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Abstract Understanding the neural field activity for realistic living systems is a chal-
lenging task in contemporary neuroscience. Neural fields have been studied and de-
veloped theoretically and numerically with considerable success over the past four
decades. However, to make effective use of such models, we need to identify their
constituents in practical systems. This includes the determination of model param-
eters and in particular the reconstruction of the underlying effective connectivity in
biological tissues.

In this work, we provide an integral equation approach to the reconstruction of the
neural connectivity in the case where the neural activity is governed by a delay neu-
ral field equation. As preparation, we study the solution of the direct problem based
on the Banach fixed-point theorem. Then we reformulate the inverse problem into a
family of integral equations of the first kind. This equation will be vector valued when
several neural activity trajectories are taken as input for the inverse problem. We em-
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ploy spectral regularization techniques for its stable solution. A sensitivity analysis
of the regularized kernel reconstruction with respect to the input signal u is carried
out, investigating the Fréchet differentiability of the kernel with respect to the signal.
Finally, we use numerical examples to show the feasibility of the approach for ker-
nel reconstruction, including numerical sensitivity tests, which show that the integral
equation approach is a very stable and promising approach for practical computa-
tional neuroscience.

Keywords Neural fields · Integral equations · Fixed-point theorem · Inverse
problems · Regularization

1 Introduction

In recent years, studying the activity of neural tissue and development of mathemat-
ical and numerical techniques to understand neural processes has led to improved
neural field models. Since the early work of Wilson, Cowan and Amari in the 1970s
neural field models have become an effective tool in neuroscience [1–4].

The neural networks occurring in nature are typically complex systems sporting a
large variety of properties in space and time. Simplifying their analysis is generally
difficult—in particular when one considers the many billions of neurons of the entire
human nervous system, where each of these neurons can be considered as a complex
biological system by and in itself, cf. [5]. However, neural field models describe
these complicated system mathematically in a few equations, essentially by using the
large number of neurons to achieve simplification in terms of mass action. Thus these
models consider averages of the neural activity as a dynamical variable, and averages
of neural properties as parameters. The derivation of neural models from properties of
single neurons and their networks, and the analysis of the resulting activity, remains
a major focus of current research [1, 6–11].

In this century, there are many papers on the neural field equation with and with-
out delays. Some of the studies provide a framework for the existence, uniqueness
and stability of the solutions of the neural field equation such as [8–15], while oth-
ers consider building effective methods to investigate and assimilate the neural field
activities, see for example [16–21] with techniques of Data assimilation and Inverse
Problems applied to the case without delays. Recently, Nogaret et al. [7] built a model
construction method using an optimization technique to assimilate neural data to de-
termine parameters in a detailed neural model including delay.

A challenge often encountered in the study of living systems is to estimate a spa-
tial connectivity kernel w. In a neural system this connectivity kernel usually cor-
responds to the synaptic footprint, i.e., the connections from a neuron to others by
synapses forming between its branching axon and their dendritic trees. Typically,
measurements are available for the activity function u at particular spatial locations,
e.g., where neurons are patch- clamped or electrodes are placed in the extracellular
medium. The task then becomes to derive the spatial connectivity from these exper-
imental data. This approach limits the estimation of connectivity to the set of spatial
locations of measurements. In the present work, we propose to improve this conven-
tional approach by studying the inverse problem where the full activity function u is
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given at each location in a given spatial domain and the underlying spatial connec-
tivity is derived. The problem of having limited measurements is part of subsequent
work combining inverse techniques with state estimation techniques. Here, we focus
on the problem to reconstruct the kernel w when u is known.

The present work considers neural field models that involve delayed spatial in-
teractions and where the delay may depend on the distance between spatial locations
[11, 14, 22]. We will assume that the delay function D(r, r ′) between spatial locations
r , r ′ is known. For instance, this is the case when the delay is linked to the geometry
of the problem, e.g., when D(r, r ′) ∼ ‖r − r ′‖, the distance between the points r and
r ′ in some domain Ω . This assumption is common in practice, since for direct neural
connections the delay is essentially the distance divided by the signal propagation
speed, which can be assumed to be a universal constant in a first approximation.

Neural field models consider spatially nonlocal interactions, which may be ex-
pressed equivalently either by higher orders of spatial derivatives or by spatial inte-
grals [22, 23]. In the first part of this paper, we will show how the methods used in
[12] can be modified to study existence and stability of solutions in a neural field
model with delay. The basic idea is to split the integral operators under considera-
tion into parts with positive and negative temporal arguments. As a result we obtain
a direct and flexible basic existence proof for a delay neural field equation, which
includes a constructive method based on integral equations only. These results have
been derived by other authors [8, 10, 11, 24] with more sophisticated techniques, but
it is non-trivial that the arguments used for neural fields without delay are applicable
to the delay case, and the approach in our Sect. 2, based on several relatively simple
functional analytic arguments, is of interest by itself.

Second, we will show that the kernel reconstruction problem for the delay neural
field equation can be reformulated into a family of integral equations of the first kind.
When several trajectories of neural activity are given, the family of integral equations
is vector valued. This turns out to be an ill-posed problem, for smooth neural activ-
ity it is even exponentially ill posed. To formulate stable numerical methods for its
solution, we need to employ regularization. Here, we use a spectral approach to clas-
sical Tikhonov regularization [25–27]. We then study the sensitivity of the mapping
u �→ w showing that its regularized version is Fréchet differentiable, and we calculate
the derivative by means of integral equations.

In the third part of the paper, we show by a numerical study that the kernel re-
construction from a delay neural field is feasible. We numerically solve the family of
integral equations under consideration by a collocation method and provide a study
of reconstructions based on the regularization of the ill-posed integral operators un-
der consideration. This includes a study of the influence of measurement noise on the
reconstruction quality and tests of the role of the regularization parameter.

We start with a concise version of the equations in Sect. 2, and in Sect. 3 prepare
our inverse approach by a study of the existence for the delay neural field equation.
The central section, Sect. 4, serves to develop a family of integral equations to solve
the inverse problem for the delay neural field equation. The numerical realization of
the approach is shown in Sect. 5, where we demonstrate that with an appropriate reg-
ularization the inverse problem is solvable, i.e., prescribed kernels can be constructed
and reconstructed kernels generate a neural environment leading to the prescribed
neural behaviour.
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2 The Mathematical Model

In neural dynamics, neurons send electrical spikes to each other through axons ter-
minating in synapses. Let u(rj , t) denotes the average membrane potential of the j th
neuron located at position rj at time t in a network of N units. Let W(rj , ri) be the
average connectivity strength between neuron at position ri and neuron at position rj .
The function f is the activation rate or firing rate function, which describes the con-
version of the membrane potential u(rj , t) into a spike train S(ri, t) = f [u(ri, t)],
which is then leading to an excitation of neurons at location rj with strength
W(rj , ri)S(ri , t). The dynamics of the excitation is now described by the ODEs

τ
du

dt
(rj , t) = −u(rj , t) +

N∑

i=1

W(rj , ri)f
[
u(ri, t)

]
. (1)

This combination of an exponential decay with characteristic time τ and a sum of
excitation terms is commonly called a ‘leaky integrator model’. The sum represents
the net-input to unit j , i.e., the weighted sum of activity delivered by all units i that are
connected to unit j with a connection strength W(rj , ri); cf. [12, 28]. The continuous
version of (1) is obtained by considering neurons which are continuously distributed
over the space Ω , e.g., in a plane with Ω ∈ R

2 or Ω ∈ R
3 and by replacing the sum

by an integral. This leads to the simplest form of the Amari neural field equation [4],

τ
∂u

∂t
(r, t) = −u(r, t) +

∫

Ω

w
(
r, r ′)f

[
u
(
r ′, t

)]
dr ′, r ∈ Ω. (2)

Here u(r, t) indicates a neural field representing the activity of the population of neu-
rons at position r and time t . The second term on the right-hand side represents the
synaptic input, where f is the activation (or firing rate) function of a single neu-
ron. The kernel w(r, r ′) is often referred to as the synaptic footprint [29–31] or the
connectivity function [12, 14, 32, 33]. It presents the strength of the connection be-
tween neurons located at r and r ′. The function w incorporates three different kinds
of meaning: the existence of a connection in the first place, if w �= 0, the functional
effect of either excitation, if w > 0, or inhibition, if w < 0, and finally the strength of
the connectivity via |w| [4, 12, 34].

Although the neural field equation (2) represents several biological mechanisms,
this form still neglects any delay between spatial locations. In reality, finite transmis-
sion speeds in axons, synapses and dendrites cause a functionally significant delay.
Taking it into account, the neural field equation involving delayed interactions be-
comes

τ
∂u

∂t
(r, t) = −u(r, t) +

∫

Ω

w
(
r, r ′)f

[
u
(
r ′, t − D

(
r, r ′))]dr ′, r ∈ Ω, (3)

where the delay is typically assumed to be D(r, r ′) 	 D̃(r, r ′)/v, i.e., the total length
of the neural fibers D̃ connecting locations r and r ′, divided by v, the finite trans-
mission speed of neural signals (action/post-synaptic potentials) along those fibers.
In general, D is not constant but continuous. Equation (3) is accompanied by initial
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conditions. These depend on the geometry of the spatial domain and the specific tem-
poral dynamics under study. They are considered in detail in the subsequent sections.

The existence of solutions to the neural field equation (3) has been investigated in
various papers already [10–12]. For example, Potthast and beim Graben [12] provide
the proof of existence and its analysis in the case of no delay, i.e. for D(r, r ′) = 0. In
addition, Faugeras and Faye [10], in their Theorem 3.2.1, state the general existence
of solutions with a reference to the generic theory of delay equations, based on work
such as [35]. We also point out the work of Van Gils et al. [8] employing the sun–star
calculus for their analysis and [24] in which the local bifurcation theory for delayed
neural fields was developed. Here, we develop arguments on how to use the basic
functional analytic calculus to work for the delay case as well, with the goal to present
a short and elementary approach which is easily accessible.

3 The Delay Neural Field Equation

In this work, we study the neural field equation (3) on some bounded domain Ω ⊂ R
m

in a space with dimension m = 2 or m = 3. We assume that the transmission delay
D(r, r ′) of neural excitation or inhibition between r ′ and r is bounded on Ω ×Ω , i.e.
there is a constant cT such that

∣∣D
(
r, r ′)∣∣ ≤ cT , r, r ′ ∈ Ω. (4)

At time t ∈R, the neural fields u(r, t) at a point r ∈ Ω might receive excitations from
the past with a maximal delay of cT . Working on the time interval [0, ρ] with ρ > 0,
equation (3) is complemented by initial conditions in the time interval [−cT ,0]. The
initial condition for the delay neural field equation is given by

u(r, t) = u0(r, t), (r, t) ∈ Ω × [−cT ,0]. (5)

We lay ground for our inverse and sensitivity analysis by a basic derivation of the
unique solvability of equation (3), using tools from functional analysis and integral
equations. Our investigation here makes a smoothness assumption for the activity
function f and the connectivity kernel w. We consider a continuous activation func-
tion f (s) for s ∈R and an activation threshold η. This function may be interpreted as
the mass action probability of neurons firing if their membrane potential is over the
threshold, and can be derived from a stochastic neuron models [6, 36]. Typically [1,
29], f is approximated by the logistic sigmoidal function

f (s) = 1

1 + e−σ(s−η)
, s ∈R, (6)

with some steepness parameter σ > 0 and threshold η. For the function f : R → R
+

we note that

f (s) ⊂ [0,1], s ∈ R. (7)

Here, we will work with general Lipschitz continuous functions f satisfying this
condition. We assume that the kernel w satisfies
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• (H1) w(r, ·) ∈ L1(Ω), ∀r ∈ Ω ⊂ R
m,

such that we obtain a well-defined integral of the form

g(r, s) :=
∫

Ω

w
(
r, r ′)f

(
u
(
r ′, s − D

(
r, r ′)))dr ′, r ∈ Ω,s ∈ R.

The condition

• (H2) supr∈Ω ‖w(r, ·)‖L1(Ω) ≤ C1,

with some constant C1 leads to g being bounded on Ω × R. We need g(r, s) to be
continuous in dependence of r and s, which for continuous functions u and D is
achieved by the additional condition

• (H3) ‖w(r, ·) − w(r∗, ·)‖L1(Ω) → 0 for |r − r∗| → 0.

Now, existence is given by the following result.

Theorem 3.1 (Existence) If the kernel w satisfies (H1)–(H3), and if the delay term
D is bounded continuous, i.e., if we have D ∈ BC(Ω × Ω,R+), then for any T > 0
and for any initial field u0 as given by the initial condition (5) there exists a unique
solution u ∈ C1(Ω × [0, T ]) to the delay neural field (3) on [0, T ].

Proof We first need some preparations. We will need to split the function u(r, s −
D(r, r ′)) into the part where the time variable t = s − D(r, r ′) is in (0, T ] and where
t = s − D(r, r ′) is in [−cT ,0]. This is carried out by defining

χ+(r, t) :=
{

1, t > 0,

0, t ≤ 0,
(8)

and χ−(r, t) := 1 − χ+(r, t). The function χ− is equal to 1 for negative time argu-
ments and we have 1 = χ+ +χ−. For studying the existence of solutions of the delay
neural field equation (3) we define the operators

(A1u)(r, t) :=
∫ t

0
−u(x, s)

τ
ds, r ∈ Ω and t ≤ 0, (9)

and

(
A±

2 u
)
(r, t) := 1

τ

∫ t

0

∫

Ω

w
(
r, r ′)χ±

(
r, s − D

(
r, r ′))

· f [
u
(
r ′, s − D

(
r, r ′))]dr ′ ds (10)

for r ∈ Ω and t ∈ [0, T ]. By integration with respect to time the solution of (3) can
be reformulated as

u(r, t) − u(r,0)

= 1

τ

∫ t

0

{
−u(r, s) +

∫

Ω

w
(
r, r ′)f

[
u
(
r ′, s − D

(
r, r ′))]dr ′

}
ds (11)
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for r ∈ Ω and t ∈ [0, ρ] with an auxiliary parameter ρ. Differentiating equation (11)
with respect to time, we return to the delay neural field equation (3). We can now split
the operators as follows:

1

τ

∫ t

0

∫

Ω

w
(
r, r ′)f

[
u
(
r ′, s − D

(
r, r ′))]dr ′ ds

= (
A+

2 u
)
(r, s) + (

A−
2 u

)
(r, s)

= (
A+

2 u
)
(r, s) + (

A−
2 u0

)
(r, s), (12)

where the last equality is obtained from

τ
(
A−

2 u
)
(r, t) =

∫ t

0

∫

Ω

w
(
r, r ′)χ−

(
r, s − D

(
r, r ′))f

[
u
(
r ′, s − D

(
r, r ′))]dr ′ ds

=
∫

Ω

∫ t

0
w

(
r, r ′)χ−

(
r, s − D

(
r, r ′))f

[
u
(
r ′, s − D

(
r, r ′))]ds dr ′

=
∫

Ω

∫ D(r,r ′)

0
w

(
r, r ′)f

[
u
(
r ′, s − D

(
r, r ′))]ds dr ′

=
∫

Ω

∫ D(r,r ′)

0
w

(
r, r ′)f

[
u0

(
r ′, s − D

(
r, r ′))]ds dr ′

=
∫

Ω

∫ t

0
w

(
r, r ′)χ−

(
r, s − D

(
r, r ′))f

[
u0

(
r ′, s − D

(
r, r ′))]ds dr ′

=
∫ t

0

∫

Ω

w
(
r, r ′)χ−

(
r, s − D

(
r, r ′))f

[
u0

(
r ′, s − D

(
r, r ′))]dr ′ ds

= τ
(
A−

2 u0
)
(r, t)

using u(r, t) = u0(r, t) for t ≤ 0. With A := A1 + A+
2 the delay neural field equation

is equivalent to the fixed-point equation

u(r, t) = u(r,0) + (
A−

2 u0
)
(r, t) + (Au)(r, t), r ∈ Ω and t ∈ [0, ρ]. (13)

Here, the function u(r, t) needs to be considered on Ω × [0, ρ] only and we can
study the fixed-point equation in BC(Ω × [0, ρ]). Any solution to equation (13) will
be continuously differentiable with respect to time and satisfy the delay neural field
equation (3). We now show that for sufficiently small parameter ρ > 0 the operator
A is a contraction on the space BC(Ω × [0, ρ]) equipped with its canonical norm

‖v‖ρ := sup
r∈Ω,t∈[0,ρ]

∣∣v(r, t)
∣∣. (14)

We will carry out these arguments in four steps, I–IV.

I. For the linear operator A1 given by equation (9), we follow [12], Lemma 2.5,
and estimate

∥∥(A1u)
∥∥

ρ
= sup

r∈Ω,t∈[0,ρ]

∣∣(A1u)(r, t)
∣∣ ≤ ρ

τ
sup

r∈Ω,t∈[0,ρ]

∣∣u(r, t)
∣∣ = ρ

τ
‖u‖ρ, (15)
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i.e., the operator A1 maps the space BC(Ω × [0, ρ]) boundedly into itself and by
equation (15) the operator norm is bounded by ρ/τ .

II. We define

Ju(r, t) := 1

τ

∫

Ω

w
(
r, r ′)χ+

(
r, t − D

(
r, r ′))f

(
u
(
r ′, t − D

(
r, r ′)))dr ′, (16)

for x ∈ Ω and t ≥ 0, and follow [12], Lemma 2.5, to estimate

∣∣Ju1(r, t) − Ju2(r, t)
∣∣

≤ 1

τ

∫

Ω

∣∣w
(
r, r ′)∣∣χ+

(
r, t − D

(
r, r ′))

· ∣∣f [
u1

(
r ′, t − D

(
r, r ′))] − f

(
u2

(
r ′, t − D

(
r, r ′)))∣∣dr ′ (17)

for x ∈ Ω and t ∈ [0, ρ]. First, using the Lipschitz continuity of the function f with
Lipschitz constant L > 0, using C1 given in (H2) we obtain

∣∣Ju1(r, t) − Ju2(r, t)
∣∣

≤ L

τ

∫

Ω

∣∣w
(
r, r ′)∣∣χ+

(
r, t − D

(
r, r ′))

· ∣∣u1
(
r ′, t − D

(
r, r ′)) − u2

(
r ′, t − D

(
r, r ′))∣∣dr ′

≤ LC1

τ
sup
r ′∈Ω

{
χ+

(
r, t − D

(
r, r ′))∣∣u1

(
r ′, t − D

(
r, r ′)) − u2

(
r ′, t − D

(
r, r ′))∣∣}

≤ LC1

τ
‖u1 − u2‖Ω×[0,ρ] (18)

for r ∈ Ω and t ∈ [0, ρ].
III. Integration of equation (18) with respect to t ∈ [0, ρ] leads to

∥∥A+
2 (u1) − A+

2 (u2)
∥∥

ρ
≤ ρLC1

τ
‖u1 − u2‖ρ, (19)

where ‖ · ‖ρ as defined in equation (14). Now, for the operator A we obtain the esti-
mate

∥∥A(u1) − A(u2)
∥∥

ρ
= ∥∥A1(u1 − u2) + A+

2 (u1) − A+
2 (u2)

∥∥
ρ

≤ ρ

τ
‖u1 − u2‖ρ + ρLC1

τ
‖u1 − u2‖ρ

≤ q‖u1 − u2‖ρ, (20)

with

q := ρ

τ
(1 + LC1). (21)
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In the case where ρ is small enough to guarantee that q < 1 by equation (20), we
have shown that A is a contraction on BC(Ω × [0, ρ],‖ · ‖ρ).

IV. According to the Banach fixed-point theorem, there is one and only one fixed
point u∗ for the fixed-point equation (13). We have shown the existence of a unique
solution u(x, t) for all t ∈ [0, ρ]. Now, the same argument applied to the interval
[ρ,2ρ] and subsequent intervals [2ρ,3ρ] etc. in the same way. This leads to the
existence and uniqueness result on the interval [0, T ]. �

Remark We note that the proof also works when some bounded continuous forcing
term I (r, t), r ∈ Ω , t ∈ [0, T ], is added to the neural field equation (3). It leads to an
additional term in Eq. (13), for which all arguments remain valid.

It is well known [21, 27] that Banach’s theorem also provides a constructive
method to calculate the fixed point by successive iterations. Let u1 be a starting func-
tion. Then the sequence defined by

un+1 := u0 + A−
2 (u0) + A(un), n = 1,2,3, . . . , (22)

converges to the unique fixed point u∗. An error estimate for this iteration process
based on equation (20) is obtained from

∥∥un+1 − u∗∥∥ = ∥∥u0 + A−
2 (u0) + A(un) − (

u0 + A−
2 (u0) + A

(
u∗))∥∥

= ∥∥A(un) − A
(
u∗)∥∥

≤ q
∥∥un − u∗∥∥. (23)

Induction immediately leads to the full error estimate
∥∥un+1 − u∗∥∥ ≤ qn

∥∥u1 − u∗∥∥, n ∈ N. (24)

For our numerical calculations we have, however, instead used Runge–Kutta or Euler
methods applied to the differential form of the delay neural field equation.

4 The Inverse Problem of Kernel Reconstruction with Delays

We now come to the kernel reconstruction from given dynamical neural patterns
with delay. We first formulate a regularized kernel reconstruction approach based on
integral equations in Sect. 4.1, then we carry out a sensitivity analysis in Sect. 4.2.

4.1 Kernel Reconstruction with Delays

Usually, we will observe the dynamical evolution of some pattern for a system under
consideration. More generally, observations may start from different inital patterns
that lead to different dynamical trajectories in the phase space. If we have N such
trajectories, the task is to find the kernel which will predict these trajectories when
the N initial conditions are provided. In more detail, the goal of this section is to
investigate the inverse problem of kernel reconstruction for the delay neural field
equation (3). We assume that
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• the nonlinear activation function f : R → R
+ is known, and

• the delay function D : Ω × Ω → [0, cT ] is given.

The task is to find a kernel w(r, r ′) for (r, r ′) ∈ Ω given the time-dependent neural
activation patterns u(ξ)(r, t) for (r, t) ∈ Ω ×[0, T ] corresponding to initial conditions
u

(ξ)
0 (r, t) for (r, t) ∈ Ω × [−cT ,0] according to equation (5), where ξ = 1, . . . ,N .

Here, we reformulate the inverse problem into a family of integral equations of the
first kind and study their solution by regularization methods. As a first step, we define

φ(ξ)(r, s) := f
[
u(ξ)(r, s)

]
, (r, s) ∈ Ω × [−cT , T ], (25)

and

ψ(ξ)(r, t) := τ
∂u(ξ)

∂t
(r, t) + u(ξ)(r, t), (r, t) ∈ Ω × [0, T ], (26)

for ξ = 1,2, . . . ,N . With the integral operator W defined by

(Wφ)(r, t) :=
∫

Ω

w
(
r, r ′)φ

(
r ′, t − D

(
r, r ′))dr ′, (r, t) ∈ Ω × [0, T ], (27)

the inverse problem is reformulated as the equation

ψ(ξ)(r, t) = (
Wφ(ξ)

)
(r, t), (r, t) ∈ Ω × [0, T ], (28)

with ξ = 1,2, . . . ,N , where the kernel w(r, r ′) with r, r ′ ∈ Ω of the linear operator
W is unknown. Equation (28) can be written as

ψ = Wφ, (29)

with φ = (φ(1), φ(2), . . . , φ(N))T and ψ = (ψ(1),ψ(2), . . . ,ψ(N))T , where we search
for the unknown operator W . An alternative is to rewrite equation (28) as

ψr(t) =
∫

Ω

φ
(
r ′, t − D

(
r, r ′))wr

(
r ′)dr ′, t ∈ [0, T ], (30)

for every fixed r ∈ Ω with

ψr(t) := ψ(r, t), t ∈ [0, T ], (31)

and

wr := w
(
r, r ′), r, r ′ ∈ Ω. (32)

Equation (30) is a family of integral equations for the unknown kernel w(r, r ′), where
each function wr = w(r, ·) provides a different integral equation with a different inte-
gral kernel and a different left-hand side. Its structure is given by the integral operator

(Vrg)(t) :=
∫

Ω

Kr

(
t, r ′)g

(
r ′)dr ′, t ∈ [0, T ], (33)



Journal of Mathematical Neuroscience  (2018) 8:3 Page 11 of 24

with kernel

Kr

(
t, r ′) := φ

(
r ′, t − D

(
r, r ′)),

(
t, r ′) ∈ [0, T ] × Ω, (34)

for r ∈ Ω . For N > 1 this kernel is a vector of functions φ(ξ)(r ′, t − D(r, r ′)) with
ξ = 1, . . . ,N . Now, our inverse problem equation (30) is given by

ψr = Vrwr (35)

for r ∈ Ω . For each r ∈ Ω equation (35) is a Fredholm integral equation of the first
kind with continuous kernel φ. The operator Vr is a compact operator on the spaces
C(Ω), L1(Ω) or L2(Ω) into BC([0, T ]). It is well known (cf. [21, 25, 27, 37]) that
this equation is ill posed, i.e. it does not need to have unique solutions and if it has a
solution in general this solution does not depend continuously on the right-hand side.

Ill-posed equations need some regularization method (cf. [26]) in order to obtain
a stable solution. A standard approach to regularization is built on the singular sys-
tem (cf. [27]) of the operator under consideration. In summary, for a compact linear
operator A : X → Y between Hilbert spaces X and Y , and its adjoint A∗, the singu-
lar values μn of the operator A are the non-negative square roots of the eigenvalues
of the self-adjoint compact operator A∗A : X → X. This leads to a representation
of the operator as a multiplication of two orthonormal systems gn : n ∈N in X and
yn : n ∈N in Y . Hence, this corresponds to a spectral representation of the operator
A in the form

Ag =
∞∑

n=1

μn〈g,gn〉yn, (36)

for g ∈ X. For the orthonormal systems gn and yn we obtain

Agn = μnyn, A∗yn = μngn. (37)

Here, in the case A that is injective, the inverse of A is given by

A−1y =
∞∑

n=1

1

μn

〈y, yn〉gn (38)

or, if A is not injective, the inverse A−1 in equation (38) projects onto the orthogonal
space N(A)⊥ = {g|〈g,g∗〉 = 0,∀g∗ ∈ N(A)}. Because of the compactness of the
operators A, the singular values are a sequence mostly accumulating at zero. So,
the behaviour of | 1

μn
| → ∞, n → ∞ enlarges small errors causing the instability of

applying the inverse. The practical behaviour of the sequence of singular values μn

provides important insight into the nature of the instability. For the application at
hand the problem is strongly ill posed for strong smoothness of the function φ.

To deal with this instability, we apply regularization techniques to minimize the
value of the factor 1

μn
for large n. We replace it by another factor qn which is bounded

for n ∈ N, and we modify the inverse operator by

Rαy =
∞∑

n=1

q(α)
n 〈y, yn〉gn, (39)
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where α > 0 is known as regularization parameter and the specific choice of damping
factors

q(α)
n := μn

α + μ2
n

, n ∈ N (40)

leads to the famous Tikhonov regularization (see for example [21, 25–27]).

Theorem 4.1 Let u(r, t) for r ∈ Ω and t ∈ [0, T ] be some neural activity function,
which obeys the neural field equation (3) with true kernel w∗ and some initial condi-
tions u(r, t) = u0(r, t) for (r, t) ∈ Ω ×[−cT ,0]. Then the application of the Tikhonov
regularization (39) to the integral equation (35) leads to the reconstruction wα(r, r ′)
of Pw∗, where P is applied to the second argument of w(r, r ′) as the projection of
w∗

r onto N(Vr)
⊥, i.e., it is defined as

(Pw)(r, ·) = Prwr, r ∈ Ω. (41)

Proof Here, we base our reconstruction on a well-known result (cf. [21], Theo-
rem 3.1.8) that states that Tikhonov regularization is a regularization scheme in the
sense of Definition 3.1.4 of [21], i.e., that if f = A(ϕ∗) ∈ R(A), then Rαf → ϕ∗
for α → 0. If A is not injective, splitting the space into N(A) and N(A)⊥ = A∗(X),
we see by wr = Pwr + (I − P)wr and A∗ that the convergence of Rαf is towards
the projection Pϕ∗ of ϕ∗ onto N(A)⊥. In our case, the reconstruction calculates an
approximation to Pw∗

r . This completes the proof. �

Usually, Tikhonov regularization is carried out by applying an efficient solver1 to
the equation

(
αI + A∗A

)
g = A∗y, (42)

which is equivalent to the spectral version of equation (39). Equation (42) is used for
our numerical examples of the subsequent section.

4.2 Sensitivity Analysis

An important basic question is the influence of noise on the reconstruction. Here,
we carry out a sensitivity analysis, i.e. we calculate the Fréchet derivative of the
reconstructed kernel with respect to the input function u. Differentiability is obtained
in a straightforward manner following [21], Chap. 2.6.

We start with equation (35), where the operator Vr and the right-hand side ψr de-
pend on the input function u. The reconstruction of w is carried out by the regularized
version of

wr = (Vr)
−1ψr, (43)

1For large-scale problems a conjugate-gradient method is used for solving the equation sequentially. For
smaller problems matrix inversion by Gauss’ method is sufficient.
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which in the case of Tikhonov regularization (42) is

wr,α = Rαψr

= (
αI + V ∗

r Vr

)−1
V ∗

r ψr . (44)

We differentiate with respect to u on both sides and employ the chain rule and Eq.
(2.6.21) of [21], to derive the unregularized form

∂wr

∂u
= −(Vr)

−1 ∂Vr

∂u
(Vr)

−1ψr + (Vr)
−1 ∂ψr

∂u
(45)

and the derivative of the regularized reconstruction

∂wr,α

∂u
= −Q

∂(V ∗
r Vr)

∂u
QV ∗

r ψr + Q
∂V ∗

r

∂u
ψr + QV ∗

r

∂ψr

∂u

= −Q
∂V ∗

r

∂u
VrQV ∗

r ψr − QV ∗
r

∂Vr

∂u
QV ∗

r ψr

+ Q
∂V ∗

r

∂u
ψr + QV ∗

r

∂ψr

∂u
, (46)

where we use the notation

Qr := (
αI + V ∗

r Vr

)−1
. (47)

The derivatives of Vr and ψr with respect to u are calculated as follows, where
we restrict our presentation to the case where we are given one trajectory only. The
operator Vr in its dependence on u is given by

(
Vr [u]g)

(t) =
∫

Ω

f
[
u
(
r ′, t − D

(
r, r ′))]g

(
r ′)dr ′, t ∈ [0, T ], (48)

leading to the Fréchet derivative
(

∂Vr [u]
∂u

(δu)g

)
(t)

=
∫

Ω

f ′[u
(
r ′, t − D

(
r, r ′))]δu

(
r ′, t − D

(
r, r ′))g

(
r ′)dr ′, t ∈ [0, T ], (49)

where f ′ denotes the derivative of the function f (s) with respect to its real argument
s ∈R. We need to assume that f is differentiable and that the derivative is continuous
and bounded. The derivative of the adjoint V ∗

r with respect to the L2 scalar products
on Ω and [0, T ], which is

(
V ∗

r [u]η)(
r ′) =

∫ T

0
f

[
u
(
r ′, t − D

(
r, r ′))]η(t) dt, r ′ ∈ Ω, (50)

is given by
(

∂V ∗
r [u]
∂u

(δu)η

)(
r ′) =

∫ T

0
f ′[u

(
r ′, t − D

(
r, r ′))]δu

(
r ′, t − D

(
r, r ′))η(t) dt, (51)
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for r ′ ∈ Ω . We note that V ∗
r is an operator into L1(Ω), which depends bounded

continuously on r ∈ Ω . The Fréchet derivative of the function ψr given by (26) is
readily seen to be given by

∂ψr

∂u
(δu) = τ

∂δu

∂t
(r, t) + δu(r, t), (52)

for (r, t) ∈ Ω × [0, T ]. We summarize the results in the following theorem.

Theorem 4.2 Assume that the activation function f is continuously differentiable
with derivative f ′ bounded on R. Then, for each fixed α > 0, the regularized recon-
struction of the kernel w from input signals u within the framework of the delay neural
field equation is continuously Fréchet differentiable with respect to u considered as
mapping from BC(Ω) × C1([0, T ]) into BC(Ω) × L1(Ω). This implies continuity of
the mapping of u onto w. The total derivative of wr with respect to u is obtained by
the combination of (46) with (49), (51) and (52).

Proof Differentiability follows from the differentiability of all the operators in (46)
following equations (46) to (52) of the above arguments. �

5 Numerical Examples

The goal of this section is to demonstrate the feasibility of the inverse method for the
reconstruction of spatial kernels based on the spatio-temporal neural field activity.
We study the feasibility in Sect. 5.1 and the sensitivity with respect to variations in
the input function u in Sect. 5.2.

5.1 Feasibility of Kernel Reconstructions

First, we consider a one-dimensional manifold embedded in a two-dimensional space,
illustrating the method for a case with 10,000 degrees of freedom. Then an example
involving a two-dimensional spatial domain evaluates the method for an inverse prob-
lem with more than 200,000 degrees of freedom for the kernel estimation.

We first need to consider the role of boundaries in the neural field model equation
(3) and its examples. For any distribution of neurons in space some activity u(r, t)

depending on time t can be defined. Mutual influence in space is given by the integral
in equation (3). In contrast to models based on partial differential equations, there is
no direct boundary effect in these equations. However,

• if one uses a local kernel w(r, r ′) with strong connectivity only in a neighbourhood
of r , boundary effects for neurons close to the boundary of the domain will appear,
since less neurons are included in a neighbourhood there; whereas

• if the activity of neurons close to the boundary is close to zero, usually such bound-
ary effects remain negligible.

We will study a setup which avoids boundary effects by the choice of an embedding of
a one-dimensional manifold into two-dimensional space in our first example, where
there are always the same number of neurons in a neighbourhood of any neuron on
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Fig. 1 Original and Reconstructed Time Sequence 1D. Time sequence of excitation of the one-dimen-
sional delay neural field. The original field is shown in black, in red the dynamics based on the delay
kernel reconstruction. One cycle of the oscillation is shown at time steps 1, 3, 6, 10, 13, 16, 19, 22, 25,
with a step size of �t = 0.2, in panels (a) to (i)

the whole manifold. The second example instead limits boundary effects by using
only small excitations close to the boundary in a two-dimensional neural patch.

Example 1 We start with a simple one-dimensional closed curve or manifold, respec-
tively, embedded in a two-dimensional space. In particular, we study the dynamics of
the activity field u(r, t) on the boundary ∂BR ⊂ R

2 of a disk with radius R, as dis-
played in Fig. 1. Here we consider that v = 1, and use a simple and smooth delay
function for r = (x, y) and r ′ = (x′, y′) with r, r ′ ∈ ∂BR based on the embedding
into R

2 which is defined by

D
(
r, r ′) := D̃

(
r, r ′) = ∣∣r − r ′∣∣ =

√(
x − x′)2 + (

y − y′)2
, r, r ′ ∈ ∂BR. (53)

This simple sandbox for testing our method hence can be considered as neurons grow-
ing on the boundary of a disk, but connecting directly through its interior. This is
reminiscent of the thin exterior layer of grey matter containing neurons connecting
through an interior bulk of white matter containing axons in the brain. However, we
point out that this is a different setup from previous studies that superficially appear
similar, where the spatial domain instead is a ring with periodic boundary conditions
[38, 39].

We implemented the delay neural field equation in MATLAB® based on an Eu-
ler method for the time-evolution of the system with zeroth-order or first-order
quadrature (rectangular rule or trapezoidal rule) for the integral parts of the integro-
differential equation. For the purposes of studying the kernel reconstruction on a
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Table 1 Parameter values for Example 1. Simulations have been
carried out with N = 101 equally distributed nodes on the circle,
Nt = 50 time steps, and a time step size �t = 0.2 for the inverse prob-
lem

r0 (cos(π), sin(π)) σ 1.0

r1 (cos(π/3), sin(π/3)) τ 1.0

r2 (cos(−π/3), sin(−π/3)) c 3.0

Fig. 2 Reconstructed Kernel 1D-Case. For the one-dimensional example the kernel can be visualized as
a two-dimensional scalar function w(r, r ′). We display (a) the original and (b) the reconstructed kernel of
the one-dimensional delay dynamics shown in Fig. 1

rather short temporal window this simple approach is completely sufficient and does
not show any deficiencies compared to higher-order methods for the forward prob-
lem, as employed for example in [21, 28, 40].

We first solve the direct problem, i.e., calculate the time-evolution of the excitation
field u(r, t). As initial condition, we choose the exponential function

u(r,0) = e−σ |r−r0|2 , r ∈ ∂BR. (54)

We prescribe a neural kernel of the form

w
(
r, r ′) = c

(
e−τ |r−r1|2e−τ |r ′−r0|2 + e−τ |r−r2|2e−τ |r ′−r1|2

+ e−τ |r−r0|2e−τ |r ′−r2|2) (55)

for r, r ′ ∈ ∂BR ⊂ R
2 with constants c > 0 and τ > 0. The full set of values used for

our simulations are given in Table 1. This leads to delayed excitation of areas around
three points r0, r1 and r2 equally distributed on a circle, where, with some delay,
the excitation field around r0 will excite the field around r1, the field around r1 will
excite the field around r2 and the field around r2 will excite the field around r0 again.
The function f is chosen to be sigmoidal as in equation (6). We have generated a
classical oscillator, as can be seen in the snapshots in Fig. 1 (black curves). Its kernel
is visualized in Fig. 2(a).

Next we reconstruct the kernel by the inverse problem technique from the so
obtained temporal evolution of the excitation field u(r, t) for some time window
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t ∈ [0, T ] according to equations (30) and (39). Given a discretized version of u(r, t)

on nodes

r� :=
(

cos

(
2π · �

N

)
, sin

(
2π · �

N

))
, tk = k · �t, (56)

for � = 0, . . . ,N and k = 0, . . . ,Nt − 1, we calculate φ and ψ according to equations
(25) and (26) and then employ the regularization (39) via (42) to solve equation (35)
for r ∈ ∂BR . In Fig. 2, we compare the original with the reconstructed kernel in the
case where no additional noise is added, carried out with α = 0.01 and find a very
good agreement between both.

As a test, we employ the reconstructed kernel with the same initial condition to
calculate a reconstructed neural field urec(r, t) on (r, t) ∈ ∂BR × [0, T ]. The original
dynamics is shown in black in Fig. 1, based on the kernel (55) visualized in Fig. 2(a).
The reconstructed dynamics is shown in red in Fig. 1, based on the reconstructed
kernel visualized in Fig. 2(b). A very good agreement between original and recon-
structed solution is observed.

Example 2 As a second example, we study oscillating two-dimensional neural field
activity. Here, the dimension of the state space is higher with N = 21 × 22 = 462
spatial elements as shown in Figs. 3 and 4. Our approach is analogous to the one-
dimensional example, but now with 213,444 degrees of freedom for the possible con-
nectivity values (see Table 2). We first simulate the neural field dynamics based on
equation (3) on a neural patch described by Ω := [a1, b1] × [a2, b2] = [0,6] × [0,6].
Time slices of this dynamical evolution are displayed in Fig. 3. The kernel has been
chosen to be of a form similar to equation (55), but now with points r0, r1 and r2 in
the two-dimensional neural patch. This leads to an oscillating field in an area around
these points rj with j = 0,1,2. The activation function f is chosen to be sigmoidal
again. The initial condition is a Gaussian excitation around the point r0. For our sim-
ple tests, we again employ zeroth or first-order quadrature and Euler’s method to
carry out the simulation.

The kernel w(r, r ′) with r, r ′ ∈ Ω now lives on a subset U := Ω × Ω of a four-
dimensional space, since Ω is a subset of a two-dimensional patch. Visualization of
w(r, r ′) can be carried out by either fixing r ′ and showing a two-dimensional sur-
face plot, or by re-ordering r and r ′ into one-dimensional vectors, so that w(r, r ′)
can be displayed in full as a two-dimensional surface. The first approach is cho-
sen in Fig. 4(c), where the white star indicates r ′. The second approach is shown in
Fig. 4(a). Next, we solve the inverse delay neural problem and reconstruct the kernel
based on equation (30) regularized as indicated by equations (39) and (42). Again,
this is carried out by calculation of φ and ψ first according to equations (25) and (26),
then solving equation (35) by regularization via equation (39) with the regularization
parameter chosen as α = 0.1. This choice leads to a reasonable stability of the recon-
structions combined with high reconstruction quality, and it has been chosen by trial
and error.

Figures 4(c) and 4(d) display the original and the reconstructed kernel column,
which represents the impact of the location at the black star to all other spatial lo-
cations of the neural patch. The result as displayed in (d) shows that the regular-
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Fig. 3 Original and Reconstructed Time Sequence 2D. Selection of time slices for the two-dimensional
delay neural field. We display time steps 3, 6, 9, 12, 15, 18, 21, 24, 27 with �t = 0.2 to show one and a
half cycles of the oscillation in panels (a) to (i). Each panel shows the original on the left and simulation
with the reconstructed kernel on the right

ized reconstruction of the delay neural kernel is not perfect. However, it is working
well if the field activity reaches specific parts of the neural environment. Otherwise
the reconstruction is just zero due to missing input for the reconstruction equations
and the regularization chosen here. The regularization penalizes the distance to the
zero kernel function. Therefore, the results clearly demonstrate the feasibility of the
method.

5.2 Sensitivity with Respect to Functional Input

In this section we will carry out a numerical sensitivity study of our first example
to explore the dependence of the kernel reconstructions on the input function u. It
complements our sensitivity analysis of Sect. 4.2.

We study the stability of the reconstruction when we add some random error to the
measured signal u(r, t) displayed in Fig. 1. We remark that we need measurements of
our signal which are differentiable with respect to time, since the calculation of ψ in
(26) includes the temporal derivative of the signal. In practical situations, this would
be achieved by a temporal smoothing of the signal. Here, for testing the sensitivity
we have added a random shift of a temporally smooth signal in each of the analysis
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Fig. 4 Original and Reconstructed Kernel 2D-Case. We display (a) the original and (b) the reconstructed
kernel of the two-dimensional neural delay dynamics shown in Fig. 3. The images (c) and (d) show a
column of the original and reconstructed kernel, visualizing the connection from the point indicated by the
black star to the rest of the neural patch

Table 2 Parameter values for Example 2. Simulations have been car-
ried out with N = 21 × 22 = 462 nodes, Nt = 30 time steps with
time step size �t = 0.2 for the inverse problem. The kernel estima-
tion problem has 213,444 degrees of freedom

r0 (1.5,3.0) σ 2.0

r1 (4.5,4.5) τ 1.0

r2 (4.5,1.5) c 2.1

points. The amplitude of the signal is given by ε = 0.01, which corresponds to noise
of 1% added to the measured temporal signal; compare Fig. 5.

Now, we study reconstructions with different regularization parameters α, where
larger α means we regularize in a stronger way, damping the error which comes
from the measurement error. Figure 6 displays three different choices of α, where
α = 1 leads to reasonable reconstructions, α = 0.1 shows kernel reconstruction still
disturbed by noise, and α = 0.01 does not lead to satisfactory reconstructions at all.

According to Theorem 4.2 we have continuity of u �→ w, such that if we lower the
error ε for fixed α, we need to have convergence to the reconstructed kernel in the case
of no data error. Indeed, we obtain a figure similar to Fig. 6 when we lower the error
parameter ε from ε = 0.01 to ε = 0.005 and ε = 0.001, leading to the reconstruction
displayed in Fig. 2(b) for ε = 0.
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Fig. 5 Measured Signal and Measurement Error. In the upper image we display the input signal u(r, t)

independence of the point index of the discretized vector r and the temporal evolution t ∈ [0, T ]. The
lower image shows the measurement error which has been added to the signal before a reconstruction has
been carried out

6 Conclusions

The purpose of this work is to develop an integral equation approach for kernel re-
constructions in delay neural field equations and to study its practical feasibility. We
simulate the activity and evolution of a delayed neural field of Amari-type to develop
an effective approach to reconstructing the neural connectivity. As a preparation for
the inverse problem, this work includes an explicit study of the solvability of the di-
rect problem of the delayed neural field equation (3). We provide an easily accessible
functional analytic approach based on an integral equation and Banach’s fixed-point
theorem.

As our main result, we apply inverse problems techniques to reconstructing the
neural kernel assuming that some measurements of the activity u(r, t) are given. We
start by formulating a family of integral equations of the first kind. Since kernel re-
construction is ill posed, we need regularization to obtain stable solutions. As sta-
bilization method we employ the Tikhonov regularization. A sensitivity analysis is
carried out, showing that the mapping of the input u to the regularized kernel recon-
struction is Fréchet differentiable. The derivative is explicitly calculated based on the
integral equation approach.

Finally, we provide numerical examples in one- and two-dimensional spatial do-
mains. These examples show that the regularized reconstruction of the delay neural
kernel is practically feasible. We study the numerical sensitivity, by adding random
noise of size ε (testing 1%, 0.1% and 0.01%) and studying the regularized recon-
struction with different regularization parameters.
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Fig. 6 Sensitivity Study of the Influence of Measurement Error. We show reconstruction kernels and the
reconstruction error for 1% noise shown in Fig. 5 with regularization parameters α = 0.01 in (a), α = 0.1
in (b) and α = 1 in (c). A sufficient reconstruction quality is achieved with α = 1

In this work, we assume the delay function D to be given, as it would be the
case when the delay is approximately proportional to the distance of the nodes under
consideration. If D is unknown, w is known and u is measured, we can solve in
equation (3) for u(r ′, t − D(r, r ′)) for all r , r ′ and t . This is still ill posed, since
it involves an integral equation of the first kind, but then the determination of D is
reduced to the reconstruction of D from the knowledge of u(r ′, t − D(r, r ′)), which
strongly depends on the form of the signal u and conditions we impose on D. If
neither the delay D nor w would be given, the kernel Kr of operator Vr would be
unknown and part of the reconstruction, leading to many open questions of feasibility
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and observability. In general, the reconstruction of both the kernel w and the delay D

is an important nonlinear, far reaching and challenging problem of future research.
In summary, we have developed a stable and efficient approach for the reconstruc-

tion of the connectivity in neural systems based on delay neural field equations. We
expect the approach to be extensible to a wide range of field models with delay, and
in particular to be highly useful for analyses of experimental data in the domain of
computational neuroscience. These methods allow for the reconstruction of the un-
derlying ‘synaptic footprint’ of connectivity from available neural activity measure-
ments, thus providing a basis for simulation and prediction of real phenomena in the
neurosciences.
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