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Abstract We show that point-neuron models with a Heaviside firing rate function
can be ill posed. More specifically, the initial-condition-to-solution map might be-
come discontinuous in finite time. Consequently, if finite precision arithmetic is used,
then it is virtually impossible to guarantee the accurate numerical solution of such
models. If a smooth firing rate function is employed, then standard ODE theory im-
plies that point-neuron models are well posed. Nevertheless, in the steep firing rate
regime, the problem may become close to ill posed, and the error amplification, in
finite time, can be very large. This observation is illuminated by numerical exper-
iments. We conclude that, if a steep firing rate function is employed, then minor
round-off errors can have a devastating effect on simulations, unless proper error-
control schemes are used.

Keywords Point-neuron models · Ill posed · Numerical solution

1 Introduction

Modeling of electrical potentials has a long tradition in computational neuroscience.
One model with some physiological significance is the voltage-based system

τu′(t) = −u(t) + ωSβ

[
u(t) − uθ

]+ q(t), t ∈ (0, T ], (1)

u(0) = u0, (2)

where

u(t),q(t) ∈R
N, t ∈ (0, T ],
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uθ ,u0 ∈ R
N,

ω ∈ R
N×N,

τ ∈R
N×N is diagonal,

S(x) = 1

2

(
1 + tanh(x)

)
,

Sβ [x] = S(βx),

Sβ [x] = (
Sβ [x1], . . . , Sβ [xN ])T , x = (x1, . . . , xN)T ∈R

N.

In the rate model (1)–(2), each component function ui(t) of u(t) represents the time
dependent potential of the ith unit in a network of N units. The nonlinear function
Sβ is called the firing rate function, {ωij } are the connectivities, and q(t) models the
external drive. A detailed derivation of this model can be found in [1–3].

The purpose of this paper is to explore the properties of the initial-condition-to-
solution map

Rβ : u0 → u(T ), T < ∞, (3)

associated with (1)–(2). Note that we use the subscript β to emphasize that Rβ de-
pends on the steepness parameter β , and that R∞ corresponds to using a Heaviside
firing rate function, i.e. S∞ = H . We will also make use of the standard notation

‖f‖∞ = sup
1≤i≤N

|fi |, f = (f1, . . . , fN), (4)

for the supremum norm throughout this paper.
A simple example, presented in Sect. 4, shows that R∞ can become discontinu-

ous. Hence, the model is mathematically ill posed [4, 5] and round-off errors of any
size can corrupt computations. We conclude that it is very difficult to produce reli-
able simulations with such models. Since all norms for finite dimensional spaces are
equivalent, it is not possible to “circumvent” this problem by changing the involved
topologies.

According to standard ODE theory (Appendix A), Rβ , with β < ∞, is continuous,
but the size of the error-amplification ratio

E(T ;β) = ‖u(T ;β) − ũ(T ;β)‖∞
‖u0 − ũ0‖∞

(5)

may be huge for large β , which will be demonstrated and analyzed in Sects. 2 and 3,
respectively. Here, ũ0 represents a perturbed initial condition and ũ(t) its associated
solution. This implies that, also for 1 � β < ∞, it can become difficult to guarantee
the accurate numerical solution of (1)–(2): Minor round-off errors may be signifi-
cantly amplified within short time intervals, which can lead to erroneous simulations.

Our investigation is motivated by the fact that steep sigmoid functions, or even
the Heaviside function, often are employed in mathematical/computational neuro-
science; see e.g. [1, 6] and references therein. Other authors [7, 8] have also pointed
out that severe challenges occur if β = ∞, i.e. issues concerning how to define suit-
able function spaces and to prove existence of solutions. Nevertheless, as far as we
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know, results which explicitly discuss the ill-posed nature of (1)–(2) when β = ∞,
and how this property yields extra numerical challenges in the steep, but smooth,
firing rate regime, has not previously been published.

Remark We would like to point-out the following: Assume that an initial condition is
close to an unstable equilibrium. Our results should not be interpreted as expressing
the mundane fact that a perturbation of this initial condition, moving it to another
region with completely different dynamical properties, may lead to large changes in
the solution. In fact, we show that the error-amplification ratio can be huge, during
small time intervals, even though the perturbation does not change which neurons
are active. That is, the change in the initial condition is not such that it changes the
qualitative behavior of the dynamical system for 0 < t � 1—only the quantitative
properties are dramatically altered. This can happen in the steep firing rate regime.

2 Numerical Results

Let us first compute the error-amplification ratio (5) for some simple problems.

Example 1 Consider the following model of a single point neuron, i.e. N = 1,

u′(t) = −u(t) + 0.9Sβ

[
u(t) − 0.6

]+ 0.151, t ∈ (0, T ],
u(0) = u0 = 0.6.

We used Matlab’s ode45 solver, with the default error-control settings and T = 0.1,
to compute numerical approximations of

u(t) = u(t;β) for β = 1, . . . ,200.

Also a second series of simulations were performed, using the same selection of
values for the steepness parameter, but with the perturbed initial condition

ũ0 = u0 − 10−5. (6)

The corresponding solution is denoted ũ(t) = ũ(t;β).
Plots of u and ũ, with β = 200, are displayed in Fig. 1. Note that in both cases the

neuron fires, i.e. the change in the initial condition is not such that it has moved from
one side of an unstable equilibrium to the other side. Even so, according to Fig. 2 and
Table 1, the error-amplification ratio E(T ;β), due to the minor perturbation (6) of
the initial condition, is in the range [80.6,1054.1] for β ∈ [100,200], and also very
large for β = 50,75.

Simulations with the strict error-control setting

odeset(’RelTol’,1e-13,’AbsTol’,1e-13)

generated the same results, and so did an explicit Euler scheme, with uniform time-
step �t = 10−7.
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Fig. 1 Numerical results, with
steepness parameter β = 200,
for the problem studied in
Example 1

Fig. 2 Error-amplification
ratio, with T = 0.1, as a
function of the steepness
parameter β for the problem
studied in Example 1

Table 1 Error-amplification
ratio, with T = 0.1, associated
with Example 1

β 1 25 50 75

E(T ;β) = |u(T ;β)−ũ(T ;β)|
|u0−ũ0| 0.95 2.79 8.58 26.41

Example 2 Let us consider a model of two point neurons:

u′
1(t) = −u1(t) + 0.9Sβ

[
u1(t) − 0.6

]+ 1.0Sβ

[
u2(t) − 0.6

]− 0.3492, t ∈ (0, T ],
u′

2(t) = −u2(t) − 0.1Sβ

[
u1(t) − 0.6

]+ 0.6Sβ

[
u2(t) − 0.6

]+ 0.3501, t ∈ (0, T ],
u1(0) = u1,0 = 0.6,

u2(0) = u2,0 = 0.6.
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Fig. 3 Numerical results, with
steepness parameter β = 200
and T = 0.1, for the problem
studied in Example 2

Fig. 4 Numerical results, with
steepness parameter β = 150
and T = 0.2, for the problem
studied in Example 2

The same procedure as in Example 1 was used, but with the perturbed initial condition

ũ1(0) = ũ1,0 = u1,0 − 10−5,

ũ2(0) = ũ2,0 = u2,0 + 10−5.

Figures 3 and 4 show that this minor change of the initial condition, in the steep
firing rate regime, has a huge impact on the solution of the model. And, the pertur-
bation does not change which neuron that fires. In Fig. 5 we have plotted the error-
amplification ratio E(T ;β), see (5), as a function of β = 1,2, . . . ,200. Clearly, in
this case E(T ;β) is unacceptably large, even for rather moderate values of the steep-
ness parameter.
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Fig. 5 Error-amplification ratio
as a function of the steepness
parameter β for the problem
studied in Example 2

As in Example 1, we used Matlab’s ode45 solver with the standard settings.
Computations with the strict error-control parameters

odeset(’RelTol’,1e-13,’AbsTol’,[1e-13 1e-13]) (7)

produced virtually the same results. The simulations were also “confirmed” by our
explicit Euler implementation with time-step �t = 10−7.

Figure 6 shows numerical results computed with Matlab’s ode15s solver, em-
ploying the default error-control settings. The curves shown in this figure are very
different from the graphs displayed in Fig. 4, which were computed by the ode45
software. We conclude that even the toy example considered in this section is not
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Fig. 6 Results generated by
Matlab’s ode15s solver, with
steepness parameter β = 150
and T = 0.2. Note that the
curves are very different from
the graphs produced with the
ode45 solver; see Fig. 4

Fig. 7 Results generated by an
explicit Euler scheme:
�t = 0.01, β = 150, and
T = 0.2. Note that the curves
are rather different from the
graphs produced with the
ode45 solver; see Fig. 4

trivial to solve (with the strict error-control setting (7), ode15s also managed to
produce the curves shown in Fig. 4).

If u1(t) ≈ uθ and u2(t) ≈ uθ , then
∣∣u1(t)

∣∣,
∣∣u2(t)

∣∣≤ 2uθ = 2 · 0.6 = 1.2,

and the model implies that
∣∣u′

1(t)
∣∣ ≤ 1.2 + 0.9 + 1.0 + 0.3492 = 3.4492,

∣∣u′
2(t)

∣∣ ≤ 1.2 + 0.1 + 0.6 + 0.3501 = 2.2501,

which are rather small. One therefore might think that it is sufficient to employ a
moderate time-step to obtain an accurate numerical approximation. Figure 7 shows
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that this is not the case. (In computational mathematics it is well known that the accu-
racy of the finite difference approximation [u1(t +�t)−u1(t)]/�t , of the derivative
u′

1(t), depends on the second order derivative u′′
1(t), which in our case is of order

O(β). This explains the poor approximation obtained with time-step �t = 0.01.)

3 Analysis

The purpose of this section is to present an analysis of the error-amplification ratio
(5) and thereby explain the main features of our numerical results. Even though the
Picard–Lindelöf theorem [9, 10] asserts that (1)–(2) has a unique solution u(t), pro-
vided that q(t) is continuous and that β < ∞, it is virtually impossible to determine a
simple expression for u(t). On the other hand, if u(t) ≈ uθ and β < ∞, then we can
linearize Sβ to get an approximate model, which is much easier to work with.

3.1 Linearization

The linearization of Sβ about zero reads

Lβ(x) = Sβ [0] + S′
β [0]x

= 1

2
+ 1

2
βx. (8)

Define τ = I, the identity matrix, then the linear approximation of (1)–(2) reads

s′(t) = −s(t) + ωLβ

[
s(t) − uθ

]+ q(t)

= −s(t) + ω

[
1

2
1 + 1

2
β
{
s(t) − uθ

}
]

+ q(t)

=
(

1

2
βω − I

)
s(t) + 1

2
ω(1 − βuθ ) + q(t)

= As(t) + d + q(t), (9)

s(0) = u0, (10)

where

A = A(β) = 1

2
βω − I, (11)

d = d(β) = 1

2
ω(1 − βuθ ).

The linearized problem with a perturbed initial condition becomes

s̃′(t) = As̃(t) + d + q(t),

s̃(0) = ũ0,
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and the difference s(t) − s̃(t) obeys
[
s(t) − s̃(t)

]′ = A
[
s(t) − s̃(t)

]
,

s(0) − s̃(0) = u0 − ũ0.

Therefore,

s(t) − s̃(t) = (u0 − ũ0)e
At ,

and the error-amplification ratio can be written in the form

‖s(T ) − s̃(T )‖∞
‖u0 − ũ0‖∞

= ‖(u0 − ũ0)e
AT ‖∞

‖u0 − ũ0‖∞
. (12)

Since the entries of A = A(β) are of order O(β), see (11), we conclude that the error-
amplification ratio for the linearized model is of exponential order O(eβ). Is this also
the case for the highly nonlinear model (1)–(2)? We will now explore this issue, but
first we would like to make a short remark.

Remark Recall the definition (8) of Lβ . If we replace Sβ in (1)–(2) with

L̃β(x) =

⎧
⎪⎨

⎪⎩

1, x > 1
β
,

Lβ(x), x ∈ [− 1
β
, 1

β
],

0, x < − 1
β
,

then the analysis of the linearized model, presented above, would also be valid for
(1)–(2), provided that

∥∥s(t) − uθ

∥∥∞,
∥∥s̃(t) − uθ

∥∥∞ ∈
[

0,
1

β

]
, t ∈ [0, T ].

Similarly to the sigmoid function Sβ , L̃β also converges point-wise to the Heaviside
function as β → ∞. If one employs the sigmoid function in the point-neuron model,
then the analysis, as we will see below, becomes much more involved.

3.2 Preparations

Let βmax, T̂ , and α be arbitrary positive constants. It is easy to construct a smooth
vector-valued function z satisfying

∥∥z(t) − uθ

∥∥∞ ∈
[

0,
0.9

β1+α
max

]
, t ∈ [0, T̂ ]. (13)

Hence, defining the source as

q(t) = τz′(t) + z(t) − ωSβmax

[
z(t) − uθ

]
, t ∈ (0, T̂ ],

we conclude that the solution u(t;βmax) = z(t) of (1)–(2) also satisfies (13), provided
that u0 = z(0). By employing standard techniques, one can show that the solution



Page 10 of 21 B.F. Nielsen, J. Wyller

u(t;β) of (1)–(2) depends continuously on 0 < β < ∞; see Appendix B. Conse-
quently, there exists β̄min < βmax such that

∥∥u(t;β) − uθ

∥∥∞ ∈
[

0,
1

β1+α
max

]
, t ∈ [0, T̂ ], β ∈ [β̄min, βmax].

For the sake of simple notation, we will in our analysis write u, or u(t), instead of
u(t;β).

Furthermore, according to the analysis presented in Appendices A–C, u depends
continuously on both the initial condition u0 and the steepness parameter β , when
0 < β < ∞. Motivated by this property of (1)–(2), we assume that both u and ũ,
where ũ denotes the solution of (1) generated by a perturbed initial condition ũ(0) =
ũ0, satisfy

∥∥u(t) − uθ

∥∥∞,
∥∥ũ(t) − uθ

∥∥∞ ∈
[

0,
1

β1+α
max

]
, t ∈ [0, T̂ ], β ∈ [β̂min, βmax], (14)

where β̂min < βmax. Then, by invoking the triangle inequality, we find that

∥∥u(t) − ũ(t)
∥∥∞ ≤ 2

β1+α
max

, t ∈ [0, T̂ ], β ∈ [β̂min, βmax], (15)

which will be small if βmax is large. Even so, as will become evident below, the
error-amplification ratio (5) can be significant and lead to erroneous results.

Let s and s̃ denote the associated solutions of the linearized model (9)–(10). From
(14) we find that the initial conditions u0 and ũ0 satisfy

‖u0 − uθ‖∞,‖ũ0 − uθ‖∞ ∈
[

0,
1

β1+α
max

]
.

Since s and s̃ are continuous with respect to t , the same initial conditions are em-
ployed in the linearized model, and these solutions depend continuously on 0 < β <

∞, it follows that there exist T̃ > 0 and β̃min < βmax such that

∥∥s(t) − uθ

∥∥∞,
∥∥s̃(t) − uθ

∥∥∞ ∈
[

0,
1

β1+α
max

]
, t ∈ [0, T̃ ], β ∈ [β̃min, βmax]. (16)

The main point of this discussion is to show that there exist (smooth) source terms
q and perturbations of the initial condition such that (14) holds, regardless how large
T̂ , βmax, α > 0 are. Also, the solutions of the linearized model will satisfy (16). For
the sake of simple notation, let T = min{T̃ , T̂ } and βmin = max{β̃min, β̂min}.

The triangle inequality implies that

e(t) = u(t) − s(t),

ẽ(t) = ũ(t) − s̃(t)

obey

∥∥e(t)
∥∥∞,

∥∥ẽ(t)
∥∥∞ ∈

[
0,

2

β1+α
max

]
, t ∈ [0, T ], β ∈ [βmin, βmax]. (17)
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We will derive a bound for ‖e(T )‖∞. The analysis of ‖ẽ(T )‖∞ is completely analo-
gous, and thus it is omitted.

3.3 Linearization Error

Subtracting (9) from (1), and keeping in mind that we consider the case τ = I, yields

e′
i (t) = −ei(t) +

∑

j

ωi,j

[
Sβ

(
uj (t) − uθ

)− Lβ

(
sj (t) − uθ

)]
,

i = 1,2, . . . ,N , where we use the notation e(t) = [e1(t), e2(t), . . . , eN(t)]T , and sim-
ilarly for the entries of u(t) and s(t). Integrating and invoking the fact that ei(0) = 0,
we get

ei(T ) = −
∫ T

0
ei(t) dt +

∫ T

0

∑

j

ωi,j

[
Sβ

(
uj (t) − uθ

)− Lβ

(
sj (t) − uθ

)]
dt, (18)

i = 1,2, . . . ,N .
The triangle inequality, Taylor’s theorem and Eq. (8) for Lβ imply that

∣∣Sβ

(
uj (t) − uθ

)− Lβ

(
sj (t) − uθ

)∣∣ ≤ ∣∣Sβ

(
uj (t) − uθ

)− Lβ

(
uj (t) − uθ

)∣∣

+ ∣
∣Lβ

(
uj (t) − uθ

)− Lβ

(
sj (t) − uθ

)∣∣

≤ β2 1

2
max

y

∣∣S′′(y)
∣∣(uj (t) − uθ

)2

+ 1

2
β
∣∣ej (t)

∣∣

≤ β2β−2−2α

+ 1

2
β
∣∣ej (t)

∣∣

≤ β−2α + 1

2
β
∣
∣ej (t)

∣
∣,

where the second last inequality follows from (14). By combining this with (18), and
the triangle inequality, one finds that

∣∣ei(T )
∣∣ ≤

∫ T

0

∣∣ei(t)
∣∣dt + BTβ−2α + 1

2
βB

∫ T

0

∥∥e(t)
∥∥∞ dt

≤
∫ T

0

(
1 + 1

2
Bβ

)∥∥e(t)
∥∥∞ dt + BTβ−2α,

where

B = max
i

∑

j

|ωi,j |.
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Since this must hold for i = 1,2, . . . ,N ,

∥∥e(T )
∥∥∞ ≤

∫ T

0

(
1 + 1

2
Bβ

)∥∥e(t)
∥∥∞ dt + BTβ−2α,

and Grönwall’s inequality implies that

∥∥e(T )
∥∥∞ ≤ BTβ−2α exp

[(
1 + 1

2
Bβ

)
T

]
. (19)

3.4 Error-Amplification Ratio

Clearly,

u − ũ = u − s + s − s̃ + s̃ − ũ

= e + s − s̃ − ẽ, (20)

and the reverse triangle inequality yields

‖u − ũ‖∞ ≥ ∣∣‖s − s̃‖∞ − ‖e − ẽ‖∞
∣∣.

From (12) it follows that the error-amplification ratio (5) satisfies

E(T ;β) = ‖u(T ;β) − ũ(T ;β)‖∞
‖u0 − ũ0‖∞

≥
∣∣
∣∣
‖(u0 − ũ0)e

AT ‖∞
‖u0 − ũ0‖∞︸ ︷︷ ︸

I=I (T ;β)

− ‖e(T ) − ẽ(T )‖∞
‖u0 − ũ0‖∞︸ ︷︷ ︸

II=II(T ;β)

∣∣
∣∣.

Recall that the entries of the matrix A = A(β) are of order β; see (11). To derive a
bound for II(T ;β), we employ (19), and a similar inequality for ‖ẽ(T )‖∞,

‖e(T ) − ẽ(T )‖∞
‖u0 − ũ0‖∞

≤ 2BTβ−2α exp[(1 + 1
2Bβ)T ]

‖u0 − ũ0‖∞

= β−2α 2BT

‖u0 − ũ0‖∞
exp

[(
1 + 1

2
Bβ

)
T

]
.

Hence, if

2BT

‖u0 − ũ0‖∞
(21)

is not very large, β is fairly large and, e.g., α ≥ 0.5, then the size of the error-
amplification ratio E(T ;β) is dominated by I (T ;β), i.e. by the term stemming from
the linearized model. (Note that (20) and the reverse triangle inequality also imply
that |E(T ;β) − I (T ;β)| ≤ II(T ;β).)

In our numerical experiments, ‖u0 − ũ0‖∞ = 10−5 and βmax = 200. That is, ‖u0 −
ũ0‖∞ � β−1

max and (14) will hold with some α ≥ 1 during a short time interval [0, T̂ ].
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Fig. 8 Error-amplification ratio
E(T ;β), red dashed lines, as a
function of the steepness
parameter β . The black dotted
curves are the graphs of
I (T ;β). These plots were
generated with T = 0.06

It is virtually impossible to distinguish between the curves of E(T ;β) and I (T ;β),
β = 1,2, . . . ,200, when T = 10−4 (curves not presented). Figure 8 illustrates that
I (T ;β) also yields a reasonable approximation of E(T ;β) for T = 0.06.

We conclude that, during time intervals in which (14) holds, the linearized equa-
tions (9)–(10) yield a fair approximation of the point-neuron model (1)–(2). Hence,
the analysis presented in this section, which provided an error-amplification ratio
of order O(eβ) for (9)–(10), explains our numerical results. More precisely, even
though the error is bounded by 2β−1−α

max during such time intervals, see (15), the
error-amplification ratio can approximately be of order O(eβ). This implies that mi-
nor perturbations, e.g. round-off errors, can corrupt computations. For example, in
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Fig. 4 an initial perturbation of size 10−5 is increased to an error of approximately
0.04 = 4 %.

Remark Assume that the ‖ ·‖∞-norm of the source term q(t) is bounded. Then, since
0 < Sβ [x] < 1 for all x ∈ R, it follows from (1) that both ‖u′(t)‖∞ and ‖ũ′(t)‖∞ are
bounded independently of the size of the steepness parameter β , at least when u(t) ≈
uθ and ũ(t) ≈ uθ . Consequently, also the difference ‖u(T ) − ũ(T )‖∞ is bounded
independently of β > 0. Our results therefore might appear to be somewhat counter-
intuitive: But note that we have only argued that the error-amplification ratio (5)
may, approximately, be of order O(eβ). If β is large, this can cause severe numerical
challenges.

We would also like to comment that standard theory for general dynamical systems

z′(t) = F
(
t, z(t)

)
, t ∈ (0, T ],

z(0) = z0,

relies on the size of ‖F′‖, which for the point-neuron model (1)–(2) is of order O(β).
Also, F(t, z) = −z + ωSβ [z − uθ ] + q(t) is not Lipschitz continuous with respect
to z when β = ∞, which the Picard–Lindelöf theorem [9, 10] requires. (F is not even
continuous when β = ∞.)

The maximum error bound (15), valid when u − uθ and ũ − uθ satisfy (14), sug-
gests that setting β = ∞ might provide a solution to the issues discussed above.
Unfortunately, as will be explained in the next section, this is not the case.

4 Ill Posed

We will now show that (1)–(2) can become truly ill posed, if a Heaviside firing rate
function is employed. More specifically, the initial-condition-to-solution map, in fi-
nite time, can be discontinuous.

Consider the case N = 1, τ = 1 and no source term:

v′(t) = −v(t) + ωH
[
v(t) − uθ

]
,

v(0) = u0.
(22)

If, for 0 < ε � 1,

u0 = uθ + ε > uθ and ũ0 = uθ − ε < uθ ,

then

v(t) = ω + (uθ + ε − ω)e−t ,

ṽ(t) = (uθ − ε)e−t ,

provided that ω > uθ . Consequently,
∣∣R∞(u0) − R∞(̃u0)

∣∣= ∣∣v(T ) − ṽ(T )
∣∣= ∣∣ω

(
1 − e−T

)+ 2εe−T
∣∣> ω

(
1 − e−T

)
,
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where R∞ denotes the initial-condition-to-solution map (3). We conclude that, no
matter how close u0 and ũ0 are, the difference v(T ) − ṽ(T ) between the correspond-
ing solutions will not become small. Hence, R∞ is discontinuous. It follows that
the initial value problem, with a Heaviside firing rate function, is ill posed, in finite
time—at least in the sense of Hadamard. Also note that, unless ω = 2uθ , uθ is not a
stationary solution of (22), i.e. not an unstable equilibrium.

The error-amplification ratio for this ill-posed problem becomes infinite when
ε → 0:

|v(T ) − ṽ(T )|
|u0 − ũ0| = |R∞(u0) − R∞(̃u0)|

|u0 − ũ0|

= |ω(1 − e−T ) + 2εe−T |
2ε

>
ω(1 − e−T )

2ε
→ ∞

as ε → 0, for any T > 0.
One may consider this issue from a more pragmatic point of view. Let v�t denote

a numerical approximation of v. If a Heaviside firing rate function is employed, then
H(v�t − uθ ) must be evaluated in some line of the simulation software. This is an
unstable procedure because H has a jump discontinuity at 0, and round-off errors of
any size can corrupt computations.

In contrast to this, provided that β < ∞,
∥∥u(T ) − ũ(T )

∥∥∞ ≤ ‖u0 − ũ0‖∞ · exp
[
(A + βB)T

]
, (23)

see the analysis of the model (1)–(2) presented in Appendix A. Here, ũ0 is any per-
turbation of the initial condition u0, and A and B are positive constants depending on
the matrices τ and ω, but not on β . This inequality shows that the initial-condition-
to-solution map Rβ , β < ∞, also is continuous at unstable equilibria.

5 Conclusions and Discussion

Since R∞ can become discontinuous, it is virtually impossible to guarantee the accu-
rate numerical solution of point-neuron models which employ a Heaviside firing rate
function: Any round-off errors can potentially corrupt simulations. Alternatively, one
may stop the simulation as soon as the solution hits the jump discontinuity, i.e. the
threshold value for firing.

We have also observed that models with a steep, but smooth, firing rate function
can amplify errors to an extreme degree, which is typical for “almost ill-posed” prob-
lems. Consequently, reliable simulations can only be obtained if proper error-control
schemes are invoked. How to design effective error-control methods, for models with
a large steepness parameter β , is, as far as the authors know, still an open problem.
Nevertheless, it seems plausible that suitable adaptive numerical schemes, where the
time steps become smaller when the solution reaches regions in the vicinity of the
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threshold value for firing, might be capable of handling the numerical error amplifi-
cation.

Let

Fβ;t1,t2 : u(t1) → u(t2), t2 > t1 ≥ 0,

be the operator which maps the solution of the point-neuron model (1)–(2) from time
t1 to time t2. Note that the action of Fβ;t1,t2 can be determined by solving the point-
neuron model with u(t1) as initial condition. Therefore, from the argument presented
above, it follows that the error amplification ratio associated with Fβ;t1,t2 may be
large, provided that β � 1. We conclude that the issues pointed out in this study
cannot necessarily be avoided by using an initial condition which is far from the
threshold value uθ for firing. In fact, it seems that one must prove that u(t) never gets
close to uθ for t > 0—a herculean task, if correct.

From a modeling perspective one might wonder: Should a voltage-based model of
cortex be ill posed or “almost ill posed”? If so, then models employing a Heaviside
firing rate function cannot be robustly solved with finite precision arithmetic and
regularized approximations are numerically challenging [4, 5].

We fear that similar unfortunate properties, to those discussed in this paper, might
be valid for models which can be written in the form

z′(t) = Fβ

(
t, z(t)

)
, t ∈ (0, T ],

z(0) = z0,

where ‖F′
β‖ → ∞ when β → ∞. This can, e.g., be the case for a number of models

in use in computational neuroscience and gene regulatory networks.
An easy solution to the issues raised in this paper, is to avoid steep firing rate

functions. If β is fairly small, then standard ODE theory [9, 10] and textbook mate-
rial about their numerical treatment can be used, provided that the source term q(t)

is continuous. Nevertheless, steep sigmoid functions are popular in computational
neuroscience.
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Appendix A: Continuous Dependence on the Initial Condition

We will prove the stability estimate (23), which holds if β < ∞. Let u and ũ denote
the solutions of (1) corresponding to the initial conditions u0 and ũ0, respectively. For
the purpose of detailing the derivation of this estimate, we work with the components
of these vector functions, i.e.,

u(t) =

⎛

⎜⎜⎜
⎝

u1(t)

u2(t)
...

uN(t)

⎞

⎟⎟⎟
⎠

, ũ(t) =

⎛

⎜⎜⎜
⎝

ũ1(t)

ũ2(t)
...

ũN (t)

⎞

⎟⎟⎟
⎠

,

u0 =

⎛

⎜⎜
⎜
⎝

u1,0
u2,0

...

uN,0

⎞

⎟⎟
⎟
⎠

, ũ0 =

⎛

⎜⎜
⎜
⎝

ũ1,0
ũ2,0

...

ũN,0

⎞

⎟⎟
⎟
⎠

.

Let us also assume that the diagonal entries {τi}, of the diagonal matrix τ , are posi-
tive, and let {ωij } denote the entries of ω.

We first observe that the component functions ui and ũi satisfy the fixed point
problems

ui(T ) = ui,0 + τ−1
i

∫ T

0

{

−ui(t) +
N∑

j=1

ωijSβ

[
uj (t) − uj,θ

]+ qi(t)

}

dt,

ũi(T ) = ũi,0 + τ−1
i

∫ T

0

{

−ũi (t) +
N∑

j=1

ωijSβ

[
ũj (t) − uj,θ

]+ qi(t)

}

dt,

from which we find, by using the triangle inequality, that

∣∣ui(T ) − ũi (T )
∣∣ ≤ |ui,0 − ũi,0| + τ−1

i

∫ T

0

∣∣ui(t) − ũi (t)
∣∣dt

+ τ−1
i

N∑

j=1

|ωij |
∫ T

0

∣∣Sβ

[
uj (t) − uj,θ

]− Sβ

[
ũj (t) − uj,θ

]∣∣dt.

Then, by exploiting the fact that

∣∣Sβ(x) − Sβ(y)
∣∣≤ 1

2
β|x − y|

for all x, y ∈ R, we get
∣∣ui(T ) − ũi (T )

∣∣ ≤ |ui,0 − ũi,0|

+ τ−1
i

∫ T

0

∣∣ui(t) − ũi (t)
∣∣dt
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+ τ−1
i

1

2
β

N∑

j=1

|ωij |
∫ T

0

∣∣uj (t) − ũj (t)
∣∣dt

≤ |ui,0 − ũi,0|

+ τ−1
i

(

1 + 1

2
β

N∑

j=1

|ωij |
)∫ T

0

∥∥u(t) − ũ(t)
∥∥∞ dt,

where we in the final step have used the definition of the supremum norm (4). Thus,
we arrive at the inequality

∥∥u(T ) − ũ(T )
∥∥∞ ≤ ‖u0 − ũ0‖∞

+ max
1≤i≤N

[

τ−1
i

(

1 + 1

2
β

N∑

j=1

|ωij |
)]∫ T

0

∥∥u(t) − ũ(t)
∥∥∞ dt.

The stability estimate (23), with

A = max
1≤i≤N

(
τi

−1), B = 1

2
max

1≤i≤N

(

τi
−1

N∑

j=1

|ωij |
)

,

then follows from Grönwall’s lemma.

Appendix B: Continuous Dependence on the Steepness Parameter

For the sake of completeness, we also show that the solution of the initial value prob-
lem (1)–(2) depends continuously on the steepness parameter β . Let β and β̂ be
steepness parameters for the firing rate function. We fix the initial condition and the
connectivity parameters of (1)–(2). The solutions corresponding to β and β̂ are de-
noted by u and û, respectively. We readily obtain

ui(T ) = ui,0 + τ−1
i

∫ T

0

{

−ui(t) +
N∑

j=1

ωijSβ

[
uj (t) − uj,θ

]+ qi(t)

}

dt,

ûi(T ) = ui,0 + τ−1
i

∫ T

0

{

−ûi (t) +
N∑

j=1

ωijSβ̂

[
ûj (t) − uj,θ

]+ qi(t)

}

dt,

for the component functions ui and ûi of u and û, respectively. We now make use of
the property

∣
∣Sβ [uj − uj,θ ] − S

β̂
[ûj − uj,θ ]

∣
∣≤ 1

2

[
β|uj − ûj | + |β − β̂|(|uj,θ | + |ûj |

)]
,
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for the firing rate function, and we get the chain of inequalities

∣∣ui(T ) − ûi (T )
∣∣ ≤ τ−1

i

∫ T

0

∣∣ui(t) − ûi (t)
∣∣dt

+ τ−1
i

N∑

j=1

|ωij |
∫ T

0

{∣∣Sβ

[
uj (t) − uj,θ

]− S
β̂

[
ûj (t) − uj,θ

]∣∣}dt

≤ τ−1
i

∫ T

0

∣∣ui(t) − ûi (t)
∣∣dt

+ 1

2
βτ−1

i

N∑

j=1

|ωij |
∫ T

0

∣∣uj (t) − ûj (t)
∣∣dt

+ 1

2
|β − β̂|τ−1

i

N∑

j=1

|ωij |
(

|uj,θ |T +
∫ T

0

∣∣ûj (t)
∣∣dt

)
. (24)

Since 0 ≤ S(x) ≤ 1, we find the bound
∣∣ûj (s)

∣∣ ≤ Cj (s), s ∈ [0, T ],

Ci(s) ≡
N∑

j=1

|ωij | +
∣∣∣∣

∫ s

0
αi(s − t)qi(t) dt

∣∣∣∣+
(

|ui,0| −
N∑

j=1

|ωij |
)

τiαi(s)

=
N∑

j=1

|ωij |
(
1 − τiαi(s)

)+
∣∣∣∣

∫ s

0
αi(s − t)qi(t) dt

∣∣∣∣+ |ui,0|τiαi(s),

uniformly in β , for the solutions of (1)–(2). Here,

αi(t) = 1

τi

e−t/τi ,

and it follows that the integrals
∫ T

0 |ûj (t)|dt in (24) can be bounded by β-
independent constants. Thus, we end up with the bounding inequality

∥∥u(T ) − û(T )
∥∥∞ ≤ C(T )|β − β̂| + (A + βB)

∫ T

0

∥∥u(t) − û(t)
∥∥∞ dt,

where A and B are as defined in Appendix A and

C(T ) = 1

2
sup

t∗∈[0,T ]
max

1≤i≤N

{

τ−1
i

N∑

j=1

|ωij |
(

|uj,θ |t∗ +
∫ t∗

0
Cj(t) dt

)}

.

Grönwall’s lemma yields the stability estimate
∥∥u(T ) − û(T )

∥∥∞ ≤ C(T )|β − β̂| · exp
[
(A + βB)T

]

︸ ︷︷ ︸
q(T )

, (25)
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which proves that the solution of (1)–(2) depends continuously on the steepness pa-
rameter β < ∞ of the firing rate function.

Since q(T ) is increasing, it is possible to extract further information from this
argument. More specifically, let

U =
{

v(t)
∣∣ v(t) ∈R

N, t ∈ [0, T ] and sup
t∈[0,T ]

∥∥v(t)
∥∥∞ < ∞

}
, (26)

with norm

‖v‖U = sup
t∈[0,T ]

∥∥v(t)
∥∥∞. (27)

Then we can conclude that the mapping

R+ → U,

β → u(t;β), t ∈ [0, T ],
is continuous.

Appendix C: Continuous Dependence on the Initial Condition and the
Steepness Parameter

We finally prove that the solution u = u(t;u0, β) of (1)–(2) depends continuously
on (u0, β). The proof of this fact proceeds as follows: By exploiting the triangle
inequality and the stability estimates (23) and (25), we find that

∥∥u(T ; ũ0, β̂) − u(T ;u0, β)
∥∥∞

≤ ∥∥u(T ; ũ0, β̂) − u(T ;u0, β̂)
∥∥∞ + ∥∥u(T ;u0, β̂) − u(T ;u0, β)

∥∥∞
≤ {‖ũ0 − u0‖∞ + C(T )|β̂ − β|} · exp

[
(A + βB)T

]

︸ ︷︷ ︸
g(T )

and we are done. Here u0 and ũ0 denote two initial conditions of (1), while β̂ and β

are two steepness parameters.
The function g(T ) is increasing, and we conclude that the mapping

R
N ×R+ → U,

(u0, β) → u(t;u0, β), t ∈ [0, T ],
where U is defined in (26)–(27), is continuous.
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