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Abstract
Understanding nervous system function requires careful study of transient
(non-equilibrium) neural response to rapidly changing, noisy input from the outside
world. Such neural response results from dynamic interactions among multiple,
heterogeneous brain regions. Realistic modeling of these large networks requires
enormous computational resources, especially when high-dimensional parameter
spaces are considered. By assuming quasi-steady-state activity, one can neglect the
complex temporal dynamics; however, in many cases the quasi-steady-state
assumption fails. Here, we develop a new reduction method for a general
heterogeneous firing-rate model receiving background correlated noisy inputs that
accurately handles highly non-equilibrium statistics and interactions of
heterogeneous cells. Our method involves solving an efficient set of nonlinear ODEs,
rather than time-consuming Monte Carlo simulations or high-dimensional PDEs, and
it captures the entire set of first and second order statistics while allowing significant
heterogeneity in all model parameters.

Keywords: Neural network model; Reduction method; Non-equilibrium statistics;
Heterogeneity

1 Introduction
Advances in neural recording technologies have enabled experimentalists to simultane-
ously measure activity across different regions with cellular resolution [1–4]. However,
it is still a technical challenge to measure the many biophysical parameters that govern
this multi-region activity. This challenge is exacerbated by the fact that cortical neurons
are heterogeneous (i.e., parameters vary across cells) [5] and have significant trial-to-trial
noise [6]. Given these features, computational modeling of neural networks often requires
exploration of a high-dimensional parameter space and lengthy, time-consuming Monte
Carlo simulations. Thus, efficient methods to simulate [7] or approximate network statis-
tics [8] are needed. Aside from computational benefits, streamlined equations for network
activity offer potential benefits for mathematical analysis.

We previously developed a fast approximation method [9] for the complete first and
second order statistics of a firing-rate network model based on the Wilson–Cowan model
[10], and applied it to the olfactory sensory pathway [11]. However, those methods as-
sumed that the statistics of neural activity are stationary (i.e., in steady state). Many neu-
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ral systems rely on processing of time-varying, high frequency stimuli. The resulting neu-
ral responses are often transient, and a quasi-steady-state (QSS) approximation fails to
capture the actual response statistics. For example, in the rodent vibrissa sensory [12],
auditory [13–15], and electrosensory systems [16], stimuli and responses modulate on
the order of a few milliseconds, i.e., much faster than the membrane time constants of
neurons. Indeed, there is evidence that coding capabilities strongly depend on the timing
of stimuli [17] (e.g., in the olfactory bulb [18–20]), further necessitating accurate model-
ing of time-varying neural activity. Modeling studies show the need to account for time-
varying stimuli in calculating spiking statistics [21] and in capturing neural mechanisms
such as divisive gain modulation [22]. Mathematical theory to efficiently characterize non-
equilibrium heterogeneous spiking statistics is scarce despite the potential to shed light on
crucial transient neural responses. Thus, it is clear that accurate modeling of time-varying
neural activity would benefit mechanistic investigations of neural processing.

Here we present a method to approximate the non-equilibrium statistics of a general
heterogeneous coupled firing-rate model of neural networks receiving background cor-
related noise, in which we: (i) assume weak coupling; equivalently, that neural activity is
pairwise normal, and (ii) account for the entire probability distribution of inputs. The
result is a computationally fast method because it requires the user to solve coupled non-
linear ODEs, rather than to simulate and average many realizations of coupled SDEs or
numerically solve a high-dimensional PDE. The method performs much better than the
related QSS method [9] in several representative examples; our code is freely available (see
Availability of data and materials section).

2 Model equations and method
Each cell is modeled by a single activity variable xj, which may represent membrane volt-
age, calcium concentration, etc., and which evolves according to the following equation:

τj
dxj

dt
= –xj + μ̃j + σ̃jηj(t) +

Nc∑

k=1

gjkFk
(
xk(t)

)
, j = 1, 2, . . . , Nc (1)

(see [10]), where Fk(·) ≥ 0 is a nonlinear function mapping input activity to firing rate or
response (often called the F-I curve). All cells receive background noise ηj uncorrelated in
time but instantaneously correlated across different cells: 〈ηj(t)〉 = 0, 〈ηj(t)ηj(t′)〉 = δ(t – t′),
and 〈ηj(t)ηk(t′)〉 = cjkδ(t – t′) for j �= k with cjk ∈ (–1, 1). The parameters μ̃j and σ̃j model
background noisy input. The parameter gjk represents coupling strength from the presy-
naptic kth cell and is a signed quantity; gjk < 0 represents inhibitory coupling (Fig. 1(A)).

We wish to compute all of the first and second order time-varying statistics:

Mean activity μj(t) := 〈xj〉(t),

Variance of activity σ 2
j (t) :=

〈
x2

j
〉
(t) – μ2

j (t),

Covariance of activity Covj,k(t) := 〈xjxk〉(t) – μj(t)μk(t),

Mean firing νj(t) :=
〈
Fj(xj)

〉
(t),

Variance of firing Var
(
νj(t)

)
:=

〈
F2

j (xj)
〉
(t) – ν2

j (t),

Covariance of firing Cov(νj,νk ; t) :=
〈
Fj(xj)Fk(xk)

〉
(t) – νj(t)νk(t),
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Figure 1 (A) Schematic of network model. Top: Cells receive background correlated noise ξj(t) = σ̃jηj(t).
Bottom: Network coupling via nonlinear function of activity that we choose to be a sigmoidal function.
(B) A network of Nc = 3 coupled cells with randomly chosen parameters. With fast input μ(t) (top-left) relative
to the time scale, the actual non-equilibrium statistics (dash curves) are very different from the
quasi-steady-state, or QSS (fixed μ(t) at time t, solid curves). Upper right shows all three pairs of covariance of
firing Cov(νj ,νk ) for (j �= k); bottom row shows the mean activity E[Xj] and variance of firing Var(νj). In all
Monte Carlo simulations here and throughout the paper, we used 1 million realizations; see Sect. 2.3

Table 1 For convenience, we abbreviate the following quantities. When j = k in the double integrals
ofMF , the bivariate normal distribution �j,k is replaced with the standard normal distribution �1.
Note that order of the arguments matters inMF :MF (j, k) �=MF (k, j) in general. The quantities in
bottom three rows depend on the statistics of the activity μ(·), σ (·)
Abbreviation Definition

�1(y) 1√
2π

e–y
2/2

�j,k (y1, y2) 1

2π
√
1–c2jk

exp(– 1
2 	yT (

1 cjk
cjk 1 )–1	y)

Dj,k cjk
σ̃j σ̃k
τjτk

E1(k)
∫
Fk (σk (t)y +μk (t))�1(y)dy

E2(k)
∫
F2k (σk (t)y +μk (t))�1(y)dy

MF (j, k)
∫∫

Fk (σk (t)y1 +μk (t))y2�j,k (y1, y2)dy1 dy2

where the angular brackets 〈·〉 denotes averaging over realizations.

2.1 Reduction of the Fokker–Planck equation
The corresponding probability density function p(	x, t) of 	X := (x1, . . . , xNc ), defined as
p(	x, t) d	x = P( 	X(t) ∈ (	x, 	x + dx)), satisfies the Fokker–Planck equation [23]:

∂p(	x, t)
∂t

= –
Nc∑

l=1

∂

∂xl

{
1
τl

[
–xl + μ̃l +

Nc∑

k=1

glkFk(xk)

]
p(	x, t)

}
+

1
2

∑

j,k

Dj,k
∂2p(	x, t)
∂xj∂xk

= –
Nc∑

l=1

∂

∂xl
Jl(	x, t) +

1
2

∑

j,k

Dj,k
∂2p(	x, t)
∂xj∂xk

, (2)

where Dj,k = cjk
σ̃jσ̃k
τjτk

(see Table 1), and the sum with Dj,k is taken over all Nc × Nc pairs of
(j, k). For convenience we have defined the probability flux or current, as Jl(	x, t) := 1

τl
[–xl +

μ̃l +
∑Nc

k=1 glkFk(xk)]p(	x, t) in the right-most part of Eq. (2). This high-dimensional partial
differential equation contains all of the statistics of the system.
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2.2 Moment closure methods
One way to tackle high-dimensional systems is through “moment closure” methods, in
which state variables are integrated or averaged out, and assumptions on moments used
to reduce the number of equations. Such approaches have been used in the physical [24,
25] and life sciences [26–28]; see [29] for another type of reduction method for this kind
of equation. Here, we propose a closure based on weak coupling, and therefore pairwise
Gaussianity in the activity variables.

Without coupling, i.e. gjk = 0, the steady-state solution of Eq. (2) is simply a multivariate
Gaussian distribution with mean 	μ = [μ̃1, . . . , μ̃Nc ] and covariance matrix Covj,k = cjk

τj+τk
σ̃jσ̃k

in the steady state. This motivates a closure of the system in which we assume 	X is Gaus-
sian: i.e. Xj = σj + Yjμj, where Yj is a standard normal random variable, with parameters
μj and σj to be determined. We also assume the joint marginal distributions are bivariate
Gaussian:

P(xj, xk) :=
∫

p(	x, t) d̂xj,k ; (Xj, Xk) ∼N

((
μj

μk

)
,

(
σ 2

j cjkσjσk

cjkσjσk σ 2
k

))
, (3)

where N denotes a bivariate Gaussian distribution, and d̂xj,k denotes integrating over all
Nc variables except xj and xk .

Note that the integrated quantity
∫

∂p(	x,t)
∂t d	x = 0, as any probability distribution must

integrate to unity. We multiply Eq. (2) by xj and integrate the equation over all Nc variables,
d	x = dxj d̂xj (where again d̂xj = dx1 · · ·dxj–1 dxj+1 · · ·dxNc ):

dμj(t)
dt

= –
∫ Nc∑

l=1

∂

∂xl
Jl(	x, t)xj dxj d̂xj +

1
2

∫ ∑

l1,l2

Dl1,l2
∂2p(	x, t)
∂xl1∂xl2

xj dxj d̂xj, (4)

where dμj(t)
dt = ∂

∂t
∫

xjp(	x, t) d	x. Consider the first term on the RHS: when l �= j, we have∫
∂

∂xl
Jl(	x, t)xj dxj d̂xj =

∫
∂

∂xl
Jl(	x, t) dxlxj dxj d̂xl,j =

∫
Jl|xl=∞

xl=–∞xj dxj d̂xj =
∫

0xj dxj d̂xj = 0. The
last equality comes from no flux at ±∞: Jl|xl=∞

xl=–∞ = 0. A similar calculation applies to the
second term, for all Nc × Nc values of (l1, l2): when l1 �= j and l2 �= j, first integrate in xl1 and
xl2 , and then use the fact that there is no density at ±∞: p(	x, t)|xl1/2 =∞

xl1/2 =–∞ = 0; when l1/2 = j,
first integrate in xj, then integrate by parts, using ∂jp(	x, t)xj|xj=∞

xj=–∞ = 0 and ∂jp(	x, t)|xj=∞
xj=–∞ = 0.

Therefore, Eq. (4) becomes

dμj(t)
dt

=
1
τj

(
–μj(t) + μ̃j +

Nc∑

k=1

gjkE1(k)

)
, (5)

where we have used the approximation
∫

Fk(xk)p(	x, t) d	x ≈ E1(k) (see Table 1) by assuming
the marginal xk PDF is a normal distribution with mean μk(t) and variance σ 2

k (t).
To derive a similar equation for the variance σ 2

j (t), we multiply Eq. (2) by x2
j and again

integrate over all variables:

dEj2 (t)
dt

= –
∫ Nc∑

l=1

∂

∂xl
Jl(	x, t)x2

j dxj d̂xj +
1
2

∫ ∑

l1,l2

Dl1,l2
∂2p(	x, t)
∂xl1∂xl2

x2
j dxj d̂xj, (6)

where Ej2 (t) =
∫

x2
j p(	x, t) d	x, and σ 2

j (t) = Ej2 (t) – (μj(t))2.
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Following the same type of manipulations and again using the no density condition at
±∞: p(	x, t)|xl1/2 =∞

xl1/2 =–∞ = 0, we get

dEj2 (t)
dt

= Dj,j +
2
τj

[
–Ej2 (t) + μ̃jμj(t) +

Nc∑

k=1

gjk

∫
xjFk(xk)p(	x, t) d	x

]
. (7)

We now employ our approximation, xj = μj(t) + yjσj(t) where yj is a standard normal ran-
dom variable, to close the last term in Eq. (7). We further approximate

∫
yjFk(μk(t) +

ykσk(t))p(	x, t) d	x by assuming the joint marginal distribution of (xj, xk) is bivariate nor-
mal, and use the definition of MF in Table 1:

∫
yjFk(μk(t) + ykσk(t))p(	x, t) d	x ≈MF (j, k).

Therefore, the equation for the second moment is

τj
dEj2 (t)

dt
=

σ̃ 2
j

τj
+ 2

[
–Ej2 (t) + μ̃jμj(t) +

Nc∑

k=1

gjk
(
μj(t)E1(k) + σj(t)MF (j, k)

)
]

. (8)

To derive the analogous equation for the Covj,k(t), the procedure is almost exactly the
same except that Eq. (2) is multiplied by xjxk , and two terms from the sum (over probability
fluxes Jl) contribute, when l = j and l = k. The result is

τjτk
dEj,k(t)

dt
= cjk σ̃jσ̃k + τk

(
–Ej,k + μ̃jμk(t) +

∑

l

gjl
(
μk(t)E1(l) + σk(t)MF (k, l)

))

+ τj

(
–Ej,k + μ̃kμj(t) +

∑

l

gkl
(
μj(t)E1(l) + σj(t)MF (j, l)

))
. (9)

When j = k in Eq. (9), we recover Eq. (8).
The full set of kinetic equations given by Eq. (5), (8), and (9) form a system of nonlinear

coupled ODEs with Nc + Nc(Nc + 1)/2 variables. The statistics of the firing rate (i.e. νj =
Fj(xj)) are obtained from a standard change of variables.

If μ̃, σ̃ are constant in time, the system (Eq. (5), (8), (9)) settles to a steady state:

μj = μ̃j +
Nc∑

k=1

gjkE1(k), σ 2
j =

σ̃ 2
j

2τj
+ σj

Nc∑

k=1

gjkMF (j, k),

Covj,k
τj + τk

2
= cjk

σ̃jσ̃k

2
+

σj(t)
2

τj

Nc∑

l=1

gklMF (j, l) +
σk(t)

2
τk

Nc∑

l=1

gjlMF (k, l).

(10)

A common approximation to non-equilibrium statistics is to assume that the system
immediately equilibrates to the steady-state solution of Eq. (1) at each time point for the
time-dependent parameters μ̃j(t), σ̃j(t), which we call the QSS method. We will find that
the QSS method fails to capture meaningful features of network activity with relatively
fast input.

2.3 Monte Carlo simulations
In the Results section, we compare our new method with Monte Carlo simulations. For
all Monte Carlo simulations (i.e., both the actual non-equilibrium statistics and QSS),
we used 1 million (1 × 106) realizations at each time point. The shaded error regions
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in all figures represent 1 standard deviation above and below the mean, which is ap-
proximated via the sample standard deviation on 1000 samples of 1000 realizations each:
S =

√
1

999
∑1000

j=1 (X(j) – X)2, where X is the average over 1 million realizations and X(j) is
an average over 1000 realizations.

3 Results
We implement our method for networks of various sizes Nc, with two time-varying in-
puts. We choose F to be a sigmoidal: Fj(·) = 0.5(1 + tanh((x – xrev,j)/xsp,j)) ∈ [0, 1] (arbitrary
units, xrev,j and xsp,j are parameters). To include heterogeneity, parameters were chosen
randomly from the following distributions:

τj ∼N
(
1, 0.12), μ̃j ∼U – 0.5, σ̃j ∼U + 1,

xrev,j ∼N
(
0, 0.12), xsp,j ∼ 0.35U + 0.05,

(11)

where U ∈ [0, 1] is a uniform random variable, and N is a normal random variable.
The input correlation matrix Cr was generated so to have approximately independent
off-diagonal entries as follows: (i) create a matrix A with i.i.d. entries Ajk ∼ N(0, 0.82);
(ii) create a diagonal matrix Λ 	ds

from the vector 	ds where 	ds(j) = 1/
√

(AT A)jj; (iii) set
Cr = (Λ 	ds

)AT A(Λ 	ds
). By construction, Cr is symmetric positive semidefinite with 1’s

on the diagonal. Finally, the entries of the coupling matrix G are independently cho-
sen: Gjk ∼ N(0, vl) where vl = (l/10)2 with l = 1 for Figs. 1–2, and l = 1, 2, 3, or 4 in
Figs. 3–4. All entries of G are nonzero (i.e. coupling is all-to-all), with inhibitory, exci-
tatory, and self-coupling cases.

Figure 1(B) shows that with relatively fast time-varying μ(t), a network of Nc = 3 cells
has complex non-equilibrium network statistics that cannot be approximated by the QSS
approximation (i.e., assuming the system immediately equilibrates to the steady-state so-
lution for each time point). This is true for the complete set of activity and response statis-
tics, although for brevity only a subset are shown. All parameters are chosen as in Eq. (11)
except for μ(t), which is the same for all three cells.

Figure 2(A) shows that the time-varying method (Eq. (5), (8), and (9)), when applied to
same network as in Fig. 1(B), gives accurate results for the complete set of first/second
order statistics. Figure 2(B) shows a detailed comparison of another instance of the Nc = 3

Figure 2 (A) Our method (solid) is very accurate in capturing the results of Monte Carlo (dashed) (cf. Fig. 1(B))
for all first and second order non-equilibrium statistics. (B) With fast sinusoidal input μ(t) (left), the actual
non-equilibrium statistics (dashed) are very different from QSS (gray curves), but again our method accurately
captures the statistics
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Figure 3 Applying our method to a larger network of Nc = 50 neurons. As coupling strength increases (red
→ green → cyan → purple), performance worsens. (A) The absolute value of the error of our method with
the Monte Carlo simulations as a function of time. Each Average Absolute Error time point is averaged over the
entire set of statistics (i.e., for the mean and variances the average is over all 50, for covariances the average is
over 1225 = 49 ∗ 25). (A) Left: the average for the mean activity Xj (solid) and mean firing F(Xj) = νj
(dot-dashed); with the progression of colors (red to purple) representing stronger (i.e., larger) coupling values
Gj,k . (A) Middle: Error of covariances (thinner lines, j �= k) and variances (thicker lines, j = k) of activity Xj .
(A) Right: Error of covariances (thinner lines, j �= k) and variances (thicker lines, j = k) of firing F(Xj) = νj .
(B) Representative comparisons of our method with the Monte Carlo simulations. (B) Left: although the
average error increases with coupling magnitude, the discrepancies are not noticeable for mean activity and
firing (not shown). (B) Middle: the method is visibly worse for the variance of activity as coupling magnitude
increases. (B) Right: the method is visibly worse as coupling magnitude increases – note that the weakest
coupling (red) is between green (second weakest) and purple (strongest)

Figure 4 Applying our method to a larger network of Nc = 50 neurons. Same format as Fig. 3 except with
sinusoidal input (see Fig. 2(B)). (A) Again as coupling strength increases (red → green → cyan → purple),
performance worsens. (B) Representative comparisons of our method with the Monte Carlo simulations.
(B) Left: although the average error increases with coupling magnitude, the discrepancies are not noticeable
for mean activity and firing (not shown). (B) Middle: the method is visibly worse for the variance of activity as
coupling magnitude increases. (B) Right: the method is visibly worse as coupling magnitude increases for
variance of firing – note that the weakest coupling (red) has largest variance of firing

cell network, but with a time-varying sinusoidal input. Again, the QSS method does not
capture the actual network statistics, but our method does very well (colored solid curves).
We only show a subset of statistics to illustrate our point; the others are qualitatively sim-
ilar.
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Thus far we have only consider small networks. In Figs. 3 and 4, our methods are applied
to a large network of Nc = 50 coupled cells where the magnitude of the coupling strengths
vary: Gjk ∼N(0, l2

100 ), for l = 1, 2, 3, 4. Figure 3 shows the results with pulse input (Fig. 1(B)
upper-left) applied to all 50 cells, while Fig. 4 shows results from applying the sinusoidal
input (Fig. 2(B) left) to all 50 cells. Figure 3(A) (top row) shows the error between our
method and the actual (Monte Carlo) statistics; we plot the absolute error averaged over
all cells or pairs:

Average Absolute Error =
1
M

M∑

j=1

∣∣XMC(t) – XMethod(t)
∣∣,

i.e., for mean and variance of activity and firing, M = 50; for covariance of activity and
firing, averaging over all M = 50 ∗ 49/2 distinct pairs. All six sets of statistics are shown in
Fig. 3(A): the left panel shows the average absolute error for both mean activity (solid) and
mean firing (dot-dashed), middle panel shows the variance (thick solid) and covariance of
activity (thin solid), the right panel shows the variance (thick solid) and covariance (thin
solid) of firing. In all cases, as the coupling magnitude increases (red → green → cyan
→ purple), the error increases. For reference, the bottom row (Fig. 3(B)) compares our
method with the Monte Carlo simulations for a particular cell (or cell pair); the chosen
cell or pair is the one that most closely matches the average absolute error. In Fig. 3(B), we
only show three out of the six statistics (left is mean activity, middle is variance of activity,
right is variance of firing) because these clearly show the performance of our method in
relation to the size of the average absolute error. Figure 4 has exactly the same format as
Fig. 3, but with sinusoidal input.

Finally, in Fig. 5, to assess the performance of our method, we plot the absolute value
of the error averaged over all six statistics and over all cells/pairs (vertical axis) as a func-
tion of a measure of coupling strength l (Fig. 5(A) is with pulse input, (B) with sinusoidal
input). Each curve shows a different network size, ranging from Nc = 3, 5, 10, 25, 50, with
a particular instance of randomly chosen parameters for each curve.a The magnitude of

Figure 5 Our method implicitly assumes weak coupling, so as the average magnitude of the coupling
strength increases, the performance decreases. We demonstrate this with several instances of coupling
matrices and network sizes Nc = 3, 5, 10, 25, and Nc = 50 with the four coupling values in Figs. 3 and 4, using
the same pulse (A) and sinusoidal (B) inputs. On vertical axis, we plot the average absolute error over all first
and second order statistics, including all cells and pairs, while on the horizontal axis, we plot a measure of

average magnitude of the coupling values l. Note that, since Gjk ∼ N(0, l2
100 ), the average of all |Gjk| is l

5
√
2π

in

the infinite limit Nc → ∞. For reference, some of the points on these curves are from prior figures, denoted in
gray text and arrows
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the coupling strength, l, on the horizontal axis is from Gjk ∼N(0, l2
100 ), so that the average

of all N2
c values of |Gjk| is l

5
√

2π
in the infinite limit Nc → ∞. Not surprisingly, the aver-

age error increases as coupling strength increases for each curve. Assessing how much
absolute error is acceptable depends on the purposes of the approximation, but for refer-
ence, the instances of networks from prior figures are denoted in gray. Figure 5 indicates
that, as long as the average absolute error is below 0.01, our method likely performs very
well, independent of network size (cf. with Figs. 2–4). Average absolute errors larger than
0.01 might indicate at least some of the statistics calculated by our method are likely to be
inaccurate, although others may be accurate depending on cell or pair (cf. Figs. 3–4).

4 Conclusion
The role of mathematical theory and computation in addressing neuroscience questions
is as vital as ever despite tremendous advances in recording technologies. As detailed in
the Introduction, the common assumption of equilibrium neural network responses is in-
accurate in many neural systems. Here we derived and implemented a reduction method
to calculate the complete set of first and second order non-equilibrium statistics in cou-
pled heterogeneous networks of firing-rate models [10] receiving background correlated
noise [30–32]. Importantly, our method captures the non-equilibrium statistics when they
are vastly different from the quasi-steady-state, and works very well even with significant
heterogeneity in all model parameters. As the overall magnitude of the coupling strengths
increase, the performance of our method declines because the moment closure method
assumes weak coupling.

Mathematical reductions that well approximate the statistics of firing-rate models [33],
such as the one described here, are likely to be relevant for future theoretical studies of
neural networks for several reasons. Wilson–Cowan type models [10] are commonly used
because of their simplicity and history of successful application in neural systems. Analysis
of spiking statistics using mean-field methods often results in similar firing-rate equations
[34–37]. Finally, such methods might be useful for mechanistic investigations of neural
function across multiple brain regions that commonly rely on larger models with more
parameters and complexity [7, 11].
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