory and inhibitory
voltages for the ith population. Furthermore, vE

thi (·) and vI
thi (·) are continuous in-

put threshold voltages characterizing nerve impulses from sensory (pain) receptors,
thermo (temperature sensing) receptors, or proprioceptive (motion sensing) receptors.
Alternatively, vE

thi (·) and vI
thi (·) can be thought of as inputs from the reticular activat-

ing system within the brainstem responsible for regulating arousal and sleep–wake
transitions. Note that AEE

ii �AII
ii � 0 by definition.

Next, defining the synaptic drive—a dimensionless quantity—of each (excitatory
or inhibitory) neuron as the convolution of the presynaptic firing rate with the post-
synaptic potential given by [7, 9]

S
(E,I)
i (t) �

∫ t

−∞
α

(E,I)
i (t − τ)fi

(
v

(E,I)
i (τ )

)
dτ, (4)

and assuming an exponential decay of the synaptic voltages of the form [9]

α
(E,I)
i (t) = B

(E,I)
i e

− t

λ
(E,I)
i , (5)

where the dimensionless gain B
(E,I)
i is equal to BE

i if the ith neuron is excitatory and
BI

i if the ith neuron is inhibitory, and similarly for S
(E,I)
i , v

E,I
i , α

(E,I)
i , and λ

(E,I)
i , it
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follows from (4) and (5) that

dSE
i (t)

dt
= − 1

λE
i

SE
i (t) + BE

i fi

(
nE∑

j=1,j �=i

AEE
ij SE

j (t) +
nI∑

j ′=1

AEI
ij ′SI

j ′(t) + vE
thi (t)

)
,

i = 1, . . . , nE, (6)

dSI
i (t)

dt
= − 1

λI
i

SI
i (t) + BI

i fi

(
nE∑

j=1

AIE
ij SE

j (t) +
nI∑

j ′=1,j ′ �=i

AII
ij ′SI

j ′(t) + vI
thi (t)

)
,

i = 1, . . . , nI. (7)

A more general Erlang-type time multiplied exponential decay model for the postsy-
naptic potential is considered in Sect. 5.

Note that the synaptic drive accounts for pre- and postsynaptic potentials in a
neural network to give a measure of neural activity in the network. In particular, it
follows from (4) that the synaptic drive quantifies the present activity (via the firing
rate) along with all previous activity within a neural population appropriately scaled
(via a temporal decay) by when a particular firing event occurred. Hence, the synaptic
drive provides a measure of neuronal population activity that captures the influence
of a given neuron population on the behavior of the network from the infinite past to
the current time instant.

The above analysis reveals that a form for capturing the neuroelectric behavior of
biological excitatory and inhibitory neuronal networks can be written as

dSi(t)

dt
= − 1

τi

Si(t) + Bifi

(
n∑

j=1

AijSj (t) + vthi (t)

)
,

Si(0) = Si0, t ≥ 0, i = 1, . . . , n, (8)

where Si(t) ∈ D ⊆ R, t ≥ 0, is the ith synaptic drive, vthi (t) ∈ R, t ≥ 0, denotes the
input threshold voltage to the ith neuron, Aij is a constant representing the coupling
strength of the j th neuron on the ith neuron, τi = λi is a synaptic time scale, Bi is a
constant gain for the firing rate of the ith neuron, and fi(·) is a nonlinear activation
function describing the relationship between the synaptic drive and the firing rate of
the ith neuron.

Even though the computation of the neural connectivity matrix and the graph
topology of human brain networks are intractable, the phenomenological firing-rate
model (6) and (7) involving the averaged behavior of the spiking rates of groups of
neurons can be used to predict network system changes due to changes in a subset
of the neuronal connectivity matrix AXY containing the entries AXY

ij in order to un-
derstand how the large neuron population changes qualitatively with the induction of
anesthesia. The relevance of the model to realistic systems can be appraised by its
prediction of salient aspects of anesthesia. In particular, predicting the abrupt transi-
tion from consciousness to unconsciousness resembling a phase transition as well as
the biphasic response during induction of anesthesia leading to a paradoxical phase
prior to the loss of consciousness [21].



Journal of Mathematical Neuroscience  (2015) 5:20 Page 7 of 50

In such population models, the activity of a neuron (population), that is, the rate at
which the neuron (population) generates an action potential (i.e., “fires”) is modeled
as a function of the voltage (across the membrane). In this paper, we will assume
continuous half-wave rectification activation functions as well as smooth sigmoidal
functions. Specifically, for a typical neuron [22]

fi(x) = [x]+, (9)

where i ∈ {1, . . . , n} and [x]+ = x if x ≥ 0, and [x]+ = 0, otherwise. The activation
function (9) reflects the fact that as the voltage increases across the membrane of the
ith neuron, the firing rate increases as well. Often, the membrane potential firing-
rate curve exhibits a linear characteristic for a given range of the voltages. At higher
voltages, however, a saturation phenomenon appears, indicating that the full effect
of the firing rate has been reached. To capture this effect, fi(·) can be modeled as a
smooth (i.e., infinitely differentiable) sigmoidal function

fi(x) = fmaxe
γ x

1 + eγ x
, (10)

where i ∈ {1, . . . , n}, γ � 0, and fmax = limx→∞ fi(x) denotes the maximum firing
rate.

3 A Two-Class Mean Excitatory and Mean Inhibitory Synaptic Drive
Model

To avoid the complexity of the large-scale neural network model (6) and (7), in this
section we consider a mean field model. Specifically, the excitatory and inhibitory
synaptic drive model given by (6) and (7) can be reduced to a two-class mean ex-
citatory and mean inhibitory model. In particular, with continuously differentiable
fi(·) = f (·), BE

i = BI
i = 1, λE

i = λE, and λI
i = λI, (6) and (7) collapse to (see [7] for

details)

dS
E
(t)

dt
= f 1

(
S

E
(t), S

I
(t)
)
, S

E
(0) = S

E
0 , t ≥ 0, (11)

dS
I
(t)

dt
= f 2

(
S

E
(t), S

I
(t)
)
, S

I
(0) = S

I
0, (12)

where

f 1
(
S

E
, S

I)= f
(
aS

E − bS
I + vE

th

)− 1

λE S
E
, (13)

f 2
(
S

E
, S

I)= f
(
cS

E − dS
I + vI

th

)− 1

λI S
I
, (14)

a � nEA
EE

, b � −nIA
EI

, c � nEA
IE

, d � −nIA
II

, A
EE = AEE

ij − �EE
ij , A

EI =
AEI

ij − �EI
ij , A

IE = AIE
ij − �IE

ij , A
II = AII

ij − �II
ij , A

XY � 1
nXnY

∑nX
i=1

∑nY
j=1 AXY

ij , X,
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Y ∈ {E, I}, denote the mean, �XY
ij , X, Y ∈ {E, I}, are deviations from the mean,

and S
E
(t) � 1

nE

∑nE
j=1 SE

j (t) and S
I
(t) � 1

nI

∑nI
j=1 SI

j (t) denote the mean excitatory
synaptic drive and mean inhibitory synaptic drive in dimensionless units, respectively.
Note that the constants a, b, c, and d are nonnegative. Equations (11) and (12) repre-
sent the spatial average (mean) dynamics of the system given by (6) and (7), and they
are predicated on a mean field assumption that reduces the complex (approximately
1011 × 1011) neuronal connectivity matrix to a 2 × 2 excitatory–inhibitory system.
This is a drastic assumption, but one which has been commonly used in theoretical
neuroscience going back to the pioneering work of Wilson and Cowan [10].

To study the dynamic behavior of the mean field model (11) and (12), we assume
the postsynaptic activation function is given by (10). The next set of propositions
and theorem present several results on the dynamic behavior of (11) and (12). Here,
we use the language of topological dynamics (i.e., flows, equilibria, periodic orbits,
limit sets) to study the dynamic behavior of (11) and (12). Recall that a set D ⊆ R

2

is positively invariant with respect to (11) and (12) if D contains the orbits of all its
points. Moreover, recall the standard Lyapunov and asymptotic stability definitions
for an equilibrium point of (11) and (12) given in [23], and recall that if all solutions
of (11) and (12) are bounded, then it follows from the Peano–Cauchy theorem ([23],
p. 76), that the maximal solution to (11) and (12) exists on the semi-infinite interval
[0,∞), and hence, (11) and (12) are forward complete.

The following propositions are needed for the main result of this section.

Proposition 1 [7] Consider the two-class mean excitatory and mean inhibitory

synaptic drive network given by (11) and (12). If S
E
0 ≥ 0 and S

I
0 ≥ 0, then S

E
(t) ≥ 0

and S
I
(t) ≥ 0 for all t ≥ 0.

Proposition 2 Consider the two-class mean excitatory and mean inhibitory synap-

tic drive network given by (11) and (12), and let M � {(SE
, S

I
) ∈ R

2 : 0 ≤ S
E ≤

fmaxλ
E and 0 ≤ S

I ≤ fmaxλ
I}. Then M is positively invariant with respect to (11)

and (12).

Proof Let [1 0]T be a normal vector to the line S
E = 0 directed toward the region M

and note that, since f (x) ≥ 0, x ∈R,

[
1 0

][f 1
f 2

]
= f 1 = f

(
aS

E − bS
I + vE

th

)− 1

λE S
E ≥ 0, S

E = 0.

Hence, the vector field f � [f 1 f 2]T along the line S
E = 0 is directed toward the

region M. Next, let [−1 0]T be a normal vector to the line S
E = fmaxλ

E directed
toward the region M and note that, since f (x) ≤ fmax, x ∈R,

[−1 0
][f 1

f 2

]
= −f 1 = −f

(
aS

E − bS
I + vE

th

)+ 1

λE S
E ≥ 0, S

E = fmaxλ
E.

Hence, the vector field f along the line S
E = fmaxλ

E is directed inward toward the
region M.
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Fig. 1 Visualization of the
region M

Alternatively, let [0 1]T be a normal vector along the line S
I = 0 directed toward

the region M and note that, since f (x) ≥ 0, x ∈R,

[
0 1

][f 1
f 2

]
= f 2 = f

(
cS

E − dS
I + vI

th

)− 1

λI S
I ≥ 0, S

I = 0.

Hence, the vector field f along the line S
I = 0 is directed inward toward the re-

gion M. Finally, let [0 −1]T be a normal vector along the line S
I = fmaxλ

I directed
toward the region M and note that, since f (x) ≤ fmax, x ∈R,

[
0 −1

][f 1
f 2

]
= −f 2 = −f

(
cS

E − dS
I + vI

th

)+ 1

λI S
I ≥ 0, S

I = fmaxλ
I.

Hence, the vector field f along the line S
I = fmaxλ

I is directed inward toward the
region M. Thus, along the boundary ∂M of M the vector field f is directed inward
toward the region M, and hence, M is positively invariant with respect to (11) and
(12). �

A visualization of the region M is shown in Fig. 1.

Note that the equilibrium points (S
E
e , S

I
e) of (11) and (12) are characterized by the

solution to

f
(
aS

E − bS
I + vE

th

)= 1

λE S
E
, (15)

f
(
cS

E − dS
I + vI

th

)= 1

λI S
I
. (16)

Since f (·) is increasing, f (·) is invertible. Hence, it follows from (15) and (16) that

S
I = 1

b

(
aS

E + vE
th − f −1

(
S

E

λE

))
� g

(
S

E)
, (17)

S
E = 1

c

(
dS

I − vI
th + f −1

(
S

I

λI

))
� h

(
S

I)
, (18)
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where f −1(x) = 1
γ

loge
x

fmax−x
. Now, it follows from (17) and (18) that

dg(S
E
)

dS
E = 1

b

(
a − fmaxλ

E

γ S
E
(fmaxλE − S

E
)

)

= a

bS
E
(fmaxλE − S

E
)

(
−(SE)2 + fmaxλ

ES
E − fmaxλ

E

aγ

)

= a

bS
E
(fmaxλE − S

E
)

(
−
(

S
E − fmaxλ

E

2

)2

+
(

fmaxλ
E

2

)2

− fmaxλ
E

aγ

)
, (19)

dh(S
I
)

dS
I = 1

c

(
d + fmaxλ

I

γ S
I
(fmaxλI − S

I
)

)
> 0. (20)

Next, since h is increasing, h−1 exists and is an increasing function. Further-

more, it follows from (18) that S
I = h−1(S

E
). In addition, note that f ′(x) =

γfmax
eγ x

1+eγ x
1

1+eγ x = γf (x)(1 − f (x)
fmax

). Now, using (15) and (16) it follows from (11)

and (12) that the Jacobian matrix of the system vector field evaluated at the equilib-

rium point (S
E
e , S

I
e) is given by

J
(
S

E
e , S

I
e

)
�
[
J11(S

E
e , S

I
e) J12(S

E
e , S

I
e)

J21(S
E
e , S

I
e) J22(S

E
e , S

I
e)

]

=
⎡

⎣− 1
λE + aγ

S
E
e

λE (1 − S
E
e

fmaxλE ) −bγ
S

E
e

λE (1 − S
E
e

fmaxλE )

cγ
S

I
e

λI (1 − S
I
e

fmaxλI ) − 1
λI − dγ

S
I
e

λI (1 − S
I
e

fmaxλI )

⎤

⎦ . (21)

Finally, note that if a > 4
γfmaxλE , then it follows from (19) that g(S

E
) has a maximum

and a minimum value at S
E
max and S

E
min given by, respectively,

S
E
max =

fmaxλ
E +

√
(fmaxλE)2 − 4fmaxλE

aγ

2
, (22)

S
E
min =

fmaxλ
E −

√
(fmaxλE)2 − 4fmaxλE

aγ

2
. (23)
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Fig. 2 Plots of dS
E

dt
= 0 and

dS
I

dt
= 0 for a = 10, b = 9,

c = 6, d = 1, vE
th = −0.5,

vI
th = −2.5, λE = 1, λI = 1,

fmax = 1, and γ = 1

Proposition 3 Consider the two-class mean excitatory and mean inhibitory synaptic

drive network given by (11) and (12). If a > 4
γfmaxλE , 4

cγfmaxλI <
bγfmaxλ

E

aγfmaxλE−4
− d

c
, and

h−1(SE
max

)− h−1(SE
min

)
>

1

b

[
a

√
(
fmaxλE

)2 − 4fmaxλE

aγ

− 2

γ
loge

aγ (fmaxλ
E +

√
(fmaxλE)2 − 4fmaxλE

aγ
)2

4fmaxλE

]
,

then there exist input voltages vI
th and vE

th such that (11) and (12) have exactly one

equilibrium point (S
E
e , S

I
e). Moreover, detJ (S

E
e , S

I
e) > 0.

Proof If a > 4
γfmaxλE , g(S

E
max) − g(S

E
min) < h−1(S

E
max) − h−1(S

E
min), and the maxi-

mum value of the gradient of h−1(·) is greater than the maximum value of the gradient

of g(·), then dS
E

dt
= 0 and dS

I

dt
= 0 can be shifted so that there exists exactly one in-

tersection (S
E
e , S

I
e) of g(·) and h−1(·), and the gradient of g(·) at (S

E
e , S

I
e) is less than

the gradient of h−1(·) at (S
E
e , S

I
e) as shown in Fig. 2.

Note that the maximum values of the gradients of g(·) and h−1(·) occur at the
inflection points of g(·) and h(·), respectively, and from (19) and (20) the inflection

points of g(·) and h(·) correspond to S
E = fmaxλ

E

2 and S
I = fmaxλ

I

2 , respectively. Thus,
the maximum values of the gradients of g(·) and h−1(·) correspond to 1

b
(a − 4

γfmaxλE )

and 1
1
c
(d+4/(γfmaxλI))

, respectively. Now, the condition that the maximum values of the

gradient of h−1(·) is greater than the maximum value of the gradient of g(·) implies

that 1
1
c
(d+4/(γfmaxλI))

> 1
b
(a − 4

γfmaxλE ), and hence, 4
cγfmaxλI <

bγfmaxλ
E

aγ λE−4
− d

c
.
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Next, the condition g(S
E
max) − g(S

E
min) < h−1(S

E
max) − h−1(S

E
min) implies that

h−1(SE
max

)− h−1(SE
min

)

> g
(
S

E
max

)− g
(
S

E
min

)

= 1

b

[
a
(
S

E
max − S

E
min

)− 1

γ
loge

S
E
max(fmaxλ

E − S
E
min)

S
E
min(fmaxλE − S

E
max)

]

= 1

b

[
a

√
(
fmaxλE

)2 − 4fmaxλE

aγ
− 2

γ
loge

S
E
max

S
E
min

]

= 1

b

[
a

√
(
fmaxλE

)2 − 4fmaxλE

aγ

− 2

γ
loge

aγ (fmaxλ
E +

√
(fmaxλE)2 − 4fmaxλE

aγ
)2

4fmaxλE

]
. (24)

Hence, there exist input voltages vI
th and vE

th such that (11) and (12) have exactly one

equilibrium point (S
E
e , S

I
e).

Finally, note that since the gradient of g(·) at (S
E
e , S

I
e) is less than the gradient of

h−1(·) at (S
E
e , S

I
e), it follows from (19), (20), and (21) that − J11(S

E
e )

J12(S
E
e )

< − J21(S
I
e)

J22(S
I
e)

, and

hence, detJ (S
E
e , S

I
e) > 0. �

Theorem 1 Consider the two-class mean excitatory and mean inhibitory synaptic
drive network given by (11) and (12), and assume that the hypothesis in Proposi-

tion 3 is satisfied. If trJ (S
E
e , S

I
e) < 0, then there exist input voltages vI

th and vE
th such

that (11) and (12) have exactly one equilibrium point and this equilibrium point is
asymptotically stable. Alternatively, if trJ (S

E
e , S

I
e) > 0, then there exist input voltages

vI
th and vE

th such that (11) and (12) possess a limit cycle. Moreover, the limit cycle is
stable.

Proof It follows from Proposition 3 that (11) and (12) have exactly one equilibrium

point (S
E
e , S

I
e) and detJ (S

E
e , S

I
e) > 0. Hence, if trJ (S

E
e , S

I
e) < 0, then (S

E
e , S

I
e) is an

asymptotically stable equilibrium point.

Alternatively, if trJ (S
E
e , S

I
e) > 0, then (S

E
e , S

I
e) is an unstable equilibrium point.

In this case, define R �M \ (S
E
e , S

I
e) and note that since M is positively invariant

with respect to (11) and (12), and (S
E
e , S

I
e) is an unstable equilibrium point, it follows

that R is positively invariant with respect to (11) and (12). Hence, it follows from the
Poincaré–Bendixson theorem ([23], p. 109) that R contains a periodic orbit. Further-

more, since R is positively invariant and the equilibrium point (S
E
e , S

I
e) is unstable,

the limit cycle is stable. �
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4 Large Neural Populations, Synchronization, and Partial State
Equipartitioning

One of the most important questions in neuroscience is how do neurons, or collec-
tions of neurons, communicate. There is extensive experimental verification that col-
lections of neurons may function as oscillators and the synchronization of oscillators
may play a key role in the transmission of information within the central nervous
system [24–26]. This may be particularly relevant to understanding the mechanism
of action for general anesthesia.

It has been known for a long time that general anesthesia has profound effects on
the spectrum of oscillations in the electroencephalograph (EEG) [15, 27, 28]. More
recently, the authors in [19] have suggested that thalamocortical circuits function as
neural pacemakers and that alterations in the thalamic oscillations are associated with
the induction of general anesthesia. Furthermore, it is well known that anesthetic
drugs frequently induce epileptiform activity as part of the progression to the state
of unconsciousness [29]. Multiple lines of evidence indicate that anesthetic agents
impact neural oscillators. In addition, epileptiform activity implies synchronization
of oscillators. This leads to the possibility that synchronization of these oscillators is
involved in the transition to the anesthetic state.

Sufficient conditions for synchronization and full state equipartition for an exci-
tatory and inhibitory cortical neural network are given in [7]. It has been observed,
however, that when patients lose consciousness there are differences in neural ac-
tivity in different anatomic regions of the cerebral cortex. This can be captured by
biological neural network models that exhibit partial synchronization, wherein part
of the system’s state (neural activity) is synchronized and the other parts fire at normal
levels.

Before proceeding, it is important to distinguish between the notions of synchro-
nization and state equipartitioning or consensus. System synchronization refers to the
fact that the dynamical system states achieve temporal coincidence over a finite or
infinite time horizon, whereas state equipartitioning refers to the fact that the dynam-
ical system states converge to a common value over a finite or infinite time horizon.
Hence, both notions involve state agreement in some sense. However, equipartition-
ing involves convergence of the state values to a constant state, whereas synchro-
nization involves agreement over time instants. Thus, equipartitioning implies syn-
chronization; however, the converse is not necessarily true. It is only true in so far as
consensus is interpreted to hold over time instants.

In order to address partial synchronization, we make a high-level assumption re-
garding neuronal connectivity by postulating the existence of a subset of inhibitory
neurons that themselves do not receive inhibitory input. It is important to note that
the existence of such a subset has not been demonstrated experimentally. However, it
is not biologically implausible and, as we shall demonstrate, this assumption leads to
sufficient conditions for partial synchronization.

To address the problem of partial synchronization, let SE(t) � [SE
1 (t), . . . ,

SE
nE

(t)] ∈ R
nE , SI(t) � [SI

1(t), . . . , S
I
nI

(t)] ∈ R
nI , τE

i = λE
i , i = 1, . . . , nE, τ I

i = λI
i ,

i = 1, . . . , nI, and assume BE
i = BI

i = 1 so that the vector–matrix form of (6) and (7)
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can be written as

ṠE(t) = −LESE(t) + f E(AEESE(t) + AEISI(t) + ṽE
th(t)

)
,

SE(0) = SE
0 , t ≥ 0, (25)

ṠI(t) = −LISI(t) + f I(AIESE(t) + AIISI(t) + ṽI
th(t)

)
,

SI(0) = SI
0, (26)

where LE � diag[ 1
τE

1
, . . . , 1

τE
nE

] ∈ R
nE×nE and LI � diag[ 1

τ I
1
, . . . , 1

τ I
nI

] ∈ R
nI×nI are

time constant matrices, AEE � [AEE
ij ] ∈ R

nE×nE , AEI � [AEI
ij ] ∈ R

nE×nI , AIE �
[AIE

ij ] ∈ R
nI×nE , AII � [AII

ij ] ∈ R
nI×nI are matrices representing the strengths of the

synaptic interconnections, ṽE
th � [vE

th1, . . . , v
E
thnE

]T, ṽI
th � [vI

th1, . . . , v
I
thnI

]T, and

f E(AEESE + AEISI + ṽE
th

)
�
[
f1

(
nE∑

j=1

AEE
1j SE

j +
nI∑

j ′=1

AEI
1j ′SI

j ′ + vE
th1

)
, . . . ,

fnE

(
nE∑

j=1

AEE
nEj S

E
j +

nI∑

j ′=1

AEI
nEj ′SI

j ′ + vE
thnE

)]T

, (27)

f I(AIESE + AIISI + ṽI
th

)
�
[
f1

(
nE∑

j=1

AIE
1j S

E
j +

nI∑

j ′=1

AII
1j ′SI

j ′ + vI
th1

)
, . . . ,

fnI

(
nE∑

j=1

AIE
nIj

SE
j +

nI∑

j ′=1

AII
nIj ′SI

j ′ + vI
thnI

)]T

, (28)

denote the vector activation functions describing the relationship between the synap-
tic drives and the firing rates of neurons with fi(x), x ∈ R, i = 1, . . . , nE, and fk(x),
x ∈ R, k = 1, . . . , nI, defined as in (9).

Next, define SI(t) � [(S̃I
1(t))

T, (S̃I
2(t))

T]T, where S̃I
1(t) � [SI

1(t), . . . , S
I
q(t)]T de-

notes the vector of inhibitory synaptic drives that are coupled to both excitatory and
inhibitory neurons and S̃I

2(t) � [SI
q+1(t), . . . , S

I
nI

(t)]T denotes the vector of inhibitory
synaptic drives that are only coupled to excitatory neurons. In this case, the neuronal
connectivity matrix A can be partitioned as

A�
[
AEE AEI

AIE AII

]
=
⎡

⎢⎣
AEE AEI

1 AEI
2

AIE
1 AII

1 AII
2

AIE
2 0(nI−q)×q 0(nI−q)×(nI−q)

⎤

⎥⎦ , (29)

where

AEI = [
AEI

1 AEI
2

]
, AIE =

[
AIE

1

AIE
2

]
, AII =

[
AII

1 AII
2

0(nI−q)×q 0(nI−q)×(nI−q)

]
,
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AEI
1 ∈ R

nE×q , AEI
2 ∈ R

nE×(nI−q), AIE
1 ∈ R

q×nE , AII
1 ∈ R

q×q , AII
2 ∈ R

q×(nI−q), and
AIE

2 ∈ R
(nI−q)×nE .

Now, (25) and (26) can be written as

ṠE(t) = −LESE(t) + f E(AEESE(t) + AEI
1 S̃I

1(t) + AEI
2 S̃I

2(t) + ṽE
th(t)

)
,

SE(0) = SE
0 , t ≥ 0, (30)

˙̃
SI

1(t) = −LI
1S̃

I
1(t) + f̃ I

1

(
AIE

1 SE(t) + AII
1 S̃I

1(t) + AII
2 S̃I

2(t) + ṽI
th1(t)

)
,

S̃I
1(0) = S̃I

10, (31)

˙̃
SI

2(t) = −LI
2S̃

I
2(t) + f̃ I

2

(
AIE

2 SE(t) + ṽI
th2(t)

)
, S̃I

2(0) = S̃I
20, (32)

where

LI �
[

LI
1 0q×(nI−q)

0(nI−q)×q LI
2

]
, (33)

LI
1 � diag[ 1

τ I
1
, . . . , 1

τ I
q
] ∈ R

q×q , LI
2 � diag[ 1

τ I
q+1

, . . . , 1
τ I
nI

] ∈ R
(nI−q)×(nI−q),

ṽI
th1 � [vI

th1, . . . , v
I
thq ]T ∈ R

q , ṽI
th2 � [vI

th(q+1), . . . , v
I
thnI

]T ∈ R
nI−q , and f I =

[(f̃ I
1)T (f̃ I

2)T]T. Next, letting S(t) � [(SE(t))T, (S̃I
1(t))

T]T � [S1(t), . . . , SnE+q(t)]T,
f̃ � [(f E)T (f̃ I

1)T]T, and L� block-diag[LE LI
1], (30), (31), and (32) can be written

as

Ṡ(t) = −LS(t) + f̃
(
ÃS(t) + B̃S̃I

2(t) + ṽth(t)
)
, S(0) = S0, t ≥ 0, (34)

˙̃
SI

2(t) = −LI
2S̃

I
2(t) + f̃ I

2

(
AIE

2 SE(t) + ṽI
th2(t)

)
, S̃I

2(0) = S̃I
20, (35)

where Ã �
[

AEE AEI
1

AIE
1 AII

1

]
∈ R

(nE+q)×(nE+q), B̃ �
[

AEI
2

AII
2

]
∈ R

(nE+q)×(nI−q), and ṽth �[
ṽE

th

ṽI
th1

]
∈ R

nE+q .

The following proposition and definitions are needed for the statement of the main
results of this section.

Proposition 4 [7] Consider the excitatory–inhibitory network given by (25) and (26)
with the vector activation functions defined by (27) and (28), where fi(x), x ∈ R,
i = 1, . . . , nE, and fk(x), x ∈ R, k = 1, . . . , nI, are defined as in (9). If SE

0 ≥≥ 0 and
SI

0 ≥≥ 0, then SE(t) ≥≥ 0 and SI(t) ≥≥ 0 for all t ≥ 0.

Definition 1 The biological neural network given by (34) and (35) is said to be
globally exponentially stable with respect to S uniformly in S̃I

20 if there exist scalars

α,β > 0 such that ‖S(t)‖ ≤ α‖S0‖e−βt , t ≥ 0, for all S0 ∈ R
nE+q

+ and S̃I
20 ∈ R

nI−q

+ .

Definition 2 The biological neural network given by (34) and (35) is said to be glob-
ally asymptotically partially synchronized if

lim
t→∞

∣∣Si(t) − Sj (t)
∣∣= 0,
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for all S0 ∈ R
nE+q

+ , S̃I
20 ∈R

nI−q

+ , and i = 1, . . . , nE + q , i �= j .

Definition 3 The biological neural network given by (34) and (35) is said to be glob-
ally exponentially partially synchronized if there exist constants p > 0 and ρ > 0
such that

∣∣Si(t) − Sj (t)
∣∣≤ ρe−pt |Si0 − Sj0|, t ≥ 0,

for all S0 ∈ R
nE+q

+ , S̃I
20 ∈R

nI−q

+ , and i = 1, . . . , nE + q , i �= j .

Remark 1 It follows from Definitions 1 and 3 that if the biological neural network
given by (34) and (35) is globally exponentially stable with respect to S uniformly in
S̃I

20, then (34) and (35) is globally exponentially partially synchronized.

For the statement of the next theorem, N (X) denotes the nullspace of the ma-
trix X.

Theorem 2 Consider the excitatory–inhibitory network given by (34) and (35)
with the vector activation functions defined by (27) and (28). If ṽth(t) ≤≤ −B̃w,
t ≥ 0, where w � [min{SI

q+1(0), τ I
q+1ηq+1}, . . . ,min{SI

nI
(0), τ I

nI
ηnI}]T ∈ R

nI−q and

ηi � mint≥0 vI
thi (t), i = q + 1, . . . , nI, and there exist positive-definite matrices P ,

Q ∈R
(nE+q)×(nE+q) and a diagonal positive-definite matrix R ∈R

(nE+q)×(nE+q) such
that

[
Q −P

−P R

]
≥ 0, (36)

and Ω > 0, where

Ω � PL + LP − Q − ÃTRÃ, (37)

then (34) and (35) is globally exponentially partially synchronized. Alternatively, if
Ω ≥ 0 and N (Ω) = span(enE+q), then (34) and (35) is globally asymptotically par-
tially synchronized.

Proof Consider the partial Lyapunov function candidate V : RnE+q

+ → R given by

V (S) = STPS and note that λmin(P )‖S‖2
2 ≤ V (S) ≤ λmax(P )‖S‖2

2, S ∈ R
nE+q

+ ,
where λmax(P ) and λmin(P ) denote the maximum and minimum eigenvalue of P ,
respectively, and ‖ · ‖2 denotes Euclidean norm. It follows that the derivative of V (S)

along the trajectories of (34) is given by

V̇
(
S, S̃I

2

)= STP Ṡ + ṠTPS

= STP
(−LS + f̃

(
ÃS + B̃S̃I

2 + ṽth
))

+ (−LS + f̃
(
ÃS + B̃S̃I

2 + ṽth
))T

PS

= −ST(PL + LP)S + 2STP f̃
(
ÃS + B̃S̃I

2 + ṽth
)
. (38)
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Next, it follows from (36) that

[
STf̃ T(ÃS + B̃S̃I

2 + ṽth
)][ Q −P

−P R

][
S

f̃ (ÃS + B̃S̃I
2 + ṽth)

]
≥ 0,

(
S, S̃I

2

) ∈R
nE+q

+ ×R
nI−q

+ , (39)

or, equivalently,

2STP f̃
(
ÃS + B̃S̃I

2 + ṽth
)≤ STQS + f̃ T(ÃS + B̃S̃I

2 + ṽth
)
Rf̃

(
ÃS + B̃S̃I

2 + ṽth
)
,

(
S, S̃I

2

) ∈R
nE+q

+ ×R
nI−q

+ . (40)

Now, using (40) it follows from (38) that

V̇
(
S, S̃I

2

)≤ ST(−PL − LP + Q)S + f̃ T(ÃS + B̃S̃I
2 + ṽth

)
Rf̃

(
ÃS + B̃S̃I

2 + ṽth
)
,

(
S, S̃I

2

) ∈R
nE+q

+ ×R
nI−q

+ . (41)

Next, since AIE ≥≥ 0, SE ≥≥ 0, and fi(x), x ∈ R, i = q + 1, . . . , nI, are nonde-
creasing functions, it follows that f̃ I

2(AIE
2 SE + ṽI

th2) ≥≥ f̃ I
2(ṽI

th2), SE ∈ R
nE
+ . Since

fi(x) ≥ x, x ∈ R, i = q + 1, . . . , nI, it follows that f̃ I
2(ṽI

th2) ≥≥ ṽI
th2, and hence, it

follows from (35) that

˙̃
SI

2(t) ≥≥ −LI
2S̃

I
2(t) + ṽI

th2(t), S̃I
2(0) = S̃I

20, t ≥ 0, (42)

or, equivalently,

ṠI
i (t) ≥ − 1

τ I
i

SI
i (t) + vI

thi (t)

≥ − 1

τ I
i

SI
i (t) + ηi, SI

i (0) = SI
i0, t ≥ 0, i = q + 1, . . . , nI. (43)

Now, consider the dynamical system

ẏi (t) = − 1

τ I
i

yi(t) + ηi, y(0) = SI
i0, t ≥ 0, i = q + 1, . . . , nI, (44)

and note that

yi(t) = (
SI

i0 − τ I
i ηi

)
e
− 1

τ I
i

t + τ I
i ηi, i = q + 1, . . . , nI. (45)

Using the comparison principle ([23], p. 126), it follows that SI
i (t) ≥ yi(t) ≥

min{SI
i0, τ

I
i ηi}, t ≥ 0, i = q + 1, . . . , nI, or, equivalently,

S̃I
2(t) ≥≥ [

min
{
SI

q+1(0), τ I
q+1ηq+1

}
, . . . ,min

{
SI

nI
(0), τ I

nI
ηnI

}]T
, t ≥ 0. (46)

Since B̃ ≤≤ 0, it follows that B̃S̃I
2(t) ≤≤ B̃w, t ≥ 0, where w = [min{SI

q+1(0),

τ I
q+1ηq+1}, . . . ,min{SI

nI
(0), τ I

nI
ηnI}]T, and hence, ṽth(t) + B̃S̃I

2(t) ≤≤ ṽth(t) +
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B̃w ≤≤ 0, t ≥ 0. Thus, f̃ (ÃS + B̃S̃I
2 + ṽth) ≤≤ f̃ (ÃS), (S, S̃I

2) ∈ R
nE+q

+ × R
nI−q

+ ,
and since R ∈ R

(nE+q)×(nE+q) is a diagonal positive-definite matrix, it follows that

f̃ T(ÃS + B̃S̃I
2 + ṽth

)
Rf̃

(
ÃS + B̃S̃I

2 + ṽth
)≤ f̃ T(ÃS)Rf̃ (ÃS),

(
S, S̃I

2

) ∈ R
nE+q

+ ×R
nI−q

+ .

Next, it follows from (41) that

V̇
(
S, S̃I

2

)≤ ST(−PL − LP + Q)S + f̃ T(ÃS)Rf̃ (ÃS),

(
S, S̃I

2

) ∈R
nE+q

+ ×R
nI−q

+ . (47)

Since f 2
i (x) ≤ x2, x ∈ R, for fi(·), i = 1, . . . , nE + q , given by (9), and R ∈

R
(nE+q)×(nE+q) is a diagonal positive-definite matrix, it follows that

f T(ÃS)Rf (ÃS) ≤ STÃTRÃS, S ∈R
nE+q

+ . (48)

Now, it follows from (37) and (47) that

V̇
(
S, S̃I

2

)≤ −STΩS ≤ −λmin(Ω)‖S‖2
2,

(
S, S̃I

2

) ∈R
nE+q

+ ×R
nI−q

+ . (49)

Thus, it follows from Theorem 4.1 of [23] that if Ω > 0, then (34) and (35) is globally
exponentially stable with respect to S uniformly in S̃I

20, and hence, (34) and (35) is
globally exponentially partially synchronized.

Alternatively, if Ω ≥ 0 and N (Ω) = span(enE+q) holds, then V̇ (S(t), S̃I
2(t)) ≤ 0,

t ≥ 0, and hence, V (S(t)) ≤ V (S0) for all t ≥ 0. Next, since P is positive definite and
V̇ (S(t), S̃I

2(t)) is a nonincreasing function of time, it follows that V (S(t)) is bounded
for all t ≥ 0, and hence, S(t) is bounded for all t ≥ 0, which further implies that SE(t)

is bounded for all t ≥ 0. Thus, f̃ I
2(AIE

2 SE(t) + ṽI
th2(t)) is bounded for all t ≥ 0, and

hence, there exists f̃ I
2 max such that f̃ I

2 max ≥≥ f̃ I
2(AIE

2 SE(t) + ṽI
th2(t)), t ≥ 0. Now, it

follows from (35) that

˙̃
SI

2(t) ≤≤ −LI
2S̃

I
2(t) + f̃ I

2 max, S̃I
2(0) = S̃I

20, t ≥ 0. (50)

Next, consider the dynamical system

ẋ(t) = −LI
2x(t) + f̃ I

2 max, x(0) = S̃I
20, t ≥ 0, (51)

and note that since LI
2 is a diagonal positive-definite matrix, it follows that x(t) is

bounded for all t ≥ 0. Using the vector comparison principle [23], it follows from (50)
and (51) that S̃I

2(t) ≤≤ x(t), t ≥ 0, and hence, S̃I
2(t) is bounded for all t ≥ 0. Since

S(t) and S̃I
2(t) are bounded for all t ≥ 0, it follows that V̈ (S(t), S̃I

2(t)) is bounded for
all t ≥ 0. Thus, V̇ (S(t), S̃I

2(t)) is uniformly continuous in t . Finally, it follows from
Barbalat’s lemma ([23], p. 221) that V̇ (S(t), S̃I

2(t)) → 0 as t → ∞, which, since
N (Ω) = span(enE+q), implies that (34) and (35) is globally asymptotically partially
synchronized. �
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There is a body of experimental evidence that the mechanism of action of some
anesthetic drugs is the prolongation of the inhibitory postsynaptic potential time con-
stant [1, 2]. While Theorem 2 provides sufficient conditions for partial synchroniza-
tion, it is not readily apparent how these conditions may be met as the inhibitory
postsynaptic potential time constant increases. Next, we address this question for the
specific activation function [7]

fi(x) =

⎧
⎪⎨

⎪⎩

0, x < 0,

x, 0 ≤ x ≤ fmax,

fmax, x > fmax,

(52)

where fmax denotes the maximum firing rate.

Theorem 3 Consider the excitatory–inhibitory network given by (30), (31), and
(32) with the vector activation functions defined by (27) and (28), and fi(·) given
by (52). If ṽI

th2(t) � 0, t ≥ 0, and the inhibitory time constants are such that
S̃I

20 − (LI
2)

−1 min{fmaxe, η} � 0 and

AEE max
{
SE

0 , fmax
(
LE)−1e

}+ AEI
2

[(
LI

2

)−1 min{fmaxe, η} − εe
]+ β ≤≤ 0, (53)

where η � [ηq+1, . . . , ηnI ], ηi = mint≥0 vI
thi (t), i = q + 1, . . . , nI, max{x, y} �

[max{x1, y1}, . . . ,max{xn, yn}]T, x, y ∈ R
n, min{x, y} � [min{x1, y1}, . . . ,

min{xn, yn}]T, x, y ∈ R
n, β � [β1, . . . , βnE ]T, βi � maxt≥0 vE

thi (t), i = 1, . . . , nE,
and ε > 0 is a small positive constant, then SE(t) → 0 as t → ∞, and hence, (30),
(31), and (32) is globally asymptotically partially synchronized.

Proof First, note that since fi(x) ≤ fmax, x ∈ R, i = 1, . . . , nE, it follows from (30)
that

ṠE
i (t) ≤ − 1

τE
i

SE
i (t) + fmax, SE

i (0) = SE
i0, t ≥ 0, i = 1, . . . , nE, (54)

and hence,

SE
i (t) ≤ (

SE
i0 − τE

i fmax
)
e
− t

τE
i + τE

i fmax, t ≥ 0, i = 1, . . . , nE. (55)

Thus, SE
i (t) ≤ max{SE

i0, τ
E
i fmax}, t ≥ 0, i = 1, . . . , nE, or, equivalently,

SE(t) ≤≤ max
{
SE

0 , fmax
(
LE)−1e

}
, t ≥ 0. (56)

Next, since AIE
2 ≥≥ 0, SE(t) ≥≥ 0, t ≥ 0, and fi(x), x ∈ R, i = q + 1, . . . , nI, are

nondecreasing functions, it follows that f̃ I
2(AIE

2 SE + ṽI
th2) ≥≥ f̃ I

2(ṽI
th2), SE ∈ R

nE
+ .

Since fi(x) ≤ fmax, x ∈ R, i = q + 1, . . . , nI, and ṽI
th2(t) � 0, t ≥ 0, it follows

that f̃ I
2(ṽI

th2(t)) = min{fmaxe, ṽI
th2(t)} ≥≥ min{fmaxe, η}, t ≥ 0. Now, it follows from

(32) that

˙̃
SI

2(t) ≥≥ −LI
2S̃

I
2(t) + min{fmaxe, η}, S̃I

2(0) = S̃I
20, t ≥ 0, (57)
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and hence,

S̃I
2(t) ≥≥ (

S̃I
20 − (

LI
2

)−1 min{fmaxe, η})e−LI
2t

+ (
LI

2

)−1 min{fmaxe, η}, t ≥ 0. (58)

Thus, it follows from (58) that S̃I
2(t) ≥≥ (LI

2)
−1 min{fmaxe, η} as t → ∞, and since

S̃I
20 − (LI

2)
−1 min{fmaxe, η} � 0, there exists t1 > 0 such that

S̃I
2(t) ≥≥ (

LI
2

)−1 min{fmaxe, η} − εe, t ≥ t1. (59)

Next, since AEI
1 ≤≤ 0 and S̃I

1(t) ≥≥ 0, t ≥ 0, and fi(x), x ∈ R, i = 1, . . . , nE, are
nondecreasing functions, it follows from (30) that

ṠE(t) ≤≤ −LESE(t) + f E(AEESE(t) + AEI
2 S̃I

2(t) + ṽE
th(t)

)
,

SE(0) = SE
0 , t ≥ 0. (60)

Now, since AEE ≥≥ 0 and AEI
2 ≤≤ 0, it follows from (56) and (59) that

AEESE(t) + AEI
2 S̃I

2(t) + ṽE
th(t) ≤≤ AEE max

{
SE

0 , fmax
(
LE)−1e

}

+ AEI
2

[(
LI

2

)−1 min{fmaxe, η} − εe
]+ β

≤≤ 0, t ≥ t1. (61)

Finally, it follows from (60) and (61) that

ṠE(t) ≤≤ −LESE(t), SE(0) = SE
0 , t ≥ t1, (62)

which implies that SE(t) → 0 as t → ∞, and hence, (30), (31), and (32) is globally
asymptotically partially synchronized. �

Condition (53) is satisfied if AEI
2 does not contain any row of zeros and LI

2 is small
enough or, equivalently, the time constants of the inhibitory neurons that themselves
do not receive any inhibitory inputs are large enough. This condition captures an
important aspect of the effect of the anesthetic cascade. In particular, as the anesthetic
drug concentration increases, resulting in an increase in the inhibitory time constants,
the excitatory synaptic drives that receive inhibitory inputs from inhibitory neurons,
which themselves do not receive inhibitory inputs, converge to zero, reflecting a state
of unconsciousness. Alternatively, if only a subset E1 of excitatory neurons receive
inhibitory inputs from the inhibitory neurons in I1, then it can be shown that only
the synaptic drives of the excitatory neurons in E1 will converge to zero as the time
constants of the inhibitory neurons in I1 increase.
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5 Generalized Neural Population Models, Nonmonotonic Postsynaptic
Potentials, and Drug Biphasic Response

The administration of increasing anesthetic doses can lead to a paradoxical state of
excitement in the patient prior to decreases in the level of consciousness. This para-
doxical boost in brain activity prior to hypnotic induction is known as drug biphasic
response [21]. There is also a second biphasic surge in the EEG power as the patient
emerges from unconsciousness. The model proposed in Sect. 2 does not capture such
phenomena. Models that predict the aforementioned characteristics are of great clin-
ical importance in providing the phenomenological trends of the anesthetic cascade.
In this section, we incorporate a more complex model for the postsynaptic potential
to account for the delay in peak amplitude of the postsynaptic potential that occurs
after a neuron discharges ([11], Fig. 8.5).

To capture an initial overshoot in the synaptic drive dynamics in an attempt to see
biphasic responses in our neural field model, we assume the functional form of the
postsynaptic potential is given by

α
(E,I)
i (t) = B

(E,I)
i te

− t

λ
(E,I)
i . (63)

In this case, it follows from (4) and (63) that

dS
(E,I)
i (t)

dt
=
∫ t

−∞
B

(E,I)
i e

− t−τ

λ
(E,I)
i fi

(
v

(E,I)
i (τ )

)
dτ

−
∫ t

−∞
t − τ

λ
(E,I)
i

B
(E,I)
i e

− t−τ

λ
(E,I)
i fi

(
v

(E,I)
i (τ )

)
dτ

=
∫ t

−∞
B

(E,I)
i e

− t−τ

λ
(E,I)
i fi

(
v

(E,I)
i (τ )

)
dτ − S

(E,I)
i (t)

λ
(E,I)
i

. (64)

Now, defining

Si
(E,I)

(t) �
∫ t

−∞
B

(E,I)
i e

− t−τ

λ
(E,I)
i fi

(
v

(E,I)
i (τ )

)
dτ, (65)

it follows that

dSi
(E,I)

(t)

dt
= − 1

λ
(E,I)
i

Si
(E,I)

(t) + B
(E,I)
i fi

(
v

(E,I)
i (t)

)
. (66)

Next, it follows from (64) and (65) that

dS
(E,I)
i (t)

dt
= Si

(E,I)
(t) − S

(E,I)
i (t)

λ
(E,I)
i

. (67)
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Differentiating (67) with respect to time, we obtain

d2S
(E,I)
i (t)

dt2
= dSi

(E,I)
(t)

dt
− 1

λ
(E,I)
i

dS
(E,I)
i (t)

dt

= − 1

λ
(E,I)
i

Si
(E,I)

(t) + B
(E,I)
i fi

(
v

(E,I)
i (t)

)− 1

λ
(E,I)
i

dS
(E,I)
i (t)

dt

= − 1

λ
(E,I)
i

(
dS

(E,I)
i (t)

dt
+ S

(E,I)
i (t)

λ
(E,I)
i

)
+ B

(E,I)
i fi

(
v

(E,I)
i (t)

)

− 1

λ
(E,I)
i

dS
(E,I)
i (t)

dt

= − 2

λ
(E,I)
i

dS
(E,I)
i (t)

dt
−
(

1

λ
(E,I)
i

)2

S
(E,I)
i (t) + B

(E,I)
i fi

(
v

(E,I)
i (t)

)
. (68)

Now, using the expressions for the excitatory and inhibitory voltage given by (2)
and (3), respectively, it follows that

d2SE
i (t)

dt2
= − 2

λE
i

dSE
i (t)

dt
−
(

1

λE
i

)2

SE
i (t) + BE

i fi

(
nE∑

j=1,j �=i

AEE
ij SE

j (t)

+
nI∑

j ′=1

AEI
ij ′SI

j ′(t) + vE
thi (t)

)
, i = 1, . . . , nE, (69)

d2SI
i (t)

dt2
= − 2

λI
i

dSI
i (t)

dt
−
(

1

λI
i

)2

SI
i (t) + BI

i fi

(
nE∑

j=1

AIE
ij SE

j (t)

+
nI∑

j ′=1,j ′ �=i

AII
ij ′SI

j ′(t) + vI
thi (t)

)
, i = 1, . . . , nI. (70)

The above analysis reveals that an alternative form to (8) for capturing the neuroelec-
tric behavior of biological excitatory and inhibitory neuronal networks can be given
by the second-order differential equations

d2Si(t)

dt2
= − 2

τi

dSi(t)

dt
− 1

τ 2
i

Si(t) + Bifi

(
n∑

j=1

AijSj (t) + vthi (t)

)
,

Si(0) = Si0, Ṡi(0) = Ṡi0, t ≥ 0, i = 1, . . . , n. (71)

To address the problem of partial synchronization for the model given by (69) and
(70), the vector–matrix form of (69) and (70) can be written as

S̈E(t) = −2LEṠE(t) − (
LE)2

SE(t) + f E(AEESE(t) + AEISI(t) + ṽE
th(t)

)
,

SE(0) = SE
0 , ṠE(0) = ṠE

0 , t ≥ 0, (72)
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S̈I(t) = −2LIṠI(t) − (
LI)2

SI(t) + f I(AIESE(t) + AIISI(t) + ṽI
th(t)

)
,

SI(0) = SI
0, ṠI(0) = ṠI

0, (73)

where all vector–matrix notation are defined as in Sect. 4. Once again, we partition
the state vector SI(t), t ≥ 0, as in Sect. 4 so that the neuronal connectivity matrix is
partitioned as in (29), and hence, (72) and (73) can be written as

S̈E(t) = −2LEṠE(t) − (
LE)2

SE(t) + f E(AEESE(t) + AEI
1 S̃I

1(t) + AEI
2 S̃I

2(t)

+ ṽE
th(t)

)
, SE(0) = SE

0 , ṠE(0) = ṠE
0 , t ≥ 0, (74)

¨̃
SI

1(t) = −2LI
1
˙̃
SI

1(t) − (
LI

1

)2
S̃I

1(t) + f̃ I
1

(
AIE

1 SE(t) + AII
1 S̃I

1(t) + AII
2 S̃I

2(t)

+ ṽI
th1(t)

)
, S̃I

1(0) = S̃I
10,

˙̃
SI

1(0) = ˙̃
SI

10, (75)

¨̃
SI

2(t) = −2LI
2
˙̃
SI

2(t) − (
LI

2

)2
S̃I

2(t) + f̃ I
2

(
AIE

2 SE(t) + ṽI
th2(t)

)
,

S̃I
2(0) = S̃I

20,
˙̃
SI

2(0) = ˙̃
SI

20, (76)

or, equivalently,

S̈(t) = −2LṠ(t) − L2S(t) + f̃
(
ÃS(t) + B̃S̃I

2(t) + ṽth(t)
)
,

S(0) = S0, Ṡ(0) = Ṡ0, t ≥ 0, (77)

¨̃
SI

2(t) = −2LI
2
˙̃
SI

2(t) − (
LI

2

)2
S̃I

2(t) + f̃ I
2

(
AIE

2 SE(t) + ṽI
th2(t)

)
,

S̃I
2(0) = S̃I

20,
˙̃
SI

2(0) = ˙̃
SI

20. (78)

Finally, defining Ŝ(t) � [ST(t) ṠT(t)]T, ŜI
2(t) � [(S̃I

2(t))
T (

˙̃
SI

2(t))
T]T, and ŜE(t) �

[(S̃E(t))T (
˙̃
SE(t))T]T, (77) and (78) can be written as

˙̂
S(t) = −Γ Ŝ(t) + f̂

(
ÂŜ(t) + B̂ŜI

2(t) + v̂th(t)
)
, Ŝ(0) = S0, t ≥ 0, (79)

˙̂
SI

2(t) = −Γ IŜI
2(t) + f̂ I

2

(
ÂIE

2 ŜE(t) + v̂I
th2(t)

)
, ŜI

2(0) = ŜI
20, (80)

where

Γ �
[

0(nE+q)×(nE+q) −I(nE+q)×(nE+q)

(LE)2 2LE

]
, f̂ �

[
0(nE+q)

f̃

]
,

Â�
[

0(nE+q)×(nE+q) 0(nE+q)×(nE+q)

Ã 0(nE+q)×(nE+q)

]
, v̂th �

[
0(nE+q)

ṽth

]
,

B̂ �
[

0(nE+q)×(nI−q) 0(nE+q)×(nI−q)

B̃ 0(nE+q)×(nI−q)

]
, ÂIE

2 �
[

0(nI−q)×nE 0(nI−q)×nE

AIE
2 0(nI−q)×nE

]
,

Γ I �
[

0(nI−q)×(nI−q) −I(nI−q)×(nI−q)

(LI
2)

2 2LI
2

]
, v̂I

th2 �
[

0(nI−q)

ṽI
th2

]
,
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f̂ I
2 �

[
0(nI−q)

f̃ I
2

]
.

The following proposition and definitions are needed for the main results of this
section.

Proposition 5 Consider the excitatory–inhibitory network given by (72) and (73)
with the vector activation functions defined by (27) and (28), and the synaptic drive
defined by (4) with postsynaptic potential given by (63). Then SE(t) ≥≥ 0 and
SI(t) ≥≥ 0 for all t ≥ 0.

Proof Since BE
i = BI

i = 1, it follows from (4) and (63) that

SE
i (0) = SE

i0 =
∫ 0

−∞
(−τ)e

τ

λE
i fi

(
vE
i (τ )

)
dτ, i = 1, . . . , nE. (81)

Now, letting s � −τ , it follows from (81) that

SE
i0 =

∫ 0

∞
se

−s

λE
i fi

(
vE
i (−s)

)
(−ds)

=
∫ ∞

0
se

−s

λE
i fi

(
vE
i (−s)

)
ds, i = 1, . . . , nE. (82)

Since se

−s

λE
i fi(v

E
i (−s)) ≥ 0 for s ∈ [0,∞) and i = 1, . . . , nE, it follows from (82) that

SE
i0 ≥ 0 for i = 1, . . . , nE. Next, it follows from (64) that

ṠE
i0 + 1

λE
i

SE
i0 =

∫ 0

−∞
e

τ

λE
i fi

(
vE
i (τ )

)
dτ ≥ 0, i = 1, . . . , nE. (83)

Next, since fi(x) ≥ 0, x ∈R, i = 1, . . . , nE, it follows from (72) that

S̈E
i (t) + 2

λE
i

ṠE
i (t) + 1

(λE
i )2

SE
i (t) ≥ 0,

SE
i (0) = SE

i0, ṠE
i (0) = ṠE

i0, t ≥ 0, i = 1, . . . , nE. (84)

Now, letting

uE
i (t) � ṠE

i (t) + 1

λE
i

SE
i (t), t ≥ 0, i = 1, . . . , nE, (85)

it follows from (84) and (85) that

u̇E
i (t) + 1

λE
i

uE
i (t) ≥ 0, uE

i (0) = ṠE
i0 + 1

λE
i

SE
i0, t ≥ 0, i = 1, . . . , nE, (86)
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and since uE
i (0) = ṠE

i0 + 1
λE

i

SE
i0 ≥ 0, i = 1, . . . , nE, it follows from (86) that uE

i (t) ≥ 0,

t ≥ 0, i = 1, . . . , nE. Thus, it follows from (85) that

ṠE
i (t) + 1

λE
i

SE
i (t) ≥ 0, SE

i (0) = SE
i0, t ≥ 0, i = 1, . . . , nE. (87)

Finally, since SE
i0 ≥ 0, i = 1, . . . , nE, it follows from (87) that SE

i (t) ≥ 0, t ≥ 0, i =
1, . . . , nE. Similarly, it can be shown that SI

i (t) ≥ 0, t ≥ 0, i = 1, . . . , nI, and hence,
SE(t) ≥≥ 0 and SI(t) ≥≥ 0 for all t ≥ 0. �

Definition 4 The biological neural network given by (79) and (80) is said to be glob-
ally asymptotically partially synchronized if

lim
t→∞

∣∣Si(t) − Sj (t)
∣∣= 0,

lim
t→∞

∣∣Ṡi (t) − Ṡj (t)
∣∣= 0,

for all Ŝ0 ∈ R
2(nE+q)

+ , ŜI
20 ∈R

2(nI−q)

+ , and i = 1, . . . , nE + q , i �= j .

Definition 5 The biological neural network given by (79) and (80) is said to be glob-
ally exponentially partially synchronized if there exist constants p > 0 and ρ > 0
such that

∣∣Si(t) − Sj (t)
∣∣≤ ρe−pt |Si0 − Sj0|, t ≥ 0,

∣∣Ṡi (t) − Ṡj (t)
∣∣≤ ρe−pt |Ṡi0 − Ṡj0|, t ≥ 0,

for all Ŝ0 ∈ R
2(nE+q)

+ , ŜI
20 ∈R

2(nI−q)

+ , and i = 1, . . . , nE + q , i �= j .

Theorem 4 Consider the excitatory–inhibitory network given by (79) and (80)
with the vector activation functions defined by (27) and (28). If ṽth(t) ≤≤ −B̃ŵ,
t ≥ 0, where ŵ � [min{SI

q+1(0), τ I
q+1αq+1}, . . . ,min{SI

nI
(0), τ I

nI
αnI}]T ∈ R

nI−q ,

αi � min{ṠI
i0 + 1

τ I
i

SI
i0, τ

I
i ηi}, i = q + 1, . . . , nI, ηi = mint≥0 vI

thi (t), i = q + 1, . . . , nI,

and there exist positive-definite matrices P̂ , Q̂ ∈ R
2(nE+q)×2(nE+q) and a diagonal

positive-definite matrix R̂ ∈ R
2(nE+q)×2(nE+q) such that

[
Q̂ −P̂

−P̂ R̂

]
≥ 0, (88)

and Ω̂ > 0, where

Ω̂ � P̂ L̂ + L̂P̂ − Q̂ − ÂTR̂Â, (89)

then (79) and (80) is globally exponentially partially synchronized. Alternatively, if
Ω̂ ≥ 0 and N (Ω̂) = span([eT

(nE+q) 0T
nE+q ]T, [0T

nE+q eT
(nE+q)]T), then (79) and (80) is

globally asymptotically partially synchronized.
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Proof The proof follows as in the proof of Theorem 2 using the partial Lyapunov
function candidate V̂ : R2(nE+q)

+ → R given by V̂ (Ŝ) = ŜTP̂ Ŝ. Specifically, since
AIE ≥≥ 0, SE ≥≥ 0, and fi(x), x ∈ R, i = q + 1, . . . , nI, are nondecreasing func-
tions, it follows that f̃ I

2(AIE
2 SE + ṽI

th2) ≥≥ f̃ I
2(ṽI

th2), SE ∈ R
nE
+ . Now, since fi(x) ≥ x,

x ∈ R, i = q + 1, . . . , nI, it follows that f̃ I
2(ṽI

th2) ≥≥ ṽI
th2, and hence, it follows from

(78) that

¨̃
SI

2(t) ≥≥ −2LI
2
˙̃
SI

2(t) − (
LI

2

)2
S̃I

2(t) + ṽI
th2(t),

S̃I
2(0) = S̃I

20,
˙̃
SI

2(0) = ˙̃
SI

20, t ≥ 0, (90)

or, equivalently,

S̈I
i (t) ≥ − 2

τ I
i

ṠI
i (t) − 1

(τ I
i )

2
SI

i (t) + vI
thi (t)

≥ − 2

τ I
i

ṠI
i (t) − 1

(τ I
i )

2
SI

i (t) + ηi,

SI
i (0) = SI

i0, ṠI
i (0) = ṠI

i0, t ≥ 0, i = q + 1, . . . , nI. (91)

Letting

uI
i (t) � ṠI

i (t) + 1

τ I
i

SI
i (t), t ≥ 0, i = 1, . . . , nI, (92)

it follows from (91) that

u̇I
i (t) + 1

τ I
i

uI
i (t) ≥ ηi, uI

i (0) = ṠI
i0(t) + 1

τ I
i

SI
i0, t ≥ 0, i = q + 1, . . . , nI, (93)

and hence,

uI
i (t) ≥ (

uI
i (0) − τ I

i ηi

)
e
− 1

τ I
i

t + τ I
i ηi

≥ min

{
ṠI

i0 + 1

τ I
i

SI
i0, τ

I
i ηi

}
= αi, t ≥ 0, i = q + 1, . . . , nI. (94)

Next, it follows from (92) and (94) that

ṠI
i (t) + 1

τ I
i

SI
i (t) ≥ αi, SI

i (0) = SI
i0, t ≥ 0, i = q + 1, . . . , nI, (95)

and hence,

SI
i (t) ≥ (

SI
i0 − τ I

i αi

)
e
− 1

τ I
i

t + τ I
i αi

≥ min
{
SI

i0, τ
I
i αi

}
, t ≥ 0, i = q + 1, . . . , nI. (96)
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Thus,

S̃I
2(t) ≥≥ [

min
{
SI

q+1(0), τ I
q+1αq+1

}
, . . . ,min

{
SI

nI
(0), τ I

nI
αnI

}]T
, t ≥ 0, (97)

where αi = min{ṠI
i0(t) + 1

τ I
i

SI
i0, τ

I
i ηi} and ηi = mint≥0 vI

thi (t), i = q + 1, . . . , nI,

t ≥ 0. Since B̃ ≤≤ 0, it follows that B̃S̃I
2(t) ≤≤ B̃w, t ≥ 0, where w = [min{SI

q+1(0),

τ I
q+1αq+1}, . . . ,min{SI

nI
(0), τ I

nI
αnI}]T, and hence, ṽth(t) + B̃S̃I

2(t) ≤≤ ṽth(t) +
B̃w ≤≤ 0, t ≥ 0. Thus, B̂ŜI

2(t) + v̂th(t) ≤≤ 0, and hence, f̂ (ÂŜ(t) + B̂ŜI
2(t) +

v̂th(t)) ≤≤ f̂ (ÂŜ), (Ŝ, ŜI
2) ∈ R

2(nE+q)

+ × R
2(nI−q)

+ . The remainder of the proof now
follows as in the proof of Theorem 2. �

Finally, we analyze the partial synchronization of the excitatory–inhibitory net-
work given by (74), (75), and (76) with the activation function given by (52) in the
face of increasing inhibitory time constants.

Theorem 5 Consider the excitatory–inhibitory network given by (74), (75), and (76)
with the vector activation functions defined by (27) and (28), and fi(·) given by (52).

If ṽI
th2(t) � 0, t ≥ 0, and the time constants of inhibitory neurons are such that ˙̃

SI
20 +

LI
2S̃

I
20 − (LI

2)
−1 min{fmaxe, η} � 0, S̃I

20 − (LI
2)

−1((LI
2)

−1 min{fmaxe, η} − εe) � 0,
and

AEE max
{
SE

0 ,
(
LE)−1 max

{
ṠE

0 + LESE
0 , fmax

(
LE)−1e

}}

+ AEI
2

[(
LI

2

)−1[(
LI

2

)−1 min{fmaxe, η} − εe
]− εe

]+ β ≤≤ 0, (98)

where η = [ηq+1, . . . , ηnI ], ηi = mint≥0 vI
thi (t), i = q+1, . . . , nI, β = [β1, . . . , βnE ]T,

βi = maxt≥0 vE
thi (t), i = 1, . . . , nE, and ε > 0 is a small positive constant, then

SE(t) → 0 as t → ∞, and hence, (74), (75), and (76) are globally asymptotically
partially synchronized.

Proof First, note that since fi(x) ≤ fmax, x ∈ R, i = 1, . . . , nE, it follows from (74)
that

S̈E
i (t) + 2

τE
i

ṠE
i (t) + 1

(τE
i )2

SE
i (t) ≤ fmax,

SE
i (0) = SE

i0, ṠE
i (0) = ṠE

i0, t ≥ 0, i = 1, . . . , nE. (99)

Now, defining uE
i (t) � ṠE

i (t) + 1
τE
i

SE
i (t), t ≥ 0, i = 1, . . . , nE, it can be shown that

SE
i (t) ≤ max

{
SE

i0, τ
E
i max

{
ṠE

i0 + 1

τE
i

SE
i0, τ

E
i fmax

}}
, t ≥ 0, i = 1, . . . , nE, (100)

or, equivalently,

SE(t) ≤ max
{
SE

0 ,
(
LE)−1 max

{
ṠE

0 + LESE
0 , fmax

(
LE)−1e

}}
, t ≥ 0. (101)
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Next, since AIE
2 ≥≥ 0, SE(t) ≥≥ 0, t ≥ 0, and fi(x), x ∈ R, i = q + 1, . . . , nI, are

nondecreasing functions, it follows that f̃ I
2(AIE

2 SE + ṽI
th2) ≥≥ f̃ I

2(ṽI
th2), SE ∈ R

nE
+ .

Since fi(x) ≤ fmax, x ∈ R, i = q + 1, . . . , nI, and ṽI
th2(t) � 0, t ≥ 0, it follows

that f̃ I
2(ṽI

th2(t)) = min{fmaxe, ṽI
th2(t)} ≥≥ min{fmaxe, η}, t ≥ 0. Now, it follows from

(76) that

¨̃
SI

2(t) ≥≥ −2LI
2
˙̃
SI

2(t) − (
LI

2

)2
S̃I

2(t)

+ min{fmaxe, η}, S̃I
2(0) = S̃I

20,
˙̃
SI

2(0) = ˙̃
SI

20, t ≥ 0. (102)

Next, defining

uI(t) � ˙̃
SI

2(t) + LI
2S̃

I
2(t), t ≥ 0, (103)

it follows from (102) that

u̇I(t) + LI
2u

I(t) ≥≥ min{fmaxe, η}, uI(0) = ˙̃
SI

20 + LI
2S̃

I
20, t ≥ 0, (104)

and hence,

uI(t) ≥≥ ( ˙̃
SI

20 + LI
2S̃

I
20 − (

LI
2

)−1 min{fmaxe, η})e−LI
2t

+ (
LI

2

)−1 min{fmaxe, η}, t ≥ 0. (105)

Thus, it follows from (105) that uI(t) ≥≥ (LI
2)

−1 min{fmaxe, η} as t → ∞, and since
˙̃
SI

20 + LI
2S̃

I
20 − (LI

2)
−1 min{fmaxe, η} � 0, there exists t2 > 0 such that

uI(t) ≥≥ (
LI

2

)−1 min{fmaxe, η} − εe, t ≥ t2. (106)

Now, it follows from (103) and (106) that

˙̃
SI

2(t) + LI
2S̃

I
2(t) ≥≥ (

LI
2

)−1 min{fmaxe, η} − εe, t ≥ t2, (107)

and hence,

S̃I
2(t) ≥≥ (

S̃I
20 − (

LI
2

)−1((
LI

2

)−1 min{fmaxe, η} − εe
))

e−LI
2t

+ (
LI

2

)−1((
LI

2

)−1 min{fmaxe, η} − εe
)
, t ≥ t2. (108)

Thus, it follows from (108) that S̃I
2(t) ≥≥ (LI

2)
−1((LI

2)
−1 min{fmaxe, η} − εe) as

t → ∞, and since S̃I
20 − (LI

2)
−1((LI

2)
−1 min{fmaxe, η} − εe) � 0, there exist t3 >

t2 > 0 such that

S̃I
2(t) ≥≥ (

LI
2

)−1[(
LI

2

)−1 min{fmaxe, η} − εe
]− εe, t ≥ t3. (109)

Next, since AEI
1 ≤≤ 0 and S̃I

1(t) ≥≥ 0, t ≥ 0, and fi(x), x ∈ R, i = 1, . . . , nE, are
nondecreasing functions, it follows from (74) that

S̈E(t) ≤≤ −2LEṠE(t) − (
LE)2

SE(t) + f E(AEESE(t) + AEI
2 S̃I

2 + ṽE
th(t)

)
,

SE(0) = SE
0 , ṠE(0) = ṠE

0 , t ≥ 0. (110)
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Now, since AEE ≥≥ 0 and AEI
2 ≤≤ 0, it follows from (101) and (109) that

AEESE(t) + AEI
2 S̃I

2(t) + ṽE
th(t)

≤≤ AEE max
{
SE

0 ,
(
LE)−1 max

{
ṠE

0 + LESE
0 , fmax

(
LE)−1e

}}

+ AEI
2

[(
LI

2

)−1[(
LI

2

)−1 min{fmaxe, η} − εe
]− εe

]+ β

≤≤ 0, t ≥ t3. (111)

Finally, it follows from (110) and (111) that

S̈E(t) ≤≤ −2LEṠE(t) − (
LE)2

SE(t),

SE(0) = SE
0 , ṠE(0) = ṠE

0 , t ≥ t3, (112)

which implies that SE(t) → 0 as t → ∞, and hence, (74), (75), and (76) is globally
asymptotically partially synchronized. �

Condition (98) implies that all the excitatory neurons receive inhibitory inputs
from the inhibitory neurons that themselves do not receive inhibitory inputs. As in
the case of the simpler neural population model discussed in Sect. 4, if only a sub-
set of excitatory neurons receive the inhibitory inputs from the inhibitory neurons
that themselves do not receive inhibitory inputs, then only the synaptic drives of this
subset of excitatory neurons will converge to zero as the inhibitory time constants
increase.

6 A Second-Order Mean Excitatory and Inhibitory Synaptic Drive
Model

In this section, we reduce the model given in (69) and (70) to a mean excitatory
and mean inhibitory model. Consider (69) and (70) with continuously differentiable
fi(·) = f (·), BE

i = BI
i = 1, λE

i = λE, and λI
i = λI. In this case, (69) and (70) become

d2SE
i (t)

dt2
= − 2

λE

dSE
i (t)

dt
−
(

1

λE

)2

SE
i (t)

+ f

(
nE∑

j=1

AEE
ij SE

j (t) +
nI∑

k=1

AEI
ik SI

k(t) + vE
thi (t)

)
, i = 1, . . . , nE, (113)

d2SI
i (t)

dt2
= − 2

λI

dSI
i (t)

dt
−
(

1

λI

)2

SI
i (t)

+ f

(
nE∑

j=1

AIE
ij SE

j (t) +
nI∑

k=1

AII
ikS

I
k(t) + vI

thi (t)

)
, i = 1, . . . , nI, (114)

where AEE
ii = AII

ii = 0. Next, let AEE
ij = A

EE + �EE
ij , AEI

ij = A
EI + �EI

ij , AIE
ij =

A
IE +�IE

ij , and AII
ij = A

II +�II
ij , where A

XY � 1
nXnY

∑nX
i=1

∑nY
j=1 AXY

ij , X, Y ∈ {E, I},
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denote mean and �XY
ij , X, Y ∈ {E, I}, are deviations from the mean. In this case, it

follows that

nE∑

i=1

nE∑

j=1

�EE
ij =

nE∑

i=1

nI∑

j=1

�EI
ij =

nI∑

i=1

nE∑

j=1

�IE
ij =

nI∑

i=1

nI∑

j=1

�II
ij = 0. (115)

Using the average and perturbed expression for AXY
ij , X, Y ∈ {E, I}, (113) and

(114) can be written as

d2SE
i (t)

dt2
= f

(
nEA

EE
S

E
(t) +

nE∑

j=1

�EE
ij SE

j (t) + nIA
EI

S
I
(t) +

nI∑

k=1

�EI
ik SI

k(t)

+ vE
thi (t)

)
− 2

λE

dSE
i (t)

dt
−
(

1

λE

)2

SE
i (t), i = 1, . . . , nE, (116)

d2SI
i (t)

dt2
= f

(
nEA

IE
S

E
(t) +

nE∑

j=1

�IE
ij SE

j (t) + nIA
II
S

I
(t) +

nI∑

k=1

�II
ikS

I
k(t)

+ vI
thi (t)

)
− 2

λI

dSI
i (t)

dt
−
(

1

λI

)2

SI
i (t), i = 1, . . . , nI, (117)

where S
E
(t) � 1

nE

∑nE
j=1 SE

j (t) and S
I
(t) � 1

nI

∑nI
j=1 SI

j (t) denote the mean excitatory
synaptic drive and mean inhibitory synaptic drive in dimensionless units, respectively.

Now, defining δE
i (t) � SE

i (t)−S
E
(t) and δI

i (t) � SI
i (t)−S

I
(t), where δE

i (t) and δI
i (t)

are deviations from the mean, (116) and (117) become

d2SE
i (t)

dt2
= f

(
nEA

EE
S

E
(t) + S

E
(t)

nE∑

j=1

�EE
ij +

nE∑

j=1

�EE
ij δE

j (t) + nIA
EI

S
I
(t)

+ S
I
(t)

nI∑

k=1

�EI
ik +

nI∑

k=1

�EI
ik δI

k(t) + vE
thi (t)

)
− 2

λE

dSE
i (t)

dt

−
(

1

λE

)2

SE
i (t), i = 1, . . . , nE, (118)

d2SI
i (t)

dt2
= f

(
nEA

IE
S

E
(t) + S

E
(t)

nE∑

j=1

�IE
ij +

nE∑

j=1

�IE
ij δE

j (t) + nIA
II
S

I
(t)

+ S
I
(t)

nI∑

k=1

�II
ik +

nI∑

k=1

�II
ikδ

I
k(t) + vI

thi (t)

)
− 2

λI

dSI
i (t)

dt

−
(

1

λI

)2

SI
i (t), i = 1, . . . , nI. (119)
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Next, assume that all terms with a factor �XY
ij , X, Y ∈ {E, I}, i = 1, . . . , nX and

j = 1, . . . , nY, in (118) and (119) are small relative to the remaining terms in f (·).
Then a first-order expansion of (118) and (119) gives

d2SE
i (t)

dt2
= f

(
nEA

EE
S

E
(t) + nIA

EI
S

I
(t) + vE

thi (t)
)+ f ′(nEA

EE
S

E
(t)

+ nIA
EI

S
I
(t) + vE

thi (t)
)
[
S

E
(t)

nE∑

j=1

�EE
ij +

nE∑

j=1

�EE
ij δE

j (t)

+ S
I
(t)

nI∑

k=1

�EI
ik +

nI∑

k=1

�EI
ik δI

k(t)

]
− 2

λE

dSE
i (t)

dt
−
(

1

λE

)2

SE
i (t),

i = 1, . . . , nE, (120)

d2SI
i (t)

dt2
= f

(
nEA

IE
S

E
(t) + nIA

II
S

I
(t) + vI

thi (t)
)+ f ′(nEA

IE
S

E
(t)

+ nIA
II
S

I
(t) + vI

thi (t)
)
[
S

E
(t)

nE∑

j=1

�IE
ij +

nE∑

j=1

�IE
ij δE

j (t)

+ S
I
(t)

nI∑

k=1

�II
ik +

nI∑

k=1

�II
ikδ

I
k(t)

]
− 2

λI

dSI
i (t)

dt
−
(

1

λI

)2

SI
i (t),

i = 1, . . . , nI. (121)

Now, assuming that the higher-order terms can be ignored, (120) and (121) become

d2SE
i (t)

dt2
= f

(
nEA

EE
S

E
(t) + nIA

EI
S

I
(t) + vE

thi (t)
)+ f ′(nEA

EE
S

E
(t)

+ nIA
EI

S
I
(t) + vE

thi (t)
)
[
S

E
(t)

nE∑

j=1

�EE
ij + S

I
(t)

nI∑

k=1

�EI
ik

]

− 2

λE

dSE
i (t)

dt
−
(

1

λE

)2

SE
i (t), i = 1, . . . , nE, (122)

d2SI
i (t)

dt2
= f

(
nEA

IE
S

E
(t) + nIA

II
S

I
(t) + vI

thi (t)
)+ f ′(nEA

IE
S

E
(t)

+ nIA
II
S

I
(t) + vI

thi (t)
)
[
S

E
(t)

nE∑

j=1

�IE
ij + S

I
(t)

nI∑

k=1

�II
ik

]

− 2

λI

dSI
i (t)

dt
−
(

1

λI

)2

SI
i (t), i = 1, . . . , nI. (123)

Finally, summing (122) and (123) over i = 1, . . . , nE and i = 1, . . . , nI, dividing
by nE, and nI, respectively, using (115), and assuming vE

thi (t) = vE
th and vI

thi (t) = vI
th,
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t ≥ 0, it follows that the average excitatory synaptic drive and the average inhibitory
synaptic drive are given by

d2S
E
(t)

dt2
= f

(
nEA

EE
S

E
(t) + nIA

EI
S

I
(t) + vE

th(t)
)− 2

λE

dS
E
(t)

dt

−
(

1

λE

)2

S
E
(t), S

E
(0) = S

E
0 , Ṡ

E
(0) = Ṡ

E

0 , t ≥ 0, (124)

d2S
I
(t)

dt2
= f

(
nEA

IE
S

E
(t) + nIA

II
S

I
(t) + vI

th(t)
)− 2

λI

dS
I
(t)

dt

−
(

1

λI

)2

S
I
(t), S

I
(0) = S

I
0, Ṡ

I
(0) = Ṡ

I

0. (125)

A similar analysis to the analysis provided in Sect. 3 can be carried out for the cou-
pled second-order differential equations (124) and (125). This can allow us to qual-
itatively study the abrupt transition from consciousness to unconsciousness as well
as the biphasic response during induction of anesthesia. Initial quantitative numerical
experiments of this model are presented in Sect. 7.

7 Illustrative Numerical Simulations of the Neural Field Model

In this section, we use the different analysis results developed in the paper to present
several numerical experiments that illustrate the qualitative behavior of the proposed
firing-rate models.

7.1 Two-Class Mean Excitatory and Mean Inhibitory Synaptic Drive Model

First, we consider the two-class mean field model (11) and (12) with a single equi-
librium point. Figures 3 and 4 show the case when the equilibrium point is unstable,
and hence, the system possesses a stable limit cycle.

Next, we illustrate the effect of the excitatory sensory input vE
th on the mean ex-

citatory and mean inhibitory synaptic drives. Here, we fix the parameters to be as in
the simulation shown in Fig. 3 and vary vE

th. It can be seen from Fig. 5 that, for the
value of vE

th below vE
th1 = −1.6, (11) and (12) have exactly one asymptotically stable

equilibrium point. As vE
th increases to vE

th2 = −1.6, the equilibrium point becomes
unstable. At this point, a supercritical Hopf bifurcation occurs, giving rise to a stable
limit cycle. As vE

th increases beyond vE
th2, the unstable equilibrium point reverts to

an asymptotically stable equilibrium point and the stable limit cycle disappears. The

value of S
E
e and S

I
e increases as vE

th increases; see Fig. 5. The effect of vE
th on the mean

firing rates and mean synaptic drives of the excitatory and the inhibitory neurons is
shown in Figs. 6 and 7, respectively. As vE

th increases, the mean firing rates and mean
synaptic drives for the excitatory and the inhibitory neurons increase for the chosen
parameter values.
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Fig. 3 S
E
(t) and S

I
(t) versus

time for a = 10, b = 9, c = 6,
d = 1, vE

th = −0.5, vI
th = −2.5,

λE = 1, λI = 1, fmax = 1, and

γ = 1 with S
E
(0) = 0.5 and

S
I
(0) = 0.7

Fig. 4 Phase portrait of (11)
and (12) for a = 10, b = 9,
c = 6, d = 1, vE

th = −0.5,

vI
th = −2.5, λE = 1, λI = 1,

fmax = 1, and γ = 1

The input voltage vI
th has a negative effect on the mean excitatory firing rate and

synaptic drive. As can be seen from Fig. 8, when vI
th increases the mean excitatory

firing rate and synaptic drive decrease for the chosen parameter values.
Finally, we relate the effect of an anesthetic drug, corresponding to an increase in

the inhibitory time constant λI, to the mean excitatory and mean inhibitory synaptic
drives. Here, we fix the parameters to be as in the simulation shown in Fig. 3 and
vary λI, which corresponds to concentration variations in the anesthetic drug. As can
be seen in Fig. 9, for the value of λI below λI

1 = 0.85, (11) and (12) have exactly
one asymptotically stable equilibrium point. As λI increases to λI

1, the equilibrium
point becomes unstable. At this point, a supercritical Hopf bifurcation occurs, giving
rise to a stable limit cycle. As λI increases beyond λI

2 = 2.3, the unstable equilibrium
point reverts to an asymptotically stable equilibrium point and the stable limit cycle

disappears. The value of S
E
e decreases as λI increases and approaches zero as λI

becomes large; see Fig. 9.
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Fig. 5 Bifurcation diagram of (11) and (12) for a = 10, b = 9, c = 6, d = 1, vI
th = −2.5, λE = 1, λI = 1,

fmax = 1, and γ = 1 with vE
th as a bifurcation parameter. The solid line represents asymptotically stable

equilibrium point, whereas the dashed line represents unstable equilibrium point. A supercritical Hopf bi-
furcation occurs at vE

th = −1.6 where the single asymptotically stable equilibrium point becomes unstable
and gives rise to a stable limit cycle. At vE

th = 0.6, the unstable equilibrium point reverts to an asymptoti-
cally stable equilibrium point and the stable limit cycle disappears

The mean excitatory synaptic drive S
E
(t), t ≥ 0, also decreases as λI increases

and approaches zero with increasing λI; see Fig. 10. The effect of anesthetic drug
can be explained by observing that if λI is below λI

1, corresponding to no drug effect,
then the mean excitatory synaptic drive is at a high level, which corresponds to an
awake state. The range of drug concentrations where we cannot predict with certainty
whether the patient will respond to noxious stimuli or not could certainly be explained
by stochastic variation in vE

th and vI
th; the postulated inputs from pain, sensorimotor,

and proprioceptive sensors, or the reticular activating system.
However, an alternative explanation is that during the induction of anesthesia, the

patient may or may not respond to a certain range of anesthetic drug concentration.
This is captured in our model by the existence of limit cycle for a range of λI between
λI

1 and λI
2. In this case, the mean excitatory synaptic drive has a maximum and a min-

imum value as can be seen in Fig. 10. The probability of observing the response of the
patient depends on the time in the cycle at which the observation is made. The patient
will respond if the observation occurs at the time when the mean excitatory synaptic
drive is at its peak and will not respond if the mean excitatory synaptic drive is at
its nadir. If the concentration of the anesthetic drug is further increased, correspond-
ing to an increase in λI, then the mean excitatory synaptic drive approaches zero as
shown in Fig. 10. At this point, the patient is deeply sedated and will not respond.

7.2 Partial Synchronization of Synaptic Drive Dynamics

For our first example, we demonstrate partial synchronization for the model given by
(34) and (35) with three excitatory neurons E1–E3 and three inhibitory neurons I1–I3



Journal of Mathematical Neuroscience  (2015) 5:20 Page 35 of 50

Fig. 6 Mean firing rates for
a = 10, b = 9, c = 6, d = 1,
vI

th = −2.5, λE = 1, λI = 1,
fmax = 1, and γ = 1 with

S
E
(0) = 0.5 and S

I
(0) = 0.5

and with different values of vE
th

as shown in Fig. 11. The neural connectivity matrix A is given by

A =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 −1 0 −1
1 0 0 −1 −1 0
0 1 0 −1 −1 −1
0 0 1 0 −1 −1
0 1 0 0 0 0
1 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
,

which implies that the two inhibitory neurons I2 and I3 do not receive inhibitory
inputs. Here, we assume that all the excitatory neurons have the same time con-
stant λE = 0.05 s and all the inhibitory neurons have the same prolonged time
constant λI = 0.5 s. Furthermore, we assume that ṽE

th = [0.02,0.02,0.02]T, ṽI
th =

[0.02,0.3,0.5]T, and the activation functions fi(·), i = 1,2, . . . ,6, are given by (9).
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Fig. 7 Mean synaptic drives for
a = 10, b = 9, c = 6, d = 1,
vI

th = −2.5, λE = 1, λI = 1,
fmax = 1, and γ = 1 with

S
E
(0) = 0.5 and S

I
(0) = 0.5

and with different values of vE
th

We use the MATLAB® toolbox YALMIP for solving the linear matrix inequalities
(LMIs) given by (36) and (37). For the chosen values of A, λE, and λI, (36) and (37)
are satisfied with

P =

⎡

⎢⎢⎢⎢⎢⎣

5.74 0 2.24 −1.13 −1.14 −0.05
0 6.08 0 −1.86 −0.77 −1.85

2.24 0 6.35 −0.05 −2.27 −2.26
−1.13 −1.86 −0.05 40.02 10.25 10.23
−1.14 −0.77 −2.27 10.25 48.72 16.42
−0.05 −1.85 −2.26 10.23 16.42 48.75

⎤

⎥⎥⎥⎥⎥⎦
,

Q =

⎡

⎢⎢⎢⎢⎢⎣

55.53 0.05 −0.08 −0.73 −0.8 −0.81
0.05 55.36 0.08 −1.33 −1.13 −1.12

−0.08 0.08 55.74 −0.88 −1.38 −1.27
−0.73 −1.33 −0.88 63.73 8.4 8.4
−0.8 −1.13 −1.38 8.4 65.58 10.26
−0.81 −1.12 −1.27 8.4 10.26 65.47

⎤

⎥⎥⎥⎥⎥⎦
,
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Fig. 8 Mean excitatory firing
rates and mean excitatory
synaptic drives for a = 10,
b = 9, c = 6, d = 1, vE

th = −0.5,

λE = 1, λI = 1, fmax = 1, and

γ = 1 with S
E
(0) = 0.5 and

S
I
(0) = 0.5 and with different

values of vI
th

R = diag
[
24.39 24.55 15.85 49.42 89.76 91.31

]
.

Hence, the biological neural network given in (34) and (35) is globally exponentially
partially synchronized. As can be seen in Fig. 12, the synaptic drive of the excitatory
neurons E1 to E3 and the inhibitory neuron I1 converges to zero, whereas the synaptic
drive of the inhibitory neurons I2 and I3 that themselves do not receive inhibitory
inputs do not converge to zero.

Next, we increase the number of neurons in the network to twelve with six ex-
citatory neurons E1–E6 and six inhibitory neurons I1–I6. The connections between
neurons are also increased as shown in the neural connectivity matrix A given by
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Fig. 9 Bifurcation diagram of
(11) and (12) for a = 10, b = 9,
c = 6, d = 1, vE

th = −0.5,

vI
th = −2.5, λE = 1, fmax = 1,

and γ = 1 with λI as a
bifurcation parameter. The solid
line represents asymptotically
stable equilibrium point,
whereas the dashed line
represents unstable equilibrium
point. A supercritical Hopf
bifurcation occurs at λI

1 = 0.85
where the single asymptotically
stable equilibrium point
becomes unstable and gives rise
to a stable limit cycle. At
λI

2 = 2.3, the unstable
equilibrium point reverts to an
asymptotically stable
equilibrium point and the stable
limit cycle disappears

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 −1 0 −1 −1 −1 0
1 0 1 1 1 1 0 −1 −1 −1 0 −1
1 1 0 1 1 1 −1 0 −1 0 −1 −1
1 1 1 0 1 1 0 −1 0 −1 0 −1
1 1 1 1 0 1 −1 0 −1 0 −1 −1
1 1 1 1 1 0 0 −1 0 −1 0 −1
1 0 1 0 1 0 0 −1 −1 0 −1 0
0 1 0 1 0 1 −1 0 −1 0 −1 0
0 0 1 1 1 0 −1 −1 0 −1 −1 0
0 1 0 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (126)

which implies that the three inhibitory neurons I4, I5, and I6 do not receive inhibitory
inputs. Here, we assume that all the excitatory neurons have the same time constant
λE = 0.05 s and all the inhibitory neurons have the same prolonged time constant
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Fig. 10 Mean synaptic drives
for a = 10, b = 9, c = 6, d = 1,
vE

th = −0.5, vI
th = −2.5, λE = 1,

fmax = 1, and γ = 1 with

S
E
(0) = 0.5 and S

I
(0) = 0.7

and with different values of λI

λI = 0.35 s. Furthermore, we assume that ṽE
th = [0.02,0.02,0.02,0.02,0.02,0.02]T,

ṽI
th = [0.02,0.02,0.02,0.1,0.3,0.5]T, and the activation functions fi(·), i = 1,2,

. . . ,12, are given by (9).
The LMIs given by (36) and (37) are satisfied with

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.24 0.08 0.11 0.11 0.15 0.08 −0.07 −0.24 −0.06
0.08 0.2 0.07 0.11 0.08 0.11 −0.16 −0.08 −0.12
0.11 0.07 0.19 0.1 0.11 0.07 −0.06 −0.17 −0.09
0.11 0.11 0.1 0.23 0.11 0.11 −0.16 −0.13 −0.15
0.15 0.08 0.11 0.11 0.24 0.08 −0.07 −0.24 −0.06
0.08 0.11 0.07 0.11 0.08 0.2 −0.16 −0.07 −0.15

−0.07 −0.16 −0.06 −0.16 −0.07 −0.16 1.13 0.03 0.49
−0.24 −0.08 −0.17 −0.13 −0.24 −0.07 0.03 1.42 0.13
−0.06 −0.12 −0.09 −0.15 −0.06 −0.15 0.49 0.13 1.07

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Fig. 11 A population of three
excitatory neurons E1–E3 and
three inhibitory neurons I1–I3.
The synaptic weights shown on
the arcs represent the coupling
strength of the neural
interconnection

Fig. 12 Solutions to (25) and
(26) with initial conditions
SE(0) = [0.2,0.25,0.4]T,
SI(0) = [0.1,0.3,0.45]T for
λE = 0.05 s and λI = 0.5 s. The
synaptic drive of the excitatory
neurons E1 to E3 and the
inhibitory neuron I1 converges
to zero, whereas the synaptic
drive of the inhibitory neurons
I2 and I3 that themselves do not
receive inhibitory inputs do not
converge to zero

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.45 0.08 0.09 0.1 0.11 0.07 −0.13 −0.31 −0.14
0.08 1.41 0.06 0.09 0.08 0.07 −0.18 −0.16 −0.18
0.09 0.06 1.41 0.08 0.09 0.06 −0.12 −0.23 −0.13
0.1 0.09 0.08 1.44 0.1 0.08 −0.2 −0.22 −0.2

0.11 0.08 0.09 0.1 1.45 0.07 −0.13 −0.31 −0.14
0.07 0.07 0.06 0.08 0.07 1.41 −0.19 −0.15 −0.19

−0.13 −0.18 −0.12 −0.2 −0.13 −0.19 1.9 0.15 0.47
−0.31 −0.16 −0.23 −0.22 −0.31 −0.15 0.15 2.22 0.21
−0.14 −0.18 −0.13 −0.2 −0.14 −0.19 0.47 0.21 1.86

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R = diag
[
0.63 0.63 93 0.84 0.63 0.80 1.51 1.36 1.39

]
.

Hence, the biological neural network given in (34) and (35) is globally exponentially
partially synchronized. As can be seen in Fig. 13, the synaptic drive of the excitatory
neurons E1 to E6 and three of the inhibitory neurons I1, I2, and I3 converges to zero,
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Fig. 13 Solutions to (25) and
(26) with initial conditions
SE(0) = [0.2,0.25,0.4,0.1,0.3,

0.45]T, SI(0) = [0.4,0.2,0.3,

0.3,0.4,0.2]T for λE = 0.05 s
and λI = 0.35 s. The synaptic
drive of the excitatory neurons
E1 to E6 and three of the
inhibitory neurons I1, I2, and I3
converges to zero, whereas the
synaptic drive of the inhibitory
neurons I4, I5, and I6 that
themselves do not receive
inhibitory inputs do not
converge to zero

Fig. 14 Solutions to (25) and
(26) with initial conditions
SE(0) = [0.2,0.25,0.4,0.1,0.3,

0.45]T, SI(0) = [0.4,0.2,0.3,

0.3,0.4,0.2]T for LE =
diag[2.1,1.9,1.85,2.15,2.05,

2.5], LI = diag[1.5,1.75,2.4,

2.2,2.25,2], and fmax = 0.5.
The synaptic drive of the
excitatory neurons E1 to E6 do
not converge to zero

whereas the synaptic drive of the inhibitory neurons I4, I5, and I6 that themselves do
not receive inhibitory inputs do not converge to zero.

Next, we apply Theorem 3 to the connectivity matrix given by (126). Here, we
assume that ṽE

th = [0.15,0.15,0.15,0.15,0.15,0.15]T, ṽI
th = [0.15,0.15,0.15,0.15,

0.15,0.15]T, LE = diag[2.1,1.9,1.85,2.15,2.05,2.5], LI = diag[1.5,1.75,2.4,2.2,

2.25,2], and the activation functions fi(·), i = 1,2, . . . ,12, are given by (52) with
fmax = 0.5. As can be seen from Fig. 14, the synaptic drives of the excitatory neurons
E1 to E6 do not converge to zero. However, when the time constants of the inhibitory
neurons are increased to LI = diag[0.1,0.1,0.1,0.1,0.1,0.1], the synaptic drives of
the excitatory neurons E1 to E6 converge to zero; see Fig. 15.

Next, we present partial synchronization of the model presented in (79) and (80)
with four excitatory neurons E1–E4 and four inhibitory neurons I1–I4. The neural
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Fig. 15 Solutions to (25) and
(26) with initial conditions
SE(0) = [0.2,0.25,0.4,0.1,0.3,

0.45]T, SI(0) = [0.4,0.2,0.3,

0.3,0.4,0.2]T for LE =
diag[2.1,1.9,1.85,2.15,2.05,

2.5], LI = diag[0.1,0.1,0.1,

0.1,0.1,0.1], and fmax = 0.5.
The synaptic drive of the
excitatory neurons E1 to E6
converge to zero

connectivity matrix A is given by

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 −1 0 −1 −1
1 0 1 1 −1 −1 0 −1
1 1 0 1 0 0 −1 −1
1 1 1 0 0 −1 −1 −1
1 1 1 1 0 −1 0 0
1 1 1 1 −1 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (127)

which implies that the inhibitory neurons I3 and I4 do not receive inhibitory in-
puts. Here, we assume that all the excitatory neurons have the time constant
λE = 0.05 s and all the inhibitory neurons have the same prolonged time con-
stant λI = 0.3 s. Furthermore, we assume that ṽE

th = [0.02,0.02,0.02,0.02]T, ṽI
th =

[0.02,0.02,0.4,0.5]T, and the activation functions fi(·), i = 1,2, . . . ,8, are given
by (9).
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The LMIs given by (88) and (89) are satisfied with

P̂ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.04 0.04 0.04 0.03 0.03 0.11 0.06 0.06 0.06 0.03 0.03
0.04 0.2 0.04 0.04 0.03 0.03 0.07 0.11 0.07 0.07 0.03 0.03
0.04 0.04 0.2 0.04 0.03 0.03 0.06 0.06 0.11 0.06 0.03 0.03
0.04 0.04 0.04 0.2 0.03 0.03 0.06 0.06 0.06 0.11 0.03 0.03
0.03 0.03 0.03 0.03 4.8 0.73 0.04 0.04 0.04 0.04 2.97 1.62
0.03 0.03 0.03 0.03 0.73 4.8 0.04 0.04 0.04 0.04 1.62 2.97
0.11 0.07 0.06 0.06 0.04 0.04 0.19 0.05 0.05 0.05 0.04 0.04
0.06 0.11 0.06 0.06 0.04 0.04 0.05 0.19 0.05 0.05 0.04 0.04
0.06 0.07 0.11 0.06 0.04 0.04 0.05 0.05 0.19 0.05 0.04 0.04
0.06 0.07 0.06 0.11 0.04 0.04 0.05 0.05 0.05 0.19 0.04 0.04
0.03 0.03 0.03 0.03 2.97 1.62 0.04 0.04 0.04 0.04 3.29 1.35
0.03 0.03 0.03 0.03 1.62 2.97 0.04 0.04 0.04 0.04 1.35 3.29

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q̂ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16.9 1.1 1 1 0.5 1.9 −2.8 −4.3 −4.2 −4.2 −6.4 −6.3
1.1 16.8 1 1.1 0.7 0.7 −4.1 −2.7 −4.1 −4.1 −6.3 −6.3
1 1 16.8 1 1.8 1.8 −4.4 −4.4 −2.9 −4.4 −6.4 −6.4
1 1.1 1 16.9 1.9 0.5 −4.2 −4.3 −4.2 −2.8 −6.3 −6.4

0.5 0.7 1.8 1.9 14.3 3.3 −6.1 −6.1 −6.1 −6.1 4.5 1.9
1.9 0.7 1.8 0.5 3.3 14.3 −6.1 −6.1 −6.1 −6.1 1.9 4.5

−2.8 −4.1 −4.4 −4.2 −6.1 −6.1 34.5 11.7 11.8 11.6 −7.1 −7.2
−4.3 −2.7 −4.4 −4.3 −6.1 −6.1 11.7 34.6 11.8 11.7 −7.1 −7.1
−4.2 −4.1 −2.9 −4.2 −6.1 −6.1 11.8 11.8 34.7 11.8 −7.2 −7.2
−4.2 −4.1 −4.4 −2.8 −6.1 −6.1 11.6 11.7 11.8 34.5 −7.2 −7.1
−6.4 −6.3 −6.4 −6.3 4.5 1.9 −7.1 −7.1 −7.2 −7.2 46.5 18.6
−6.3 −6.3 −6.4 −6.4 1.9 4.5 −7.2 −7.1 −7.2 −7.1 18.6 46.5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R̂ = diag
[
19.8 19.8 19.8 19.8 22.73 22.73 3.55 3.24 3.34 3.55 3.87 3.87

]
.

Hence, the biological neural network given in (79) and (80) is globally exponen-
tially partially synchronized. As can be seen in Fig. 16, the synaptic drive of the
excitatory neurons E1 to E4 and two of the inhibitory neurons I1 and I2 converges to
zero, whereas the synaptic drive of the inhibitory neurons I3 and I4 do not converge
to zero.

Next, we apply Theorem 5 to the connectivity matrix given by (127). Here,
we assume that ṽE

th = [0.12,0.12,0.12,0.12]T, ṽI
th = [0.12,0.12,0.12,0.12]T, LE =

diag[1,0.9,0.85,0.8], LI = diag[1.1,1.2,1.3,1.25], and the activation functions
fi(·), i = 1,2, . . . ,8, are given by (52) with fmax = 0.5. As can be seen from Fig. 17,
the synaptic drives of the excitatory neurons E1 to E4 do not converge to zero.
Once again, however, as we increase the time constants of the inhibitory neurons
to LI = diag[0.2,0.2,0.2,0.2], the synaptic drives of the excitatory neurons E1 to E4

converge to zero; see Fig. 18.
It can also be seen from Figs. 16 and 18 that the synaptic drive of the excita-

tory neurons E1 to E4 increase initially before converging to zero. This potentially
captures the drug biphasic response, where there is a boost in brain activity prior to
hypnotic induction.
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Fig. 16 Solutions to (72) and
(73) with initial conditions
SI(0) = [0.2,0.25,0.05,0.1]T,
SI(0) = [0.3,0.45,0.4,0.2]T,
ṠE(0) = [2,2,2,2]T,
ṠI(0) = [1,1,1,1]T for
λE = 0.05 s and λI = 0.3 s. The
synaptic drive of the excitatory
neurons E1 to E4 and two of the
inhibitory neurons I1 and I2
converges to zero, whereas the
synaptic drive of the inhibitory
neurons I3 and I4 that
themselves do not receive
inhibitory inputs do not
converge to zero

Finally, we further explore the drug biphasic phenomena using the second-order
mean excitatory and mean inhibitory synaptic drive model given by (124) and (125)
with the activation function f (·) given by (10). Once again, we observe that there is
an initial boost in the mean excitatory synaptic drive just before convergence to zero;
see Fig. 19.

8 Conclusion and Discussion

Over the past decade there have been significant advances in our understanding of
how anesthetic agents affect the properties of neurons [1, 2]. This has led, in turn,
to efforts to understand how molecular mechanisms translate into the induction of
general anesthesia at the macroscopic level [3–7, 12–17]. In particular, since the pi-
oneering work of Steyn-Ross et al. [12] there has been particular focus on how the
molecular properties of anesthetic agents lead to the observed changes in the elec-
troencephalogram that are associated with the induction of anesthesia [12–17]. These
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Fig. 17 Solutions to (72) and
(73) with initial conditions
SI(0) = [0.2,0.25,0.05,0.1]T,
SI(0) = [0.3,0.45,0.4,0.2]T,
ṠE(0) = [0.5,0.5,0.5,0.5]T,
ṠI(0) = [0.5,0.5,0.5,0.5]T for
LE = diag[1,0.9,0.85,0.8],
LI = diag[1.1,1.2,1.3,1.25],
and fmax = 0.5. The synaptic
drive of the excitatory neurons
E1 to E4 do not converge to zero

models, of necessity, have focused on the electrochemical potential of the neuron and
the analyses consider both the temporal and the spatial domain, specifically invoking
a continuous spatial domain to account for interneuron connectivity. The complexity
of the brain requires specific assumptions as regards this connectivity.

In this paper, we used a synaptic drive formulation of neuronal activity to derive
a mechanistic model that can be employed to understand the effects of anesthetic
agents on neuronal firing rates. Our focus is on demonstrating a decrease in the firing
rate of excitatory neurons as a consequence of the known effects of anesthetic agents
on single neurons. Thus, there is the implicit assumption that anesthesia is a result
of decreased neuronal activity. We do note that this may be overly simplistic since
the induction of anesthesia is associated with an initial increase in neuronal activ-
ity. However, we seek to understand how decreased activity might develop because
(i) anesthetic agents at sufficiently high concentrations will cause a decrease in neu-
ronal activity and (ii) one theory of anesthesia is that it represents the interruption of
flow of “information” through the brain and this could certainly result from decreased
neuronal activity in specific regions.

Even this seemingly simple effect cannot be demonstrated using the full synaptic
drive model. Our model begins with a spatially discrete description of neuronal con-
nectivity. However, given the immense dimensionality of the brain, in the first part
of the paper we simplify our model using a mean field assumption. Specifically, we
assume that within the populations of excitatory and inhibitory neurons, second-order
terms that are the product of variances of synaptic connection strengths and variances
of synaptic drives (from the mean) can be ignored [5].

We show that even this simplified two-state mean field theory exhibits interesting
behavior. In particular, for certain values of model parameters, the mean excitatory
synaptic drive has an asymptotically stable equilibrium point. Then as the time con-
stant of the inhibitory postsynaptic potential increases, an effect of certain anesthetic
agents on the single neuron, this equilibrium point becomes unstable, giving rise to
a stable limit cycle. With further increases in the inhibitory time constant the limit
cycle disappears and we again find an asymptotically stable equilibrium point corre-
sponding to a decreasing mean excitatory synaptic drive.
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Fig. 18 Solutions to (72) and
(73) with initial conditions
SI(0) = [0.2,0.25,0.05,0.1]T,
SI(0) = [0.3,0.45,0.4,0.2]T,
ṠE(0) = [0.5,0.5,0.5,0.5]T,
ṠI(0) = [0.5,0.5,0.5,0.5]T for
LE = diag[1,0.9,0.85,0.8],
LI = diag[0.2,0.2,0.2,0.2], and
fmax = 0.5. The synaptic drive
of the excitatory neurons E1 to
E4 converge to zero

This offers a new interpretation of the stochastic characteristic of the induction
of anesthesia. There have been animal studies, and also a small number of human
studies, in which the response of a single subject to varying doses of an anesthetic
agent are observed. In these studies, it has been observed that the concentration-
response curve is very sharp [30]. In particular, as the dose or concentration of the
anesthetic agent increases there exists a point at which there is an abrupt transition
from consciousness to unconsciousness. However, in these studies the concentration-
response curve has not been found to be a strict step function. Rather, there is a nar-
row range of concentrations within which the therapeutic effect (response or lack
of a response to a noxious stimulus) has been described as a probability of re-
sponse.

A common empirical model describing this effect is a variation on the Hill equa-
tion [31] in which the probability P of an anesthetic effect, that is, of no response to
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Fig. 19 Solutions to (124) and

(125) for nEA
EE = 10,

nIA
II = 12, nEA

IE = 4,

nIA
II = 1, vE

th = 0, vI
th = 0,

λE = 4 s, λI = 6 s, fmax = 1,
and γ = 1 with initial conditions

S
E
(0) = 1, S

I
(0) = 0.5, and

Ṡ
E
(0) = Ṡ

E
(0) = 0

a noxious stimulus, is given by

P = Cγ

[Cγ

50 + Cγ ] , (128)

where C is the concentration of anesthetic agent, C50 is the concentration of anes-
thetic agent associated with a 50 % probability of an anesthetic effect, and γ is a
parameter that determines the steepness of the concentration–probability anesthetic
curve. Typically for individual subjects γ ranges from 6 to 20 [32, 33].

The range of drug concentrations where we cannot predict with certainty whether
the patient will respond to noxious stimuli or not (requiring a probabilistic model)
could certainly be explained by stochastic variation in the postulated inputs from pain,
sensorimotor, and proprioceptive sensors, or the reticular activating system. However,
an alternative explanation is that during the induction of anesthesia the probability of
observing the response of the patient depends on the time in the cycle at which the
observation is made. The patient will respond if the observation occurs at the time
when the mean excitatory synaptic drive is at its peak and will not respond if the mean
excitatory synaptic drive is at its nadir. If the concentration of the anesthetic drug is
further increased, corresponding to a further increase in the inhibitory postsynaptic
potential time constant, the limit cycle disappears and the mean excitatory synaptic
drive has an asymptotically stable equilibrium that approaches zero (Fig. 10) and at
this point, the patient is deeply anesthetized (i.e., sedated) and will not respond.

The most formidable challenge to understanding the transition to anesthesia is the
immense dimensionality of the brain. Typically, this dimensionality is simplified with
either specific structural assumptions or by using mean field (or more sophisticated
statistical) frameworks. The extent to which these assumptions influence even qual-
itative conclusions is unclear. In the case of the mean synaptic drive model that we
use in this paper, we have simplified the analysis by ignoring second-order terms in
an expansion around mean values. Without this assumption, we are unable to reach
any analytical conclusions regarding excitatory neuronal activity with an increasing
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inhibitory postsynaptic potential time constant. It is not clear how the mean field
approximation impacts our conclusions.

In the second part of the paper we have accordingly extended our analysis with-
out mean field assumptions by postulating the existence of a subset of inhibitory
neurons that themselves do not receive inhibitory inputs. Using this assumption we
derived sufficient conditions for convergence and state equipartition of the activity of
excitatory neurons receiving input from these inhibitory neurons to zero. We further
extended this analysis to consider a nonmonotonic postsynaptic potential, as an alter-
native and possibly more realistic model for postsynaptic potentials. An assumption
that is essential to this finding of our paper is the existence of a subset of inhibitory
neurons that themselves do not receive inhibitory input. We view this postulate as
a more transparent assumption for the synaptic drive model than the mean field as-
sumption. We are unaware of any experimental verification of such a subset. In the
absence of such data, we view this assumption as defining a sufficient condition for
partial state equipartitioning of a subset of excitatory neurons to zero activity. The
convergence of activity of subset(s) of excitatory neurons would certainly be a plau-
sible explanation for the interruption of information flow in the brain that is one
suggested mechanism for unconsciousness [20].

The proposed dynamical system framework can potentially foster the development
of new frameworks that can allow us to interpret experimental and clinical results,
connect biophysical findings to psychophysical phenomena, explore a new hypothesis
based on the cognitive neuroscience of consciousness and develop new assertions,
and improve the reliability of general anesthesia. Dynamical systems theory is ideally
suited for rigorously describing the behavior of large-scale networks of neurons and
can potentially establish a scientific basis for new metrics of anesthetic depth by
making the assessment of consciousness a mechanistically grounded tool.
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