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Abstract We present the study of a minimal microcircuit controlling locomotion
in two-day-old Xenopus tadpoles. During swimming, neurons in the spinal central
pattern generator (CPG) generate anti-phase oscillations between left and right half-
centres. Experimental recordings show that the same CPG neurons can also generate
transient bouts of long-lasting in-phase oscillations between left-right centres. These
synchronous episodes are rarely recorded and have no identified behavioural purpose.
However, metamorphosing tadpoles require both anti-phase and in-phase oscillations
for swimming locomotion. Previous models have shown the ability to generate bio-
logically realistic patterns of synchrony and swimming oscillations in tadpoles, but a
mathematical description of how these oscillations appear is still missing. We define
a simplified model that incorporates the key operating principles of tadpole loco-
motion. The model generates the various outputs seen in experimental recordings,
including swimming and synchrony. To study the model, we perform detailed one-
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and two-parameter bifurcation analysis. This reveals the critical boundaries that sepa-
rate different dynamical regimes and demonstrates the existence of parameter regions
of bi-stable swimming and synchrony. We show that swimming is stable in a signifi-
cantly larger range of parameters, and can be initiated more robustly, than synchrony.
Our results can explain the appearance of long-lasting synchrony bouts seen in ex-
periments at the start of a swimming episode.

Keywords Xenopus Tadpole · Central Patter Generator · Swimming · Synchrony ·
Bifurcation Analysis

List of Abbreviations
CPG central pattern generator
dIN excitatory neuron
cIN inhibitory neuron
PIR post inhibitory rebound
SyC synchrony limit cycle
SwC swimming limit cycle
2-SyC double-period synchrony limit cycle
LP fold of limit cycles
PD period-doubling bifurcation
PFK pitchfork bifurcation
TR Neimark–Sacker bifurcation
LPD Fold-flip bifurcation

1 Introduction

Rhythmic neuronal activity is the basis for many locomotor activities, such as swim-
ming, flying and walking [1–6]. Experimental and modelling evidences suggest that
such rhythmicity is generated by specialised neuronal networks called central pattern
generators (CPGs) [7, 8]. A key property of a CPG is the ability to autonomously
generate rhythmic activity without forcing by periodic external input.

Different motor behaviours require different rhythmic patterns, such as left-right
anti-phase oscillations for walking and running [9], or in-phase left-right firing for
some forms of crawling [10] and flying [4]. Interestingly, swimming in Xenopus tad-
poles follows an anti-phase pattern, but during metamorphosis there is a progressive
shift to in-phase limb movements [11]. Although experiments show that some CPG
neurons can be active during different motor patterns displaying either in- or anti-
phase oscillations [12], it is unclear whether the same group of CPG neurons could
be responsible for the generation of these different rhythmic patterns. An alternative
hypothesis is that the CPG includes a repertoire of diverse CPG sub-networks, each
responsible for a single motor pattern with its own specific firing [13–15].

In this paper, we consider a computational model of the Xenopus tadpole CPG.
We focus on the neuronal dynamics that drives swimming locomotion in two-day-old
tadpoles (two days from fertilisation, developmental stage 37/38). The mechanism
for swimming generation is well understood, and previous studies have revealed the
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detailed structure of the CPG circuit, which is split between left-right sides of the
spinal cord (left-right half-centres) spanning the spinal cord and caudal hindbrain
[16]. A pattern of swimming-related activity is generated by excitatory descending
interneurons (dINs) and inhibitory commissural interneurons (cINs). These key CPG
neurons drive the motor response by firing single action potentials per swimming
cycle, with firing occurring in anti-phase between left and right half-centres [17].

It has long been known from physiological experiments in tadpoles immobilised
with a neuromuscular blocker that the tadpole spinal circuit can also generate a tran-
sient form of motor outputs [18] in which there is synchronous firing of neurons
between left and right half-centres, with half the swimming period [18–20]. Early
simulations suggested that this synchronous output could be stable for neurons ex-
cited by positive feedback and coupled by reciprocal inhibition [21, 22]. More recent
recordings have confirmed that CPG neurons fire during these transient periods of
synchronous activity, which can be spontaneous or induced artificially by injecting
constant depolarizing currents [12]. Transitional synchrony may last for a relatively
long time (500–1000 ms) and, in most cases, starts shortly after swimming initiation
[12, 19]. To date, a behavioural correlate of this pattern has not been characterised,
although apparently-pathological “fluttering” movements have been observed (un-
published). It therefore remains unclear whether synchrony is indeed a pathological
behaviour or its appearance is an early preparation for a developmental change: dur-
ing metamorphosis (happening at around 60 days from fertilisation), in-phase and
anti-phase motor patterns have been observed/defined both behaviourally and phys-
iologically (ventral root recordings) [11]. We believe that one possible role of syn-
chrony in Xenopus tadpoles is to release glutamate/acetylcholine at double the nor-
mal swimming frequency in the CPG and at the neuromuscular junctions. This may
boost CPG and muscle excitability and help to increase the muscle contraction am-
plitude/strength at the beginning of swimming.

Our aim is to understand how swimming (anti-phase) and synchrony (in-phase)
oscillations can be generated by CPG neurons, find conditions for existence of these
two dynamical modes, and for the existence of bi-stability—where both swimming
and synchrony can be generated with the same parameters, just by varying the initial
stimulus. Furthermore, we seek to understand the mechanism that produces transi-
tions from long-lasting synchrony to stable swimming. In a related work, anti-phase
and in-phase oscillations have been found to be stable outputs in recent computational
models of the mammalian respiratory CPG [23]. To achieve our goal, we combine a
highly reduced neuronal circuit of two pairs of neurons that are known to be essen-
tial for the tadpole CPG function [5, 22, 24] with a detailed model of single neuron
spiking. Consideration of a small network allows us to use bifurcation analysis for
studying the possible dynamical modes. A detailed, biologically plausible model of
spike generation allows us to mimic specific features of experimental recordings and
compare the results of model simulations with experimental data.

The reduced CPG circuit includes one excitatory (dIN) and one inhibitory (cIN)
neuron in each half-centre. Key features of the model include dIN self-excitation act-
ing as a positive feedback and cIN cross inhibition. A circuit with similar character-
istics has been studied in [25]. During swimming, this circuit works in the following
way. Excitation and subsequent spiking of a dIN leads an ipsilateral cIN to spike, in-
hibiting the dIN in the opposite half-centre. A key feature of dIN firing is the potential
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for post-inhibitory rebound (PIR) spiking. Therefore, after some delay the inhibited
dIN generates a spike due to PIR, excites the cIN in the same half-centre, and the pro-
cess repeats to generate an anti-phase spiking pattern between half-centres. During
synchrony, dINs on both half-centres fire PIR spikes at similar times, shortly before
the arrival of cIN inhibition. When inhibition does arrive, it hyperpolarizes the dINs,
which then fire another PIR spike after a relatively slow repolarization period. If syn-
chrony is stable, then the cIN and dIN firing times for the two half-centres become
increasingly close together, until both half-centres are firing in perfect synchrony.
The activity of dINs drives swimming and other locomotor behaviour by directly
exciting the motoneurons that control muscle movement, though we do not include
motoneurons in our model [26, 27].

The model of the neuronal circuit includes six synapses, and to model spiking ac-
tivity, we use a detailed single-compartment Hodgkin–Huxley type model with gating
channels’ dynamics motivated by voltage-clamp experiments [28, 29]. Thus, the re-
duced model includes 34 ordinary differential equations. To study bifurcations, we
combine the continuation-based software AUTO-07P [30] and XPPAUT [31]. We
study codimension one and two bifurcations of the limit cycles corresponding to
swimming and synchrony. This analysis reveals the stability regions for these two
limit cycles, including regions where the system can support bi-stable swimming
and synchrony. Taking inspiration from the initiation of swimming in real experi-
ments, we formulate a biologically-plausible method of initiating the model’s dynam-
ics based on input currents onto dINs. This initiation procedure allows us to explore
to what extent the time jitter and duration between left and right dIN current inputs
can lead to stable synchrony or swimming. We show that the swimming mode has
a bigger stability region, and it can be initialised for a bigger range of initiation pa-
rameter values. This suggests that swimming is the key functional output of young
tadpoles. We propose a mechanism for generating long-lasting transient synchrony
preceding a swimming episode that is qualitatively similar to synchrony in experi-
mental recordings.

2 Methods

2.1 Model Description

The model is a significant reduction of the detailed, biologically realistic model of
the swimming network in the tadpole caudal hindbrain and rostral spinal cord, which
was described in our previous publications [32–34]. This full model for simulations
of the swimming dynamics includes about 2000 neurons and 90,000 synapses with
about 200,000 delay differential equations. This model demonstrates a very reliable
swimming dynamic under variation of parameter values [34]. In addition, this model
has been used to simulate the experimental data of synchrony activity [12].

To use bifurcation analysis for formal mathematical study of the existence and
stability of swimming and synchrony, it is necessary to simplify the previous model
significantly. Our approach for defining a simplified model for locomotion in tad-
poles is to minimise the number of neurons and synaptic connections, and to use a
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Fig. 1 Scheme of neurons and
connections in the reduced
model. Currents I1(t) and I2(t)

represent external depolarizing
step currents injected to the two
dINs to mimic sensory input.
Both currents have the same
duration d and amplitude A.
The current pulses for I1(t) and
I2(t) are initialised at time t1
and t2, respectively (see
Sect. 3.1 for details)

detailed biologically-realistic mathematical description of neurons and synapses. The
description of the model comprises two parts.

Firstly, we consider only one “segment” of the spinal cord with the minimal num-
ber of neurons in each half-centre needed to characterise the tadpole CPG [5, 24]:
one excitatory dIN and one inhibitory cIN. Thus, the “reduced model” includes four
neurons, and we assume that the full neuronal network for swimming can be built
by expansion of this structure. Figure 1 shows the connections in the reduced model.
To compensate for a lack of excitation resulting from removal of synaptic input from
other dINs, we introduce dIN self-excitation. In the reduced model we consider iden-
tical neurons in both half-centres with symmetrical connections. Therefore, the dy-
namical system is also symmetrical under mid-line reflection of left and right half-
centres (Fig. 1). Secondly, we use a detailed model of spike generation and synap-
tic transmission to mimic important details of firing patterns in different dynamical
modes and compare them with experimental recordings from tadpole neurons. To
model neurons’ membrane potential and transmembrane currents, we use the same
modified Hodgkin–Huxley spiking model as in the full functional model [34]. To
model synaptic connections, we use a similar approach as in the full functional model,
the only difference being that in the functional model synapses were modelled using
delay differential equations, while here we use synapse models that are continuously
dependent on the pre-synaptic potential. We use a continuous model of synaptic trans-
mission because of the difficulties associated with numerical continuation of systems
of delay differential equations.

Neuronal models. Neuronal spike generation is modelled by the single-
compartment Hodgkin–Huxley equations, which includes various types of ionic cur-
rents. Although several models describing the activity of dINs and cINs have been
developed [17, 22, 24, 34, 35], we believe these models are still not able to reproduce
some important properties known from electrophysiology. Here, we use the same
neuron models described in [34, 36], because they incorporate some key physiologi-
cal firing properties detected from experimental recordings [28, 29, 34].

The membrane potential (v) of each cell evolves according to equation (1).

C
dv

dt
= ilk + iNa + iKf + iKs + iCa + is + iext, (1)

where C represents the cell’s capacitance (C = 10 pF for all neurons). Currents is
and iext represent synaptic and external current sources, respectively. The kinetics
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Table 1 Maximal conductance (in nS) and equilibrium potential (in mV) of each ionic channel in the
model neurons

glk elk gNa eNa gKf eKf gKs eKs

dIN 1.4 −52 240.5 50 12 −80 9.6 −80

cIN 2.47 −61 110 50 8 −80 1 −80

of the various ionic channels is based on the previous models of voltage-clamp data
[28, 29]. The sodium (iNa), slow potassium (iKs), fast potassium (iKf) and leakage
(ilk) currents are modelled by traditional Hodgkin–Huxley formalism (equation (2)),
while the calcium current (ica) follows the Goldman–Hodgkin–Katz formulas (equa-
tion (3)). For cINs, we set ica = 0.

ilk = glk(elk − v),

iNa = gNa(eNa − v)m3h,

iKf = gKf(eKf − v)f k,

iKs = gKs(eKs − v)lj ,

(2)

ica = 2pca·μ·F [Ca2+]i − [Ca2+]o exp(−μ)

1 − exp(−μ)
r2, where μ = 2F ·v

R·T . (3)

Here glk, gNa, gKf, gKs represent the maximal conductance and elk, eNa, eKf,

eKs represent the equilibrium potential for the leakage, sodium, fast and slow potas-
sium currents, respectively. The values of these parameters are listed in Table 1 for
each channel and for both dIN and cIN neurons. All ionic currents depend on one
or more voltage-dependent gating variables m,h,f, l, r . The constants k and j rep-
resent the powers of the fast and slow potassium gating variables and they are set
to values k = 4, j = 2 for dINs and k = 1, j = 1 for cINs. Parameters of the cal-
cium current are pca = 14.25 cm3/ms, F = 96,485 C/mol, R = 8.314 J/(K mol),
T = 300 K, [Ca2+]i = 10−7 mol/c m3, [Ca2+]o = 10−5 mol/cm3.

Equation (4) describes the dynamics of each gating variable x, x ∈ {m,h,f, l, r},
where the voltage-dependent functions αx(v) and βx(v) describe the rate of tran-
sitions between open and closed states for each ion channel according to (5). The
values of the rate parameters A, B, C, D and E for both dINs and cINs are given in
the Additional file 1 (Table S1).

dx

dt
= αx(v)(1 − x) − βx(v)x, (4)

αx(v),βx(v) = A + Bv

C + exp((D + v)/E)
. (5)

Remark In the case of dINs, the mechanism of PIR is based on de-inactivation of
depolarization-activated inward currents [26, 27, 37]. However, the complete mecha-
nism underlying PIR in tadpole dINs still awaits physiological characterization. It is
known that, during swimming, dINs are depolarised due to summated, long-lasting
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Fig. 2 Property of PIR in the
dIN model. (A) Voltage
dynamics in one dIN (black
line) during the injection of the
current function I (t) (blue line).
(B) and (C) show the dynamics
of the dIN’s gating variables and
ionic currents during the same
current injection of part (A),
respectively

NMDA-receptor mediated excitation, and the inhibition leading to PIR occurs against
the background of this depolarisation [26].

Figure 2(A) demonstrates the PIR property of the dIN model. During the time
interval [t0, t1], the dIN is in the depolarised state due to constant current injection
[34]. During the time interval [t1, t2], the dIN voltage decreases due to the injection
of inhibitory current (blue line). Termination of this inhibitory current at time t2 (on
the background of positive current injection) leads to generation of a dIN spike at
time t2 via the PIR mechanism.

Figure 2(B)–(C) show the dynamics of the gating variables and ionic currents,
respectively. It is clear from these figures that the mechanism of PIR is rather complex
due to the interaction of many model components with different time scales. However,
we can see how the PIR spike at time t2 is triggered by de-inactivation of the sodium
current.

Synaptic models. The reduced model includes excitatory and inhibitory con-
nections. We consider both AMPA and NMDA receptors of glutamate excitatory
synapses from dINs, and glycinergic receptor for inhibitory synapses from cINs
(Fig. 1). Summation of the slow synaptic transmission mediated by NMDA receptors
from dIN to dIN synaptic transmission is essential for the generation of swimming
activity because PIR spiking in dINs needs inhibition to arrive against a sufficiently
high level of depolarization [22]. For this reason, we consider NMDA-driven self-
excitatory connections in dINs. As in the full model of the swimming network, dINs
in the reduced model are able to fire PIR spikes on release from cIN inhibition. The
six synaptic connections of the reduced model (Fig. 1) encompass the key properties
of the tadpole CPG: ipsilateral excitation (driven by NMDA/AMPA synapse), com-
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Table 2 Parameters of the synaptic models

s NMDA AMPA glycine

es (mV) 0 0 −75

τ s
o (ms) 0.5 0.2 1.5

τ s
c (ms) 80 3.0 4.0

vs 10 10 1

Ts 1.5 4.0 1

missural inhibition (driven by glycinergic synapses) and post-inhibitory rebound in
dINs.

Equations (6)–(10) describe the synaptic currents is (s ∈ {ampa,nmda, inh}). The
time evolution of every synaptic transmission event depends on the opening and clos-
ing of state variables, os and cs, respectively. Equation (7) describes the dynamics
of these variables: ys(t), ys ∈ {cs, os}. In this equation, we use a well-known model
of synaptic transmission that depends continuously on the pre-synaptic membrane
potential vpre [38] with gs = gs(vpre) representing the concentration of released neu-
rotransmitter formulated in (8). In the case of NMDA receptors, voltage-dependence
of the synaptic current is described by the factor Mg(v) representing Mg2+ modula-
tion of NMDA receptors (equations (9)–(10)).

is = ws(es − v)(cs − os), (6)

dys

dt
= gs(vpre)(1 − ys) − ys

τ s
y

, (7)

gs(vpre) = Ts

1 + exp(vs − vpre)
, (8)

inmda = wnmda(enmda − v)(cnmda − onmda)·Mg(v), (9)

Mg(v) = 1/(1 + 0.05 exp(−0.08v), (10)

Here the values of parameters es, τ
s
o τ s

c , vs and Ts are given in Table 2. Parame-
ters ws and es represent the synaptic strength and reversal potential of each type of
synapse, respectively. The time constants τo, τc of the opening and closing state vari-
ables o and c have been fitted from pairwise electrophysiological recordings [39] and
follow the time course of the different receptor types. The slow de-inactivation of the
NMDA is important for a proper functioning of swimming [39]. We do not investi-
gate the variation of these time constants. Parameters wampa, wnmda and winh are the
bifurcation parameters that we varied during numerical continuation. In the results
section we will discuss the values of these parameters.

Remark Parameter wampa describes the connection strength of the dIN→cIN cou-
pling (for simplicity, we consider the dynamics of the AMPA synapse only). We
calculate the physiological range of variation for this parameter using the following
experimental findings: (1) The dINs spike reliably and synchronously during each
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swimming cycle [12, 27]; (2) The average number of incoming connections from
dINs to cINs participating in swimming is in the range (15, 17) [36]; (3) The maximal
unitary strength of the AMPA synapse is 0.6 nS [39]. Thus, it gives the physiological
range of parameter wampa: (9 nS, 10.2 nS).

Parameter wnmda describes the connection strength of the dIN→dIN coupling.
For simplicity, we consider the dynamics of a slow NMDA synapse only, but adjust
the connection strength to reflect the fast AMPA component as well. To calculate
the physiological range of this parameter variation, we use experimental findings
similar to the consideration above. The average number of incoming connections to
dINs from dINs is in the range (13–21) [36], and the maximal unitary strengths of
the AMPA and NMDA synapses are 0.6 nS and 0.15 nS, respectively [39]. To take
into account the AMPA influence, we adjust the strength by summing these values
and multiply by the range of incoming connections to get the physiological range of
parameter wnmda: (10 nS, 15.8 nS).

For our numerical study of bifurcations, we widen the range for both wampa and
wnmda to clarify the relationship between different bifurcations (e.g. to find the turn-
ing point). Therefore, we vary the parameters wampa and wnmda in the ranges (9 nS,
20 nS) and (8 nS, 20 nS), respectively.

2.2 Software

For numerical studies of limit cycles, we combine several software tools. To run nu-
merical integration and find periodic orbits, we use XPPAUT [31] with the CVODE
variable time step integrator with absolute and relative tolerances equal to 1e–12.
We use the stable periodic orbit to start numerical continuation in order to deter-
mine stability and find bifurcations. To perform numerical continuation and detect
the bifurcations of the reduced model, we use the software package AUTO-07P [30].
We use custom written Python code to transform equations, variables, functions and
parameters from XPPAUT to AUTO. To study the initiation of the stable limit cy-
cles and run multiple numerical integrations in parallel, we use both XPPAUT and
custom written MATLAB code (MathWorks, Inc) with different variable time step
integration schemes (ode23tb, ode45) to confirm the accuracy of our results. To inte-
grate the system with noise, we use standard Euler–Maruyama method with time step
dt = 0.01.

3 Results

3.1 Swimming and Synchrony Limit Cycles

In this section, we validate the reduced model by showing that it can produce activity
similar to that seen in experimental recordings. To do so, we fix synaptic strengths
and simulate the reduced model to reproduce swimming and synchrony dynamics.

In experiments with immobilised tadpoles, CPG neurons are normally at rest be-
fore the start of a swimming episode. This start is marked by a gradual depolarization
of the membrane potential that can lead to rhythmic firing [40]. To mimic these exper-
iments, we initialise neurons at rest, and we use the following initiation procedure to
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Fig. 3 Voltage traces of dINs in the reduced model during swimming and synchrony. The left panel shows
experimental pairwise recordings from one left-centre dIN and one right-centre dIN during swimming
and synchrony. The right panel shows the voltage variable of the two dINs of the reduced model during
swimming and synchrony. We show three cycles of swimming (3T) and two cycles of synchrony (2T) to
highlight the characteristic shapes of the membrane potential during these two regimes and to compare
experiments and model simulations. Arrows indicate the firing of cINs and mark the inhibition preceding
PIR spikes in dINs. Model parameters used to obtain swimming are winh = 23 nS, wampa = 12 nS and
wnmda = 10 nS, with initiation parameters � = 140 ms and d = 6 ms. Model parameters used to obtain
synchrony are winh = 55 nS, wampa = 12 nS and wnmda = 10 nS, and initiation parameters � = 0 ms
and d = 6 ms. The experimental recordings have been obtained using the same experimental protocols and
conditions described in [12]

control perturbations and move the orbit from the resting state to a basin of attraction
of either swimming or synchrony.

Initiation of the dynamics. In experiments, a swimming episode can start after brief
head or trunk skin stimulation on one side of the animal [41, 42]. Skin stimulation
leads to neuronal firing in the sensory pathway, which delivers, with some delay,
excitation to CPG neurons in both half-centres. Experiments have shown that the
start of movement occurs shortly after the first dINs spikes [41], and that dIN activity
drives spiking of other neurons during swimming [27].

To move the system out of its initial rest state and initiate activity in the reduced
model, we inject a depolarizing step current iext with fixed amplitude A = 0.1 (nA)
and duration d (ms) to dINs in the left and right half-centres at times t1 and t2, re-
spectively, where time delay � = t2 − t1 (Fig. 1).

We use the initiation procedure to run numerical integration of the reduced model
in order to find stable oscillatory regimes. Figure 3 shows both experimental record-
ings (left panel) and stable regimes of the reduced model (right panel). The left part of
each panel shows the membrane potential of dINs in each half-centre of the body dur-
ing swimming, and the right part shows the membrane potentials during synchrony.
Parameter values for these simulations are given in the figure caption.

Although the model describes a highly reduced CPG, the pattern of dIN mem-
brane potential trajectories qualitatively matches the experimental recordings well.
These typical spiking patterns of swimming and synchrony modes include dIN post-
spike depolarization and deep inhibition (black arrows show time of cIN spikes in
the opposite half-centres) causing inhibition and subsequent rebound spiking. These
two typical oscillatory patterns correspond to limit cycles in the phase space of the
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dynamical system. The swimming mode with anti-phase oscillations in opposite half-
centres corresponds to the Swimming limit Cycle (SwC), while the synchrony mode
of in-phase oscillations corresponds to Synchrony limit Cycle (SyC).

3.2 Symmetry in the Reduced Model

From Fig. 1, one can see that the reduced model is invariant under reflection of
neurons and synapses on the mid-line. This means that the reduced model is a Z2-
equivariant dynamical system. The reduced model can be written in the general form
of an n-dimensional system, where n = 2k and k is the number of equations describ-
ing the dynamics of the variables related to the left and right half-centres:

ẏ = f (y), y ∈R
2k. (11)

We arrange the equations in such a way that the first k equations describe the state
variables of neurons and synapses in the left half-centre as well as the commissural
synaptic connection from left cIN to right dIN. We denote all variables related to the
left half-centre by vector yL(t), yL ∈ R

k . The other k equations likewise describe
neuronal variables and synaptic connections in the right half-centre, as well as the
commissural synaptic connection from right cIN to left dIN. We denote these right
half-centre variables by vector yR(t), yR ∈ R

k . The system is symmetrical because
the equations for variables of the left and right half-centres in (1) are identical. If we
swap variables yL and yR in (11), then the equations for yL become equations for
yR and these equations are equivalent to the equations for yR in (11). An equivalent
statement is valid for the yR equations.

It follows from the system’s symmetry that any limit cycle that exists in system
(11) is of one of three types:

Type (1) In-phase limit cycle: yL(t) = yR(t), ∀t .
Type (2) Anti-phase limit cycle: yL(t) = yR(t + T/2), ∀t , here T is period of os-

cillation.
Type (3) Out-of-phase limit cycle: yL(t) = yR(t + P), ∀t , here P �= T/2 is phase

shift.
Type (4) Asymmetrical limit cycle: yL(t) �= yR(t + P), ∀t , ∀P .

It is clear that the synchrony limit cycle SyC should be of type (1), and this cycle
belongs to the symmetry manifold Y+

k = {y ∈ R
2k : yL = yR}. The swimming limit

cycle SwC should be of type (2). All limit cycles of type (3–4) should exist in pairs.
Initiation with symmetry. By selecting proper values for the initiation parameters

described in Sect. 3.1, we can initiate limit cycles of different types. For example,
to initiate the dynamics inside the in-phase manifold Y+

k , we select � = 0. This
means that dINs in both half-centres simultaneously receive the same stimulating
input; therefore, the orbit is locked inside the manifold Y+

k . If � �= 0, the dynamics
are initialised outside the manifold Y+

k , and an orbit can be either attracted to a stable
attractor inside of the manifold Y+

k or repulsed from the manifold.
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3.3 Bifurcation Analysis Under One Parameter Variation

In this section we use bifurcation theory to study dynamical regimes in the reduced
model under variation of one parameter. We begin from motivation of the choice of
bifurcation parameters used for both codimension-one and codimension-two studies.

Choice of the bifurcation parameters. We assume that the values of all model
parameters are fixed except for three parameters which we vary in turn using nu-
merical continuation. All parameter values governing the intrinsic dynamics of the
neurons are selected according to our previous study of the full physiological model
[34]. Many of these parameter values have been directly measured in experiments,
although some were selected from a physiological range in model simulations. Val-
ues of these neuronal parameters are fixed for the purposes of bifurcation analysis.
The three parameters that we vary, wampa, wnmda and winh, correspond to synaptic
strengths for excitatory and inhibitory synapses.

We choose to vary these parameters for three reasons. Firstly, although these pa-
rameters are important for reliable functioning of the CPG and, in particular, for
reliable swimming, it is difficult to measure their values in experiments. Simula-
tions of the full physiological model show that the swimming regime is very ro-
bust: swimming exists even when these parameter values are varied in a wide range
[34]. However, in a recent work [43] we investigated the effect of axon fasciculation
in the spinal network, and we found that a proper balance between excitatory and
inhibitory connection strengths is needed for generating a reliable CPG swimming
activity. Secondly, experimental recordings [12] show that occasional synchrony ap-
pears more frequently soon after a stimulus that initiates swimming, at a time when
excitatory drive is stronger than during later swimming [44]. Moreover, synchrony
appears less frequently when glycinergic inhibition is artificially reduced by applica-
tion of inhibitory blockers [12]. We hypothesise that these excitatory and inhibitory
contributions are mainly driven from cINs and dINs. Thirdly, a previous experimental
work [45] showed how strong background excitation and phasic inhibition can influ-
ence the swimming period. We used the reduced model to explore how variations in
excitatory and inhibitory strengths shape the period of the synchrony and swimming
limit cycles. The strength of the conductance driven by dINs and cINs synaptic trans-
missions represents two major contributions of these two components. By computing
the period of synchrony and swimming limit cycles under variation of the synaptic
strengths, we explored changes in the swimming and synchrony periods.

By selecting these parameters for bifurcation analysis, we aim to find the criti-
cal boundaries of stability for the swimming and synchrony modes. Since swimming
is the main functional behaviour of the animal at the considered stage of develop-
ment, we expect that its stability region would most likely occupy a large area in
parameter space. Therefore, we first study bifurcations under variation of inhibitory
connection strength winh. We then study codimension-two bifurcations by varying
winh together with either wampa or wnmda (Sect. 3.4). Throughout the following sec-
tions we use the same notation when referring to codimension-one bifurcation points
in two-dimensional space and to their horizontal coordinate.

We begin with the study of bifurcations of the swimming and synchrony limit cy-
cles under variation of the inhibitory strength winh. We use each stable limit cycle as a
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Fig. 4 One-dimensional bifurcation diagram for the swimming (black) and synchrony (red) limit cycles
at varying inhibitory strength wihn. Blue and purple lines show two unstable limit cycles appearing at
bifurcation points w3 and w4, respectively. The y-axis shows the maximum of the Kf -gating variable f

of the left cIN for each limit cycle. Stable and unstable limit cycles are shown by continuous and dashed
lines, respectively. The superscript − refers to subcritical bifurcations. Bifurcation parameter values (in
nS) are the following: w1 = 8.57, w2 = 2.86, w3 = 15.74, w4 = 27.6, w5 = 11.23 and w6 = 11.21

starting point for a numerical continuation procedure. In Fig. 4 we show continuation
of the SwC (black curve) and SyC (red curve) under variation of parameter winh, and
we fix parameter values wampa = 12 nS and wnmda = 10 nS.

In Fig. 4 the black curve shows that the SwC is stable for winh > w1. The criti-
cal parameter value winh = w1 corresponds to a subcritical Neimark–Sacker (torus)
bifurcation (TR−). At this critical parameter value, the stable SwC becomes un-
stable for winh < w1 merging with an unstable torus (torus continuation is not
shown in Fig. 4) which co-exists with the stable SwC for winh > w1. Thus, the
SwC is unstable (dashed black line) for winh < w1. At the critical parameter value
winh = w2, (w2 < w1) this unstable SwC cycle disappears via a fold (limit point)
bifurcation (LP) by merging with another unstable cycle.

Remark Our calculations show that stable SwC can be continued until very large
values of winh ∼ 1000 (nS) (not shown).

In Fig. 4, the solid red line corresponds to the stable SyC for winh ∈ (w3,w4). Both
critical parameter values winh = w3 and winh = w4 correspond to subcritical period-
doubling bifurcations (PD−). At a critical parameter value winh = w3 the stable SyC
merges with the unstable limit cycle of double period (blue dashed line) which exists
for winh > w3 and becomes unstable for winh < w3. Similarly, at the critical param-
eter value winh = w4 the stable SyC merges with the unstable limit cycle of double
period (purple dashed line) which exists for winh < w4 and becomes unstable for
winh > w4. The dashed red line shows the unstable SyC.
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Fig. 5 Codimension-two bifurcation diagrams showing the stability regions for the swimming (light grey
and red) and synchrony (light red) limit cycles under variation of (winh, wampa) in (A) and (winh, wnmda)
in (B). Superscripts − and + refer to subcritical and supercritical bifurcations, respectively. To clarify
the stability of the limit cycles for low values of wampa, we computed the codimension-one bifurcation
diagram at fixed value wampa = 10 nS shown in Fig. 6 (orange dotted line). Bifurcation points B and
D switch the criticality of the PD bifurcation (subcritical to supercritical). The LPD point is a fold-flip
bifurcation point. At this point, a pitchfork bifurcation curve (PFK, blue line) interacts with a PD line and
both exchange criticality

It is interesting to note that detailed study of these two unstable limit cycles of dou-
ble period reveals that these cycles are of two different types (blue and purple lines).
The limit cycle shown by the blue line is of type (1), and it belongs to the symmetry
manifold Y+

k . Further investigation of this blue cycle reveals a fold bifurcation and
another subcritical period-doubling bifurcation (winh = w5). As a result of this sub-
critical period-doubling bifurcation, the unstable limit cycle of double period (blue
dashed line) merges with the unstable SyC (red dashed line) inside of the symmetry
manifold Y+

k . The unstable SyC disappears via a fold bifurcation (winh = w6).
The limit cycle shown by the purple line is of type (2), and this cycle lies outside

the symmetry manifold Y+
k . Further bifurcations of this unstable limit cycle of double

period include several fold bifurcations where two unstable limit cycles merge and
disappear.

This analysis shows that there is a region of bi-stability w3 < winh < w4 for the
SwC and the SyC limit cycles. We notice that the range of parameter values where
the SwC is stable is significantly larger than that of the range where the synchrony
cycle is stable.

3.4 Stability of Swimming and Synchrony Under Variation of Two Parameters

In this section we consider bifurcations of swimming and synchrony cycles under
two-parameter variation. We vary the synaptic strength of inhibition winh with either
wnmda or with wampa.

Figure 5 shows the two-dimensional stability regions of swimming and synchrony
cycles under variation of parameter pairs (winh,wampa) (Fig. 5(A)) and (winh,wnmda)
(Fig. 5(B)). In both figures, the grey area shows the stability region of the swimming
limit cycle, and inside this area is a light red shaded area corresponding to stability
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of the synchrony cycle. In fact, this light red area shows the region of bi-stability,
where both SwC and SyC are stable. The white area in the left part of each panel
corresponds to the stationary state without oscillations. From the figures it is clear
that the synchrony cycle has a smaller stability region regardless of which excitatory
synaptic strength is changed.

In both Fig. 5(A) and (B), the critical boundary (black line marked by TR−) of the
SwC stability region corresponds to a subcritical Neimark–Sacker (torus) bifurcation.
On the right of this line, a stable SwC co-exists with an unstable torus. The SwC and
the torus merge and disappear on the critical boundary.

The stability region of the SyC is limited by two period-doubling bifurcation lines
(red). In Fig. 5(A), both critical boundaries correspond to sub-critical period-doubling
bifurcations for larger values of wampa (red lines marked PD−). For smaller values of
wampa both period-doubling boundaries become supercritical (red line marked PD+).
We note that everywhere on the period-doubling bifurcation line (red) one multiplier
is (−1).

On the left critical boundary there is a point corresponding to a codimension two
fold-flip bifurcation (green point marked LPD). At this bifurcation point, one addi-
tional multiplier becomes equal to the critical value (+1). It is known from [46] that
the bifurcation diagram in the vicinity of LPD critical point is very complex, and there
are several bifurcation lines, which intersect at such bifurcation point. [46] shows the
bifurcation diagram near the LPD point. It is clear from this diagram that at this bifur-
cation point the period-doubling line changes from sub- to supercritical. In addition,
the diagram shows that the period-doubling line and the fold bifurcation line inter-
sect at the LPD point. Possibly there are other bifurcation lines interacting in a LPD
bifurcation, which we did not find. Since our model is symmetrical, it is possible that
our system has a pitchfork line instead of a fold line, and that this pitchfork line inter-
acts with a period-doubling line in a symmetrical version of the LPD bifurcation. To
clarify the boundary of SyC stability near the LPD point, we fix the parameter value
wampa = 10 and vary only one parameter winh to find bifurcations (horizontal dotted
orange line in Fig. 5(A)). Figure 6 shows the results of this analysis. In particular,
the panel ZOOM 1 of Fig. 6(B) shows that there are two bifurcations in the area of
interest. The critical parameter value winh = u4 corresponds to the subcritical pitch-
fork of limit cycles bifurcation (red dot u4 marked PFK). The SyC is stable in region
winh > u4, and it becomes unstable for winh < u4. At the PFK− parameter winh = u4
a pair of unstable out-of-phase limit cycles of type (4) merge and disappear (green
lines in Fig. 6). This has an important implication used in Sect. 3.7: When the stable
SyC becomes unstable at critical point u4, the loss of stability is in the transversal
direction to the symmetry manifold Y+

k . In addition, the panel ZOOM 1 in Fig. 6(B)
shows the period-doubling bifurcation of unstable SyC (wcr

inh = u5).
We use the critical parameter value of subcritical pitchfork bifurcation wcr

inh = u4
to start a new continuation under variation of two parameters, and the result is shown
in Fig. 5(A) by a solid blue line marked PFK−. The intersection of this line with the
stability region causes the stable SyC to become unstable via subcritical pitchfork
bifurcation.

Remark There are several unstable limit cycles in Fig. 6 shown by dashed green lines
(type (4) out-of-phase cycles) and blue lines (type (2) limit cycle of double period).
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Fig. 6 (A) One-dimensional bifurcation diagram for the synchrony (red), swimming (black) and
double-synchrony (purple) limit cycles at varying inhibitory strength wihn and fixed parameters
wampa = 10 nS and wnmda = 10 nS. The y-axis shows the maximum of the Kf -gating variable f of
the left cIN for each limit cycle. Blue and green lines show unstable limit cycles appearing at bifurcation
points u5 and u4, respectively. Stable and unstable limit cycles are shown by continuous and dashed lines,
respectively. The superscript − refers to subcritical bifurcations. (B) Zoom of selected regions of Fig. 6(A)

The critical parameter values wcr
inh = u5 and wcr

inh = u6 correspond to period-doubling
bifurcations and wcr

inh = u7 corresponds to the pitchfork bifurcation.

Now we return to the SyC stability region in Fig. 5(A) and consider the right
boundary (red line) which corresponds to the period-doubling bifurcation.

If wampa = 12, then we know from Fig. 4 that the period-doubling bifurcation at
wcr

inh = w4 is subcritical. If wampa = 10, then we know from Fig. 6(A) that the period-
doubling bifurcation at wcr

inh = u3 is supercritical: the stable SyC becomes unstable
and a stable limit cycle of double period appears. Stable double-period cycle is an
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Fig. 7 (A) Time evolution of the voltage of dINs (brown lines) and cINs (blue lines) during one period
of synchrony (SyC), double-synchrony (2-SyC) and swimming (SwC). The three limit cycles are detected
by AUTO in Fig. 6. Synaptic strength parameters used to generate each panel SyC, 2-SyC and SwC,
respectively, are winh = 30 nS, 45 nS and 40 nS. (B) Time difference between left dIN and left cIN spikes
during one cycle of the SwC at varying wampa. The remaining vector of parameters used to obtain this
figure are winh = 60 nS, wnmda = 10 nS, � = 50 ms and d = 6 ms

in-phase type (1) limit cycle. Here we introduce the notation 2-SyC for this syn-
chrony cycle of double period. Some additional details of the evolution of this limit
cycle (solid purple line in Fig. 6(A)) are shown in Fig. 6(B), panel ZOOM 3. This
means that somewhere between these two points of the period-doubling bifurcation
line ((w4, 12) and (u3, 10)) should be some bifurcation point (B), which corresponds
to this change. At this point (B) the red line of subcritical period doubling (marked
PD−) becomes the line of supercritical period-doubling bifurcation (marked PD+ at
Fig. 5(A)). We are unable to find point B via computational continuation. There-
fore, to calculate the coordinates of this point, we use multiple simulations of the re-
duced model to find where the double-period limit cycle is stable outside of the SyC
stability region. We started simulations from the following point (� = 0.1, d = 6,
wampa = 10 nS, wnmda = 10 nS, winh = 42 nS) and slightly varied parameters (winh,
wampa), decreasing the value of wampa to find the double-period cycle and define its
stability. As a result, we find the coordinates of point B on the period-doubling line:
(27.8, 11.5).

Figure 7(A) shows the voltage traces of the model neurons for each of the three
stable limit cycles (SwC, SyC and 2-SyC). Each neuron fires once per cycle in the
cases of SyC and SwC, and it fires twice per cycle in the case of 2-SyC. For each
limit cycle, dIN firing evokes a single spike in the ipsilateral cIN. Clearly, the timing
of cIN firing depends on the strength of the AMPA synapses wampa.

In Fig. 7(B) we show the time difference between left cIN and left dIN spikes
during swimming as a function of wampa (for fixed parameters wnmda = 10 nS and
winh = 40 nS).

Now we consider Fig. 5(B), which shows the stability region of the SyC cycle
under variation of (winh,wndma). This region is shown by red shading, and the two
boundaries (left and right red lines) correspond to period-doubling bifurcations. Us-
ing simulations of the reduced model, we find that the left line corresponds to the
subcritical period-doubling bifurcation (marked PD−).

Analysing the right boundary, we find that this period-doubling bifurcation line
is supercritical for high values of wnmda and it becomes subcritical for low values of
wndma at some bifurcation point D represented in Fig. 5(B). Point D was not detected
by AUTO, so to find its coordinates we used simulations in a similar way as described
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above for finding the coordinates of point (B) in Fig. 5(A). As a result, we find the
coordinates of point D on the period-doubling line: (32.6,11.4).

Remark As we have seen above, the bifurcation software AUTO cannot reliably dis-
tinguish whether the period-doubling bifurcation is sub- or supercritical. To clarify
this matter for the left stability boundary of SyC, in Fig. 5(B) we use multiple con-
tinuations and simulations of the model. We found that in a small vicinity on the
left of the critical boundary the bifurcation diagram is rather complex. In fact, some
part of this boundary corresponds to subcritical and some part corresponds to su-
percritical period-doubling bifurcation. In the case of supercritical bifurcation, on
crossing the boundary, the stable synchrony limit cycle becomes unstable and a sta-
ble double-period cycle appears. This cycle is stable in a very small vicinity of the
period-doubling boundary and becomes unstable via pitchfork bifurcation. We do not
report complex bifurcations in this small vicinity on the left of the boundary and in-
dicate that this boundary relates to the subcritical period-doubling bifurcation. Thus,
if we do not consider a small region near this boundary, then the only stable attractor
is the SwC. A similar remark is valid for the upper part (from the LPD point) of the
left critical boundary in Fig. 5(A).

3.5 Study of the Initiation Space

In this section we study how the dynamical mode depends on initiation parameters.
We consider a grid of two parameter pairs: initiation time difference � and dura-
tion d . The amplitude initiation parameter is a fixed value A = 0.01. The rectangular
area of the initiation space (0 ≤ � ≤ 30 and 0 ≤ d ≤ 20) is covered by a grid of n

by n nodes uniformly spaced (n = 128). For each node in the grid, we initiate the
system dynamics. We run the simulations for a long time (3 simulated seconds) so
that the trajectory approaches an attractor. This attractor can be either a limit cy-
cle or a fixed point (resting state). In the case of a limit cycle, we calculate the pe-
riod of oscillations. Figure 8 shows the result of simulations with fixed parameters
wnmda = wampa = 10 nS for different values of winh (28,42,60 nS). A black pixel at
position (�, d) means that initiation with these parameters results in a fixed point
(period 0). If the initiated trajectory tends to a limit cycle, then we discriminate the
limit cycle by computing its period. Parameter value winh = 28 nS corresponds to
regions of coexistence of stable SwC and stable SyC. Parameter value winh = 42 nS
corresponds to regions of coexistence of stable SwC and the stable 2-SyC (type (2)
cycle). For winh = 60 nS, only SwC is stable. These particular values for winh have
been selected using the bifurcation diagram that was described in Sect. 3.4. This
diagram allows us to explore the initiation space for all the stable attractors of the
system. In all cases the largest region of initiation space corresponds to stable swim-
ming (period of ∼50 ms), but for some parameter values there is also a relatively
small region where simulations converge to either synchrony (period of ∼20 ms) or
the double-period synchrony cycle (period of ∼45 ms).

In Fig. 8 all three panels include a vertical boundary near � = 5 ms. This bound-
ary separates the white swimming region (or double-synchrony yellow region in the
middle panel) from the black rest state region. In fact, the position of this boundary
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Fig. 8 Stable attractors of the reduced model at varying initiation parameters (�,d) with fixed
wampa = 10 nS and wndma = 10 nS. We show three different values of winh = 28, 42 and 60 nS (title
of each subplot). These values correspond to all the possible combinations of stable attractors of the sys-
tem shown in Fig. 6. Each coloured region identifies the initialisation parameters (�,d) that converge to
a stable limit cycle, or convergence to the resting state (black regions, fixed point). In the case of con-
vergence to a limit cycle, the colour represents the period of the attractor. The orange region in the case
winh = 28 nS identifies the initial conditions where the system converges to stable synchrony, the yellow
region in the case winh = 42 nS corresponds to convergence to the stable 2-synchrony, while the white
regions correspond to convergence to stable swimming

is determined by the time difference between first spikes of the left-dIN and left-cIN
which we denote by μ (μ ≈ 5 ms).

Indeed, if the value of parameter d is limited and the time interval � > μ, then
stimulation of the right dIN will not generate a spike because at the time of stimu-
lation the right dIN will be under strong inhibition. Therefore, the system will move
to the rest state. To explain the right boundary of the black rest state region, we note
that after some time the inhibition of the right dIN becomes weaker. Therefore, for
some appropriate values of parameter � (for a fixed moderate value of parameter d),
stimulation of the right dIN will overcome the inhibition, the right-dIN will spike and
the system will converge to swimming.

In case of a short delay � < μ, the right-dIN will spike because the stimulation
of this dIN precedes the inhibition from the left-cIN. This dIN spike will trigger a
spike in the right-cIN and it will lead to rhythmic activity. This rhythmic spiking can
be either double-synchrony (yellow colour region in the middle panel) or swimming
(white colour area).

If d < 2 ms the injected currents of the initiation procedure are too short to acti-
vate either of the two dINs, and the system converges to the rest state (small black
rectangular region in all three panels).

3.6 Interpretation of Bifurcation Diagrams in Terms of Experimental
Recordings

In this section, we speculate on how our study of the reduced model can explain
the long-lasting synchronous activity seen in some biological experiments. First, we
find that patterns of spiking activity recorded in experiments following skin stimula-
tion are very similar to spiking patterns and voltage traces generated by the reduced
model. Second, our study of bifurcation enables us to formulate hypotheses on the
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Fig. 9 Transition from synchrony to swimming. Plot of dINs’ voltage recordings at varying time shows
synchronous activity before the dynamics are locked into synchronous (A) and double-synchronous
regimes (B) before then converging to the swimming mode. In both (A) and (B) initiation parameters
are set to � = 0, d = 6 and A = 0.04. At time t∗ = 0.3 s the system is integrated starting from a per-
turbed initial point. This point is obtained by adding a normally distributed vector of numbers with equal
variance σ = 10−3 to each variable at time t∗ . Values of synaptic strengths are wampa = 10, wnmda = 10,
winh = 22.2 in case (A) and winh = 60 in case (B)

existence of the synchrony mode and bi-stability regime where both swimming and
synchrony modes co-exist for the same parameter values.

We show that the system’s bifurcations and the particular initiation procedure used
play important roles in explaining long-lasting synchronous activity and a subsequent
transition to swimming. To explain this, we consider model parameters near the bi-
furcation points shown in Fig. 6.

Synchrony (double-synchrony) to swimming transitions. In Fig. 9(A), the selected
parameter values correspond to the orange region of the bifurcation diagram in
Fig. 6(B) (ZOOM 1). For any parameter value inside this region, the SyC is globally
unstable, but it is stable inside the symmetry manifold Y+

k . The initiation parame-
ter value � = 0 means that the orbit starts and remains on the invariant symmetry
manifold Y+

k . Although SyC is unstable, the trajectory converges to this limit cycle.
At time t∗ = 0.3 s we slightly perturb the last point of the trajectory by adding a
normally distributed vector with zero mean and variance σ = 10−3. We then restart
the system integration from the perturbed point. The perturbed point does not belong
to the invariant symmetry manifold; therefore, trajectory diverges from the manifold
and tends to SwC. The transitional period from the vicinity of the manifold to SwC is
long because the value of winh is close to the subcritical pitchfork bifurcation (critical
parameter value is u4 in Fig. 6(B), ZOOM 1).

The transition time spent near the “ghost” of the stable synchrony cycle tends
to infinity as winh tends to the critical value of pitchfork bifurcation. This effect is
valid for any parameter in the orange region winh ∈ (u5, u4) in Fig. 6(B), ZOOM 1.
Although both swimming and resting states are stable, for u1 ≤ winh ≤ u5 the system
converges to the resting state under the initiation procedure with parameter values
used in Fig. 9 (� = 0, d = 6 and A = 0.04). These parameters correspond to the orbit
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initiation inside the symmetry manifold Y+
k . For parameter values u1 ≤ winh ≤ u5,

the SyC is repulsive inside Y+
k (in Fig. 9(B), ZOOM 1 both unstable cycles shown

by blue and red dotted lines belong to the symmetry manifold); therefore, the orbit
stays inside the symmetry manifold and converges to the resting state. By multiple
simulations we confirmed that the basin of attraction for the resting state is large,
therefore, small perturbations (σ < 0.1) cannot move the system to another attractor.

In Fig. 9(B), the selected parameter values are inside the light blue region in
Fig. 6(A) and Fig. 6(B) (ZOOM 3) corresponding to winh ≥ u8. The critical parameter
value winh = u8 corresponds to a fold bifurcation, and the stable 2-SyC disappears.
Near this bifurcation on the right side (winh = u8) a ghost of this limit cycle exists. We
start the dynamics with initiation parameter � = 0, and the trajectory converges to
unstable SyC. At time t∗ = 0.3 s we perturb the last point of the trajectory by adding
a normally distributed random number to all system variables (the mean is zero and
the variance σ = 10−3). Integration from the perturbed point results is a long transi-
tional period near the ghost of 2-SyC cycle and convergence to the SwC. This long
transition can be reproduced for all parameter values winh ∈ (u8,70) in the light blue
region of Fig. 6(A). Remarkably, winh does not need to be too close to the bifurcation
point to obtain long-lasting transitions, provided values of the perturbation parameter
σ are small. For example, with winh = 70 nS and σ = 0.01, we can still obtain a ∼ 1 s
transition time.

In addition, this study of bifurcation provides insights into explanation of some
recordings from CPG neurons. Figure 6(C) in [12] shows that under depolarizing
current injection, dINs can fire an additional spike at approximately half the swim-
ming period and initiate synchrony. The voltage recordings of these neurons look
very similar to the 2-SyC “ghost” part of trajectory in Fig. 9(B). It is not clear from
the experiment why “mid-cycle spikes” appear in the recordings. Our study provides
an explanation of this experimental observation.

Distributions of the duration of the synchrony (double-synchrony) bouts. Experi-
mental findings show that the time of transition from synchrony (double-synchrony)
to swimming can be distributed in a wide range from 100 to 1000 ms [12]. To study
how this time of transition depends on the system perturbation, we add white noise to
the deterministic model (11). The following continuous stochastic process describes
the model with noise:

du = f (u) · dt + φ · dWt, u(t), f (u),Wt ∈R
2k, (12)

where u(t) is the solution (12), f (u) is the vector of right-hand side, Wt represents
a standard vector of independent Weiner processes and φ is a small parameter (φ =
0.01). We use Eurler–Maruyama integration to compute the numerical solution of
(12), and we find that in the large majority of random simulations this solution shows
transitions from synchrony (double-synchrony) like that in Figs. 9(A), (B) (with the
same parameter values as Fig. 9).

We run 1000 simulations with independent random seeds. For each simulation
we integrate the system for 2 s and detect the time of switching from synchrony
(double-synchrony) to swimming. In 97% of cases the system demonstrates a transi-
tion from synchrony to swimming and in 3% the system switches to the resting state.
Figure 10(A) shows the histogram of switching time from synchrony to swimming.
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Fig. 10 Distribution of times spent in the synchrony (double-synchrony) transition in the system with
noise. (A) and (B) show the histogram of times spent in synchronous state before switching to swim-
ming. The selected parameter values of (A) and (B) are the same as the ones used in Fig. 7(A) and (B),
respectively

Fig. 11 Plot of dIN voltage dynamics showing transitions from swimming to synchrony (A) or dou-
ble-synchrony (B), and back to swimming. In both (A) and (B) a brief step current (0.45 nA, 5 ms) is
manually injected to the left dIN at the time of right dIN firing (black arrows). Parameter values used to
obtain (A) and (B) are the same as the ones used in Fig. 9(A) and (B), respectively, except that � = 50

It is clear from this figure that the time of transition from synchrony to swimming
is variable and the range of transition times is compatible with those observed in
experiments (see Fig. 2 in [12]). Considering the transition from double-synchrony
to swimming, we find that for any random seed the system demonstrates transitions
from double-synchrony to swimming. Figure 10(B) shows the histogram of switching
time from double-synchrony to swimming.

From swimming to synchrony (double-synchrony) and back. We show that the re-
duced model can reproduce transitions from swimming to synchrony and switch back
to swimming similarly to what is observed in experimental recordings [12]. To ini-
tiate synchrony from swimming in physiological experiments, one side is stimulated
at the middle of the swimming period. We mimic these experiments to initiate syn-
chrony keeping parameter values as in Fig. 9(A). Figure 11(A) shows injection of a
brief positive step current to the left dIN in the middle of the swimming cycle (shown
by an arrow). This injection evokes an additional spike which is nearly synchronous
with the firing of the right dIN. This additional spike starts a long-lasting synchrony
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Fig. 12 Stability of the attractors of after symmetry breaking (A) Projection of the three stable limit cycles
(SwC, SyC and 2 − SyC) to the phase plane of dINs voltages and zoom of selected regions (black boxes).
The green diagonal line shows the loss of mid-line symmetry of the stable limit cycles. The vector of
parameters (winh,wampa,wnmda,�,d) used for the SwC case are (60,10,10,100,6), for the SyC case

are (25,12,10,10−4,6), and for the 2 − SyC case are (40,10,10,10−4,6) (B) Period of the attracting
limit cycle found by numerical simulation at varying (winh,wampa) and fixed wnmda = 10 nS in cases
(i)–(ii) and at varying (winh,wnmda) and fixed wampa = 12 nS in cases (iii), (iv). Initiation parameters for

cases (i)–(iii) are � = 50 and d = 6, while for cases (ii)–(iv) are � = 10−4 and d = 6

bout before switching back to swimming, like in experimental recording [12]. Sim-
ilarly, Fig. 11(B) shows that mid-cycle stimulation (shown by an arrow) of the left
dIN during the swimming mode can evoke a long-lasting bout of double-synchrony
oscillations.

3.7 Breaking Symmetry Does Not Change the Stability of Swimming and
Synchrony

In this section we analyse the effect of symmetry-breaking in the reduced model. To
break the Z2-symmetry of the system, we slightly perturb the maximal conductance
of all ion channels by adding normally distributed random variable with mean equal
to zero and standard deviation 0.1. This perturbation is applied to all neurons using a
different random seed for each perturbed parameter. All other parameters of neuronal
activity and synaptic transmission are identical. As a result of this perturbation, we
break the symmetry of the reduced model and consider a non-symmetrical system
(NSS).

Studying the bifurcations of the symmetrical system (SS) under variation of two
parameters, we find that there are three stable limit cycles: SyC, SwC and 2-SyC
(Fig. 7). Simulations of the NSS show that the three stable limit cycles (SyC, SwC,
2 − SyC) exist and have a shape and pattern of firing very similar to the corresponding
cycles for the SS. Figure 12(A) shows projections of stable limit cycles of NSS to the
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plane of left-right dIN voltages for three stable limit cycles. For each projection,
zooming into part of the phase portrait helps to visualise a small “imperfection” of
the limit cycle and deviation from the diagonal. This figure clearly demonstrates that
three stable cycles are not symmetrical.

To find the stability regions for the stable limit cycles SyC, SwC, 2 − SyC of NSS
under variation of two parameters (winh,wampa) and (winh,wnmda), we use massive
simulations of the perturbed reduced model. We consider the same region of param-
eters as in Fig. 5 and with the uniform n × n grid (n = 128). For each node of the
grid, we simulate the same NSS using the same seed for the random number genera-
tor and simulate trajectory for long times (30 sec) enabling convergence to the limit
cycle attractor. Similar to the SS case, we find that a trajectory approaches either a
stable limit cycle or a fixed point. In the case of a limit cycle, we compute the pe-
riod of oscillation. Figures 12(B)(i), (ii) and Figs. 12(B)(iii), (iv) show the results of
these computations under variation of (winh,wampa) and (winh,wnmda), respectively.
All simulation parameters used to simulate trajectories and compute each period are
reported in the caption of Fig. 12.

In Fig. 12(B) we use colour coding to show the period of each stable attractor
for the pair of parameters (winh,wampa) and (winh,wnmda). Figure 12(B)(i) shows the
stability regions for two attractors: a fixed-point attractor (dark blue) and the SwC
attractor (yellow-red colours indicating periods in the range 35–50 ms). It is clear
from the figure that the period of swimming increases with increasing winh for any
fixed value of wampa. It is interesting to note that the separation line between these
two regions matches the black line (TR−) in Fig. 5(A) corresponding to the subcritical
torus bifurcation of the symmetrical system.

Similarly, in Fig. 12(B)(iii) there are also two different regions (colour coded as
in part A). In this case, the period of swimming increases with increase of winh for
any fixed value of wnmda. The separation line between these two regions matches the
black line (TR−) in Fig. 5(B) again corresponding to the subcritical torus bifurcation
of the symmetrical system.

Figures 12(B)(ii) and (iv) show the results of simulations with initiation parame-
ters corresponding to the synchrony mode (SyC and 2 − SyC). Dark blue again means
a trajectory that converges to the fixed-point attractor. The light blue area shows the
stability region of SyC. This region and its boundaries match the region and bound-
aries of the stable synchrony region in the case of SS (Fig. 5(B)).

In Fig. 12(B)(ii), the left boundary of the SyC stability region relates to two tran-
sitions from the synchrony mode: (1) transition to the fixed point and (2) transition
to the swimming mode (dark red area). Both transitions match the bifurcation lines
in Fig. 5(A). The right boundary of the SyC stability region also relates to two tran-
sitions: (1) The first is the transition to the swimming mode (red area). The boundary
of this transition, up from point B in Fig. 12(B)(ii), matches the subcritical period-
doubling bifurcation line in Fig. 5(A). (2) The second is the transition to the double-
period synchrony mode 2 − SyC (yellow-brown area). The boundary of this transi-
tion, down-right from point B in Fig. 12(B)(ii), fits well to the supercritical period-
doubling bifurcation line in Fig. 5(A). This region of stability of the doubled-period
2 − SyC cycle is narrow with transitions to the swimming mode. Remarkably, our
simulations show a stability region of 2 − SyC which was not found by study of bi-
furcations.
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In Fig. 12(B)(iv) the left boundary of the SyC stability region (light blue area)
relates to transitions from the “synchrony” mode to the fixed-point attractor (dark
blue area). The right boundary of the SyC stability region relates to two transitions:
(1) Transition to double-period synchrony mode 2 − SyC (yellow area). The bound-
ary of this transition, up from point D in Fig. 12(B)(iv), fits well to the supercritical
period-doubling bifurcation line in Fig. 5(B). (2) Transition to the swimming mode.
The boundary of this transition, down-left from point D in Fig. 12(B)(iv), fits well
to the subcritical period-doubling bifurcation line in Fig. 5(B). It is interesting to
note that again the simulations show the region of stability of the double-period cycle
2 − SyC (the narrow yellow strip with transitions to the swimming mode) which was
not found by study of bifurcations.

Thus, we conclude that symmetry-breaking by a small perturbation of maximum
conductance parameters leads to a minor change of limit cycle stability boundaries.
Stability boundaries of NSS fit well to bifurcation lines of the symmetrical system.
In addition, simulation results help to clarify the stability of dynamical regimes in the
vicinity of codimension-two bifurcation within the complex structure of the bifurca-
tion diagram.

4 Discussion

4.1 Summary of Main Findings

In this study we have developed a reduced model of the core neuronal elements of
the circuit that drives swimming the hatchling Xenopus tadpoles. We have used bifur-
cation theory to provide a mathematical description of two main oscillatory modes
under variation of key parameters of this model. These modes of anti-phase and in-
phase oscillations correspond to swimming and synchrony patterns of spiking ac-
tivity, respectively. Both of these spiking patterns can be observed in physiological
experiments where neurons typically fire in alternation (in swimming mode), but can
also (occasionally) fire synchronously at half the swimming cycle period (synchrony
mode). Bifurcation analysis has shown the boundaries of the region in a space of two
parameters where the stable synchrony regime exists. This synchrony stability region
lies within a much larger region corresponding to stable swimming. Therefore, the
intersection of these two regions is a region of bi-stability. We conclude that the same
pattern generator circuit can support both swimming and synchrony. A crucial factor
in determining which pattern is expressed is the way in which the oscillation is initi-
ated. In addition to swimming and synchrony, we have also described a further stable
spiking pattern which we term double-period synchrony.

4.2 Significance of Using the Reduced Model

We study a reduced model, which can be considered the result of “averaging” of
the biologically realistic functional model of the tadpole spinal cord [34]. Specif-
ically, we ignore parts of the functional model corresponding to sensory pathways
and consider only the key part of the tadpole’s CPG circuit, as derived from bio-
logical measurements and designed to capture the important details. The two neuron
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types included (dIN and cIN) are the core of the CPG and the model specification for
each is based on available knowledge of their real biological characteristics, includ-
ing ionic channel currents [28]. The reduction is achieved by minimising the number
of neurons considered, leaving just two neurons in each half-centre (each side of the
body): one excitatory (dIN) and one inhibitory commissural (cIN). Of course, an even
smaller circuit constituted by two mutually inhibitory neurons with PIR can generate
an anti-phase swimming [47]. However, the mechanism of tadpole CPG functioning
is different. In [5] there is a comparison between the tadpole and clione CPG circuits
(the clione CPG is believe to work as a chain of two mutually inhibitory neurons with
PIR).

The essential connectivity between these neurons is maintained. Models of synap-
tic connections are also biologically realistic; for example, the glutamatergic trans-
mission from dINs acts at separate NMDA and AMPA type receptors with different
properties [48]. One addition made to the model is feedback self-excitation of each
dIN to compensate for the mutual excitation between separate dINs in the same half-
centre that is lost when reducing the model to a single neuron per type. As a result,
the voltage dynamics of the model shows patterns of neuron activity that are very
like those seen in real recordings and previous CPG modelling [12, 27], and show
characteristic features of spike dynamics, such as post-inhibitory rebound [47]. The
reduced model therefore encapsulates the core features of the full circuit.

Model reduction is essential for allowing a detailed bifurcation analysis of the sys-
tem. Different approaches for reducing highly complex neuronal systems have been
proposed and have been applied to the study of bifurcations in CPG networks [49–
52]. These approaches tend to reduce the number of differential equations describing
neuronal properties by considering simplified neuron models, non-spiking neuron
models or phase/amplitude reductions [23, 53–57]. A further simplification made in
CPG circuits is the reduction of the number of synaptic interactions by considering
the minimal number of connections describing the circuit “building blocks” [7, 58].
Our approach is different: we do not minimise the number of equations describing the
dynamics of single neurons, but we reduce the number of neurons and connections,
keeping the important biological properties of spike generation and synaptic inter-
actions. Even with the significant reduction in scale relative to the whole swimming
circuit, the dynamical system describing the neuronal activity was still relatively large
and included 34 variables. It is a challenging problem to study bifurcations of limit
cycles in a dynamical system of such high dimension. For instance, it is known that
the numerical algorithms for continuation in the case of high dimensional systems are
not reliable near the critical parameter value of period-doubling bifurcation. However,
using AUTO, and after adjustment of multiple numerical parameters, it was possible
to continue the limit cycles and detect bifurcations up to codimension two. Our stud-
ies have been restricted to continuation of limit cycles corresponding to swimming
and synchrony. The swimming (synchrony) limit cycle is characterised by anti-phase
(in-phase) oscillations of equivalent neurons on opposite body sides.

4.3 Simplified Initiation and the Significance of the Pattern of Initiation

One feature known to be over-simplified in the most recent model of the full swim-
ming circuit [34] is the mechanism for initiating rhythm following a brief stimulus.
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Fundamentally, the requirement is simply that oscillations on both sides (in each half-
centre) need to be initiated and coordinated. In the reduced model, the process is also
much more simplified: the triggering stimulus to each side is sufficient to initiate
oscillation and this allows us to focus attention on the effect of timing differences
between stimuli to the two sides. We have illustrated effects of changing the stim-
ulus duration, but we do not consider these further here. Running multiple simula-
tions showed that stimuli are much more likely to initiate swimming than synchrony.
To produce synchrony, timing differences between stimuli to the two sides must be
very small. This would suggest that, in biological terms, an initiation mechanism that
avoids such near-simultaneous activation of the two sides (see below) is required.

4.4 Stable States and Symmetry

Our study of bifurcations provides new insights into the mechanisms of CPG spike
production. This study reveals three spiking patterns of neuronal activity correspond-
ing to swimming, synchrony and double-period synchrony, each of which is stable
in some area of the parameter space. The largest area of stability corresponds to the
swimming pattern. In swimming, there is typical slow voltage decay after each dIN
spike followed by a deep inhibition which leads to a subsequent spike by post in-
hibitory rebound. Spiking in the equivalent dIN neuron in the opposite half-centre is
exactly in anti-phase. The stable synchrony pattern is characterised by simultaneous
spiking of equivalent neurons on the two sides and with a period of half that seen in
swimming. The third stable spiking pattern revealed in our analysis is what we have
termed double-period synchrony. The period of this mode is close to the swimming
period and the spiking pattern also resembles swimming, but with an additional spike
with slightly different shape at mid-cycle, giving an appearance superficially like that
of synchrony. However, in double-period synchrony, spiking of equivalent neurons
on the two sides is near-synchronous rather than synchronous. Alternate spikes in the
dIN in each half-centre occur just ahead of and then just behind the dIN spike in the
opposite half-centre. Like swimming and synchrony, a pattern resembling double-
period synchrony has also been described experimentally (see below).

The analysis of bifurcations in the reduced model takes into account the left-right
half-centre symmetry. Because of this symmetry, we detect some properties that are
exclusive of symmetric dynamical systems [3, 46]. For example, there are two types
of cycles originating from the period-doubling bifurcation of the symmetry cycle. Of
the two types of double-period synchrony cycles, one is unstable and left-right sym-
metrical, while another is stable and its right-half variables are symmetrical to the
left-half variables shifted by half-period. Our results on bifurcations are not limited
to the symmetric system, but extend to systems where the symmetry is broken by
including a small perturbation to some equation parameters. Trivially, all the bifurca-
tions change to non-symmetrical ones (for example, pitchfork becomes fold).

4.5 Biological Links and Significance

As outlined above, our reduced model displays three stable spiking patterns. Remark-
ably, these three characteristic patterns correspond well to experimental recordings of
spiking activity from spinal cord neurones.
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Of these, swimming is the most biologically relevant: it is the pattern of activ-
ity shown by the CPG neurons that drive muscles to provide the main behavioural
response in tadpoles. In experiments, long-lasting swimming is initiated by a brief
sensory stimulus (touch) to the head or trunk skin [34, 41]. The spiking patterns of
dIN and cIN neurones in the swimming mode represent the typical activity of CPG
neurons. Remarkably, our analysis revealed that the largest area of parameter space
is occupied by stable swimming.

Synchrony is seen in occasional experimental recordings, where it can last for sev-
eral hundred milliseconds (perhaps 10–15 cycles) before returning to swimming [12].
The synchrony pattern occupies a substantial area of parameter space; however, it lies
within the area for swimming, hence it is an area of bi-stability. Bifurcation analy-
sis shows that both types of stability boundary of the synchrony cycle correspond
to subcritical bifurcations (pitchfork and period-doubling bifurcation lines). There-
fore, the loss of stability by the synchrony cycle will result in a change of dynamical
mode, particularly from synchrony to swimming, just as observed experimentally.
Like experimentally recorded neurons, this modality change can take several seconds
if model parameters are near the bifurcation points which determine the loss of sta-
bility for the synchrony cycle.

Although synchronous activity in the limbs will become a characteristic of the
tadpole as it nears metamorphosis to the adult [11], there is no evidence that the
synchrony pattern modelled here has any function in young tadpoles. It is more likely,
therefore, that the priority is to avoid the expression of this pattern. Analysis of the
initiation parameters in the reduced model suggests that the important factor here
is to minimise the likelihood of oscillations on the two sides being initiated within a
very short time delay, since such short delays make synchrony more likely. We should
predict that the initiation circuitry in the tadpole will be constructed so as to introduce
delays that ensure activation on the two sides while avoiding co-activation.

We have concentrated on analysing the stability of limit cycles corresponding to
swimming and synchrony. However, we find that there are several unstable limit cy-
cles, which should be also included into consideration for clarity of the multiple
interlinked bifurcations. Some of these unstable cycles are shown on our bifurca-
tion diagrams for completeness of the analysis. Moreover, we found one more sta-
ble mode—double-period synchrony. As with synchrony, there is no evidence for a
biological role for this regime. Double synchrony activity can be observed experi-
mentally, for example by injecting depolarising current into a dIN, or this regime can
spontaneously occur during swimming. From the biology point of view, the regime
corresponding to the double-synchrony in the model appears if the spiking of two
dINs on the opposite body sides is not perfectly synchronised, and the jittered cIN
inhibition does not suppress dIN spiking on either side [12]. Remarkably, the spiking
pattern named double-synchrony in the reduced model perfectly reproduces this ex-
perimental finding and the shape of dIN-cIN voltages is very similar to experimental
recordings (Fig. 7(A)).
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