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Abstract Point neuron models with a Heaviside firing rate function can be ill-posed.

That is, the initial-condition-to-solution map might become discontinuous in finite

time. If a Lipschitz continuous but steep firing rate function is employed, then stan-

dard ODE theory implies that such models are well-posed and can thus, approxi-

mately, be solved with finite precision arithmetic. We investigate whether the solu-

tion of this well-posed model converges to a solution of the ill-posed limit problem

as the steepness parameter of the firing rate function tends to infinity. Our argument

employs the Arzelà–Ascoli theorem and also yields the existence of a solution of the

limit problem. However, we only obtain convergence of a subsequence of the regu-

larized solutions. This is consistent with the fact that models with a Heaviside firing

rate function can have several solutions, as we show. Our analysis assumes that the

vector-valued limit function v, provided by the Arzelà–Ascoli theorem, is threshold

simple: That is, the set containing the times when one or more of the component

functions of v equal the threshold value for firing, has zero Lebesgue measure. If this

assumption does not hold, we argue that the regularized solutions may not converge

to a solution of the limit problem with a Heaviside firing function.
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1 Introduction

In this paper we analyze some mathematical properties of the following classical
point neuron model:

τiu
′
i (t) = −ui(t) +

N∑

j=1

ωi,j Sβ

[
uj (t) − uθ

]+ qi(t), t ∈ (0, T ],

ui(0) = uinit,i ,

(1)

for i = 1,2, . . . ,N , where

ui(t) ∈R, t ∈ [0, T ], i = 1,2, . . . ,N,

qi(t) ∈R, t ∈ (0, T ], i = 1,2, . . . ,N,

uinit,i ∈R, i = 1,2, . . . ,N,

uθ ∈R,

ωi,j ∈ R, i, j = 1,2, . . . ,N,

τi ∈R+, i = 1,2, . . . ,N,

β = 1,2, . . . ,∞,

Sβ [x] is an approximation of the Heaviside function H [x],
S∞[x] = H [x].

Here, ui(t) represents the unknown electrical potential of the ith unit in a network of
N units. The nonlinear function Sβ is called the firing rate function, β is the steepness
parameter of Sβ , uθ is the threshold value for firing, {ωij } are the connectivities, {τi}
are membrane time constants and {qi(t)} model the external drive/external sources,
see, e.g., [1–3] for further details. The system of ODEs (1) is also referred to as a
voltage-based model or Hopfield model (due to Hopfield [4]).

By employing electrophysiological properties one can argue that it is appropri-
ate to use a steep sigmoid firing rate function Sβ . But due to mathematical conve-
nience the Heaviside function is also often employed, see, e.g., [5–8]. Unfortunately,
when β = ∞ the initial-condition-to-solution map for (1) can become discontinu-
ous in finite time [9]. Such models are thus virtually impossible to solve with finite
precision arithmetic [10, 11]. Also, in the steep but Lipschitz continuous firing rate
regime, the error amplification can be extreme, even though a minor perturbation
of the initial condition does not change which neurons that fire. It is important to
note that this ill-posed nature of the model is a fundamentally different mathemati-
cal property from the possible existence of unstable equilibria, which typically also
occur if a firing rate function with moderate steepness is used. See [9] for further
details.

The solution of (1) depends on the steepness parameter β . That is,

ui(t) = uβ,i(t), i = 1,2, . . . ,N,
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and the purpose of this paper is to analyze the limit process β → ∞. This inves-
tigation is motivated by the fact that the stable numerical solution of an ill-posed
problem is very difficult, if not to say impossible, see, e.g., [10, 11]. Consequently,
such models must be regularized to obtain a sequence of well-posed equations which,
at least in principle, can be approximately solved by a computer. Also, steep firing
rate functions, or even the Heaviside function, are often used in simulations. It is thus
important to explore the limit process β → ∞ rigorously.

In Sects. 3 and 4 we use the Arzelà–Ascoli theorem [12–14] to analyze the prop-
erties of the sequence {uβ}, where

uβ(t) = (uβ,1(t), uβ,2(t), . . . , uβ,N (t)
)T

. (2)

More specifically, we prove that this sequence has at least one subsequence which
converges uniformly to a limit

v(t) = (v1(t), v2(t), . . . , vN(t)
)T

,

and that this limit satisfies the integral/Volterra version of (1) with Sβ = S∞, provided
that the following set has zero Lebesgue measure:

{
s ∈ [0, T ] | ∃i ∈ {1,2, . . . ,N} such that vi(s) = uθ

}
.

It is thus sufficient that this set is finite or countable; see, e.g., [13]. Furthermore,
in Sect. 7 we argue that, if v does not satisfy this threshold property, then this function
will not necessarily solve the limit problem.

According to the Picard–Lindelöf theorem [15–17], (1) has a unique solution, pro-
vided that β < ∞, and that the assumptions presented in the next section hold. In
Sect. 5 we show that this uniqueness feature is not necessarily inherited by the limit
problem obtained by employing a Heaviside firing rate function. It actually turns out
that a different subsequence of {uβ} can converge to different solutions of (1) with
Sβ = S∞. This is explained in Sect. 6, which also contains a result addressing the
convergence of the entire sequence {uβ}.

The limit process β → ∞, using different techniques, is studied in [18, 19] for the
stationary solutions of neural field equations. It has also been observed [20] for the
Wilson–Cowan model that this transition is a subtle matter: Using a steep sigmoid
firing rate function instead of the Heaviside mapping can lead to significant changes
in a Hopf bifurcation point. ‘the limiting value of the Hopf depends on the choice of
the firing rate function’.

If one uses a Heaviside firing rate function in (1) the right-hand-sides of these
ODEs become discontinuous. A rather general theory for such equations has been
developed [21]. In this theory the system of ODEs is replaced by a differential inclu-
sion, in which the right-hand side of the ODE system is substituted by a set-valued
function. The construction of this set-valued operator can be accomplished by invok-
ing Filippov regularization/convexification. But this methodology serves a different
purpose than the smoothing processes considered in this paper. More specifically, it
makes it possible to prove that generalized solutions (Filippov solutions) to the prob-
lem exist but do not provide a family of well-posed equations suitable for numerical
solution.
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Smoothening techniques for discontinuous vector fields, which are similar to the
regularization method considered in this paper, have been proposed and analyzed for
rather general phase spaces [22–24]. Nevertheless, these studies consider qualitative
properties of large classes of problems, whereas we focus on a quantitative analysis
of a very special system of ODEs.

For the sake of easy notation, we will sometimes write (1) in the form

τu′(t) = −u(t) + ωSβ

[
u(t) − uθ

]+ q(t), t ∈ (0, T ],
u(0) = uinit,

(3)

where

u(t) = uβ(t) ∈ R
N, t ∈ [0, T ], see (2),

q(t) = (q1(t), q2(t), . . . , qN(t)
)T ∈R

N, t ∈ (0, T ],
uθ = (uθ , uθ , . . . , uθ )

T ∈ R
N, (4)

uinit = (uinit,1, uinit,2, . . . , uinit,N )T ∈R
N,

ω = [ωi,j ] ∈R
N×N,

τ = diag(τ1, τ2, . . . , τN) ∈R
N×N is diagonal,

Sβ [x] = (Sβ [x1], . . . , Sβ [xN ])T , x = (x1, . . . , xN)T ∈ R
N. (5)

Note that we, for the sake of simplicity, use the same threshold value uθ for all the
units in the network; see (4).

2 Assumptions

Throughout this text we use the standard notation

‖x‖∞ = max
1≤i≤N

|xi |, x = (x1, . . . , xN) ∈R
N.

Concerning the sequence {Sβ} of finite steepness firing rate functions, we make
the following assumption.

Assumption A We assume that

(a) Sβ , β ∈N, is Lipschitz continuous,

(b) 0 ≤ Sβ(x) ≤ 1, x ∈R, β ∈N,

(c) for every pair of positive numbers (ε, δ) there exists Q ∈ N such that

∣∣Sβ(x)
∣∣< ε for x < −δ and β > Q, (6)

∣∣1 − Sβ(x)
∣∣< ε for x > δ and β > Q. (7)
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There are many continuous sigmoidal functions which approximate the Heaviside
step function and satisfy Assumption A. For example,

S(x) = 1

2

(
1 + tanh(x)

)
, (8)

Sβ [x] = S(βx). (9)

More generally, if Sβ is nondecreasing (for every β ∈ N), a) and b) hold and {Sβ}
converges pointwise to the Heaviside function, then Assumption A holds. Also, if
Assumption A is satisfied and limβ→∞ Sβ(0) = S∞(0) = H(0), then {Sβ} converges
pointwise to the Heaviside function.

We will consider a slightly more general version of the model than (3). More
specifically, we allow the source term to depend on the steepness parameter, q = qβ ,
but in such a way that the following assumption holds.

Assumption B We assume that qβ(t), t ∈ [0, T ], β ∈ N∪{∞} is continuous and that

sup
β∈N,t∈[0,T ]

∥∥qβ(t)
∥∥∞ ≤ B < ∞, B ∈R, (10)

lim
β→∞ qβ(t) = q∞(t), t ∈ [0, T ],

lim
β→∞

∫ t

0
qβ(s) ds =

∫ t

0
q∞(s) ds, t ∈ [0, T ]. (11)

Allowing the external drive to depend on the steepness parameter makes it easier
to construct illuminating examples. However, we note that our theory will also hold
for the simpler case when q does not change as β increases.

In this paper we will assume that Assumptions A and B are satisfied.

3 Uniformly Bounded and Equicontinuous

In order to apply the Arzelà–Ascoli theorem we must show that {uβ} constitutes a
family of uniformly bounded and equicontinuous functions. (For the sake of simple
notation, we will write ui and qi , instead of uβ,i and qβ,i , for the component functions
of uβ and qβ , respectively.) Multiplying

u′
i (s) + τ−1

i ui(s) = τ−1
i

N∑

j=1

ωi,j Sβ

[
uj (s) − uθ

]+ τ−1
i qi(s)

with es/τi yields that

[
ui(s)e

s/τi
]′ = es/τi τ−1

i

N∑

j=1

ωi,j Sβ

[
uj (s) − uθ

]+ es/τi τ−1
i qi(s)
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and by integrating

ui(t)e
t/τi = ui(0) +

∫ t

0
es/τi τ−1

i

N∑

j=1

ωi,j Sβ

[
uj (s) − uθ

]
ds +

∫ t

0
es/τi τ−1

i qi(s) ds.

Hence, since Sβ [x] ∈ [0,1] and we assume that τi > 0 for i = 1,2, . . . ,N ,

∣∣ui(t)
∣∣et/τi ≤ ∣∣ui(0)

∣∣+
N∑

j=1

|ωi,j |
∫ t

0
es/τi τ−1

i ds + sup
s∈[0,T ]

∣∣qi(s)
∣∣
∫ t

0
es/τi τ−1

i ds

= ∣∣ui(0)
∣∣+
(

N∑

j=1

|ωi,j | + sup
s∈[0,T ]

∣∣qi(s)
∣∣
)
(
et/τi − 1

)

≤ ∣∣ui(0)
∣∣+
(

N∑

j=1

|ωi,j | + B

)
(
et/τi − 1

)
, t ∈ (0, T ],

where the last inequality follows from (10). This implies that

∥∥uβ(t)
∥∥∞ ≤ ‖uinit‖∞ + max

i

(
N∑

j=1

|ωi,j |
)

+ B

︸ ︷︷ ︸
=B̃

, t ∈ [0, T ]. (12)

Since the right-hand side of (12) is independent of β and t we conclude that the
sequence {uβ} is uniformly bounded.

Next, from the model (3), the triangle inequality, the assumption that Sβ [x] ∈ [0,1]
and assumption (10) we find that

∥∥τu′
β(t)

∥∥∞ ≤ B̃ + max
i

(
N∑

j=1

|ωi,j |
)

+ B, t ∈ (0, T ],

where B̃ is defined in (12). Since τ is a diagonal matrix with positive entries on the
diagonal, this yields that

∥∥u′
β(t)

∥∥∞ ≤ 1

mini{τi}

[
B̃ + max

i

(
N∑

j=1

|ωi,j |
)

+ B

]
= K, t ∈ (0, T ].

Here the constant K is independent of both β and t ∈ (0, T ].
Let i ∈ {1,2, . . . ,N} and β ∈ N be arbitrary. Then, for any time instances t1, t2 ∈

[0, T ], with t1 < t2, the mean value theorem implies that there exists t∗ ∈ (t1, t2) such
that

ui(t2) − ui(t1) = u′
i

(
t∗
)
(t2 − t1),
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and hence
∣∣ui(t2) − ui(t1)

∣∣= ∣∣u′
i

(
t∗
)∣∣∣∣(t2 − t1)

∣∣≤ K
∣∣(t2 − t1)

∣∣.

This inequality holds for any i ∈ {1,2, . . . ,N}, β ∈ N. It therefore follows that

∥∥uβ(t2) − uβ(t1)
∥∥∞ ≤ K

∣∣(t2 − t1)
∣∣, t1, t2 ∈ [0, T ] and β ∈N,

from which we conclude that {uβ} is a set of equicontinuous functions
The Arzelà–Ascoli theorem now asserts that there is a uniformly convergent sub-

sequence {uβk
}:

v = lim
k→∞ uβk

. (13)

According to standard ODE theory, uβk
is continuous for each k ∈ N. Hence the

uniform convergence implies that v is also continuous.

3.1 Threshold Terminology

As we will see in subsequent sections it depends on v’s threshold properties whether
we can prove that v actually solves the limit problem with a Heaviside firing rate
function. The following concepts turn out to be useful.

For a vector-valued function z = (z1, z2, . . . , zN)T : [0, T ] →R
N we define

m(s; z) = min
j∈{1,2,...,N}

∣∣zj (s) − uθ

∣∣, s ∈ [0, T ]. (14)

Definition (Threshold simple) A measurable vector-valued function z : [0, T ] →R
N

is threshold simple if the Lebesgue measure of the set

Z(z) = {s ∈ [0, T ] | m(s; z) = 0
}

(15)

is zero, i.e. |Z(z)| = 0.

Definition (Extra threshold simple) A measurable vector-valued function z : [0,

T ] →R
N is extra threshold simple if there exist open intervals

Il = (al, al+1), l = 1,2, . . . ,L,

such that

a1 = 0, aL+1 = T ,

m(s; z) �= 0 ∀s ∈
L⋃

l=1

Il .

In words, z is extra threshold simple if there is a finite number of threshold cross-
ings on the time interval [0, T ].
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4 The Limit of the Subsequence

4.1 Preparations

We will prove that the limit v in (13) solves the integral form of (3) with S∞ =
H , the Heaviside function, provided that v is threshold simple. The inhomogeneous
nonlinear Volterra equation associated with (3) reads

τuβk
(t) − τuinit = −

∫ t

0
uβk

(s) ds

+
∫ t

0
ωSβk

[
uβk

(s) − uθ

]
ds

+
∫ t

0
qβk

(s) ds, t ∈ [0, T ], (16)

where

∫ t

0
uβk

(s) ds =
(∫ t

0
uβk,1(s) ds,

∫ t

0
uβk,2(s) ds, . . . ,

∫ t

0
uβk,N (s) ds

)T

,

etc.; see also (2) and (5). Note that we consider the equations satisfied by the sub-
sequence {uβk

}, see (13). We will analyze the convergence of the entire sequence in
Sect. 6.

The uniform convergence of {uβk
} to v implies that the left-hand-side and the first

integral on the right-hand side of (16) converge to τv(t) − τuinit and − ∫ t

0 v(s) ds,
respectively, as k → ∞. Also, due to assumption (11), the third integral on the right-
hand side does not require any extra attention. We will thus focus on the second
integral on the right-hand side of (16).

For t ∈ [0, T ] and δ > 0, define the sets

p(δ; t) = {s ∈ [0, t] | m(s;v) > δ
}
, (17)

r(δ; t) = [0, t] \ p(δ; t),
where m(s;v) is defined in (14) and v is the limit in (13). Since v is continuous
it follows that m(s;v), s ∈ [0, T ], is continuous. Hence, the sets p(δ; t) and r(δ; t)
are Lebesgue measurable. We note that, provided that δ > 0 is small, the set r(δ; t)
contains the times where at least one of the components of v is close to the threshold
value uθ for firing. The following lemma turns out to be crucial for our analysis of
the second integral on the right-hand side of (16).

Lemma 4.1 If the limit function v in (13) is threshold simple, then

lim
δ→0+

∣∣r(δ; t)∣∣= 0, t ∈ [0, T ], (18)

where |r(δ; t)| denotes the Lebesgue measure of the set r(δ; t).
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Proof Since v is the uniform limit of a sequence of continuous functions, v is con-
tinuous and hence measurable. If v is threshold simple, then

∣∣Z(v)
∣∣= 0, (19)

see (15).
Let t ∈ [0, T ] be arbitrary. Assume that

lim
δ→0+

∣∣r(δ; t)∣∣ �= 0,

or that this limit does not exist. Then ∃ε̃ > 0 such that there is a sequence {δn} satis-
fying

0 < δn+1 < δn ∀n ∈N,

lim
n→∞ δn = 0,

∣∣r(δn; t)
∣∣> ε̃ ∀n ∈N.

By construction,

r(δ1; t) ⊃ r(δ2; t) ⊃ · · · ⊃ r(δn; t) ⊃ . . . ,

and |r(δ1; t)| ≤ T < ∞. Hence,

∣∣∣∣∣

∞⋂

n=1

r(δn; t)
∣∣∣∣∣= lim

n→∞
∣∣r(δn; t)

∣∣≥ ε̃ > 0,

see, e.g., [13] (page 62). Since the sequence {|r(δn; t)|} is nonincreasing and bounded
below, limn→∞ |r(δn; t)| exists.

Next,

s ∈
∞⋂

n=1

r(δn; t) ⇒ m(s;v) ≤ δn ∀n ⇒ m(s;v) = 0 ⇒ s ∈ Z(v),

i.e.
∞⋂

n=1

r(δn; t) ⊂ Z(v).

Hence,

∣∣Z(v)
∣∣≥
∣∣∣∣∣

∞⋂

n=1

r(δn; t)
∣∣∣∣∣≥ ε̃ > 0,

which contradicts (19). �
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4.2 Convergence of the Integral

Lemma 4.2 If the limit v in (13) is threshold simple, then

lim
k→∞

∫ t

0
ωSβk

[
uβk

(s) − uθ

]
ds =

∫ t

0
ωS∞

[
v(s) − uθ

]
ds, t ∈ [0, T ]. (20)

Proof Let t ∈ [0, T ] and ε̃ > 0 be arbitrary and define

C = max
i∈{1,2,...,N}

(
N∑

j=1

|ωi,j |
)

.

From (18) we know that there exists � > 0 such that

∣∣r(2δ; t)∣∣< ε̃

2C
, 0 < δ < �. (21)

Choose a δ which satisfies 0 < δ < �. By part (c) of Assumption A, for this δ and

ε = ε̃

2T C
, (22)

there exists Q ∈N such that (6) and (7) hold.
Recall that β1, β2, . . . , βk, . . . are the values for the steepness parameter associated

with the convergent subsequence {uβk
} in (13). By the uniform convergence of {uβk

}
to v, there is a K ∈N so that

βK > Q, (23)

sup
s∈[0,T ]

∥∥uβk
(s) − v(s)

∥∥∞ < δ, k > K. (24)

From the definition of the set p(2δ; t), see (17) and (14),

m(s;v) = min
j∈{1,2,...,N}

∣∣vj (s) − uθ

∣∣> 2δ > δ, s ∈ p(2δ; t), (25)

and from (24) and the triangle inequality it follows that

min
j∈{1,2,...,N}

∣∣uβk,j (s) − uθ

∣∣> δ, s ∈ p(2δ; t) and k > K. (26)

From (24)–(26) we find that

(
vj (s) − uθ

) · (uβk,j (s) − uθ

)
> 0, s ∈ p(2δ; t), j ∈ {1,2, . . . ,N}, k > K.

Also, because of the properties of the Heaviside function,

S∞
(
vj (s) − uθ

)=
{

1, vj (s) − uθ ≥ δ,

0 vj (s) − uθ ≤ −δ,
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j ∈ {1,2, . . . ,N}. Consequently, due to (23) and part (c) of Assumption A, see (6)
and (7), we find that

∣∣Sβk

[
uβk,j (s) − uθ

]− S∞
[
vj (s) − uθ

]∣∣< ε,

s ∈ p(2δ; t), j ∈ {1,2, . . . ,N}, k > K.

Hence,
∥∥∥∥
∫ t

0
ω
{
Sβk

[
uβk

(s) − uθ

]− S∞
[
v(s) − uθ

]}
ds

∥∥∥∥∞

=
∥∥∥∥
∫

p(2δ;t)∪r(2δ;t)
ω
{
Sβk

[
uβk

(s) − uθ

]− S∞
[
v(s) − uθ

]}
ds

∥∥∥∥∞

≤
∥∥∥∥
∫

p(2δ;t)
ω
{
Sβk

[
uβk

(s) − uθ

]− S∞
[
v(s) − uθ

]}
ds

∥∥∥∥∞

+
∥∥∥∥
∫

r(2δ;t)
ω
{
Sβk

[
uβk

(s) − uθ

]− S∞
[
v(s) − uθ

]}
ds

∥∥∥∥∞

≤ ε
∣∣p(2δ; t)∣∣ max

i∈{1,2,...,N}

(
N∑

j=1

|ωi,j |
)

+ ∣∣r(2δ; t)∣∣ max
i∈{1,2,...,N}

(
N∑

j=1

|ωi,j |
)

≤ ε̃

2T C
T max

i∈{1,2,...,N}

(
N∑

j=1

|ωi,j |
)

+ ε̃

2C
max

i∈{1,2,...,N}

(
N∑

j=1

|ωi,j |
)

< ε̃

for all k > K , where the second last inequality follows from (22), the fact that
|p(2δ; t)| ≤ T for t ∈ [0, T ] and (21). Since ε̃ > 0 and t ∈ [0, T ] were arbitrary,
we conclude that (20) must hold. �

4.3 Limit Problem

By employing the uniform convergence (13), the convergence of the integral (20) and
assumption (11), we conclude from (16) that the limit function v satisfies

τv(t) − τuinit = −
∫ t

0
v(s) ds +

∫ t

0
ωS∞

[
v(s) − uθ

]
ds

+
∫ t

0
q∞(s) ds, t ∈ [0, T ], (27)
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provided that v is threshold simple. Recall that v is continuous. Consequently, if v
is extra threshold simple, then it follows from the fundamental theorem of calculus
that v also satisfies the ODEs, except at time instances when one or more of the
component functions equal the threshold value for firing:

τv′(t) = −v(t) + ωS∞
[
v(t) − uθ

]+ q∞(t), t ∈ (0, T ] \ Z(v),

v(0) = uinit,
(28)

where Z(v) is defined in (15).
The existence of a solution matter for point neuron models with a Heaviside firing

rate function is summarized in the following theorem.

Theorem 4.3 If the limit v in (13) is threshold simple, then v solves (27). In the case
that v is extra threshold simple v also satisfies (28).

In [25] the existence issue for neural field equations with a Heaviside activation
function is studied but the analysis is different because a continuum model is con-
sidered. We would also like to mention that Theorem 4.3 cannot be regarded as a
simple consequence of Carathéodory’s existence theorem [21, 26, 27] because the
right-hand-side of (28) is discontinuous with respect to v.

5 Uniqueness

If β < ∞, then standard ODE theory [15–17] implies that (3) has a unique solution.
Unfortunately, as will be demonstrated below, this desirable property is not necessar-
ily inherited by the infinite steepness limit problem.

We will first explain why the uniqueness question is a subtle issue for point neuron
models with a Heaviside firing rate function. Thereafter, additional requirements are
introduced which ensure the uniqueness of an extra threshold simple solution.

5.1 Example: Several Solutions

Let us study the problem

v′(t) = −v(t) + ωS∞
[
v(t) − uθ

]
, t ∈ (0, T ],

v(0) = uθ ,
(29)

where we assume that

ω > uθ ≥ 0.

Note that the ODE in (29) is not required to hold for t = 0. Consider the functions

v1(t) = ω + (uθ − ω)e−t = uθe
−t + (1 − e−t

)
ω, (30)

v2(t) = uθe
−t . (31)
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Since

v1(t) > uθe
−t + (1 − e−t

)
uθ = uθ , t ∈ (0, T ],

v2(t) < uθ , t ∈ (0, T ],
it follows that both v1 and v2 solves (29).

Furthermore, with

ω = 2uθ ,

S∞(0) = 1

2
,

we actually obtain a third solution of (29). More specifically, the stationary solution

v3(t) = uθ , t ∈ [0, T ]. (32)

We conclude that models with a Heaviside firing rate function can have several
solutions – such problems can thus become ill-posed. (In [9] we showed that the
initial-condition-to-solution map is not necessarily continuous for such problems and
that the error amplification ratio can become very large in the steep but Lipschitz
continuous firing rate regime.) Note that switching to the integral form (27) will not
resolve the lack of uniqueness issue for the toy example considered in this subsection.

We also remark that

• If we define S∞(0) = 1/2, then neither v1 nor v2 satisfies the ODE in (29) for
t = 0. (In the case ω = 2uθ , v3 satisfies the ODE in (29) for t = 0.)

• If we define S∞(0) = 1, then v1, but not v2, satisfies the ODE in (29) also for t = 0.
• If we define S∞(0) = 0, then v2, but not v1, satisfies the ODE in (29) also for t = 0.

5.2 Enforcing Uniqueness

In order to enforce uniqueness we need to impose further restrictions. It turns out
that it is sufficient to require that the derivative is continuous from the right and that
the ODEs also must be satisfied whenever one, or more, of the component functions
equals the threshold value for firing

τv′(t) = −v(t) + ωS∞
[
v(t) − uθ

]+ q∞(t), t ∈ [0, T ],
v(0) = uinit.

(33)

Note that the ODEs in (33) also must be satisfied for t = 0, in case one of the com-
ponents of uinit equals uθ .

Definition 1 (Right smooth) A vector-valued function z : [0, T ] → R
N is right

smooth if z′ is continuous from the right for all t ∈ [0, T ).

Theorem 5.1 The initial value problem (33) can have at most one solution which is
both extra threshold simple and right smooth.
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Proof Let v and ṽ be two solutions of (33) which are both right smooth and extra
threshold simple:

[0, T ] =
L⋃

l=1

Īl ,

m(s;v) �= 0 ∀s ∈
L⋃

l=1

Il,

and

[0, T ] =
L̃⋃

l=1

¯̃
Il,

m(s; ṽ) �= 0 ∀s ∈
L̃⋃

l=1

Ĩl ,

where I1, I2, . . . , IL and Ĩ1, Ĩ2, . . . , ĨL̃
are disjoint open intervals; see (14) and the

definition of extra threshold simple in Sect. 3.1.
Then there exist disjoint open intervals Î1, Î2, . . . , ÎL̂

such that

[0, T ] =
L̂⋃

l=1

¯̂
Il,

m(s;v) �= 0 and m(s; ṽ) �= 0 ∀s ∈
L̂⋃

l=1

Îl . (34)

Let us focus on one of these intervals, Îl = (al, al+1). Define

d = v − ṽ

and assume that

v(al) = ṽ(al), (35)

which obviously holds for l = 1. Then

τd′(t) = −d(t) + ωγ (t), t ∈ [al, al+1], (36)

d(al) = 0, (37)

where

γ (t) = S∞
[
v(t) − uθ

]− S∞
[
ṽ(t) − uθ

]
, t ∈ [al, al+1].
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Note that, due to (34), γ (t) equals a constant vector c, with components −1,0 or 1,
except possibly at t = al, al+1:

γ (t) = c, t ∈ (al, al+1). (38)

Furthermore, from (35) we find that

γ (al) = 0. (39)

Putting t = al in (36) and invoking (37) and (39) yield

d′(al) = 0,

and from the right continuity of d′ and d, (36), (37) and (38) we find that

0 = τd′(al)

= lim
t→a+

l

τd′(t)

= lim
t→a+

l

[−d(t) + ωγ (t)
]

= ωc.

Since ωγ (t) = ωc = 0, t ∈ (al, al+1), and ωγ (al) = 0, see (39), we conclude from
(36)–(37) that d satisfies

τd′(t) = −d(t), t ∈ [al, al+1),

d(al) = 0,

which has the unique solution d(t) = 0, t ∈ [al, al+1). Both v(t) and ṽ(t) are differ-
entiable on [0, T ] and hence continuous. It follows that, by employing the continuity
of v and ṽ at time t = al+1,

v(t) = ṽ(t), t ∈ [al, al+1].
Since v(al+1) = ṽ(al+1) we can repeat the argument on the next interval

[al+1, al+2]. It follows by induction that v(t) = ṽ(t), t ∈ [0, T ]. �

We would like to comment the findings presented in the bullet-points at the end
of Sect. 5.1 in view of Theorem 5.1: In order to enforce uniqueness for the solution
of (29) we can require that the ODE in (29) also should be satisfied for t = 0. Nev-
ertheless, this might force us to define S∞(0) �= 1

2 , which differs from the standard
definition of the Heaviside function H .

More generally, if one has accomplished to compute an extra threshold sim-
ple and right smooth function v which satisfies (27), one can attempt to redefine
S∞[v(t) − uθ ], t ∈ {a1, a2, . . . , aL+1}, such that (33) holds and v is the only solution
to this problem. This may imply that S∞[v(t)− uθ ] cannot be generated by using the
composition H ◦ [v(t) − uθ ]. Instead one must determine zj,k = S∞[vj (ak) − uθ ],
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j = 1,2, . . . ,N , k = 1,2, . . . ,L + 1. More precisely, for each k ∈ {1,2, . . . ,L + 1}
one gets a linear system of algebraic equations

τiv
′
i (ak) = −vi(ak) +

N∑

j=1

ωi,j zj,k + q∞,i (ak), i = 1,2, . . . ,N,

which will have a unique solution (z1,k, z2,k, . . . , zN,k)
T if the connectivity matrix

ω = [ωi,j ] is nonsingular. (In this paragraph, {0 = a1, a2, . . . , aL+1 = T } are the time
instances employed in the definition of extra threshold simple; see Sect. 3.1.)

6 Convergence of the Entire Sequence

We have seen that point neuron models with a Heaviside firing rate function can
have several solutions. One therefore might wonder if different subsequences of {uβ}
can converge to different solutions of the limit problem. In this section we present
an example which shows that this can happen, even though the involved sigmoid
functions satisfy Assumption A.

6.1 Example: Different Subsequences Can Converge to Different Solutions

Let us again consider the initial value problem (29), which we discussed in Sect. 5.1.
A finite steepness approximation of this problem, using the notation u(t) = uβ(t),
reads:

u′(t) = −u(t) + ωS̄β

[
u(t) − uθ

]
, t ∈ (0, T ],

u(0) = uθ ,
(40)

where

S̄β [x] = Sβ

[
x + (−1)β

2β

]
, β ∈ N,

and Sβ is, e.g., either the hyperbolic tangent sigmoid function (8)–(9) or

Sβ(x) =

⎧
⎪⎨

⎪⎩

1, x > 1
β
,

1
2 + 1

2βx, x ∈ [− 1
β
, 1

β
],

0, x < − 1
β
.

(41)

Note that {S̄β} converges pointwise, except for x = 0, to the Heaviside function H as
β → ∞. In fact, {S̄β} satisfies Assumption A.

We consider the case ω = 2uθ . Therefore (29) has three solutions v1, v2 and v3,
see (30), (31) and (32) in Sect. 5.1. Note that

u(t) = uβ(t)

has the property
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• u′
β(0) > c if β is even,

• u′
β(0) < −c if β is odd,

where c > 0 is a constant which is independent of β . It therefore follows that

lim
k→∞u2k = v1,

lim
k→∞u2k+1 = v2,

and no subsequence converges to the third solution v3. Figure 1 shows numerical
solutions of (40) with steepness parameter β = 10,000,000,10,000,001, using the
firing rate function (41) to define S̄β . (If one instead employs (8)–(9) in the imple-
mentation of S̄β , the plots, which are not included, are virtually unchanged.)

We would like to mention that we have not been able to construct an example of
this kind for Lipschitz continuous firing rate functions which converge pointwise to
the Heaviside function also for x = 0.

6.2 Entire Sequence

We have seen that almost everywhere convergence of the sequence of firing rate func-
tions to the Heaviside limit is not sufficient to guarantee that the entire sequence {uβ}
converges to the same solution of the limit problem. Nevertheless, one has the fol-
lowing result.

Theorem 6.1 Let v be the limit function in (13). If the limit of every convergent
subsequence of {uβ} is extra threshold simple, right smooth and satisfies (33), then
the entire sequence {uβ} converges uniformly to v.

Proof Suppose that the entire sequence {uβ} does not converge uniformly to v. Then
there is an ε > 0 such that, for every positive integer M , there must exist uβl

, βl > M ,
satisfying

sup
t∈[0,T ]

∥∥uβl
(t) − v(t)

∥∥∞ > ε. (42)

Thus, the subsequence {uβl
} does not converge uniformly to v, but constitutes a

set of uniformly bounded and equicontinuous functions, see Sect. 3. According to
the Arzelà–Ascoli theorem, {uβl

} therefore possesses a uniformly convergent subse-
quence {uβln

},
lim

n→∞ uβln
= ṽ.

Due to (42),

ṽ �= v. (43)

On the other hand, both v and ṽ are limits of subsequences of {uβ} and are by
assumption extra threshold simple, right smooth, and they satisfy (33). Hence, The-
orem 5.1 implies that ṽ = v, which contradicts (43). We conclude that the entire
sequence {uβ} must converge uniformly to v. �
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Fig. 1 Numerical solutions of (40) computed with Matlab’s ode45 software. In these simulations we
used uθ = 0.6 and ω = 1.2. The functions v1 and v2, see (30) and (31), are the solutions of the associated
limit problem (29)
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7 Example: Threshold Advanced Limits

We will now show that threshold advanced limits, i.e. limits which are not threshold
simple, may possess some peculiar properties. More precisely, such limits can po-
tentially occur in (13). They do not necessarily satisfy the limit problem obtained by
using a Heaviside firing rate function.

With source terms which do not depend on the steepness parameter β we have
not managed to construct an example with a threshold advanced limit v. If we allow
q = qβ , this can, however, be accomplished as follows. Let

zβ(t) = 1

β
Sβ

[
− 1

β
+ 2t

]
+ uθ , β = 1,2, . . . ,

where we, for the sake of simplicity, work with the firing rate function (41). Then

zβ(0) = 1

β
Sβ

[
− 1

β

]
+ uθ = uθ ,

zβ(t) =
{

t + uθ , t ∈ [0, 1
β
),

1
β

+ uθ , t ≥ 1
β
,

z′
β(t) =

{
1, t ∈ [0, 1

β
),

0, t > 1
β
,

Sβ

[
zβ(t) − uθ

]=
{

1
2 + 1

2βt, t ∈ [0, 1
β
),

1, t ≥ 1
β
,

and we find that

uβ(t) = zβ(t)

solves

uβ(t) − uθ = −
∫ t

0
uβ(s) ds

+
∫ t

0
ωSβ

[
uβ(s) − uθ

]
ds

+
∫ t

0
qβ(s) ds, t ∈ [0, T ],

where

qβ(t) = z′
β(t) + zβ(t) − ωSβ

[
zβ(s) − uθ

]

=
{

1 + t + uθ − ω( 1
2 + 1

2βt), t ∈ [0, 1
β
),

1
β

+ uθ − ω, t > 1
β
.

(44)
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It follows that

q∞(t) =
{

1 + uθ − ω, t = 0,

uθ − ω, t > 0,

and since, for any β ∈N,

∣∣qβ(t)
∣∣≤ 1 + 1

β
+ |uθ | + |ω| < 2 + |uθ | + |ω|, t �= 1

β
,

we conclude that

lim
β→∞

∫ t

0
qβ(s) ds =

∫ t

0
q∞(s) ds, t ∈ [0, T ].

Note that

uβ(t) −→ v̄(t) = uθ , uniformly, as β → ∞,

but v̄(t) = uθ does not solve the limit problem

v(t) − uθ = −
∫ t

0
v(s) ds

+
∫ t

0
ωS∞

[
v(s) − uθ

]
ds

+
∫ t

0
q∞(s) ds, t ∈ [0, T ],

because

−
∫ t

0
v̄(s) ds +

∫ t

0
ωS∞

[
v̄(s) − uθ

]
ds +

∫ t

0
q∞(s) ds

= −tuθ + tω
1

2
+ t (uθ − ω)

= −1

2
tω

�= 0 = v̄(t) − uθ , t ∈ (0, T ].
This argument assumes that S∞[0] = 1/2. If one instead defines S∞[0] = 1, then v̄

would solve the limit problem.
Due to the properties of the firing rate function (41) the source term qβ in (44)

becomes discontinuous. This can be avoided by instead using the smooth version
(8)–(9) but then the analysis of this example becomes much more involved.

8 Discussion and Conclusions

If a Heaviside firing rate function is used, the model (1) may not only have several
solutions, but the initial-condition-to-solution map for this problem can become dis-
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continuous [9]. It is thus virtually impossible to develop reliable numerical methods
which employ finite precision arithmetic for such problems. One can try to overcome
this issue by

(a) Attempting to solve the ill-posed equation with symbolic computations.
(b) Regularize the problem.

To the best of our knowledge, present symbolic techniques are not able to handle
strongly nonlinear equations of the kind (1), even when β < ∞. We therefore an-
alyzed the approach b), using the straightforward regularization technique obtained
by replacing the Heaviside firing rate function by a Lipschitz continuous mapping.
This yields an equation which is within the scope of the Picard–Lindelöf theorem and
standard stability estimates for ODEs. That is well-posed and, at least in principle,
approximately solvable by numerical methods.

Our results show that the sequence {uβ} of regularized solutions will have at least
one convergent subsequence. The limit, v, of this subsequence will satisfy the inte-
gral/Volterra form (27) of the limit problem, provided that the set Z(v), see (15), has
zero Lebesgue measure. Unfortunately, it seems to be very difficult to impose restric-
tions which would guarantee that v obeys this threshold property, which we refer to
as threshold simple. Also, the example presented in Sect. 7 shows that, if the limit v
is not threshold simple, then this function may not solve the associated equation with
a Heaviside firing rate function.

One could propose to overcome the difficulties arising when β = ∞ by always
working with finite slope firing rate functions. This would potentially yield a rather
robust approach, provided that the entire sequence {uβ} converges, because increas-
ing a large β would still guarantee that uβ is close to the unique limit v. However,
the fact that different convergent subsequences of {uβ} can converge to different so-
lutions of the limit problem, as discussed in Sect. 6, suggests that this approach must
be applied with great care. In addition, the error amplification in the steep firing rate
regime can become extreme [9] and the accurate numerical solution of such models
is thus challenging.

What are the practical consequences of our findings? As long as there does not
exist very reliable biological information about the size of the steepness parameter
β and the shape of the firing rate function Sβ , it seems that we have to be content
with simulating with various β < ∞. If one observes that uβ approaches a threshold
advanced limit, as β increases, or that the entire sequence does not converge, the
alarm bell should ring. All simulations with large β must use error control methods
which guarantee the accuracy of the numerical solution—we must keep in mind that
we are trying to solve an almost ill-posed problem.

In neural field equations one employs a continuous variable, e.g., x ∈ R, instead
of a discrete index i ∈ {1,2, . . . ,N}. The sum in (1) is replaced by an integral; see
[1, 2, 6]. For each time instance t ∈ [0, T ] one therefore does not get a vector uβ(t) ∈
R

N , as for the point neural models analyzed in this paper, but a function uβ(x, t),
x ∈ R. That is, in neural field equations the object associated with each fixed t ∈
[0, T ] belongs to an infinite dimensional space. It is often a subtle task to generalize
concepts and proofs from a finite to an infinite dimensional setting: It is thus an open
problem whether the techniques and results presented in this paper can be adapted to
neural field models.
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