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Abstract The theory of attractor neural networks has been influential in our under-
standing of the neural processes underlying spatial, declarative, and episodic memory.
Many theoretical studies focus on the inherent properties of an attractor, such as its
structure and capacity. Relatively little is known about how an attractor neural net-
work responds to external inputs, which often carry conflicting information about a
stimulus. In this paper we analyze the behavior of an attractor neural network driven
by two conflicting external inputs. Our focus is on analyzing the emergent properties
of the megamap model, a quasi-continuous attractor network in which place cells are
flexibly recombined to represent a large spatial environment. In this model, the sys-
tem shows a sharp transition from the winner-take-all mode, which is characteristic of
standard continuous attractor neural networks, to a combinatorial mode in which the
equilibrium activity pattern combines embedded attractor states in response to con-
flicting external inputs. We derive a numerical test for determining the operational
mode of the system a priori. We then derive a linear transformation from the full
megamap model with thousands of neurons to a reduced 2-unit model that has sim-
ilar qualitative behavior. Our analysis of the reduced model and explicit expressions
relating the parameters of the reduced model to the megamap elucidate the condi-
tions under which the combinatorial mode emerges and the dynamics in each mode
given the relative strength of the attractor network and the relative strength of the two
conflicting inputs. Although we focus on a particular attractor network model, we
describe a set of conditions under which our analysis can be applied to more general
attractor neural networks.
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Abbreviations

WTA winner-take-all mode. The WTA mode refers to an operational mode of the
dynamical system in which any stable fixed point corresponds to exactly one
activity bump.

Comb. combinatorial. The comb. mode refers to an operational mode of the
dynamical system in which there exist stable fixed points corresponding to
multiple activity bumps.

1 Introduction

The theory of attractor neural networks has greatly influenced our understanding of
the mechanisms underlying the computations performed by neural networks. This
is especially true for hippocampal networks involved in spatial, declarative, and
episodic memory. According to this theory, structured recurrent connections among
N neurons cause the N-dimensional state vector to converge in time to a stable,
low-dimensional space called the attractor [1]. Such a network embeds memories as
stationary attractors, which may be a discrete set of point attractors representing a
discrete set of objects [2] or a continuum of attractor states representing continuous
variables such as heading direction [3, 4] or spatial location within an environment
[5-10]. Numerous theoretical studies have revealed properties of attractor neural net-
works that make them a desirable neural mechanism for memory storage, such as
robustness to damage, pattern completion, and generalization [11, 12]. Attractor neu-
ral networks should arise naturally in regions of the brain with recurrently connected
neurons and Hebbian-type synaptic plasticity, and they provide a theoretical frame-
work for experimental design and data interpretation [13].

Attractor neural networks have been studied extensively through both analysis and
computational simulations [1, 3, 14—17]. While some studies do examine the role of
external input [16, 18, 19], most determine the set of stable equilibrium states in the
absence of external input, establishing properties such as the structure and capacity of
the attractor. Relatively little is known about how an attractor network may respond
to conflicting external inputs. This creates a gap between the idealistic predictions
of attractor network theory and experimental data, since it is often experimentally
difficult if not impossible to isolate putative attractor dynamics from the influence of
the strong (often conflicting) external inputs into the neural network. In the current
study, we analyze an attractor neural network’s response to conflicting external inputs
that effectively create a competition between embedded attractor states. Our focus
is the interesting behavior observed in our numerical simulations of the megamap
model, a quasi-continuous attractor network representing a large spatial environment,
driven by external inputs encoding two different locations in the environment [10].
However, the analytical methods and results obtained here can be applied to more
general attractor network models.

The megamap model is designed for a network of principal cells in the CA3 sub-
region of the hippocampus, a region crucial for learning and memory [20-22]. These
cells are often referred to as place cells due the strong spatial correlate of their activ-
ity. In small, standard recording environments (~1 m?), a given place cell is primarily
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active when the animal is within one specific subregion of the environment, called the
cell’s place field [21, 23]. The megamap model flexibly recombines place cells to ex-
tend standard attractor network models of place cells, in which the majority of cells
have one place field, to larger environments in which place cells have been shown
experimentally to have multiple, irregularly spaced place fields [24-26]. The model
follows logically from the recurrent connections among place cells in the CA3 [27],
the Hebbian-like associative plasticity observed in the hippocampus [12, 28, 29], and
the consistent co-activity of place cells with neighboring place fields [30].

Since the megamap seamlessly represents much larger environments than is pos-
sible for standard attractor network models of place cells, it allows us to explore
whether any interesting dynamics emerge in large environments. In our numerical
simulations, we observed a sharp transition in the network’s response to conflicting
external inputs as the environment continuously grew in size [10]. In relatively small
environments, the megamap behaves similarly to standard continuous attractor neu-
ral networks, operating in the winner-take-all (WTA) mode whereby the equilibrium
state fully represents one input while effectively ignoring the second input. In larger
environments, the megamap operates in the combinatorial mode, effectively combin-
ing two embedded attractor states to stably represent both inputs. Furthermore, we
observed hysteresis, a classic characteristic of attractor dynamics, in the WTA mode,
but the initial state had no effect on the equilibrium state in the combinatorial mode.
The combinatorial mode is an interesting emergent property of the model that may
be related to the partial remapping of hippocampal place cells sometimes observed
when an animal is introduced to a new environment that simultaneously resembles
two different familiar environments. In this cue conflict situation, the evoked neu-
ral responses are often mixtures of the responses to both environments rather than
representations of one environment only [31]. The combinatorial mode emerges in
the megamap model in sufficiently large environments when the weights are set opti-
mally through gradient descent but not when the weights are set by the basic Hebbian
learning rule [32, 33]. The latter method is widely used in attractor network models
of place cells representing multiple environments [5, 6, 34-36].

We previously explored this emergent property of the megamap through numerical
simulations and discussed its implications [10]. In the current study, we use mathe-
matical analysis to derive a numerical test for determining the operational mode of
the system a priori, characterize the conditions under which the combinatorial mode
emerges, and derive explicit equations for the parameters of the model at which bifur-
cations occur. The numerical test is derived through stability analysis. It is an easily
applied, useful tool for determining the expected response of a general attractor net-
work to conflicting external inputs. This is particularly useful when the attractor net-
work is self-organized. The latter two results are obtained through a linear mapping
of the N-dimensional dynamical system to a 2-dimension reduced model. Analysis of
the stable fixed points of the reduced model elucidates the attractor network strength,
which we quantify, and the relative strength of conflicting external inputs for which
the equilibrium state vector represents the first location, represents the second loca-
tion, represents one location or the other dependent on the initial state (hysteresis), or
represents both locations. The explicit equations relating the dynamics of the attractor
network to the model parameters are particularly useful when designing an attractor
network to model a set of observed phenomena.
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An outline of the paper is as follows. In Sect. 2, we present the dynamical system
of the megamap model and describe two methods used to set the recurrent weights.
We then show a numerical example of the operational modes and derive a numerical
test for determining the operational mode. In Sect. 3, we present the reduced 2-unit
model and describe the conditions under which the reduced model is an accurate
approximation of the full attractor network model. In Sect. 4, we characterize the
conditions under which the combinatorial mode emerges and derive equations for the
bifurcations of the dynamical system. We close in Sect. 5 by comparing our analysis
to other analytical treatments of attractor neural networks, describing possible exten-
sions of the reduced model, and discussing the implications of the results for various
types of attractor network models.

2 Operational Modes of the Megamap

We begin by describing the basic equations governing the megamap model and by
illustrating the operational modes through a numerical example. For further details,
see [10].

2.1 Megamap Model

The megamap model is a standard firing rate model [18] consisting of a network of N
place cells with recurrent excitation, global feedback inhibition, and external input.
The state vector, u € RV, loosely represents the depolarization of each place cell and
is governed by

' (1) = —u() + Wf(u@) —w' f'(u®)1 +b, 0]

where 7 = 10 ms for all simulations, and 1 € RV denotes a vector of all ones.
Our interest is in how the activity vector, f(u) € R, is tuned to spatial loca-
tion. For simplicity, we set the activity through the threshold linear gain function,
S = foxlluils, ..., [uN]+]T, where [-]4 = max(-,0), and f,x = 15 Hz is the peak
firing rate of the activity bump. All interneurons are modeled as a single inhibitory
unit providing global feedback inhibition so that only the external input and recur-
rent hippocampal input provide a spatial signal. The activity of the inhibitory unit
is given by fl(u) = [17 f(u) — 6 foer]+, Where 6 is the threshold parameter, and
Joet = 2N | F:(x) is the sum over any embedded activity pattern (Eq. (2)). The em-
bedded activity patterns are set such that fye is independent of x. The inhibitory
activity is scaled by the inhibitory weight parameter, w'. The external input, b € RV,
carries sensory information about the animal’s location or self-motion, modeling ide-
alistic neuronal inputs from the upstream entorhinal cortex.

The recurrent excitation, W f (u), provides the internal network drive. The weight
matrix, W € RV represents the strength of connections among place cells. Several
studies have shown that an attractor network emerges in relatively small environments
(~1 m?) when the weights are set through Hebbian plasticity [9, 34]. We constructed
a benchmark model for how an attractor network of place cells can represent large
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spaces by setting the weights to obtain desired activity profiles (place fields) for each
cell [10]. The preferred locations (place field centers) for each cell are distributed
randomly throughout the environment, and the number of place fields per cell is set
according to the Poisson distribution. The average density of place fields for a given
cell is set such that 80% of place cells are silent in a 1 m? environment. The weight
matrix is then set in one of two ways:

(1) The optimal weights are set incrementally through the delta rule [33] so that a
set of desired activity patterns, {f(x 7)), are embedded into the network as stable
fixed points of the dynamical system (Eq. (1)) when the external input into each
cell is an idealistic sum of Gaussians centered at the preferred locations of each
cell (Fig. 1(a)). The desired activity of each cell is the sum of Gaussian-like place

fields. Explicitly, for each cell i with M; place fields centered at {c; m}m |» the
training input and desired activity are, respectively, given by
— —c
bi (X) = bpk Zexp( X lm' ) and
2

il —Ix = ¢im?
fix) = Z f((l +u0)exp<T2””) - uo>

m=1

when the animal is stationary at location x. The training input is set as the idealis-

tic sum of Gaussian bumps whose amplitudes are given by the parameter b_pk. The

desired activity is set as the sum of activity bumps of height fx over each place

field center. The shift parameter, u( > 0, is the depolarization at which a cell be-

comes active. The optimal weights are set using a discrete set of locations {x;}

distributed uniformly over the environment (at least 15 cm from a boundary).
(2) The Hebbian weights are set as the sum of tuning curves,

M; My

Wir=Wy; = Z Zwtune(|cjm - Ckn|),

m=1n=1

where each cell j has the preferred locations {c; m} me1> and wype is the weight
profile determined by computing the optimal weights when each cell has ex-
actly one place field. This tuning curve is approximately Gaussian, and setting
weights as the sum of Gaussians is a common method for constructing attractor
network models of place cells [5, 6, 34-36]. The resulting weights approximate
the weights expected given the basic Hebbian learning rule [32-34].

If each cell had at most one place field, then the two methods would be equiva-
lent. Both methods lead to an attractor network that robustly represents large spaces
(~100 m?). Differences emerge in large environments (> 16 m?) in which individual
place cells represent multiple, irregularly spaced locations.
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Fig. 1 Activity bumps on the megamap. (a) When driven by the training input, b(x{), the equilibrium
state corresponds to a localized activity bump well approximated by the embedded activity pattern, f(x;)
(Eq. (2)). The training input and activity bump are visualized by plotting b; and f'(u;)/fpx for each place
cell i redundantly at each of its preferred locations (Fig. 2(a)—(b)). (b) The numerical test for the opera-
tional mode (Eq. (3)) predicts that the optimal megamap transitions from the WTA mode to the combina-
torial mode at about 25 m~, while the Hebbian megamap is always in the WTA mode. The filled circles
indicate the values of r(S] U Sy, st (Eq. (3)) for the optimal (black) and Hebbian (gray) weights, where
Sk is the set of all cells active in the embedded pattern at location xj, (f(x)), and ST = {inh} since the
inhibitory unit is active. The two squared points indicate values for the megamaps simulated in (¢) and (d).
The open circles and diamonds indicate the values of r(Sk, {inh}), or Eq. (3) evaluated at any activity bump
proportional to exactly one embedded activity pattern. All such activity bumps are stable. The “Dominant
Eigenvalue” refers to the maximal eigenvalue computed in Eq. (3). (¢) When the optimal megamap rep-
resenting 16 m? is driven by a mixed external input (left), only one prominent activity bump persists in
time (right). The external input is formed by choosing two well-separated locations x; and x;, setting
b; =b;(x) for a randomly selected 50% of the cells, and setting b; = b; (x5) for the remaining cells. The
activity bump scaled by (1/fpx) is equivalent to [u]. (d) When the optimal megamap representing 36 m?
is driven by an external input set in the same manner, activity bumps representing both locations persist in
time

2.2 Numerical Example of the Operational Modes of the Megamap

Since the megamap can seamlessly represent much larger environments than was
previously possible, the model allows one to explore whether any interesting prop-
erties emerge when the attractor network represents a large space. We found that
the megamap with optimal weights sharply transitions from a winner-take-all (WTA)
mode to a combinatorial mode as the environment becomes sufficiently large [10].
While a megamap in either mode is similarly robust to a noisy or incomplete exter-
nal input, there are clear differences between the modes when the network is driven
by conflicting external input encoding multiple locations in the environment. In this
situation, small megamaps operating in the WTA mode effectively suppress the input
encoding one location and fully represent the second location, but large megamaps
operating in the combinatorial mode robustly represent both locations through two
co-stable activity bumps (Fig. 1(c) and (d)). Moreover, hysteresis is observed only
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in the WTA mode, and a megamap in the combinatorial mode linearly amplifies the
difference in input strengths (Fig. 3(a) and (c)). In our simulations with N =~ 10,000
place cells, the transition between modes occurs when the learned region reaches
about 25 m? [10].

The combinatorial mode is not commonly observed in attractor network models.
Standard continuous attractor network models of place cells operate exclusively in
the WTA mode unless the dynamical system is modified to make multi-peaked activ-
ity bumps more stable [6, 37, 38]. It is interesting that the optimal megamap operates
in either mode without any changes to the parameters or dynamical system, but the
megamap with Hebbian weights operates in the WTA mode regardless of the envi-
ronmental size. The emergence of the combinatorial mode not only depends on the
environmental size but also on the manner in which the recurrent connections are
updated as the animal explores novel regions of the environment.

2.3 Numerical Test for the Operational Mode

We now propose a numerical test for determining the operational mode of the dy-
namical system (Eq. (1)). We specify that the system is in the combinatorial mode if
there exist stable fixed points with multiple activity bumps, and the network is in the
WTA mode if any stable fixed point has exactly one activity bump.

We find that the stability of any fixed point depends on the subset of active cells
at the fixed point, or excitatory cells such that f(#;) > 0 and the inhibitory unit (inh)
when fl(u) > 0. We define S and S' as the sets of active excitatory and inhibitory
cells, respectively, and prove in Appendix A that the fixed point is stable if and only
if 7(S, S < 1, where

r(S, 8') = Amax (fok (W — X 1 (inh)w'117)D(S)). 3)

Here, Amax(M) refers to the largest real part of all eigenvalues of the matrix M,
X g1(inh) is the indicator function for the set S U (1 if the inhibitory unit is active and
0 otherwise), and D(S) is the diagonal (0—1)-matrix with D;; (S) = xs(@) (1 ifi € S
and 0 otherwise). Note that the stability depends only on the weights (W and w') and
on which cells are active. The external input and the magnitude of each state do not
affect the stability of a fixed point.

To determine the operational mode, we randomly select two well-separated loca-
tions in the environment (at least 50 cm apart and at least 15 cm from an environmen-
tal boundary). Let x; and x; denote these two locations, and let Si denote the set of
all active cells in the embedded activity bump over x; (Eq. (2)), or

Sk ={i: fi(xp) >0} )

for k =1, 2. Since 6 < 1, the inhibitory unit is active given any embedded activity
bump. In our numerical simulations, the inhibitory unit is always active at an equi-
librium state regardless of the external input. Hence, we set S! = {inh}. According to
our test, the system is in the combinatorial mode if and only if r(S; U'Sy, {inh}) < 1.
This test is accurate when there exists a fixed point with two bumps in which the
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set of active excitatory cells is the set of excitatory cells that are active in either em-
bedded activity pattern, or S = S1US,. The activity pattern at such a fixed point
is approximated by a linear combination of the two embedded activity bumps, or
fu)= clf(xl) + czf(xz) for some positive constants ¢ and ¢, such that ¢ 4+ ¢, > 6.

In all numerical simulations we performed, the test is accurate in distinguishing
between the two operational modes. For the example presented in Fig. 1, the recurrent
weight matrix W is updated as the animal gradually learns novel subregions of an
environment [10]. For the optimal weights, the test predicts the transition from the
WTA mode to the combinatorial mode as the area (A) of the learned environment
grows. In particular, (S U S5, {inh}) decreases as A becomes larger, dropping below
1 around 25 m? (Fig. 1(b), black closed circles). As predicted, when A < 25 m?2,
exactly one activity bump persists in time given any initial state and any external
input (Fig. 1(c)). When A > 25 m?, two activity bumps persist in time given a mixed
external input (Fig. 1(d)). For the Hebbian weights, the test predicts that the system
remains in the WTA mode regardless of A since (S U S,, {inh}) gradually increases
with A (Fig. 1(b), gray closed circles). As predicted, we find numerically that two
activity bumps are always unstable given Hebbian weights [10].

Equation (3) can also be used to test the stability of single-peaked fixed points. Re-
gardless of A or the method used to set the weights, r (S, {inh}) < 1 for any location
Xy (Fig. 1(b), open circles and diamonds)). This indicates that any single-peaked fixed
point proportional to an embedded activity bump is stable. It is important to note that
even in the combinatorial mode, the system robustly represents any location through
a stable single-peaked activity bump given a single-peaked external input that may be
relatively weak, noisy, or incomplete.

The numerical test is a powerful tool for determining the behavior of the network
a priori. In addition to determining whether it is possible for multiple activity bumps
to persist in time, the test determines whether the network may show hysteresis or
amplify the difference in input strengths (Fig. 3(a) and (c)). However, the numerical
test is limited in that it determines the stability but not the existence of a fixed point.
Figure 1(b), open circles and diamonds, indicates that single-peaked activity bumps
are stable for any size environment. In our numerical simulations, we found that
these single-peaked fixed points always exist given the optimal weights, but all cells
eventually become active when A = 625 m? given Hebbian weights [10]. Some sort
of normalization, such as forcing the 1-norm (subtractive normalization) or 2-norm
(multiplicative normalization) of the weight vector to be constant, would be required
to maintain stability in the Hebbian network [33]. It would be interesting to examine
in future work how normalization would affect the operational mode of the Hebbian
network.

3 2-Unit Reduced Model

While the numerical test of Eq. (3) can be used to determine the operational mode,
we seek a deeper understanding of why the operational mode emerges in large en-
vironments, and under what set of parameters. We begin by reducing the model to a
simple 2-unit model that has similar dynamics and we can fully analyze.
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3.1 Reduction of the Megamap Model to the 2-Unit Model

Consider an external input that is some mixture of the two training inputs, b(x;) and
B(xz) (Eq. (2)), where x; and x; are two well-separated locations in the environment.
We seek a mapping from the full megamap model to a two-dimensional reduced
model with the same form and the same qualitative dynamics given this conflicting
external input. The simplest relevant simplification is to model two units, where the
place cells in each unit k are given by the set Sk (Eq. (4)), and the reduced state uy, is
the collective state of place cells in unit k. The reduced model does not include cells
without a place field near x; or X, as these cells should be silent (f(u;) =~ 0) if the
system is stable.

The reduction is illustrated in Fig. 2(a)—(c). Explicit equations for the reduced 2-
unit model are given by Eqgs. (5)—(7). The weights of the reduced model, w® and ¢,
are directly related to the weights of the full megamap model. For example, consider
the three cells whose place fields within the environment are illustrated in Fig. 2(a)
by the colors blue (Cell 1), red (Cell 2), and green (Cell 3). Each cell is plotted redun-
dantly on the megamap at each of its preferred locations (Fig. 2(b)). If the external
input innervates cells near locations x; and x, indicated in (a), then the cells en-
closed by the blue and red circles in (b) are collectively represented by units 1 and
2, respectively. The reduced weight w® determines the degree to which cells within
a unit reinforce each other’s activity and is related to the weights among cells in a
unit on the megamap. The reduced weight g determines the degree to which cells
within one unit innervate cells in a different unit and is proportional to the average
weight between cells in different units on the megamap. If each cell had only a single
place field, then there would be no cross-excitation, or ¢ = 0. Due to the multiplicity
of place fields, however, two cells in different units may innervate each other due to
overlapping place fields elsewhere in the environment. In the example shown, g > 0
since Cells 1 and 2 are neighbors on the megamap. We thus expect 0 < g < w?, since
only some of the cells in the two units have overlapping place fields.

Figure 2(e) and (f) shows w® and ¢ (Eq. (7)) for a megamap representing square
environments of increasing size (Fig. 2(d)). This megamap was used to generate
Figs. 1, 2, 3, and further details on its construction and behavior can be found in [10].
For the Hebbian megamap, new weights are added as the animal explores new loca-
tions. This results in a linear increase in both w® and ¢ as the environment grows in
size, but a constant difference, w® — ¢ (Fig. 2(f)). For the optimal megamap, weights
are both increased and decreased so that each novel subregion is accurately learned.
As a result, w® is constant for the most recent 1 m? subregion learned. While the
reduced weight w” within a given subregion gradually decays as new subregions are
incorporated into the megamap, w® changes little compared to the increase in ¢ over
the initial 100 m? (Fig. 2(e)). The steady decrease in w” — ¢ is correlated to the de-
crease in the dominant eigenvalue (Fig. 1(b), closed black circles) and appears to be
responsible for the change in operational mode. We prove this is the case in Sect. 4.1.

Reduced Model We now present explicit equations for the reduced model. As
shown in Appendix B, computing the sum over all cells in unit k (Sk) of each term in
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Fig. 2 Reduction of the megamap model to the 2-unit model. (a) Schematic showing idealized place fields
of three different place cells, where the green cell has two place fields, and the red and blue cells each have
three place fields. In the megamap model, the place fields of each cell are set randomly according to the
Poisson distribution. The two-unit model is an approximation of the megamap driven by an external input
encoding two locations, denoted by x; and x;. (b) Each place cell is plotted redundantly on the megamap
at each of its preferred locations. For both the optimal and the Hebbian megamaps, each place cell has
recurrent connections to each set of its neighbors. Idealized connections from the blue cell are shown. The
place cells inside the large blue and red circles are the cells included in unit 1 and unit 2, respectively.
(¢) The two-unit model (Eq. (5)) has the same form as the megamap model (Eq. (1)). The reduced state
variables and reduced external input, @} and Zk (Eq. (6)), represent the collective state and collective
external input into place cells near location X, indicated by the blue and red circles in (b). The reduced
weights, w? and q (Eq. (7)), are related to the strength of connections within a unit and between units,
respectively. For this example, there should be a relatively weak cross-connection g since the blue and
red cells are neighbors elsewhere in the environment. The reduced inhibitory weight is proportional to
the inhibitory weight of the megamap (Eq. (7)). (d)—(f) We compute the reduced weights for a megamap
that models an animal incrementally learning a square environment of increasing size [10]. The first three
iterations are illustrated in (d). At each iteration, the recurrent weights are updated to incorporate the novel
subregions (red) into the learned environment (gray). Previously learned subregions are not reinforced in
later iterations. For the optimal weights (e), the average recurrent excitation (proportional to w?) within
a unit changes little over the first 100 m? compared to the increase in the average weight between units
(proportional to ¢) as the environment grows in size. For the Hebbian weights (f), w and ¢ increase
linearly at roughly the same rate. The color in (e) and (f) indicates the region number (the first nine regions
are shown in (d))

Eq. (1) and scaling by ( fpk / faer) leads to the two-dimensional reduced model,
i) (1) = =11 (1) + @) ()4 + gl )]+
— W[ ()4 + [@2()]4 — 614 + b,

iy (1) = =2 (1) + gl ()] + wl @ 0]+
— @[ ()4 + [@2(0)]4 — 014 + ba.

(&)

The reduced model has the same form as the full megamap model, but the net-
work connections are now defined by only two weights (w® and ¢) rather than
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the weight matrix W € RV*N_ For simplicity, the activation function of the
megamap, f(u;) = fpkluil+, is scaled in the reduced model to have a peak value
of 1. The two reduced state variables and corresponding external inputs are given
by

%Zui(t) and by = Jok > b (6)
net . — ne

€Sk ieSy

ur(t) =

for each unit k. When there is an activity bump over x; with the same radius as the
embedded activity bump, f(u;) =~ upk?i (x¢) for i € S, where 0 < upk < 1 is the
peak of the state bump. In this case, u; ~ upk, and so the embedded activity bump
over X; maps to the reduced activity, [i;]y = ux ~ upk. When there is no activity
bump over X, unit k is silent ([ix]+ = 0) since u; < 0 for most cells in unit k. The
external input is always nonnegative, and it is zero when there is no external input
into place cells in unit .
The reduced weights are given by

= T DD IETTICINE %z S i,
€S| jesy

(N

where N denotes the average number of active cells in each embedded activity pat-
tern, so N ~ | S| for any k. In our simulations of the megamap, 220 < |S;| < 225 for
all locations k. The weight of the self-connection (w?) is proportional to the average
recurrent excitation between two place cells in the same unit k& given the embedded
activity bump over x; (Eq. (2)), and the weight of the cross-connection (g) is propor-
tional to the average weight between two place cells in different units. The reduced
inhibitory weight is proportional to the inhibitory weight of the megamap. The in-
hibition into any reduced unit (1) and the inhibition into any excitatory cell in the
megamap (I = w' f1(u)) are related by

fpk I = fpkN
fnet . o fnet
ieS

1

I=

Consequently, the inhibitory unit is active in the 2-unit model if and only if the in-
hibitory unit is active in the full megamap model, and the inhibition drives the state of
an inactive unit further below zero for the 2-unit model than for the megamap model
since fokN > fet-

Approximations in the Reduction As detailed in Appendix B, we make four ap-
proximations to map the N-dimensional system of Eq. (1) to the two-dimensional
system of Eq. (5). First, we neglect cells that are in both units by assuming S N S, =
@. Since place fields are set by the Poisson distribution, a small minority of cells in S
may also be in S5, but these relatively few cells should not have a large impact on the
dynamics. Second, we neglect the small minority of cells with multiple place fields
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near X;. This permits the assumptions that both units have the same number of cells,
or N = | S| for any k, and that the average of the recurrent input (proportional to w?)
between two cells in the same unit given the embedded activity bump is the same for
all k. Third, we neglect the asymmetries in the optimal weights of the megamap by
assuming that the average weight from unit 1 to unit 2 (proportional to g) is the same
as the average weight from unit 2 to unit 1. These first three approximations amount
to neglecting the variability of the megamap and modeling only the average dynam-
ics. The variability may affect the stability of a state in borderline cases. For example,
when r(S; U S5, {inh}) & 1, the stability of two co-active bumps may depend on the
locations chosen for x; and x;.

The fourth approximation does affect the average dynamics of the megamap. We
assume that any activity bump over x; has the same radius and is always centered
over Xi. Explicitly, we define Si(¢) as the set of all cells near x; that are active at
time ¢, or

Sp(1) = { (ui (1) > 0) and (m1n|xk —Cin| < 3)} (8)

(The exact value of § is not important here. It should be larger than the radius of
the embedded activity bump, and small enough to exclude cells that are active due to
their prox1m1ty to the location of the other unit.) To obtain Eq. (5), we assume S (1) e
{@, Sk} for all ¢, where Sy &~ (J when there is no activity bump over x, and S; ~ Sk
when there is an activity bump over Xxi. In reality, the radius expands continuously
from O to its equilibrium value as an activity bump emerges. We are perhaps justified
in neglecting these transient, narrow activity bumps since we use the 2-unit model
to infer the stable fixed points of the megamap. However, in the absence of external
input, the equilibrium activity bump drifts over the megamap [10], so it is important
to choose x; to be a location from which activity bumps do not drift. In addition,
the equilibrium activity bump is wider for weaker external inputs. The 2-unit model
does not capture the effects of a wider activity bump, but rather tracks only the height
of the activity bump since Sy ~ Sy = Uy ~ upk. Despite this shortcoming, we find
that the two models behave in the same way qualitatively (Fig. 3), and the analytical
tractability of the 2-unit model permits us to derive explicit equations for the set of
parameters leading to each operational mode and the relative strength of external
input leading to hysteresis (in the WTA mode) or two co-stable activity bumps (in the
combinatorial mode).

3.2 Constraints on the Parameters of the 2-Unit Model

In accordance with the construction of the megamap with optimal weights, the param-
eters of the 2-unit model are set such that when the network is driven by the training
inputs, [fa\pk 0]" and [0 Epk]T, the respective fixed points of Eq. (5) correspond to the
desired activity patterns, [1 0]7 and [0 1]7, respectively. The training input strength,
i)\pk, is proportional to the parameter b_pk in the megamap model (Eq. (2) and Eq. (6)).
These two desired activity patterns are obtained if and only if

1= —'(1 - 0) + by ©)
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Fig. 3 Comparison of the operational modes of the full and reduced models. (a) The full megamap with
Sptimal weights is driven by the conflicting external input, b = (1 /@) (bpl,kE(xl) + bgkg(xz)), where
b(x) is the training input into location x; (Eq. (2)). For the relatively small megamap operating in the
WTA mode (left, Fig. 1(c)), any equilibrium activity bump fully represents one location while effectively
ignoring the input for the other location. For the large megamap operating in the combinatorial mode
(right, Fig. 1(d)), the equilibrium activity bump fully represents one location when |b;k - bgk\ is suffi-
ciently large. Otherwise, the equilibrium state corresponds to a linear combination of the two embedded
activity bumps, amplifying the difference in input strengths. The initial state for all simulations corre-
sponds to f(x3) (Eq. (2)). The activity ratio is given by act(uk, sk) = Zies—k fu)/ Zie§ f(s{‘), where
u; and slk are the equilibrium states of cell i given the conflicting external input, b;, and the isolated input,
(bgk /@)Ei (xx), respectively. Data points were omitted if f (s¥) was not an activity bump over location
X, which occurs in this example when b/l;k 22 (. (b) The 2-unit model responds similarly to the conflicting

external input. The parameters w? =1.2 and q are comparable to the corresponding reduced weights of
the megamap (Eq. (7), Fig. 2(e)). The reduced inhibitory weight, ! = 5.3, and threshold, 6 = 0.9, are
the exact values corresponding to the megamap parameters in (a). (¢) The initial state (black circles) is
varied randomly, and the external input is constant (bék = b]%k = @/2). The equilibrium state reached

(red squares) depends on the initial state for the small megamap but not for the large megamap. (d) The
2-unit model with the same parameters as used in (b) similarly shows hysteresis only in the WTA mode.
Here, by = by = by /2

We set w®, @, and @ as the parameters of the 2-unit model, and we analyze its
behavior as we vary ¢, b1, and by. All parameters and variables are nonnegative and
must satisfy the following constraints:

1. The inhibitory unit must be active given a desired activity pattern, but inactive if
all place cells are inactive. Equivalently, 0 <6 < 1.

2. The strength of the training input must be much weaker than the desired equilib-
rium state, or 0 < Epk < 1. By Eq. (9), this condition is equivalent to W' (1 — ) <
w® <141 -0).

3. When g = 0, the attractor of the megamap should consist of single-peaked activity
bumps. In the 2-unit model, this means that when ¢ = 0 and b =0, the system
supports fixed points in which exactly one unit is active. Without loss of generality,
suppose that the fixed point in the absence of external input is given by 71 > 0 and
uy < 0. We show in Appendix C.2 that the inhibitory unit must be active at such a
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fixed point. By Eq. (5),

"~ O "~
up| |w 0 ui I 1 0 1 _ =~ /=~
w=lo alft]-r@-ol] - o1

Thus, this condition imposes the constraint, w?> 1.

4. Finally, the cross-excitation must be small enough such that the desired activity
pattern is a fixed point of the system given the training input. With b = bpk and
b2 =0, the fixed point must satisfy 7] = 1 and i = q w'(1 —6) < 0. Thus, this
condition imposes the constraint, g < W ln-0)« w?.

4 Analysis of the Operational Modes of the 2-Unit Model

In accordance with the definitions of the operational modes of the megamap, we spec-
ify that the 2-unit model is in the combinatorial mode if there exist stable fixed points
in which both units are active and in the WTA mode if any stable fixed point has ex-
actly one active unit. We now analyze the 2-unit model to derive an explicit equation
for the critical value of w® — ¢ at which the system shifts from the WTA mode to the
combinatorial mode. We also analyze how the system responds to conflicting inputs
in each mode, dependent on the attractor network strength (w® — ¢) and the relative
strengths of the competing inputs (b] bz)

4.1 Characterization of the Operational Modes

Assume the 2-unit network is driven by an external input of the form @\1 > 32 > (0. We
derive all fixed points and analyze their stability in Appendices C and D, respectively.
The main results are summarized below:

e At least one unit must be active at any stable fixed point due to the constraint,
wl > 1.
e A fixed point in which only unit 1 is active exists if and only if
(by —bo)@' — (w® — 1))

01 10
g<('=1)+ 16 + by (10

Since w® — 1 < W, this fixed point exists for all inputs such that Zl > Zg if and
only if w® — ¢ > 1. If the fixed point exists, it is always stable and corresponds to
the network encoding only the location with the stronger external input (x1). The
network effectively ignores the weaker input over location x;.

e A fixed point in which only unit 2 is active exists if and only if

by —by) (@' — (w® — 1
g <@ —1)- 2)(19+b(2w ). (1)

This fixed point exists for some input such that /b\l > 52 if and only if w®—g¢g > 1.
If the fixed point exists, it is always stable and corresponds to the network encod-
ing only the location with the weaker external input (x2). The network effectively
ignores the stronger input over location Xxj.
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e A fixed point in which both units are active is stable if and only if w® — g < 1.
When w’ — ¢ < 1, such a fixed point exists if and only if

0—1)+(b1_b2)(1 — " —1))
9+b1

q > (w (12)

and the fixed point is unique.

Explicit equations for all fixed points are given in Appendix C.

Settmg b1 = b2 in (Eq. (12)), we conclude that the system is in the WTA mode
when w® —¢g > 1 and in the combinatorial mode when w® — ¢ < 1. This result is con-
sistent with the hypothesis that the shift in operational mode observed in the megamap
is due to the increase in cross-excitation between cells in the two respective activity
bumps (Fig. 2(e)). Although the inhibitory weight and threshold (w' and 6, respec-
tively) were not varied in our simulations of the megamap, the analysis of the 2-unit
reduced model implies that the operational mode depends only on the difference in
self- and cross-excitation, w® — ¢, and not on w! or . This is somewhat surprising
since the competition between two activity bumps, which underlies the WTA mode,
is mediated by feedback inhibition.

In the WTA mode of the 2-unit model, any stable fixed point represents exactly
one location. This corresponds to the single-peaked activity bumps always observed
in equilibrium states of a relatively small megamap (Fig. 1(c), Fig. 3(a) and (c)). Since
Eq. (10) is always satisfied, there are two stable fixed points for a given set of inputs
(b | > by)ifand only if Eq. (11) is satisfied. In this case, the equilibrium state reached
depends on the initial state, consistent with the hysteresis observed in the WTA mode
of the megamap model (Fig. 3(c)).

In the combinatorial mode of the 2-unit model, the stable fixed point represents
only the stronger input when Eq. (10) is satisfied and both inputs when Eq. (12)
is satisfied. This is consistent with the combinatorial mode of the megamap model,
for which the equilibrium state always has one activity bump given a sufficiently
large difference in input strengths and two activity bumps given two similar inputs
(Fig. 3(a)). Since ¢ > w® — 1, Eq. (11) is never satisfied, and the system never shows
hysteresis. When both units are active in the equilibrium state, the state vector ampli-
fies the difference in inputs according to

__ bhi-h

M]-Mzzm. (13)

The absence of hysteresis and the amplification of the difference in input strengths
are both characteristic of the combinatorial mode of the megamap, as seen in the
examples in Fig. 3(a) and (c).

4.2 Bifurcations of the Dynamical System

Our analysis of the 2-unit model reveals four types of qualitative dynamics observed
in the model:

e Type I: The state vector converges to a unique equilibrium in which only unit 1 is
active.
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(a) (b) (0) (d)
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Fig. 4 Bifurcations in the 2-unit model. Each plot shows the parameter sets (AE = 2;1 — 32, q)
leading to each type of qualitative dynamics described in Sect. 4.2. The 2-unit model shows hys-
teresis (Type III dynamics) when g < (wo -1+ g(—lAZl), fully represents the location with the
stronger input while suppressing the response to the weaker input (Type I or Type II dynamics) when
(w0 -+ g(—\ABI) <q< (w0 -1+ g(IAzl), and linearly combines the two embedded activity pat-
terns (Type IV dynamics) when g > (wO -+ g(lAﬁl). These bifurcations are shown by the solid black
lines. The points specify the type of dynamics found in numerical simulations of the 2-unit model, where
light blue (left region) indicates Type I, dark blue (right region) indicates Type II, dark red (bottom region)
indicates Type III, and light red (top region) indicates Type IV. In all cases, the numerical simulations
agree with the analytical predictions given by Eqs. (14)—(16). The initial state is set to the desired activity
pattern such that the active unit is the unit driven by the weaker input. We classified the dynamics as Type I
or Type II when the only active unit in the equilibrium state is the unit receiving the stronger input, as
Type III when the initially active unit remains the only active unit in the equilibrium state, and as Type IV
when both units are active in the equilibrium state. (a) The parameters of the 2-unit model approximate
the reduced parameters from the megamap model (Eq. (7)), as used in Fig. 3(b) and (d). The four regions
predict the response of the corresponding megamap as g and AD vary. (b) and (c) Bifurcations given a
smaller reduced inhibitory weight. Reducing w! reduces the range of permissible values for g, shrinking
the relative size of the parameter space with Type IV dynamics compared to that with Type III dynamics.
The transition between operational modes (¢ = 0.2) is not affected by w!. (d) Bifurcations given a smaller
inhibitory threshold, which makes the nonlinearity in g(x) more apparent. The full ranges of permissible
g and Ab are shown for each plot

e Type II: The state vector converges to a unique equilibrium in which only unit 2 is
active.

e Type III: The state vector converges to one of two possible equilibria, one in which
only unit 1 is active and one in which only unit 2 is active.

e Type IV: The state vector converges to a unique equilibrium in which both units
are active.

We have already shown that Types I, II, and III are found in the WTA mode, while
Types I, II, and IV are found in the combinatorial mode. We now derive explicit equa-
tions for the bifurcations, or parameter sets on the boundary between two different
types of qualitative dynamics, in order to better understand the interplay between the
inherent strength of the attractor network (wg — ¢) and the relative strength of ex-
ternal inputs (Ab b1 — bz) To simplify analysis, we assume the net external input
is constant, or b1 + b2 = bpk. As the learned environment grows from 0 to about
100 m?2, the only parameter in the optimal megamap with large relative changes is g
(Fig. 2(e)). Hence, we hold the parameters w®, &', and 0 fixed and determme the
bifurcations for the parameters 0 < g < wI(l —6) and bpk < Ab < bpk, where bpk
is given by Eq. (9). Examples of bifurcations are shown in Fig. 4.

By substituting the constraint b1 +b2 = bpk =wl(1—-6)— (w’—1)and bl Zg =
Ab into the bounds in Egs. (10)—(12), the bifurcations can all be expressed in terms
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of the function

_ o — =1
g(x)=2x<1171(1+9)—(w0—1)+x> (14

over the domain —Epk <x< Epk. Since w? — 1 < @, g is strictly increasing over its
domain, and g(0) =
By Eq. (11), the system has Type III dynamics (hysteresis) if and only if

q < (" —1) +g(~|Ab)), (15)

which is only possible in the WTA mode since g(—| AED < 0. As illustrated in Fig. 4,
when the external input into one unit becomes sufficiently stronger than the other,
then only the unit receiving the stronger input will remain active in the equilibrium
state as the system transitions to Type I or Type Il dynamics. As g becomes larger for
a fixed AE;A 0, the active unit increasingly depolarizes the silent unit. If this cross-
excitation becomes sufficiently strong, it becomes impossible to maintain an activity
bump over the unit receiving less input, again pushing the system into Type I or Type
IT dynamics.

By Eq. (12), the system has Type IV dynamics (two co-stable activity bumps) if
and only if

g > (w’—1) +g(|AD]), (16)

which is only possible in the combinatorial mode since g(| A?ﬂ) > 0. As illustrated in
Fig. 4, the system again transitions to Type I or Type II dynamics when the external
input into one unit becomes sufficiently stronger than the other. However, increasing
g now causes a transition from uni-peaked equilibrium states of Type I or Type II to
multi-peaked equilibrium states of Type IV. Increased cross-excitation between the
units causes the units to better reinforce one another, counteracting the competition
between units induced by feedback inhibition.

The bifurcations appear roughly linear for a wide range of weights w® and @'
when 6 = 0.9 (Flg 4(a)— (c)) To examine this, let d(x) denote the denominator in
Eq. (14). Since —bpk < AD < bpk and bpk <1 —0),

2650 — (w®—1) <d(—|Ab|) <®'(1+6) — (w’ —1) <d(|Ab]) < 25" — (w’—1).
Hence, g(x) approaches a linear function with slope (w! — (w® — 1))/(@" —
(w® — 1)/2) as 0 approaches 1. The nonlinearities in g(x) are more apparent for
smaller values of 6. Figure 4(d) shows an example with 6 = 0.5.

5 Conclusions

We present a mathematical analysis of the properties of the megamap attractor neural
network that emerge when the network represents a sufficiently large spatial environ-

ment [10]. Through stability analysis of the full megamap model, we derive a nu-
merical test (Eq. (3)) for determining the operational mode of the dynamical system
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(Eq. (1)). In addition, we derive a linear mapping from the N-dimensional megamap
model to a two-dimensional reduced model that has the same qualitative dynamics.
Our analysis of the 2-unit model elucidates the role of each parameter in the full
megamap model in the context of conflicting external inputs (Fig. 4). In particular,
we show that the abrupt shift in operational mode occurs when g ~ w® — 1, where
w® and ¢ are proportional to the average recurrent excitation between two cells in the
same unit and in different units, respectively (Eq. (7)). The inhibitory weight does
not affect the operational mode, but increasing w' increases the range of ¢, resulting
in a larger range of the relative strength of inputs (blk — bzk) for which there are
two co-stable activity bumps (Type IV dynamics). The inhibitory threshold (6) also
does not affect the operational mode, but the bifurcations described by Egs. (14)—(16)
approach linear functions of b;k - bgk as 0 approaches 1.

This work is similar in nature to numerous theoretical studies of EI nets
[39, 40]. In many of these studies, two populations of neurons are considered, where
one population represents excitatory cells and the other inhibitory cells. The recurrent
circuitry among inhibitory cells is often neglected, simplifying the analysis. We con-
sider two populations of excitatory neurons, each with extensive recurrent circuitry,
and a third population of inhibitory neurons. We simplify the dynamical system by
lumping all inhibitory neurons into a single inhibitory unit under the assumption that
all inhibitory cells are statistically identical since interneurons in the hippocampus
do not appear to have strong spatial tuning [41, 42]. We also assume that the time
constant of the inhibitory state is much smaller than that of excitatory cells, allowing
us to approximate the inhibitory state as an instantaneous function of the excitatory
activity vector. Without this simplification, it is likely that we would observe oscilla-
tions between activity bumps under some parameter sets [18].

A common approach used to analyze continuous attractor neural networks is to
approximate the N-dimensional system of ordinary differential equations (Eq. (1))
by a partial differential equation by taking the limit as N — oo. The state vector,
u(t) RY, then becomes the continuous function, u(x,t) € R, where x is a contin-
uous variable representing the single preferred location of a given place cell. The
cleanest results are obtained using a Heaviside activation function for f (u), for then
one can solve for the radius of the activity bump at a fixed point [14, 43]. Using
a similar approach, we derived clean expressions for the set of stable fixed points;
however, we found that the combinatorial mode does not exist given the Heaviside
activation function in our dynamical system. Other mathematical studies have used
Fourier analysis to analyze the PDE given the threshold linear activation function
used for the megamap model [40, 44]. Even when we approximate the recurrent
weights using only the first two terms in the Fourier series, however, the recurrent
circuitry among both populations of neurons renders the solutions too complex to be
helpful in understanding how the parameters of the model affect the dynamics. The
approaches we present in this study require only a few justified approximations of
the full megamap model, and the simplicity of the results make the analysis useful
in understanding the behavior of the megamap. Despite its simplicity, the numerical
test accurately determines the operational mode of the full system (Fig. 1), and the
reduced model has similar qualitative behavior to the full model (Figs. 2 and 3).

While we focus on a particular attractor neural network, the results apply to a
broad class of attractor network models. The numerical test for determining the oper-
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ational mode (Eq. (3)) applies to any attractor network model in which the state vec-
tor is governed by Eq. (1), a standard firing rate model derived by averaging neuronal
activity over multiple trials [33]. The reduced 2-unit model applies to any attractor
neural network in which the four approximations outlined in Sect. 3.1 are valid ap-
proximations. This includes not only continuous attractor neural networks, but also
discrete attractor neural networks such as Hopfield networks with graded neuronal
responses [2]. In the latter case, the set Sk used in the reduction of the full model is
the set of all cells that are active in embedded activity pattern k. It is not necessary for
the embedded activity patterns to have the shape of the Gaussian-like activity bumps
considered here.

When considering the reduced model, it is important to understand the impact
of the approximations underlying the linear mapping from the full model. For the
megamap, the first three approximations neglect the variability in embedded activity
patterns and weights due to the Poisson distribution of place fields [10]. This vari-
ability includes asymmetries in the full weight matrix, W. We find numerically that,
as long as W is a relatively small perturbation from a symmetric matrix, the asym-
metries have a negligible effect on the dynamics. For example, we observe only a
slight difference in the transition point between operational modes determined by nu-
merical simulations and the stability test (~25 m?) and by the reduced state variables
(w® — g ~ 1.05 at 25 m2, as seen in Fig. 2(e)). This result is not surprising, as uncor-
related random perturbations of the weight matrix in a Hopfield network have been
shown to have a small effect on the dynamics [45, 46]. The fourth approximation
underlies the qualitative differences between the full megamap model and the 2-unit
model. In particular, the variable radius of the activity bump underlies the nonlinear-
ities observed in the megamap’s response to the conflicting input (Fig. 3(a) and (c)).
In general, the reduced model captures the peak of the activity pattern, but it does not
capture changes in the subset of active cells within each unit.

There are several natural directions in which the reduced model presented here
could be extended. For example, one could examine how the attractor network re-
sponds to M conflicting external inputs, where M > 2. As long as these inputs are
well-separated spatially, an M -dimensional reduced model could be derived exactly
as shown for M = 2 in Sect. 3.1. Using the same four approximations, the reduced
model for M inputs would be

E

tit (1) = —ir () + (w° — ) [@m ()], Zu,(:)

M
—@I[Z[“J‘(”L _9} +7§k forl<k <M.
+

J=1

The reduction equations (Egs. (6)—(7)) and the four constraints would be unchanged.
There are several intriguing questions that could be addressed by this model. For
example, does the value of ¢ at which there exists a fixed point with m > 2 stable, co-
active units depend on m? If so, the definition of the combinatorial mode would need
to be reconsidered. Another interesting question is whether hysteresis emerges in the
combinatorial mode when M > 2. For example, it is possible that, for a particular
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parameter set, any stable fixed point has two co-active units, but the subset of co-
active units depends on the initial state.

A second possible extension would be to relax the fourth approximation of the
reduced model to examine the spatial effects of the activity bump on the attractor.
This could be done by modeling n << N place cells for each unit, setting the reduced
weight matrix WO e Rrxn through a Gaussian tuning curve, and setting the reduced
weight matrix Q € R"*" as a random matrix with || Q|| <« ||W0 ||. It would be interest-
ing to compare the operational modes and bifurcations of this 2n-dimensional model
to the operational modes and bifurcations of the two-dimensional model presented
here.

A third possible extension would be to use the reduced model to explore remap-
ping. In the current study, the full weight matrix is set during a learning phase in
which the place cell activity is fixed at the desired activity pattern, and the network is
driven by strong external inputs. Then the dynamics of the model are examined during
a retrieval phase in which the weights are constant, and the recurrent input is stronger
than the external input. This separation into a learning phase and retrieval phase is
common in attractor neural network models in which the weights are incrementally
learned [6, 35, 47], and there is experimental evidence supporting, at least in part, the
use of two separate phases. For example, it has been observed experimentally that
the acetylcholine system is more activated during the initial exploration of a novel
space than when the animal is moving around in a familiar space, and acetylcholine
may increase the strength of afferent input connections relative to feedback recurrent
connections [48]. Nonetheless, it would be an interesting and relevant study to ad-
dress how the dynamics change given plasticity in the recurrent weights during the
retrieval phase, as is more biologically realistic. Exploring remapping mathematically
would require a more complex reduced model that incorporates differential equations
for w(¢) and q(t). The basic Hebbian learning rule is unstable, and the manner in
which stability is maintained would affect the set of stable fixed points [33]. Another
key factor would be the learning rate. In particular, when the two external inputs
have equal strength, then two activity bumps initially become co-active in the WTA
mode when the weights are constant. In the full model, this co-activity could last for
hundreds of ms before one activity bump dominates [10]. Given Hebbian learning,
the place cells in each unit would begin to reinforce each other’s activity, effectively
increasing g and possibly driving the system to the combinatorial mode.

There are many contexts in which an attractor neural network must resolve con-
flicting information from its rich array of neuronal inputs. For example, it is a com-
mon experimental paradigm to manipulate different cues in different ways in order
to track how information flows through various levels of neural processing [49, 50].
The WTA mode is ideal for robust memory retrieval, allowing the attractor network
to perform computations such as transforming a noisy external input into a coher-
ent, embedded activity pattern. On the other hand, the combinatorial mode permits
a flexible recombination of embedded activity patterns in response to a changed en-
vironment. This flexibility could lead to phenomena such as the partial remapping
observed in hippocampal place cells [6, 10, 31]. Perhaps the ideal attractor neural
network operates between these two extremes, robustly encoding memories while
still having the flexibility to adapt to our ever-changing world. The reduction method
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presented in this paper is a useful tool for simplifying the mathematical analysis of
various behaviors of attractor network models to better understand how these behav-
iors depend on the network parameters and the learning process.
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Appendix A: Stability of a Fixed Point of the Megamap Model

Let v be a fixed point of the dynamical system (Eq. (1)). Suppose that the state is
perturbed from this fixed point at time #o, so that u(z) = v + €v(r) for some small
€ > 0. Equation (1) becomes

V() =—v—eVt) + Wf(v+e¥(0) —w' fi(v+ V(@)1 +b. (A7)
The Taylor expansion of the activity of each place cell i is given by

f ) ifv; <O,

S (i +Eﬁ,‘) = {f(vl) +€17ifpk+ O(ez) if v; > 0.

For simplicity, we assume that no state v; is exactly 0 and ZIN=1 f(v;) is not exactly
equal to 6 fne. Let S denote the set of all active place cells at the fixed point, or the
set of all excitatory cells i such that v; > 0. Define the diagonal (0—1)-matrix D(S) €
RN*N such that D;; (S) = x s(i), where x s(i) is the indicator function, which takes
a value of 1 when i € § and O otherwise. The recurrent input becomes

W (v+eV(0) = WEW) + efok WD(S)V(1) + O(€?).
The Taylor expansion of f! about v is similarly given by
Flv+e9) =l +e9- Vv + 0(e2).

Let S! denote the set of all active inhibitory cells at a fixed point. Since we model
only one inhibitory unit (inh) representing the collective state of all inhibitory cells,
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ST = {inh} if YN, f(v;) > 0 faet» and S' = @ otherwise. If S =, then f1(v) =0
and V f I(v) = 0. Otherwise,

_ af!
ff=1"fM=60fra = J;v(_v) = /(i) = X50) fyk-

Thus, ¥ - V fI(v) = x gi(inh) fpkllTD(S)V. Substituting these expressions back into
Eq. (17) and dropping terms of O(€2), we find

TV (1) = —V(1) + fxk WD(S)V(1) — X g1(inh) fxw'11TD(S)¥ (1),
4
V() = (—I+ for(W = X g1 (inh)w'117)D(8))¥(1).
Therefore, V() — 0 if and only if
Amax (I + fok (W — X s1(inh)w'117)D(S)) <0,
where Anax (M) specifies the largest real part of all eigenvalues of M. In conclusion,
any fixed point with active excitatory and inhibitory cells S and S', respectively, is
stable if and only if r(S, S') < 1, where
r(S, V) = Amax (fok (W — X g1 (inh)w'117)D(S)).

This equation provides a numerical test to determine the stability of any fixed point.

Appendix B: Reduction of the Megamap

In this appendix, we map Eq. (1) to Eq. (5) using the approximations described in
Sect. 3.1. By Eq. (1),

N
5 (1) = 22 Z(—u,m £ wi (0)

net , — net . - -
ieS) ieS) Jj=1

N
—w! [Zf(uj(t)) — 9%] +bi>
+

[l
Sk al
T (1) =~ (1) + 2= > wij f (uj (1)
" ey =1
N [ ~
—Lw‘[Zf(ujm)—e%} +bi,
fnet J:l +
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by Eq. (6), where N & |S;| & |S;|. Let Sk () be the set of all active cells near x; at
time ¢ (Eq. (8)). Assuming S;(¢) N S2(¢) = (4, the inhibition into unit 1 becomes

/\I N
1) =6 fac
fnet[Zf () =07, tL
| 1 1
%wl[: Z Sokuj (1) + = Z fpkuj(l)—9i| ,
+

et jes;(r) net jeS, (1)

where @' is given by Eq. (7). For each unit k, if there is no activity bump over x; at
time ¢, then Si (t) ~ ¥ and 1y (¢) <0, implying that

D fokuj () 0= [@(®)], .

fnet jESk(l‘)

If there is an activity bump over x; at time 7, then we assume Si () ~ S; and 71y () >
0, implying that

D uj) =) =[ar )],

Jjesk

ST foruj®) & fpk

fnet j ESk (I) net

Hence, the inhibition into unit 1 is approximated by w'[[w] (1)]+ + [2(t)]4 — 6],
the inhibition in Eq. (5).

All that remains is to show that the network input into unit 1 is approximated by
wo[fil]Jr + g[u2]+. Again assuming S (¢) N S2(¢) ~ @, the network input becomes

Z Zw,,f (uj(O) ~Ri(t) + Ra(2),

ieS;j=1

f net

where

Ri(t) = fpkz 3 wif (i) fork=1,2.

net 3y jeSk()

If there is no activity bump over x; at time 7, then S (t) &~ @ and ) (t) < 0, implying
that R; (r) ~ 0 = w[i; (t)]+. Similarly, if there is no activity bump over x, at time ¢,
then Ry(¢) ~ 0 = q[u»(¢)]+. If there is an activity bump over x; at time ¢, we assume
S1(t) ~ S1. This implies that f(u; (1)) ~ upk(t) f j(x1) and [w1]4 =1 (1) ~ upk (1),
where u, is the peak of the state bump over x;. In this case,

Ri() ~ 2 DO wij () F (x1)= wlupk(6) = w[@1 ()]
net iES_1j€S_1
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by Eq. (7). Similarly, if there is an activity bump over x; at time 7, then we assume
Sa(t) ~ Sy and up(¢) > 0, implying that

Ry(t) ~ %(Z Z wij7j(X2))[ﬁ2(t)]+-

net ieS; jeS;

It is reasonable to consider w;; and ? j (x2) as independent random variables for the
following reason. The values of w;; and f; depend on the preferred locations of
cells i and j, which are Poisson random variables. Since S; NS> ~ @, when i € S
and j € §2, w;; depends only on the place fields of cells i and j that are away from
both x; and x;, and f j (x2) depends only on the place fields of cell j near x;. Since
all preferred locations are set as independent random variables, w;; and f j (xp) are
independent. Thus, E[w;; fj x2)] = E[wij]E[fj (x2)], and so

Ro(t) ~ f‘ﬁv (_2 >y w,,>< 37, (xZ)) [@0],

net

teS _]ESZ jGS
N Foc ~
T (—ZZ_Z_%)( ) o], = a0,
i€Sy jeS,

by Eq. (7).
Putting it all together, we have derived a linear mapping from Eq. (1) to the differ-
ential equation,

) (1) ~ =y (1) + w' [ 0], +q[m20], - W' ([ 0], +[m0], -0], +Dy.

An analogous argument can be used to derive the equation governing %, (Eq. (5)).

Appendix C: Fixed Points of the 2-Unit Model
A fixed point of the 2-unit model is any solution of the equation,
"~ 0 o~
up | _fw” g ||l | arpe | by
Bl-[7 slle]-orel]e 5] o

where f[(ﬁ) = [[@1 ]y + [2]+ —6].. Without loss of generality, assume by > by > 0.
We also assume that all parameters satisfy the constraints outlined in Sect. 3.2.

C.1 No Active Units

Suppose &1 < 0 and up < 0. Since [u1]+ = [Uz]+ = f ) = 0 the only fixed point
with no active unit is | =, = 0, which exists if and only if b1 b2 =0.
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C.2 One Active Unit

A fixed point with exactly one active unit corresponds to a single activity bump on
the megamap. We will consider two cases separately.

Case 1 The unit receiving more input is the active unit, or ] > 0 and u» < 0. By
the second row of Eq. (18),

=qii —0' f'@+b<0 = fl@) > g +by)/d' >0.
Thus, fl(ﬁ) =1u — 6 > 0. Substituting this back into Eq. (18), we find

16 + by

MEHT w0 —1)

and @ =(q— (w'—1))a — (b1 —b2). (19

Since %] > O for any permissible parameters, this fixed point exists if and only if
Uy < 0, or equivalently,

(b — by) (@' — (w° — 1))

0
-1 —
g<(w )+ w'o + by

Case 2 The unit receiving less input is the active unit, or #] < 0 and i, > 0. By the
first row of Eq. (18),

=g —0' @ +b <0 = [l@ > (g2 +b)/d' = 0.
Thus, f1@) = — 6 > 0. Substituting this back into Eq. (18), we find

00 + by

LI —wi o)

and @y =(q— (w’—1))i2+ B —ba).  (20)

Since u, > 0 for any permissible parameters, this fixed point exists if and only if
u1 < 0, or equivalently,

(b =by)@' = " = 1))

0
—1 =
g<(w ) wlo + by

C.3 Two Active Units
A fixed point with two active units, or 7 > 0 and u, > 0, corresponds to two activity

bumps on the megamap, each encoding a different location in the environment.
Suppose the inhibitory unit is silent, or f[(ﬁ) = 0. Equation (18) becomes

wl—1 q ] _[-h
g w'—1]|@m) T )
If g =w’—1> 0, then
q 214-22 _ _El = 51232, and it\1+it\2=—i7\l/q<0'
uy +ur —b -
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The latter statement contradicts the assumption that 7y > 0 and u, > 0. Thus, if
F(ﬁ) =0, then g # w® — 1. In this case, the system has the unique fixed point,

G ! gby — (w’ = Dby
W% —1)2 — g2 [ gb1 — W’ — Db,

Ifq<w — 1, then u <Os1nceqb2—(w - 1)b1 <(w - 1)(b2—b1)<0 If

q > wY — 1, then 7, < 0O since qb1 (w® — l)bz > (w — 1)(b1 — bz) > 0. Since

u1 > 0 and u; > 0, the inhibitory unit must be active, or f[(u) =u1+u—6>0.
Substituting this back into Eq. (18), the fixed point must satisfy

T Y ) - w| _ [b1+w'o
W —gq W' — W=D ||m]| [+ w'e|
The determinant of the coefficient matrix is given by d = (g — W% — ))ew! —
(w® — 1) — ¢). Note that 2&" — (w® — 1) —g > 0.

If ¢ = w® — 1, then a fixed point exists if and only if 31 = 79\2. Under these condi-
tions, the set of all fixed points is given by the line segment,

i?l—i—fiz—li, where ] >0 and up > 0.

The inhibitory unit is active at the fixed point since ] + 2 > 0/(1 — (g/W")) > 0
given any set of permissible parameters.
If ¢ # w® — 1, then the system has the unique fixed point,

21

’ﬁ:(l/d)[ I9(61—(w —1))+b1( '— @ —1))—b2( —61)}

010(g — (W = 1)) = by (@' — q) + b (@' — (w® — 1)) |’

The inhibitory unit is again active at the fixed point given any permissible parameters
since
~1 —~ —
2W6 + b+ by . 0 > 9
—WO—1)—q = | - @'=D+qg
20!

U tup=

All that remains is to determine parameters for which %} > 0 and %, > 0. Consider
the activity difference,

PN by — by
Uy —Up = ———-——.
q—w’—1)
If g < w® — 1, then 4] < i, when by > by, implying that the unit receiving /ess input
has a higher activity level at the unique fixed point. While such a fixed point may

exist for certain parameters, we will later show that it is not stable. If ¢ > w® — 1,
then u; > u>», and by Eq. (21),

>0 < @IG(q—(wO—1))—bl(ﬁl—q)+32(@l—(w0—l))>0
& q(@'0+b1) — (w° —1)(@'0 +b2) — @' (b1 —b2) >0
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& q(w'o +31) —(w"—1)(2' +31)
+ (w® = 1)1 —b2) — @' (b1 — b2) > 0

T—@®—1)

by — by).
210 15, )(1 2)

& q>(w°—1)+(

Thus, this fixed point exists only for a sufficiently small input difference, by — by, or
a sufficiently large weight between units, g.

Appendix D: Stability of a Fixed Point of the 2-Unit Model

Since the 2-unit model has the same form as the megamap model, the stability of
a fixed point in which ] # 0, 4y # 0, and &; + up # 0 is also determined by the
stability test of Eq. (3), where S is now the set containing the indices of all active
units, and fpx = 1 due to the rescaled activation function in the reduced model. We
now evaluate r (S, S!) to determine the stability of the various fixed points found in
Appendix C (Egs. (19)—(21)).

D.4 No Active Units

The only fixed point with no active unit is #; = u = 0, which exists if and only if
b1 = by = 0. Since Eq. (3) does not apply for this fixed point, suppose the state is
perturbed from the O-vector at time fo such that i (1) > 0, u»(fp) > 0, and uy (fp) +
> (fo) < 6. While both states are positive, the state vector is governed by

(1) = —0(t) + W) = (W — D),

where I denotes the 2 x 2 identity matrix, and

The eigenvalues of W —T are {w®—1)—gq, W’ —1)+g¢)}. Since w® > 1, w? — 1+
q > 0, so the 0-state is not stable.

D.5 One Active Unit

Without loss of generality, assume unit 1 is the active unit, or 7] > 0 and 7, < 0. At
a fixed point, 71 > 0, and so by Eq. (3), Wis stable if and only if Amax (M) < 1, where

0_ oI
X T w”—w 0
M:(W—w]l]l)D(S):[q_wI o}'

Since w? — w' < 14+ w!'(1 — ) — w' < 1, a fixed point with exactly one active unit
is always stable.
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D.6 Two Active Units

Finally, suppose 7] > 0 and 7 > 0. Since f1(W) > 0 at the fixed point, the stability
test is again given by Amax (M) < 1, where

R 0__ =1 o~
M= (W—2'117)D(S) = [“C’I ey I] .

—w w—-w

For any set of permissible parameters, the fixed point is stable to even perturbations
(in the direction of the eigenvector v = [1 1]7) since A4 = w® 4+ ¢ — 2" < 1. How-
ever, the fixed point is stable to odd perturbations (in the direction of the eigenvector
v_ =[1 —1]7) if and only if ¢ > w® — 1, since A_ = w® — ¢g. Thus, for a fixed
self-excitatory weight w?, the system may transition from a mode in which this fixed
point is unstable (WTA mode) to stable (combinatorial mode) as the cross-excitatory
weight g increases.
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