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Abstract
Many biological and neural systems can be seen as networks of interacting periodic
processes. Importantly, their functionality, i.e., whether these networks can perform
their function or not, depends on the emerging collective dynamics of the network.
Synchrony of oscillations is one of the most prominent examples of such collective
behavior and has been associated both with function and dysfunction.
Understanding how network structure and interactions, as well as the microscopic
properties of individual units, shape the emerging collective dynamics is critical to
find factors that lead to malfunction. However, many biological systems such as the
brain consist of a large number of dynamical units. Hence, their analysis has either
relied on simplified heuristic models on a coarse scale, or the analysis comes at a
huge computational cost. Here we review recently introduced approaches, known as
the Ott–Antonsen and Watanabe–Strogatz reductions, allowing one to simplify the
analysis by bridging small and large scales. Thus, reduced model equations are
obtained that exactly describe the collective dynamics for each subpopulation in the
oscillator network via few collective variables only. The resulting equations are
next-generation models: Rather than being heuristic, they exactly link microscopic
and macroscopic descriptions and therefore accurately capture microscopic
properties of the underlying system. At the same time, they are sufficiently simple to
analyze without great computational effort. In the last decade, these reduction
methods have become instrumental in understanding how network structure and
interactions shape the collective dynamics and the emergence of synchrony. We
review this progress based on concrete examples and outline possible limitations.
Finally, we discuss how linking the reduced models with experimental data can guide
the way towards the development of new treatment approaches, for example, for
neurological disease.

Keywords: Network dynamics; Coupled oscillators; Neural networks; Mean-field
reductions; Ott–Antonsen reduction; Watanabe–Strogatz reduction; Kuramoto
model; Winfree model; Theta neuron model; Quadratic integrate-and-fire neurons;
Neural masses; Structured networks

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13408-020-00086-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13408-020-00086-9&domain=pdf
http://orcid.org/0000-0002-5238-1146
http://orcid.org/0000-0002-6086-2978
http://orcid.org/0000-0002-9455-7517
mailto:c.bick@exeter.ac.uk
mailto:eama@dtu.dk


Bick et al. Journal of Mathematical Neuroscience            (2020) 10:9 Page 2 of 43

1 Introduction
Many systems in neuroscience and biology are governed on different levels by interacting
periodic processes [1]. Networks of coupled oscillators provide models for such systems.
Each node in the network is an oscillator (a dynamical process) and the network struc-
ture encodes which oscillators interact with each other [2]. In neuroscience, individual
oscillators could be single neurons in microcircuits or neural masses on a more macro-
scopic level [3]. Other prominent examples in biology include cells in heart tissue [4],
flashing fireflies [5], the dynamics of cilia and flagella [6], gait patterns of animals [7] or
humans [8], cells in the suprachiasmatic nucleus in the brain generating the master clock
for the circadian rhythm [9–11], hormone rhythms [12], suspensions of yeast cells under-
going metabolic oscillations [13, 14], and life cycles of phytoplankton in chemostats [15].

The functionality—whether function or dysfunction—of these networks depends on the
collective dynamics of the interacting oscillatory nodes. Hence, one major challenge is to
understand how the underlying network shapes these collective dynamics. In particular,
one would like to understand how the interplay of network properties (for example, cou-
pling topology and the strength of interactions) and characteristics of the individual nodes
shape the emergent dynamics. The question of relating network structure and dynamics
is particularly pertinent in the study of large-scale brain dynamics: For example, one can
investigate how emergent functional connectivity (a dynamical property) arises from spe-
cific structural connectomes [16, 17], and how each of these relates to cognition or disease.
Progress in this direction not only aims to identify how healthy or pathological dynamics
is linked to the network structure, but also to develop new treatment approaches [18–21].

One of the most prominent collective behaviors of an oscillator network occurs when
nodes synchronize and oscillate in unison [22–24]; indeed, most of the examples given
above display synchrony in some form which appears to be essential to the proper func-
tioning of biological life processes. Here we think of synchrony in a general way: It can
come in many varieties, including phase synchrony where the state of different oscilla-
tors align exactly, or frequency synchrony where the oscillators’ frequencies coincide. Syn-
chrony may be global across the entire network or localized in a particular part—the rest
of the network being nonsynchronized—thus giving rise to synchrony patterns. How ex-
actly the dynamics of synchrony patterns in an oscillator network relate to its functional
properties is still not fully understood. In the brain, there are a wide range of rhythms but
the presence of dominant rhythms in different frequency bands indicate that some level of
synchrony is common at multiple scales [25, 26]. Indeed, synchrony has been associated
with solving functional tasks including, but not limited to, memory [27], computational
functions [28], cognition [29], attention [30, 31], routing of information [31–33], control of
gait and motion [34], or breathing [35, 36]. As a specific example, coordination of dynamics
at the theta frequency (4–12 Hz) between hippocampus and frontal cortex is enhanced in
spatial memory tasks [37]. At the same time, abnormal synchrony patterns are associated
with malfunction in disorders such as epilepsy and Parkinson’s disease [38–41]; evolving
patterns of synchrony can for example be observed in electroencephapholographic (EEG)
recordings throughout epileptogenesis in mice [42].

Using a detailed model of each node and a large number of nodes in the network, the
task of relating network structure and dynamics is daunting. Hence, simplifying analyti-
cal reduction methods are needed that—rather than being purely computational—yield a
mechanistic understanding of the inherent processes leading to a certain dynamic macro-
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scopic behavior. If many biologically relevant state variables are considered in a micro-
scopic model, each node is represented by a high-dimensional dynamical system by itself.
Hence, a common approach is to simplify the description of each oscillatory node to its
simplest form, a phase oscillator; in the reduced system the state of each oscillator is given
by a single periodic phase variable that captures the state of the periodic process. In this
case, biologically relevant details are captured by the evolution of the phase variable and
its interaction with the phases of the other nodes. There are two important ways to get to
a phase description of an oscillator network, both of which are common tools used, for
example, in computational neuroscience; see [43, 44] for recent reviews. First, under the
assumption of weak coupling one can go through a process of phase reduction to obtain
a phase description [45–50]. Second, one can—based on the biophysical properties of the
system—impose a phase model such as the Kuramoto model [51] or a network of Theta
neurons [52].

The main topic of this paper is an introduction to and a review of recent advances in
exact mean-field reductions for networks of coupled oscillators. The main achievement
is that for certain classes of oscillator networks, it is possible to replace a large num-
ber of nodes by a collective or mean-field variable that describe the network evolution
exactly—thereby reducing the complexity of the problem immensely. In the neuroscien-
tific context, each subpopulation may represent different populations of neurons that may
exhibit temporal patterns of synchronization or activity [16, 17, 53]. Of course, mean-field
approaches motivated by statistical physics have a long history in computational neuro-
science to approximate the dynamics of large ensembles of units; see, for example, [54, 55]
and references therein. They have been useful to elucidate, for example, dynamical mecha-
nisms behind the emergence of rhythms in the gamma frequency band, such as the emer-
gence of pyramidal-interneuronal gamma (PING) rhythm [56] or the interplay between
different brain areas (for example, through phase-phase, phase-amplitude and amplitude
comodulation) that can lead to frequency entrainment [57]. In terms of classical mean-
field approaches, the pioneering works by Wilson and Cowan [58] and Amari [59] stand
out: They derived heuristic equations for average neural population dynamics that are still
widely used in neural modeling. Specifically, such models disregard fluctuations of indi-
vidual unitsa and arrive at equations that approximate the evolution of means. By con-
trast, the exact mean-field reductions we discuss here, the Ott–Antonsen reduction and
the Watanabe–Strogatz reduction, can be employed not only for infinite networks also
for networks of finitely many oscillators. While these reductions only apply to specific
classes of systems—and from a mathematical perspective reflect the special structure of
these systems—they include models that have been widely used in neuroscience and be-
yond, such as the Kuramoto model. Compared to heuristic mean-field approximations,
the resulting reduced equations are exactly derived from the microscopic equations of in-
dividual oscillators and thus capture properties of individual oscillators; because of this
property these reduced equations have been referred to as being next-generation mod-
els [60]. Employing these models in modeling tasks provides a powerful opportunity to
bridge the dynamics on microscopic and macroscopic scales.

To illustrate the mean-field reductions and their applicability, we focus here on networks
that are organized into distinct (sub)populations because of their practical importance.b

The mean-field reductions allow one to replace each subnetwork by a (low-dimensional)
set of collective variables to obtain a set of dynamical equations for these variables. This set
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of mean-field equations describes the system exactly. For the classical Kuramoto model,
which is widely used to understand synchronization phenomena, we will see below that
the collective state is captured by a two-dimensional mean-field variable that encodes
the synchrony of the population. Reducing to a set of mean-field equations provides a
simplified—but often still sufficiently complex—description of the network dynamics that
can be analyzed by using dynamical systems techniques [61, 62]. We will outline the classes
of models for which the mean-field reductions apply and illustrate how these reduction
techniques have been instrumental in the last decade to illuminate how the network prop-
erties relate to dynamical phenomena. We give a number of concrete examples, from Ku-
ramoto’s problem about the emergence of synchrony in oscillator populations to the emer-
gence of PING rhythms based on microscopic properties of neuronal networks.

There are many important questions and aspects that we cannot touch upon in this
review, and we refer to already existing reviews and literature instead. First, we only con-
sider oscillator networks where each (microscopic) node has a first-order description by
a single phase variable. We will not cover other microscopic models such as second-order
phase oscillators or oscillators with a phase and amplitudec which can give rise to richer
dynamics. Second, we do not comment on the validity of a phase reduction; for more in-
formation see for example [47, 50]. Third, the reductions we discuss have been essential to
understand the emergence of synchrony patterns where coherence and incoherence co-
exist, also known as “chimeras.” Here, we only mention results relevant to the dynamics of
coupled oscillator populations and refer to [63–65] for recent reviews on chimeras. Fourth,
the results mentioned here relate to results from network science [66, 67]. In particular,
properties of the graph underlying the dynamical network relate to synchronization dy-
namics [68–70]. Moreover, we also typically assume that the network structure is static
and does not evolve over time. However, time-dependent network structures are clearly
of interest—in particular in the context of plastic neural connectivity and neurological dis-
ease. An approach to these issues from the perspective of network science are temporal
networks [71] while asynchronous networks take a more dynamical point of view; see [72]
and references therein. Fifth, we restrict ourselves to deterministic dynamics where noise
is absent. From a mathematical point of view, noise can simplify the analysis and recent
results show that similar reduction methods apply [73–75]. Finally, it is worth noting that
other reduction approaches for oscillator networks have recently been explored [76–78].

This review is written with a diverse readership in mind, ranging from mathematicians
to computational biologists who want to use the reduced equations for modeling. In fact,
this review is intended to have aspects of a tutorial and to provide an introduction to
the Ott–Antonsen and Watanabe–Strogatz reductions as exact mean-field reductions and
outlining what type of questions they have been instrumental in answering: We include
three explicit examples how these mean-field reductions can be helpful in giving insights
into the collective dynamics of (neuronal) oscillator networks.

In the following, we provide an outline how to approach this paper. The next section sets
the stage by introducing the notion of a sinusoidally coupled network and we summarize
the main oscillator models we relate to throughout the paper; these include the Kuramoto
model and networks of Theta neurons (which are equivalent to Quadratic Integrate and
Fire (QIF) neurons). In the third section, we give a general theory for the mean-field re-
ductions and discuss their limitations: The methods include the Ott–Antonsen reduction
for the mean-field limit of nonidentical oscillators and the Watanabe–Strogatz reduction
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for finite or infinite networks of identical oscillators. This section includes a certain level
of mathematical detail to understand the ideas behind the derivation of the reduced equa-
tions (mathematically dense sections are marked with the symbol “*” and may be skipped
at first reading). If you are mainly interested in applying the reduced equations, you may
want to skip ahead to Sects. 3.1.2 and 3.2.2, which summarize the reduced equations for
the models we study throughout the paper. In the fourth section, we apply the reductions
and emphasize how they are useful to understand how synchrony and patterns of syn-
chrony emerge in such oscillator networks. This includes a number of concrete examples.
Since most of these considerations are theoretical and computational, we discuss in the
last section how the mean-field reductions can be used to solve neuroscientific problems
and be linked with experimental data. We conclude with some remarks and highlighting
a number of open problems.

1.1 List of symbols
The following symbols will be used throughout this paper.

N The positive integers
T The circle of all phases R/2πZ (or [0, 2π ] with 0 ≡ 2π )
C The complex numbers
i Imaginary unit

√
–1

Re(w), Im(w) Real part and imaginary part of a complex number w ∈C

w̄ Complex conjugate of w ∈C

M Number of oscillator populations in the network
σ , τ Population indices in {1, . . . , M}

N Number of oscillators in each population
k, j, l, . . . Oscillator indices in {1, . . . , N}

θσ ,k Phase of oscillator k in population σ

κ , κGJ, κg Coupling strength between neural oscillators
Zσ Kuramoto order parameter of population σ

Rσ The level of synchrony |Zσ | of population σ

zσ , Ψσ Bunch variables of population σ

ẋ The time derivative dx
dt of x

2 Sinusoidally coupled phase oscillator networks
The state of each node in a phase oscillator network is given by a single phase variable.
Such networks may be obtained through a phase reduction or may be abstract models in
their own right as in the case of the Theta neuron below. Consider a population σ of N os-
cillators where the state of oscillator k is given by a phase θσ ,k ∈ T := R/2πZ; if there is only
a single population, we drop the index σ . Without input, the phase of each oscillator (σ , k)
advances at its intrinsic frequency ωσ ,k ∈ R. Input to oscillator (σ , k) is determined by a
field Hσ ,k(t) ∈ C and modulated by a sinusoidal function; this field could be an external
drive or network interactions between oscillators both within population σ or other pop-
ulations τ . Specifically, we consider oscillator networks whose phases evolve according
to

θ̇σ ,k = ωσ ,k + Im
(
Hσ ,k(t)e–iθσ ,k

)
. (1)
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Since the effect of the field on oscillator (σ , k) is mediated by a function with exactly one
harmonic, e–iθσ ,k , we call the oscillator populations sinusoidally coupled.d

While we allow the intrinsic frequency and the driving field to depend on the oscillator
to a certain extent (i.e., oscillators are nonidentical), we will henceforth assume that all
oscillators within any given population σ otherwise are (statistically) indistinguishable,
i.e., the properties of each oscillator in a given population are determined by the same
distribution. Specifically, suppose that the properties of each oscillator are determined by
a certain parameter ησ ,k . This is for example the case for the Theta neurons described
further below, each of which has an individual level of excitability as a parameter. Let us
formulate this more precisely. Suppose that we let both the intrinsic frequencies and the
field be functions of this parameter, i.e., ωσ ,k = ωσ (ησ ,k), Hσ ,k(t) = Hσ (t;ησ ,k). The oscilla-
tors of a given population are then indistinguishable if, for a given population σ , all ησ ,k

are random variables sampled from a single probability distribution with density hσ (η). In
the special case that ησ ,k = ησ ,j for j �= k (in this case hσ is a delta-distribution) we say that
the oscillators are identical.

Phase oscillator networks of the form (1) include a range of well-known (and well-
studied) models. These range from particular cases of Winfree’s model [79] to neuron
models. In the following we discuss some important examples that we will revisit in more
detail throughout this paper.

2.1 The Kuramoto model
Kuramoto originally studied synchronization in a network of N globally coupled noniden-
tical (but indistinguishable) phase oscillators [80]; see [81] for an excellent survey of the
problem and its historical background. Kuramoto originally investigated the onset of syn-
chronization in a network composed of only a single population of oscillators indexed by
k ∈ {1, . . . , N} with phases θk (here we drop the population index σ ). The oscillator phases
evolve according to

θ̇k = ωk +
K
N

N∑

j=1

sin(θj – θk) (2)

with distinct intrinsic frequencies ωk that are sampled from some unimodal frequency
distribution. Here the parameter K is the coupling strength between oscillators and the
coupling is mediated by the sine of the phase difference between oscillators. If coupling is
absent (K = 0), each oscillator advances with its intrinsic frequency ωk .

The macroscopic state of the population is characterized by the complex-valued Ku-
ramoto order parametere

Z = Reiφ =
1
N

N∑

j=1

eiθj , (3)

representing the mean of all phases on the unit circle. Its magnitude R = |Z| describes the
level of synchronization of the oscillator population, see Fig. 1: On the one hand, R = 1
if and only if all oscillators are phase synchronized, that is, θk = θj for all k and j; on the
other hand, we have R = 0 if, for example, the oscillators are evenly distributed around
the circle. The argument φ of the Kuramoto order parameter Z (which is well-defined
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Figure 1 The Kuramoto order parameter (3) encodes the level of synchrony of a phase oscillator population.
The state of each oscillator is given by a phase θk (black dot, empty arrow) on the circle T. Panel (a) shows a
configuration with high synchrony where R = |Z| � 1. Panel (b) shows two configurations with R = |Z| � 0:
one where the oscillators are approximately uniformly distributed on the circle, the other one where they are
organized into two clusters

for Z �= 0) describes the “average phase” of all oscillators, that is, it describes the average
position of the oscillator crowd on the circle of phases.

Kuramoto observed the following macroscopic behavior: For K small, the system con-
verges to an incoherent stationary state with R ≈ 0. As K is increased past a critical cou-
pling strength Kc, the system settles down to a state with partial synchrony, R > 0. As the
coupling strength is further increased, K → ∞, oscillators become more and more syn-
chronized, R → 1.

The Kuramoto model (2) is an example of a sinusoidally coupled phase oscillator net-
work. Using Euler’s identity eiφ = cos(φ) + i sin(φ), we have

θ̇k = ωk + Im

(
K
N

N∑

j=1

ei(θj–θk )

)

= ωk + Im
(
KZ(t)e–iθk

)
,

where the Kuramoto order parameter Z(t) = Z(θ1(t), . . . , θN (t)), as defined in (3), depends
on time through the phases. Hence, the Kuramoto model (2) is equivalent to (1) with
H(t) = KZ(t) and the interactions between oscillators are solely determined by the Ku-
ramoto order parameter Z(t). Such a form of network interaction is also called mean-field
coupling since the drive H(t) to a single oscillator is proportional to a mean field, that is,
the average formed from the states of all oscillators in the network.

Problem 1 How can mean-field reductions elucidate Kuramoto’s original problem of the
onset of synchronization in an infinitely large population of oscillators? We will revisit this
problem in Example 1 below.

2.2 Populations of Kuramoto–Sakaguchi oscillators
Sakaguchi generalized Kuramoto’s model by introducing an additional phase-lag (or
phase-frustration) parameter which approximates a time delay in the interactions between
oscillators [63, 82]. While Sakaguchi originally considered a single population of oscilla-
tors, here we generalize to multiple interacting populations. Specifically, we consider the
dynamics of M populations of N Kuramoto–Sakaguchi oscillators, where the phase of os-
cillator k in population σ evolves according to

θ̇σ ,k = ωσ ,k +
M∑

τ=1

Kστ

N

N∑

j=1

sin(θτ ,j – θσ ,k – αστ ), (4)
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and where Kστ ≥ 0 is the coupling strength and αστ is the phase lag between populations σ

and τ .f The function gστ (φ) = Kστ sin(φ – αστ ) mediates the interactions between oscilla-
tors, and we refer to it as the coupling function; later on we will also briefly touch upon
what happens if the sine function is replaced by a general periodic coupling function. As
in the Kuramoto model, an important point is that the influence between oscillators (τ , j)
and (σ , k) depends only on their phase difference (rather than explicitly on their phases).g

Thus, this form of interaction only depends on the relative phase between oscillator pairs
rather than the absolute phases. An important consequence is that the dynamics of Eqs. (4)
do not change if we consider all phases in a different reference frame. For example, going
into a reference frame rotating at constant frequency ωf ∈R corresponds to the transfor-
mation θσ ,k 
→ θσ ,k – ωf t, only shifts all intrinsic frequencies by ωf rather than changing
the dynamics qualitatively.h

The network (4) of M interacting populations of Kuramoto–Sakaguchi oscillators is a
sinusoidally coupled oscillator network. The amount of synchrony in population σ is de-
termined by the Kuramoto order parameter (3) for population σ ,

Zσ =
1
N

N∑

j=1

eiθσ ,j . (5)

Combining coupling strength and phase lag, we define the complex interaction parame-
ter cστ := Kστ e–iαστ between populations σ and τ . By the same calculation as above, the
network (4) is equivalent to (1) with constant intrinsic frequencies ωσ ,k and driving field

Hσ =
M∑

τ=1

cστ Zτ , (6)

being a linear combination of the mean fields of the other populations.
Networks of Kuramoto–Sakaguchi oscillators have been used as models for synchro-

nization phenomena. In neuroscience, individual oscillators can represent neurons [83] or
large numbers of neurons in neural masses [51, 84, 85]. In the framework of the model (4),
the populations can be thought of as M neural masses. In contrast to models where neural
masses only have a phase, here, the macroscopic state of each population (neural mass) is
determined by an amplitude (the level of synchrony Rσ := |Zσ |) and an angle (the average
phase φσ := arg Zσ ).

2.3 Theta and Quadratic Integrate and Fire neurons
Theta neurons The Theta neuron is the normal form of the saddle-node-on-invariant-
circle (SNIC) or saddle-node-infinite-period (SNIPER) bifurcation [86] as shown in Fig. 2:
At the excitation threshold, a saddle and a node coalesce on an invariant circle (i.e., limit
cycle of the neuron). Its state is described by the phase θ ∈ T on the invariant circle and
we use the conventioni that the neuron fires (it emits a spike) when the phase crosses
θ = π (Fig. 2). The Theta neuron is a valid description of the dynamics of any neuron
model undergoing this bifurcation, in some parameter neighborhood of the bifurcation.
The Theta neuron is also a canonical Type 1 neuron [87].
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Figure 2 A Theta neuron (7) with phase θk subject to constant input I undergoes a saddle node bifurcation
on an invariant circle (SNIC) as the quantity ιk = ηk + κ I is varied. The neuron spikes if its phase θk crosses
θk = π . If ιk < 0 the Theta neuron is excitable: the phase will relax to the stable equilibrium and a phase
perturbation of the phase across the saddle equilibrium (its threshold) will lead to a single spike before
returning to equilibrium. For ιk > 0, the Theta neuron is spiking periodically

Consider a single population of Theta neurons (hence we drop the population index σ )
whose phases evolve according to

θ̇k = 1 – cos θk + (1 + cos θk)(ηk + κI), (7)

where ηk is the excitability of neuron k sampled from a probability distribution, κ is the
coupling strength, and I is an input current—this could result from external input (driv-
ing) or network interactions. A population of Theta neurons (7) is a sinusoidally coupled
system of the form (1) with

ωk = 1 + ηk + κI, Hk = i(ηk + κI – 1). (8)

The dependence of H ,ω on the excitability parameters ηk can be made explicit by writ-
ing ωk = ω(ηk), H(t) = H(t;ηk). Thus, results for models of the form (1) will also apply to
networks of Theta neurons.

The Theta neuron was introduced in 1986 [87] and has since then been widely used in
neuroscience. We refer for example to [88, 89] for a general introduction and only list a few
concrete applications here. For example, Monteforte and Wolf [90] used these neurons as
canonical type I neuronal oscillators in their study of chaotic dynamics in large, sparse
balanced networks. References [91, 92] considered spatially extended networks of Theta
neurons and the authors were specifically interested in traveling waves of activity in these
networks. More recently, other authors have used some of the techniques for dimensional
reduction reviewed in the present paper to study infinite networks of Theta neurons [93,
94]. We will discuss these reduction methods in detail further below.

Problem 2 What different dynamics are possible in a single population of globally cou-
pled Theta neurons with pulsatile coupling? What is the onset for firing of neurons? We
will revisit this problem in Example 2 below.

Quadratic Integrate and Fire neurons The Theta neuron model is closely related to the
Quadratic Integrate and Fire (QIF) neuron model [95] whose state is given by a membrane
voltage V ∈ (–∞, +∞). More precisely, using the transformation Vk = tan (θk/2) the pop-
ulation of Theta neurons (7) becomes a population of QIF neurons, where the membrane
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voltage Vk of neuron k evolves according to

V̇k = V 2
k + ηk + κI. (9)

Here we use the rule that the neuron fires (it emits a spike) if its voltage reaches Vk(t–) =
+∞ and then the neuron is reset to Vk(t+) = –∞.

QIF neurons have been widely used in neuroscientific modeling; see [88, 89] for a gen-
eral introduction and [96–99] for a few examples in the literature where QIF neurons are
employed. They have the simplicity of the more common leaky integrate-and-fire model
in the sense of having only one state variable (the voltage), but are more realistic in the
sense of actually producing spikes in the voltage trace V (t).

Problem 3 How does a network of neurons respond to a transient stimulus? Specifically,
if this neuronal network is modeled by a heterogeneous network of all-to-all coupled QIF
neurons. This is a pertinent question, for example, if stimulation is used for therapeutic
purposes such as in Deep Brain Stimulation. We will revisit this problem in Example 3
below.

3 Exact mean-field descriptions for sinusoidally coupled phase oscillators
In this section, we review how sinusoidally coupled phase oscillator networks (1) can be
simplified using mean-field reductions. Under specific assumptions (detailed further be-
low) we derive low-dimensional system of ordinary differential equations for macroscopic
mean-field variables that describe the evolution of sinusoidally coupled phase oscilla-
tor networks (1) exactly. This is in contrast to reductions that are only approximate or
only valid over short time scales. Thus, these reduction methods facilitate the analysis of
the network dynamics: rather than looking at a complex, high-dimensional network dy-
namical system (or its infinite-dimensional mean-field limit) we can analyze simpler, low-
dimensional equations. For example, for the infinite-dimensional limit of the Kuramoto
model, we obtain a closed system for the evolution of Z, a two-dimensional system (since Z
is complex). While the Kuramoto model is particularly simple, the methods apply for gen-
eral driving fields Hσ ,k that could contain delays or depend explicitly on time. We give
concrete examples in Sect. 4 below, where we apply the reduction techniques.

Importantly, these mean-field reductions also apply to oscillator networks which are
equivalent to (1). In particular, this applies to neural oscillators: The QIF neuron and the
Theta neuron are equivalent as discussed above. Consequently, rather than assuming a
model for a neural population (e.g., [51]), we actually obtain an exact description of inter-
acting neural populations in terms of their macroscopic (mean-field) variables.

3.1 Ott–Antonsen reduction for the mean-field limit of nonidentical oscillators
The Ott–Antonsen reduction applies to the mean-field limit of populations of indistin-
guishable sinusoidally coupled phase oscillators (1). First, we first outline the basic steps
to derive the equations and highlight the assumptions made along the way; this section
contains mathematical details and may be omitted on first reading. We then summarize
the Ott–Antonsen equations for the models described in the previous section.
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3.1.1 *Derivation of the reduced equations
Consider the dynamics of the (mean-field) limit of (1) with infinitely many oscillators,
N → ∞. Note that while the population index σ is seen as discrete in this paper, it is
also possible to apply the reduction to continuous topologies of populations such as rings;
cf. [100, 101]. To simplify the exposition, we consider the classical case where the intrinsic
frequency is the random parameter, ωσ ,k = ησ ,k , and that the driving field is the same for
all oscillators in any population, Hσ ,k = Hσ ; for details on systems with explicit parame-
ter dependence (such as Theta neurons) see [102, 103]. Hence, suppose that the intrinsic
frequencies ωσ ,k are randomly drawn from a distribution with density hσ (ω) on R. In the
mean-field limit, the state of each population at time t is not given by a collection of oscil-
lator phases, but rather by a probability density fσ (ω,ϑ ; t) for an oscillator with intrinsic
frequency ω ∈R to have phase ϑ ∈ T; see [104] for general properties of such distributions
and statistics on the circle. For a set of phases B ⊂ T the marginal

∫
B
∫
R

fσ (ω,ϑ ; t) dω dϑ

determines the fraction of oscillators whose phase is in B at time t. Moreover, we have
∫
T

fσ (ω,ϑ ; t) dϑ = hσ (ω) for all times t by our assumption that the intrinsic frequencies do
not change over time.

Conservation of oscillators implies that the dynamics of the mean-field limit of (1) is
given by the transport equationj

∂fσ
∂t

+
∂

∂ϑ
(vσ fσ ) = 0 with vσ = ωσ + Im

(
Hσ (t)e–iϑ)

. (10)

Because oscillators are conserved,k the change of the phase distribution over time is de-
termined by the change of phases given by the velocity vσ through (1) at time t of an
oscillator with phase ϑ and intrinsic frequency ω. While the transport equation for the
mean-field limit originally appears in Refs. [105, 106], it can be rigorously derived from a
measure-theoretic perspective as a Vlasov limit [107].

Before we discuss how to find solutions for the transport equation (10), it is worth noting
that it has been analyzed directly in the context of functional analysis for networks of
Kuramoto oscillators. Stationary solutions of (10) and their stability have been studied
recently in the context of all-to-all coupled networks of Kuramoto oscillators [108–112].
Taking the mean-field limit for N → ∞ depends on the homogeneity of the network. For
certain classes of structured networks—networks on convergent families of random where
a limiting object (a graphon) can be defined as the number of nodes N → ∞—it is possible
to define and analyze the dynamics of the resulting continuum limit [113, 114].

Ott and Antonsen [115] showed that there exists a manifold of invariant probability
densities for the transport equation (10). Specifically, if fσ (ϑ ,ω; 0) is on the manifold, so
will the density fσ (ϑ ,ω; t) for any time t ≥ 0. Let

Zσ :=
∫ ∞

–∞

∫ π

–π

fσ (ϑ ,ω; t)eiϑ dϑ dω (11)

denote the Kuramoto order parameter (3) in the mean-field limit. We will see below that
the evolution on the invariant manifold is now described by a simple ordinary differential
equation for Zσ for each population σ .

In the following we outline the key steps to derive a set of reduced equations and refer
to [115–117] for further details. Let w̄ denote the complex conjugate of w ∈ C. Suppose
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that fσ (ϑ ,ω; t) can be expanded in a Fourier series in the phase angle ϑ of the form

fσ (ϑ ,ω; t) =
hσ (ω)

2π

(
1 + f +

σ + f̄ +
σ

)
where f +

σ =
∞∑

n=1

f (n)
σ (ω, t)einϑ . (12)

Here it is assumed that f +
σ has an analytic continuation into the lower complex half plane

{Im(ω) < 0} (and f –
σ := f̄ +

σ into {Im(ω) > 0}); even with this assumption we can solve a large
class of problems, but it poses a restriction to a number of practical cases discussed in
Sect. 3.3 below. Ott and Antonsen now imposed the ansatz that Fourier coefficients are
powers of a single function aσ (ω, t),

f (n)
σ (ω, t) =

(
aσ (ω, t)

)n. (13)

If |aσ (ω, t)| < 1 this ansatz is equivalent to the Poisson kernel structure for the unit disk,
f +
σ = (aσ eiϑ )/(1 – aσ eiϑ ). Substitution of (12) into (10) yields

∂aσ

∂t
+ iωaσ +

1
2
(
Hσ a2

σ – H̄σ

)
= 0, (14)

Thus, the ansatz (13) reduces the integro partial differential equation (10) to a single ordi-
nary differential equation in aσ for each population σ . (More precisely, there is an infinite
set of such equations, one for each ω with identical structure.) Finally, with (13) we obtain

Zσ =
∫ ∞

–∞
āσ (ω, t)hσ (ω) dω, (15)

which relates aσ and the order parameter Zσ in (11).
Assuming analyticity, this integral may be evaluated using the residue theorem of com-

plex analysis.l These equations take a particularly simple form if the distribution of intrin-
sic frequencies hσ (ω) is Lorentzian with mean ω̂σ and width �σ , i.e.,

hσ (ω) =
1
π

�σ

(ω – ω̂σ )2 + �2
σ

, (16)

since hσ (ω) has two simple poles at ω̂σ ± i�σ and thus (15) gives Zσ = āσ (ω̂σ – i�σ , t)
under the assumption |aσ (ω, t)| → 0 as Im(ω) → –∞. As a result, we obtain the two-
dimensional differential equation—the Ott–Antonsen equations for a Lorentzian fre-
quency distribution—for the order parameter in population σ ,

Żσ = (–�σ + iω̂σ )Zσ +
1
2

Hσ –
1
2

H̄σ Z2
σ . (OA)

We note that this reduction method also works for other frequency distributions hσ , as
outlined in [117]. However, the resulting mean-field equation will not always be a sin-
gle equation but could be a set of coupled equations. For example, for multi-modal fre-
quency distributions hσ the Ott–Antonsen equations will have an equation for each mode;
see [103, 118, 119] and the discussion below.

The derivation above only states that there exists an invariant manifold of densities fσ
for the transport equation (10). What happens to densities fσ that are not on the manifold
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as time evolves? Under some assumptions on the distribution in intrinsic frequencies hσ ,
Ott and Antonsen also showed in [116] that there are densities fσ that are attracted to the
invariant manifold. In other words, the dynamics of the Ott–Antonsen equations capture
the long-term dynamics of a wider range of initial phase distributions fσ (ϑ ,ω; 0), whether
they satisfy (13) initially or not. We discuss this in more detail below.

3.1.2 Ott–Antonsen equations for commonly used oscillator models
We now summarize the Ott–Antonsen equations (OA) for the commonly used oscillator
models described in the Sect. 2. Here we focus on Lorentzian distributions of the intrinsic
frequencies or excitabilities; for Ott–Antonsen equations for other parameter distribu-
tions such as normal or bimodal distributions see [115, 118].

The Kuramoto model Consider the mean-field limit of the Kuramoto model (2) with a
Lorentzian distribution of intrinsic frequencies. Recall that the driving field for the Ku-
ramoto model was H(t) = KZ(t). Substituting this into (OA) we obtain Ott–Antonsen
equations for the Kuramoto model

Ż = (–� + iω̂)Z +
K
2

Z
(
1 – |Z|2), (17)

a two-dimensional system of equations since Z is complex-valued.

Kuramoto–Sakaguchi equations For the Kuramoto–Sakaguchi equations (4) the driv-
ing field is a weighted sum of the individual population order parameters (6). Assuming
a Lorentzian distribution of intrinsic frequencies with mean ω̂σ and width �σ for each
population σ ∈ {1, . . . , M}, we obtain from (OA) the Ott–Antonsen equations for coupled
populations of Kuramoto–Sakaguchi oscillators,

Żσ = (–�σ + iω̂σ )Zσ +
1
2

( M∑

τ=1

cστ Zτ – Z2
σ

M∑

τ=1

c̄στ Z̄τ

)

. (18)

In other words, the Ott–Antonsen equations are a 2M-dimensional system that describe
the interactions of the order parameters Zσ .

Networks of Theta neurons Consider a single population of Theta neurons with drive I(t)
given by (7) with parameter-dependent intrinsic frequencies and driving field (8); we omit
the population index σ . Assume that the variations in excitability ηk are chosen from a
Lorentzian distribution mean η̂ and width �. We obtain the Ott–Antonsen equations for
the mean-field limit of a population of Theta neurons (8)

Ż =
1
2
(
(iη̂ – �)(1 + Z)2 – i(1 – Z)2) +

1
2

i(1 + Z)2κI. (19)

Note that in contrast to (18), this is not a closed set of equations yet as the exact form of
the input current is still unspecified. We will close these equations in Sect. 4.2.1 below by
writing I in terms of Z for different types of neural interactions.

The order parameter for the Theta neuron directly relates to quantities with a phys-
ical interpretation such as the average firing rate of the network. Integrating the phase
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distribution (12) over the excitability parameter η under assumption (13) we obtain the
distribution of all phases,

p(θ , t) =
1

2π

(
1 – |Z|2

1 – Ze–iθ – Z̄eiθ + |Z|2
)

=
1

2π
Re

(
1 + Z̄eiθ

1 – Z̄eiθ

)
, (20)

where Z may be a function of time. This distribution can be used to determine the prob-
ability that a Theta neuron has phase θ . Since a Theta neuron fires when its phase crosses
θ = π , the average firing rate r(t) of the network at time t is the flux through θ = π , i.e.,

r(t) =
(
p(θ , t)θ̇

)∣∣
θ=π

=
1
π

Re

(
1 – Z̄(t)
1 + Z̄(t)

)
. (21)

Here we used that θ̇ |θ=π = 2 by (7), independent of θ . The same result is obtained from the
firing rate equations of the QIF neuron as we explain in the next paragraph.

3.1.3 Ott–Antonsen reduction for equivalent networks
The mean-field reductions are also valid for systems that are equivalent to a network of
sinusoidally coupled phase oscillators (1). As an example, we discussed the relationship
between QIF and Theta neurons above via the transformation V = tan (θ/2), which carries
over to the mean-field limit of infinitely many neurons where the Ott–Antonsen equations
apply. More specifically, this transformation converts the distribution of phases (20) into
a distribution

p̃(V , t) =
X(t)

π ((V – Y (t))2 + X2(t))
(22)

of voltages where Z = (1–W̄ )/(1+W̄ ) and W = X + iY and X, Y ∈R. Equation (22) is called
the Lorentzian ansatz in [102]. Importantly, the quantity W is obtained from a conformal
transformation of the order parameter Z. This allows one to convert the Ott–Antonsen
equations for the Theta neurons (19) to an equation for the mean field W = (1 – Z̄)/(1 + Z̄),
given by

Ẇ = iη̂ + � – iW 2 + iI, (23)

which describes the QIF neurons. The advantage of this formulation is that both the real
and imaginary parts of W have physical interpretations: Y (t) is the average voltage across
the network and X(t) relates to the firing rate r of the population, i.e., the flux at V = ∞,
since limV→∞ p̃(V , t)V̇ (t) = X(t)/π = r [102].

3.2 Watanabe–Strogatz reduction for identical oscillators
Mean-field reductions are possible for both finite and infinite networks for populations
of identical oscillators. These reductions are due to the high level of degeneracy in the
system, i.e., there are many quantities that are conserved as time evolves. This degen-
eracy was first observed in the early 1990s for coupled Josephson junction arrays [120],
which relate directly to Kuramoto’s model of coupled phase oscillators [121]. Watanabe
and Strogatz [122, 123] were able to calculate the preserved quantities explicitly using a
clever transformation of the phase variables, thereby reducing the Kuramoto model from
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the N oscillator phases to three time-dependent (mean-field) variables together with N –3
constants of motion. In terms of mathematical theory, the degeneracy originates from re-
strictions imposed by the algebraic structure of the equations [124–126] which is still an
area of active research [127, 128].

The Watanabe–Strogatz reduction applies for sinusoidally coupled phase oscillator pop-
ulations where oscillators within populations are identical, i.e., all oscillators have the
same intrinsic frequency, ωσ ,k = ωσ , and are driven by the same field Hσ ,k = Hσ . In-
deed, Watanabe–Strogatz and Ott–Antonsen reductions have been shown to be intri-
cately linked [125, 129] as we briefly discuss below. Here, we focus on finite networks
for simplicity. In the following section we give the equations in generality and give some
mathematical detail. Then, the equations are subsequently stated for the commonly used
oscillator models discussed above.

3.2.1 *Constants of motion yield reduced equations
The dynamics of a finite population (1) with N > 3 identical oscillators can be described
exactly in terms of three macroscopic (mean-field) variables [122, 123, 129, 130]: the bunch
amplitude ρσ , bunch phase Φσ , and phase distribution variable Ψσ . Similar to the mod-
ulus and phase of the Kuramoto order parameter Zσ = Rσ eiφσ , the bunch amplitude ρσ

and bunch phase Φσ characterize synchrony (or equivalently, the maximum of the phase
distribution); while (Rσ ,φσ ) and (ρσ ,Φσ ) do not coincide in general, they do if the pop-
ulation is fully synchronized. The phase distribution variable Ψσ determines the shift of
individual oscillators with respect to Φσ as illustrated in Fig. 3.

For a population of sinusoidally coupled phase oscillators (1) with driving field Hσ =
Hσ (t) the macroscopic variables evolve according to the Watanabe–Strogatz equations

ρ̇σ =
1 – ρ2

σ

2
Re

(
Hσ e–iΦσ

)
, (WSa)

Φ̇σ = ωσ +
1 + ρ2

σ

2ρσ

Im
(
Hσ e–iΦσ

)
, (WSb)

Ψ̇σ =
1 – ρ2

σ

2ρσ

Im
(
Hσ e–iΦσ

)
. (WSc)

Mathematically speaking, the reduction to three variables means that the phase space TN

of (1) is foliated by 3-dimensional leafs, each of which is determined by constants of mo-
tion, ψ (σ )

k , k = 1, . . . , N (N – 3 are independent). In other words, the choice of constants of
motion determines a specific 3-dimensional invariant subset on which the macroscopic
variables evolve. The Watanabe–Strogatz equations arise from the properties of Riccati

Figure 3 Illustration of the bunch variables in the Watanabe–Strogatz
formalism. Just like the Kuramoto order parameter Zσ , the bunch amplitude
and bunch phase in zσ = ρσ eiΦσ characterize the level of synchrony. The
quantities Zσ and zσ do however only coincide if the population is fully
synchronized or for uniformly distributed constants of motion in the limit
N → ∞ (see text). The phase distribution variable Ψσ is related to the shift
and distribution of individual oscillators with respect to Φσ
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equations and the bunch variables are parameters of a family of Möbius transformations
which determine the system’s dynamics; see [125–128] for more details on the mathemat-
ics behind these equations.

From a practical point of view, two things are needed to use the Watanabe–Strogatz
equations (WS) to understand oscillator networks of the form (1). First, since the driving
field H is often a function of the population order parameters Zτ , τ = 1, . . . , M, we need to
translate Zσ into the bunch variables to get a closed set of equations. Write zσ := ρσ eiΦσ .
As shown for example in [129], we have

Zσ = zσ γσ where γσ (ρσ ,Ψσ ) =
1

Nρσ

N∑

j=1

ρσ eiΨσ + eiψ (σ )
j

eiΨσ + ρσ eiψ (σ )
j

. (25)

Second, one needs to determine the constants of motion from the initial phases θσ ,k(0):
A possible choice is to set ψ

(σ )
k := θσ ,k(0) and ρσ (0) = Φσ (0) = Ψσ (0) = 0; see [123] for a de-

tailed discussion and different way to choose initial conditions that avoids the singularity
at ρσ = 0. Taken together, the dynamics of individual oscillators (1) are now determined
by (WS) via (25) and vice versa.

The relationship (25) between the bunch variables and the order parameter also indi-
cates how the Watanabe–Strogatz equations and the Ott–Antonsen equations are linked.
Pikovsky and Rosenblum [130] showed that for constants of motion that are uniformly dis-
tributed on the circle, ψ

(σ )
k = 2πk/N , we have γσ → 1 as N → ∞. Consequently, Zσ = zσ

for such a choice of constants of motion in the limit of infinitely many oscillators. For the
Kuramoto model with Hσ = Zσ , Eqs. (WSa) and (WSb) depend on Ψ only through γ . Thus,
for constant γ = 1 Eqs. (WSa) and (WSb) decouple from (WSc). These two equations are
equivalent to the Ott–Antonsen equations (OA) in the mean-field limit for identical oscil-
lators. To summarize, the dynamics of the mean-field limit for identical oscillators is given
by the Watanabe–Strogatz equations together with a distribution of constants of motion.
For the particular choice of a uniform distribution of constants of motion, the equations
decouple and the effective dynamics are given by the Ott–Antonsen equations.

3.2.2 Watanabe–Strogatz equations for commonly used oscillator models
We now summarize the Watanabe–Strogatz equations (WS) for the commonly used os-
cillator models described in Sect. 2.

Kuramoto–Sakaguchi equations For the Kuramoto–Sakaguchi model (4), the driving
field H is a linear combination of the order parameters, Hσ =

∑M
τ=1 cστ Zτ . Assuming that

the oscillators within each population are identical, ωσ ,k = ωσ , the dynamics are governed
by the Watanabe–Strogatz equations for coupled Kuramoto–Sakaguchi populations,

ρ̇σ =
1 – ρ2

σ

2
Re

( M∑

τ=1

cστ γτρτ ei(Φτ –Φσ )

)

, (26a)

Φ̇σ = ωσ +
1 + ρ2

σ

2ρσ

Im

( M∑

τ=1

cστ γτρτ ei(Φτ –Φσ )

)

, (26b)

Ψ̇σ =
1 – ρ2

σ

2ρσ

Im

( M∑

τ=1

cστ γτρτ ei(Φτ –Φσ )

)

. (26c)
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Networks of Theta neurons For a finite population of identical Theta neurons (8) with
identical excitability η and input current I(t) the Watanabe–Strogatz equations for iden-
tical Theta neurons [131] evaluate to

ρ̇ =
1 – ρ2

2
Re

(
i(η + κI – 1)e–iΦ)

, (27a)

Φ̇ = 1 + η + κ +
1 + ρ2

2ρ
Im

(
i(η + κI – 1)e–iΦ)

, (27b)

Ψ̇ =
1 – ρ2

2ρ
Im

(
i(η + κI – 1)e–iΦ)

. (27c)

Note that, as for the Ott–Antonsen reduction above, one still needs to close this system
by writing I in terms of the bunch variables in (WS) and the constants of motion. This is
not straightforward and requires a considerable amount of computations [131].

3.2.3 Reductions for equivalent networks
For a finite network of identical QIF neurons governed by (9) with ηj = η for all j, the
transformation V = tan (θ/2) converts this network into a network of identical Theta
neurons (7). Consequently, such a network will also be described by equations of the
form (27a)–(27c). As mentioned above, in the limit N → ∞ and equally spaced constants
of motion, Eq. (27c) will decouple from (27a) and (27b). In this case, writing z = ρeiΦ we
find that z satisfies (19) or equivalently (23) (with η̂ = η and � = 0).

3.3 Limitations and challenges
Before we apply the mean-field reductions to particular oscillator networks in the next
section, some (mathematical) comments on the limitations of these approaches are in or-
der.

The main assumption behind the reduction methods is that network interactions are
mediated by a coupling function with a single harmonic (of arbitrary order). There are
explicit examples [132–134] that show that the reductions, as described above, become
invalid. For example chaotic dynamics may occur where the reduction would yield an ef-
fective two-dimensional phase space; we discuss this example below. This does not mean
that the reductions break down completely, and there may still be some degeneracy in the
system if the interaction is of a specific form; see [135] for a more detailed discussion. It
remains a challenge to identify what part of the mean-field reduction (if any) remains valid
for more general interaction functions and phase response curves.

The Ott–Antonsen reduction for the mean-field limit allows for the oscillators to be
nonidentical. By contrast, the Watanabe–Strogatz reduction of finite networks requires
oscillators to be identical. Neither of these approaches applies to finite networks of non-
identical oscillators, and understanding such networks remains a challenge. Direct nu-
merical simulations to elucidate the dynamics of networks of N almost identical oscil-
lators are challenging as one needs to integrate an almost integrable dynamical system.m

There has also been some recent progress analyzing situations in which the Ott–Antonsen
or Watanabe–Strogatz equations do not apply. First, a perturbation theory for the exact
mean-field equations has been developed to elucidate the dynamics for systems that are
close to sinusoidally coupled, for example if there are very weak higher-harmonics in the
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interaction function [136]. Second, while not an exact representation of the dynamics,
the collective coordinates approach by Gottwald and coworkers [76, 137, 138] has been
instructive to gain insights into the dynamics of finite networks of nonidentical oscillators.

Finally, Ott and Antonsen showed that the manifold of oscillator densities fσ on which
the reduction holds is attracting [116]. Their method of proof has been shown to apply
to a wider class of systems [103]. As pointed out by Mirollo [139] and later elaborated
further [128], their proof is based on a strong smoothness assumption on the density fσ
which implies limitations to this approach. More precisely, to be able to evaluate con-
tour integrals using the residue theorem, it is typically assumed that the integrand in (15),
containing the intrinsic frequency distribution hσ and the density fσ , is holomorphic. In
particular, this assumption is only valid for distributions hσ that allow for arbitrarily large
(or small) intrinsic frequencies with nonzero probability: The identity theorem for holo-
morphic functions implies that hσ (ω) > 0 for all ω ∈ R. Any distribution for which the
intrinsic frequencies are bound to a finite interval—the intrinsic frequencies of any finite
collection of oscillators will lie in a finite interval—are excluded.n Hence, while the man-
ifold described by Ott and Antonsen attracts some class of oscillator densities, it is not
clear how large this class actually is (it does not include δ-distributions where all oscil-
lators have the same phase). Put differently, it is important to explicitly characterize the
space of densities in which the Ott–Antonsen manifold is attracting.

4 Dynamics of coupled oscillator networks
We now discuss global synchrony and synchrony patterns in phase oscillator networks,
and highlight how the reductions presented in the previous section simplify their analysis.
While we indicate along the way how most of these systems are relevant from the point
of view of biology and neuroscience, we here take a predominantly dynamical systems
perspective and highlight the applicability of, for example, bifurcation theory [61, 140].
We focus on a small number of coupled populations of oscillators, which can be seen as
building blocks for larger models consisting of many coupled populations (e.g., regions of
interest in a whole-brain model as discussed in Sect. 5 below).

4.1 Networks of Kuramoto-type oscillators
We first consider networks of Kuramoto–Sakaguchi and related Kuramoto-type oscilla-
tors. Despite their simplicity, they have found widespread application, for example in neu-
roscience, as outlined in Sect. 2.2, to understand synchronization phenomena. The net-
work interactions of such oscillators depend on phase differences. Bifurcations may occur
as one introduces an explicit phase dependency to the coupling [141] such as in the net-
works of Theta neurons which we discuss in the following section.

4.1.1 One oscillator population
Example 1 We first revisit Kuramoto’s original problem (see Problem 1 in Sect. 2.1 above)
from the perspective of mean-field reductions: Given a globally coupled network of Ku-
ramoto oscillators (2) with a Lorentzian distribution of intrinsic frequencies, what is the
critical coupling strength Kc where oscillators start to synchronize?

This problem is surprisingly easy to solve in the mean-field limit N → ∞ using the Ott–
Antonsen reduction. Assume that the distribution of intrinsic frequencies is a Lorentzian
with mean ω̂ and width �. Recall that the order parameter Z evolves according to the
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Ott–Antonsen equation (17): Separating (17) for Z = Reiφ into real and imaginary parts
yields

Ṙ =
(

–� +
K
2

–
K
2

R2
)

R, (28a)

φ̇ = ω̂. (28b)

Moreover, the manifold on which (17) describes the mean-field limit of (2) attracts initial
phase distributions. Since the equation for the mean phase φ is completely uncoupled, it
suffices to analyze (28a). Thus, Kuramoto’s problem in the infinite-dimensional mean-field
limit reduces to solving the one-dimensional real ordinary differential equation (28a): By
elementary analysis, we find that the equilibrium R = 0 is stable for K < Kc = 2� and loses
stability in a pitchfork bifurcation where the solution R =

√
1 – 2�/K > 0 becomes stable.

The same analysis applies to the Kuramoto–Sakaguchi network (4) with M = 1 for phase
lag α ∈ (– π

2 , π
2 ) with K replaced by K cos(α) in (17); note that for phase lag sinα �= 0 we

have φ̇ = ω̂ + K sin (α)R(1 – R2) so that the frequency now depends nontrivially on R.
Global synchronization of finite networks of identical Kuramoto–Sakaguchi oscillators

is readily analyzed using the Watanabe–Strogatz reduction. As above, a phase variable
decouples and we obtain a two-dimensional system which describes the dynamics of (4)
for M = 1. Its analysis [122] shows that the system will synchronize perfectly, R → 1 as
t → ∞, for α ∈ (– π

2 , π
2 ) (attractive coupling) and converge to an incoherent equilibrium,

R → 0 as t → ∞, for α ∈ ( π
2 , 3π

2 ) (repulsive coupling). In the marginal case of cos(α) = 0
the system is Hamiltonian [123].

Multimodal distributions in the Kuramoto model While Kuramoto’s original model con-
sidered a single oscillator population with unimodally distributed frequencies—such as
the Lorentzian distribution—Kuramoto also speculated on what dynamic behaviors a net-
work consisting of a single population would exhibit if the distribution of natural frequen-
cies was instead bimodal [80]: Depending on the coupling strength, the width and spacing
of the peaks of the frequency distribution, oscillators may either aggregate and form a
single crowd of oscillators, thus forming one “giant oscillator,” or disintegrate into two
mutually unlocked crowds, corresponding to two giant oscillators.

Crawford analyzed this case rigorously for the weakly nonlinear behavior near the in-
coherent state using center manifold theory [142] and thus explained local bifurcations
in the neighborhood of the incoherent state. Using the Ott–Antonsen reduction, Martens
et al. [118] obtained exact results on all possible bifurcations and the bistability between
incoherent, partially synchronized, and traveling wave solutions. Similarly, rather than su-
perimposing two unimodal frequency distributions, Pazó and Montbrió [119] considered
a modified model where the distribution of intrinsic frequencies is the difference of two
Lorentzians; this allows for the central dip to become zero.o

Interestingly, to describe a single population with an m-modal frequency distribution
using the Ott–Antonsen reduction, one obtains a set of m coupled ordinary differential
equations. This set describes the oscillator dynamics of m order parameters (11) asso-
ciated with each peak of the m-modes, resulting in collective behavior where oscillators
either aggregate to a single or potentially up to m groups of oscillators. The question arises
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as to whether the resulting set of equations can be related to M-population models as de-
scribed by (4). This question was picked up by Pietras and Daffertshofer [143] who showed
that the dynamical equations describing M = 1 population with a bimodal distribution
can be mapped to M = 2 populations (4) with nonidentical coupling strengths Kστ with
equivalent bifurcations. However, this equivalence breaks down for M = 3 populations
and trimodal distributions.

Higher-order and nonadditive interactions Note that networks of Kuramoto–Sakaguchi
oscillators (4) make two important assumptions on the network interactions. First, the
interactions are sinusoidal, as discussed above, since the coupling function has a single
harmonic. Second, the network interactions are additive [72, 144], that is, the interaction
of two distinct oscillators on a third is given by the sum of the individual interactions. By
contrast, coupling between oscillatory units generically contains nonlinear (nonadditive)
interactions; concrete examples include oscillator networks [145], interactions in ecologi-
cal networks [146], and nonlinear dendritic interactions between neurons [147–149]. For
weakly coupled oscillator networks, higher-order interaction terms include higher har-
monics in the coupling function as well as coupling terms which depend nonlinearly on
three or more oscillator phases [150]. Such terms naturally arise in phase reductions: If the
interaction between the nonlinear oscillators is generic, Ashwin and Rodrigues [151] cal-
culated these corresponding higher-order interaction terms explicitly for a globally cou-
pled network of symmetric oscillators close to a Hopf bifurcation. Moreover, higher-order
interactions in the effective phase dynamics can also arise for additively coupled nonlinear
oscillators [152], for example in higher-order phase reductions [153]. Nonadditive inter-
actions can be exploited for applications, such as to build neurocomputers [154].

The mean-field reductions here can be used to analyze networks with particular type of
higher-order interactions. For example, Skardal and Arenas [155] consider a single globally
coupled population of indistinguishable oscillators where the pure triplet interactions of
the form sin(θl + θj – 2θk) determines the joint influence of oscillators j, l onto oscillator k.
In the mean-field limit, they find multistability and hysteresis between incoherent and
partially synchronized attractors. In general, however, higher-order interaction terms lead
to phase oscillator networks where the mean-field reductions cease to apply [134].

Generalizations Much progress has been made to understand synchronization and more
complicated collective dynamics in globally coupled networks of Kuramoto oscillators and
their generalizations; see [141, 156, 157] for surveys. While we discussed Kuramoto’s prob-
lem as an example, the same methods apply for more general types of driving fields H :
They may include homogeneous [115] or heterogeneous delays [158, 159] (the latter one
being of specific interest for coupled populations of neurons), they may be heterogeneous
in terms of the contribution of individual oscillators [160], or they may include gener-
alized mean fields [127]. However, note that much richer dynamics are possible when
the assumptions of sinusoidal coupling breaks down. Because of the Poincaré–Bendixson
theorem [61, 161], chaos is not possible for the mean-field reductions for M = 1 popu-
lations of Kuramoto–Sakaguchi oscillators since their effective dynamics is one- or two-
dimensional, respectively. By contrast, even for fully symmetric networks, higher harmon-
ics in the phase response curve/coupling function may lead to chaotic dynamics [132, 134].
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4.1.2 Two oscillator populations
Two coupled populations of Kuramoto–Sakaguchi oscillators can give rise to a larger va-
riety of synchrony patterns. Before considering general coupling between populations, we
first discuss the widely investigated case of identical (and almost identical) populations of
Kuramoto–Sakaguchi oscillators (4) with Lorentzian distribution of intrinsic frequencies.
To be precise, we say that all populations of (4) are identical if for any two populations σ , τ ,
there is a permutation which sends σ to τ and leaves the corresponding equations (18) for
the mean-field limit invariant. Intuitively speaking, this means we can swap any popula-
tion with any other population without changing the dynamics. Mathematically speaking,
the populations are identical if the Ott–Antonsen equations (18) have a permutational
symmetry group that acts transitively [162]. Note that for the populations to be identical,
the oscillators do not need to be identical. But if the populations are identical, then the
frequency distributions hσ are the same for all populations. Moreover, if the oscillators
within each population have the same intrinsic frequency (as required for the Watanabe–
Strogatz reduction) then all oscillators in the network have the same intrinsic frequency.

Oscillator networks which are organized into distinct populations support synchrony
patterns which may be localized, that is, some populations show more (or less) synchrony
than others. While this may not be surprising if the populations are nonidentical, such
dynamics may also occur when the populations are identical. For identical populations of
Kuramoto–Sakaguchi oscillators, the localized dynamics arise purely through the network
interactions—the populations would behave identically if uncoupled—and hence consti-
tute a form of dynamical symmetry breaking. The phenomenon of “coexisting coherence
and incoherence” has been dubbed a chimera state in the literature [163] and has attracted
a tremendous amount of attention in the last two decades; see [63–65] for recent reviews.
To date, an entire zoo of chimeras and chimera-like creatures has emerged in a range of
different networked dynamical systems—with attempts to classify and distinguish these
creatures [164, 165]—beyond the original context of phase oscillators [166]. Here we will
discuss chimeras only in coupled populations of Kuramoto–Sakaguchi oscillators (4) as
examples of localized patterns of (phase and frequency) synchrony.

Synchrony patterns for two identical populations The Ott–Antonsen reduction has been
instrumental to understand the dynamics of networks consisting of M = 2 populations of
Kuramoto–Sakaguchi oscillators. Assuming that all intrinsic frequencies are distributed
according to a Lorentzian, we obtain two coupled Ott–Antonsen equations (18) for the
limit of infinitely large populations. In this section we focus on networks of identical pop-
ulations, that is, the distributions of intrinsic frequencies are the same and coupling is sym-
metric; cf. Fig. 4(a). This allows one to simplify the parametrization of the system by intro-
ducing self-coupling cs = kse–iαs := c11 = c22 and neighbor-coupling cn = kne–iαn := c12 = c21

parameters and the coupling strength disparity A = (ks – kn)/(ks + kn). Writing Zσ = Rσ eiφσ

as above, the state of (18) is fully determined by the amount of synchrony in each pop-
ulation R1, R2 and the difference of the mean phase ψ := φ1 – φ2 of the two populations;
cf. [167]. Naturally, such networks support three homogeneous synchronized states, a fully
synchronized state SS0 = {(R1, R2,ψ) = (1, 1, 0)} where both populations are synchronized
and in phase, a cluster state SSπ = {(R1, R2,ψ) = (1, 1,π )} where both populations are syn-
chronized, and in anti-phase and a completely incoherent state I = {(R1, R2,ψ) = (0, 0,∗)}.
A bifurcation analysis shows that only one of the three is stable for any given choice of
coupling parameters [167].
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Figure 4 Synchrony patterns arise in networks of M = 2 populations. Panel (a) shows a cartoon of the
network structure; the nodes of population σ = 1 are colored in red and the nodes of population σ = 2 in
blue. The coupling within each populations (black edges) is determined by the coupling strength ks and
phase lag αs and between populations (gray edges) by kn and αn . Panel (b) shows various stable synchrony
patterns in the network as phase snapshots of the solutions to Eqs. (4) with N = 1000 oscillators per
population once the system has relaxed to an attractor; here S indicates a population that is (fully) phase
synchronized (Rσ = 1) and D a nonsynchronized population (Rσ < 1). The parameters are αs = 1.58 in the first
three plots—here different initial conditions converge to different attractors—and αs = 1.64 in the rightmost.
The parameters A = 0.7, αn = 0.44 were the same in all plots

In addition to homogeneous synchronized states, networks of two identical populations
also support synchronization patterns where synchrony is localized in one of the two pop-
ulations, a chimera, as illustrated in Fig. 4(b). As discussed by Abrams et al. [168], for
homogeneous phase lags (αs = αn) stable complete synchrony SS0 and a stable chimera in
DS = {R1 < 1, R2 = 1}, which is either stationary or oscillatory, coexist.p Note that the Ott–
Antonsen reduction simplifies the analysis tremendously: It translates the problem for
large oscillator networks into a low-dimensional bifurcation problem. Martens et al. [169]
outlined the basins of attraction of the coexisting stable synchrony patterns and thereby
answering the question as to which (macroscopic or microscopic) initial conditions con-
verge to either state. Through directed perturbations it is possible to switch between dif-
ferent synchrony patterns and thus functional configurations of the network that are of
relevance in neuroscience [32, 170], thus embodying memory states or controlling the
predominant direction of information flow between subpopulations of oscillators [33].
Further work addresses the robustness of chimeras against various inhomogeneities, in-
cluding heterogeneous frequencies [100, 171], network heterogeneity [172], and additive
noise [171].

If one allows for heterogeneous phase-lag parameters, αs �= αn, a variety of other at-
tractors with localized synchrony emerge [167, 173]. This includes in particular solu-
tions in DD = {0 < R1 < R2, R2 < 1} where neither population is fully phase synchronized;
cf. Fig. 4(b). This includes not only stationary or oscillatory solutions of the state vari-
ables, but also attractors where the order parameters Z1, Z2 fluctuate chaotically both
in amplitude and with respect to their phase difference [174]. Finite networks with two
populations of identical oscillators may be analyzed using the Watanabe–Strogatz equa-
tions (26a)–(26c). One finds that the bifurcation scenarios for the appearance of chimera
states is similar to the dynamics observed for infinite populations [175]. Moreover, macro-
scopic chaos also appears in many finite networks [174] down to just two oscillators per
population.

A note on finite networks of identical oscillators and localized frequency synchrony For
finite oscillator networks, the widely used intuitive definition of a chimera as a solution
for networks of (almost) identical oscillators where “coherence and incoherence coexist”
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is difficult to apply in a mathematically rigorous way. Hence, Ashwin and Burylko [176]
introduced the concept of a weak chimera which provides a mathematically testable def-
inition of a chimera state in finite networks of identical oscillators; here, we only give an
intuition and refer to [176, 177] for a precise definition. The main feature of a weak chimera
is that identical oscillatory units (with the same intrinsic frequency if uncoupled) generate
rhythms with two or more distinct frequencies solely through the network interactions—
this is a fairly general form of synchronization. In the context of dynamical systems with
symmetry [162], weak chimeras are, as outlined in [178], an example of dynamical symme-
try breaking where identical elements have nonidentical dynamics since their frequencies
are distinct.

More specifically, a weak chimera is characterized by localized frequency synchrony in
a network of identical oscillators. Similar to the definition of identical populations further
above, we say that the oscillators are identical if for a pair of oscillators (σ , k) and (τ , j) there
exists an invertible transformation of the oscillator indices which keeps the equations of
motion invariant. In other words, all oscillators are effectively equivalent. Now θ̇σ ,k(t) is
the instantaneous frequency of oscillator (σ , k)—the change of phase at time t—and thus
the asymptotic average frequency of oscillators (σ , k) is

Ωσ ,k = lim
T→∞

1
T

∫ T

0
θ̇σ ,k(t) dt. (29)

Rather than looking at phase synchrony (θσ ,k = θτ ,j) of oscillators (σ , k) and (τ , j), we say
that the oscillators are frequency synchronized if Ωσ ,k = Ωτ ,j. Weak chimeras now show
localized frequency synchrony, that is, all oscillators within one population have the same
frequency Ωσ = Ωσ ,k while there are at least two distinct populations τ �= τ ′ that have
different frequencies, Ωτ �= Ωτ ′ . Note that weak chimeras are impossible for a globally
coupled network of identical phase oscillators (that is, there is only a single population
M = 1): Such a network structure forces frequency synchrony of all oscillators [176].

Weak chimeras have been shown to exist in a range of networks which consist of M = 2
interacting populations of phase oscillators. For weakly interacting populations of phase
oscillators with general interaction functions there can be stable weak chimeras with
quasiperiodic [176, 179] and chaotic dynamics [177]. However, neither weak interaction
nor general coupling functions are necessary for dynamics with localized frequency to
arise: Even sinusoidally coupled networks (4) of just N = 2 oscillators per population sup-
port stable regular [175] and chaotic [174] weak chimeras.

Dynamics of nonidentical populations with distinct frequency distributions As men-
tioned above, chimera states appear for two identical populations of phase oscillators.
Using the Ott–Antonsen equations, Laing showed that these dynamics persist for (4) with
M = 2 if �σ > 0 and ωσ �= ωσ ′ in the large N limit [100]; see also [180] for further bifurcation
analysis. As heterogeneity is increased, stationary chimera states can become oscillatory
through Hopf bifurcations and may eventually be entirely destroyed.

Montbrió et al. [181] studied two populations where not only frequencies were non-
identical (�σ > 0, Ωσ �= Ωσ ′ ), but also the coupling was asymmetric between the two pop-
ulations. In another study, Laing et al. considered noncomplete networks to study the
sensitivity of chimera states against gradual removal of random links starting from a com-
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plete network [172], and found that oscillations of chimera states can be either created or
suppressed depending on the type of link removal.

Dynamics of nonidentical populations with asymmetric input or output Another way to
break symmetry in a population of Kuramoto oscillators is inspired by neural networks
with excitatory and inhibitory coupling [56]: One replaces K with a random coefficient Kj

inside the sum in (2). Thus, oscillators with Kj > 0 mimic the behavior of excitatory neu-
rons while those with Kj < 0 correspond to inhibitory neurons. The interactions between
oscillators j and l are not necessarily symmetric, unless Kj = Kl . The study by Hong and
Strogatz [182] reveals that—somewhat surprisingly—extending the Kuramoto model in
this fashion yields dynamics that resembles that of the original model (2) when the in-
trinsic frequencies ωk are nonidentical. Similar coupling schemes accommodating for ex-
citatory and inhibitory coupling have been devised for multi-population models (5), to
study how solitary states emerge within a synchronized population, thus leading to the
formation of clusters [183].

Another possibility to include coupling heterogeneity considered by Hong and Strogatz
is to introduce an oscillator dependent coupling parameter Kk outside of the sum in Eq. (2);
see [184]. This relates to social behavior: An oscillator k is conformist if Kk > 0 (it wants
to synchronize) and contrarian if Kk < 0. This setup may give rise to complex states where
oscillators bunch up in groups with a phase difference of π or move like a traveling wave.
A later study found that the system with identical oscillators harbors even more complex
dynamics, such as incoherent and other states [185].

4.1.3 Three and more oscillator populations
Stable synchrony patterns for three identical populations We first consider identical pop-
ulations with reciprocal coupling in the sense that cστ = cτσ ; see [186, 187]. Here the cou-
pling is determined by self-coupling ks and phase lag αs, as well as coupling strength and
phase lag to the neighboring populations kn1 , kn2 , kn3 and αn1 , αn2 , αn3 . Reducing the phase-
shift symmetry, the state of the system is determined by the magnitude of the order pa-
rameters, Rσ = |Zσ | and the phase differences between the mean fields ψ1 = φ2 – φ1 and
ψ2 = φ3 – φ1.

Networks of three populations support a variety of localized synchrony patterns. For
coupling with a triangular symmetry, that is, kn1 = kn2 = kn3 ≤ ks and αn1 = αn2 = αn3 = αs,
Martens [186] identified coexisting synchrony patterns: There are three stable solution
branches, full phase synchrony SSS = {R1 = R2 = R3 = 1} as well as two chimeras in
SDS = {R1 = R3 = 1 > R2} and in DSD = {R1 = R3 < R2 = 1}. The Ott–Antonsen reduction
allows one to perform an explicit bifurcation analysis of the resulting planar system and
shows bifurcations similar to networks with M = 2 populations. Remarkably, there are pa-
rameter values where SSS as well as the chimeras in SDS, DSD are stable simultaneously;
this gives rise to the possibility of switching between these three synchronization patterns
through directed perturbations [169]. This triangular symmetry is broken in [187] by al-
lowing kn2 �= kn1 . Thus, the coupling between populations 2 and 3 can be gradually reduced
or increased until the network effectively becomes a chain of three populations or effec-
tively two populations, respectively. A bifurcation analysis shows that the chimeras in SDS
and DSD persist and provides stability boundaries.
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Metastability and dynamics of localized synchrony for identical oscillators The syn-
chrony patterns above were primarily considered as attractors: For a range of initial phase
configurations, the long term dynamics of the oscillator network will exhibit a particular
synchrony pattern. While this may be a good approximation for large scale neural dynam-
ics on a short time-scale, the global dynamics of large-scale brain neural networks are
usually much more complicated [26]. Neural recordings show that particular dynamical
states (of synchrony and activity) persist for some time before a rapid transition to another
state [53, 188, 189]. One approach to model such dynamics is to assume that there are a
number of metastable states (rather than attractors) in the network phase space which are
connected dynamically by heteroclinic trajectoriesq [190]. If heteroclinic trajectories form
a heteroclinic networkr—the nodes of this network are dynamical states, links are con-
necting heteroclinic trajectories—the system can exhibit sequential switching dynamics:
The state will stay close to one metastable state before a rapid transition, or switch, to
the next dynamical state. Heteroclinic networks have long been subject to investigations,
both theoretically [191] and with respect to applications in neuroscience [43]; one possible
modeling approach is to write down kinetic (Lotka–Volterra type) equations for interact-
ing macroscopic activity patterns [192, 193] which support heteroclinic networks.

Heteroclinic dynamics also arise in phase oscillator networks. For globally coupled oscil-
lator networks, i.e., M = 1 population, there are heteroclinic networks between patterns of
phase synchrony [194, 195]. As mentioned above, all oscillators in these networks are nec-
essarily frequency synchronized, that is, they show the same rate of activity. More recently,
it was shown that more general network interactions than those in (4) allow for heteroclinic
switching between weak chimeras as states with localized frequency synchrony [196]: Each
population will sequentially switch between states with high activity (frequency) to a state
with low activity. One of the simplest phase oscillator networks which exhibits such dy-
namics consists of M = 3 populations of N = 2 oscillators where K > 0 mediates the cou-
pling strength between populations. More precisely, the dynamics of oscillator (σ , k) are
given by

θ̇σ ,k = sin(θσ ,3–k – θσ ,k + α) + r sin
(
2(θσ ,3–k – θσ ,k + α)

)

– K cos(θσ–1,1 – θσ–1,2 + θσ ,3–k – θσ ,k + α)

– K cos(θσ–1,2 – θσ–1,1 + θσ ,3–k – θσ ,k + α)

+ K cos(θσ+1,1 – θσ+1,2 + θσ ,3–k – θσ ,k + α)

+ K cos(θσ+1,2 – θσ+1,1 + θσ ,3–k – θσ ,k + α). (30)

Here the interactions within each population is not just given by a first harmonic as in (4)
but also by a second harmonic (scaled by a parameter r); this is sometimes referred to as
Hansel–Mato–Meunier coupling [194]. Moreover, the interactions between populations
are not additive but consist of nonlinear functions of four phase variables; this is a concrete
example of higher-order interaction terms discussed above. It remains an open question
whether such generalized interactions are necessary to generate heteroclinic dynamics
between weak chimeras.

Dynamics of metastable states with localized (frequency) synchrony are of interest also
in larger networks of M > 3 populations. Since explicit analytical results are hard to get for
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such networks, Shanahan [197] used numerical measures to analyze how metastable and
“chimera-like” the network dynamics are. Recall that Rσ (t) encodes the level of synchrony
of population σ at time t. Let 〈·〉σ , Varσ denote the mean and variance over all populations
σ = 1, . . . , M and 〈·〉T , VarT mean and variance over the time interval [0, T]. Now

λ =
〈
VarT

(
Rσ (t)

)〉
σ

gives how much synchrony of individual populations vary over time while

χ =
〈
Varσ

(
Rσ (t)

)〉
T

encodes how much synchrony varies across populations. Intuitively, large values of λ cor-
respond to a high level of “metastability” while large values of χ indicate that the dynamics
are “chimera-like”. On the one hand, these measures have subsequently been applied to
more general oscillator networks [198, 199]. On the other hand, they have been applied
to study the effect of changes to the network structure (for example through lesions) to
the dynamics of Kuramoto–Sakaguchi oscillators (4) with delay on human connectome
data [200].

Populations with distinct intrinsic frequencies Mean-field reductions have also been suc-
cessful at describing networks of nonidentical populations with distinct mean intrinsic
frequencies. Examples of such a setup include interacting neuron populations in the brain
with distinct characteristic rhythms. Resonances between the mean intrinsic frequencies
give rise to higher-order interactions. Subject to certain conditions, one can apply the Ott–
Antonsen reduction for the mean-field limit [201] or the Watanabe–Strogatz reduction
for finite networks [202] to understand the collective dynamics. If resonances between
the mean intrinsic frequencies of the populations are absent [203], then the mean-field
limit equations (OA)—a system with 2M real dimensions—simplify even further. More
specifically, assume that the intrinsic frequencies are distributed according to a Lorentzian
distribution with width �σ and write Zσ = Rσ eiφσ for the Kuramoto order parameter as
above. As outlined in [203], nonresonant interactions imply that—as in (28a)—the equa-
tions for Rσ in (OA) decouple from the dynamics of the mean phases φσ . That is, the
macroscopic dynamics are described by the M-dimensional system of equations

Ṙσ =

(

–�σ –
M∑

τ=1

bστ Rτ +
(
1 – R2

σ

)
(

aσ +
M∑

τ=1

cστ Rτ

))

Rσ , (31)

where aσ , bστ , cστ ∈R are parameters which depend on the underlying nonlinear oscillator
system. Note that these equations of motion are similar to Lotka–Volterra type dynamical
systems which have been used to model sequential dynamics in neuroscience [192, 193].
Indeed, (31) give rise to a range of dynamical behavior including sequential localized
synchronization and desynchronization through cycles of heteroclinic trajectories and
chaotic dynamics [203].

4.2 Networks of neuronal oscillators
Neurons can be modeled at different levels of realism and complexity [204]. The approach
we (and many others) take is to ignore the spatial extent of individual neurons (includ-
ing dendrites, soma, and axons) and treat each neuron as a single point whose state is



Bick et al. Journal of Mathematical Neuroscience            (2020) 10:9 Page 27 of 43

described by a small number of variables such as intracellular voltage and the concentra-
tions of certain ions. We also ignore stochastic effects and describe the dynamics of single
neurons by a small number of ordinary differential equations. By definition, the state of
a Theta neuron or a QIF neuron is described by a phase variable. However, under the
assumption of weak coupling, higher-dimensional models with a stable limit cycle (e.g.,
Hodgkin–Huxley, FitzHugh–Nagumo) can be reduced to a phase description using phase
reduction [43, 44].

The two main types of coupling between neurons are through synapses or gap junctions.
In synaptic coupling, the firing of a presynaptic neuron causes a change in the membrane
conductance of the postsynaptic neuron, mediated by the release of neurotransmitters.
This has the effect of causing a current to flow into the postsynaptic neuron, the current
being of the form

I(t) = g(t)
(
V rev – V

)
, (32)

where V rev is the reversal potential for that synapse, V is the voltage of the postsynap-
tic neuron, and g(t) is the time-dependent conductance. The sign of V rev relative to the
resting potential of the postsynaptic neuron governs whether the synapse is excitatory or
inhibitory. The function g(t) may be stereotypical, i.e., it may have the same functional
form for each firing of the presynaptic neuron, where t is measured from the last firing, or
it may have its own dynamics. One approximation in this type of modeling is to ignore the
value of V in (32) and just assume that the firing of a presynaptic neuron causes a pulse of
current to be injected into the postsynaptic neuron(s).

In gap junctional coupling a current flows that is proportional to voltage differences, so
if neurons k and j have voltages Vk and Vj, respectively, and g is the (constant) gap junction
conductance, the current flowing from neuron k to neuron j is I = g(Vk – Vj).

4.2.1 Populations of Theta neurons
In this section, we consider a population of Theta neurons (7) where the network interac-
tions are generated by the input from all other neurons in the network. For input through
synapses, for example, each neuron receives signals from the rest of the network through
the input current I . Here, we will focus on the Ott–Antonsen reduction for Theta neu-
rons (19) in the mean-field limit, assuming that variations in excitability are distributed
according to a Lorentzian. The key ingredient here is to write the network input in terms
of the mean-field variables to obtain a closed system of mean-field equations; as we will
see below, this is possible for a range of couplings that are relevant for neural dynamics.
For now, we focus on one population and omit the population index σ .

In the following, we consider a network where each neuron emits a pulse-like signal of
the form

Pn(θ ) = an(1 – cos θ )n (33)

as it fires (the phase θ increases through π , see Figs. 5 and 2). The parameter n ∈N deter-
mines the sharpness of a pulse and an = 2n(n!)2/(2n)! is the normalization constant such
that

∫ 2π

0 Pn(θ ) dθ = 2π ; cf. Fig. 5. The average output of all neurons in the network, each
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Figure 5 The function Pn(θ ) is a pulse centered at θ = π , the phase where a neuron spikes; here Pn is plotted
for n = 1, . . . , 9. As n increases, the pulse becomes narrower

one contributing identically, is

P(n) =
1
N

N∑

j=1

Pn(θj). (34)

Now P(n) can be expressed as a function of the order parameter Z: As shown in [93, 205,
206] we have for the mean-field limit of infinitely many neurons, N → ∞,

P(n) = an

(

C0 +
n∑

q=1

Cq
(
Zq + Z̄q)

)

(35)

with coefficients

Cq =
n∑

k=0

k∑

m=0

n!(–1)kδk–2m,q

2k(n – k)!m!(k – m)!
. (36)

Here δp,q = 1 if p = q and δp,q = 0 otherwise. In the limit of infinitely narrow pulses, n → ∞,
we find

P∞ =
1 – |Z|2

1 + Z + Z̄ + |Z|2 . (37)

Synaptic coupling If each Theta neuron (7) receives instantaneous synaptic input in the
form of current pulses as in [93, 94, 205], the input current to each neuron is the network
output

I(t) = P(n)(t). (38)

A positive coupling strength κ > 0 for the Theta neuron (7) corresponds to excitatory cou-
pling and κ < 0 to inhibitory coupling. Note that since I now is a function of the Kuramoto
order parameter by (35), we have closed the Ott–Antonsen equation for the Theta neu-
ron (19) to obtain a system describing the dynamics for infinitely many oscillators.

Example 2 The challenge in Problem 2 was to classify what dynamics are possible in a
single population of globally coupled Theta neurons with pulsatile coupling and specify
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the onset where neurons start to fire. The dynamical repertoire of a population of Theta
neurons can be understood using the Ott–Antonsen equations for the limit N → ∞. We
follow the work by Luke et al. [93] who considered a network with pulsatile coupling (33)
with nontrivial width n = 2 and direct synaptic coupling. According to (35) the pulse shape
evaluates to

P(2)(Z) = 1 +
1
6

Z2 +
1
6

Z̄2 –
4
3

Re(Z)

as a function of Z. With direct synaptic coupling I = κP(n), the Ott–Antonsen equa-
tions (19) for an infinitely large population is thus given by

Ż = –
1
2

((
� – iη – iκ

(
1 +

1
6

Z2 +
1
6

Z̄2 –
4
3

Re(Z)
))

(1 + Z)2 + i(1 – Z)2
)

.

This closed, two-dimensional set of equations can readily be analyzed using dynamical
systems methods.

Different dynamic behaviors may be observed for (19) while varying up to three param-
eters: the coupling strength κ , excitability threshold η̂, and the width of their distribu-
tion �. Luke et al. [93] found three distinct stable dynamical regimes: (i) partially syn-
chronous rest, (ii) partially synchronous spiking, and (iii) collective periodic wave dynam-
ics. In partially synchronous rest, most neurons remain quiescent (a stable node in the
two-dimensional Ott–Antonsen equations (19) for Z); in the partially synchronous spik-
ing regime most neurons spike continuously (a stable focus for Z); and in the collective
periodic wave neurons fire periodically (a stable periodic orbit of the order parameter Z).
Varying κ from small to large values, we typically observe a transition from partially syn-
chronous spiking (quiescence) to partially synchronous spiking, with growing synchrony
as κ increases. This transition is characterized by hysteresis arising around two fold bi-
furcations, originating in a cusp bifurcation. For certain parameter values, the order pa-
rameter may undergo a Hopf bifurcation from partially synchronous spiking to collective
periodic wave dynamics so that Z(t) becomes oscillatory.

In a neuroscientific context, knowledge of macroscopic quantities other than the or-
der parameter Z is sometimes preferable, such as the firing rate given via (21) as r =
1
π

Re((1 – Z̄)/(1 + Z̄)). Alternatively, as outlined in Sect. 3.1.3, the macroscopic equa-
tion (23) for W (t) is equivalent to (19) via a conformal transformation and describes the
evolution of the population’s firing rate r = 1

π
Re(W ) and average voltage V = Im(W ). The

algebraic solution for stationary states is particularly simple if one chooses infinitely nar-
row pulse shape (n → ∞); however, note that this choice may be biophysically less real-
istic [93] and renders more degenerate dynamic behavior, e.g., bifurcations giving rise to
oscillations in the order parameter (firing rate) disappear in this particular network with
M = 1 population.

Finally, we note that if in addition the excitability of neurons varies periodically, more
complicated dynamics and macroscopic chaos can be observed [205]. While this example
covers networks of Theta neurons, the same approach applies to networks with QIF neu-
rons with direct synaptic coupling as given by (38); see, for example, the analyses in [207–
209].
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A simple modification of (7) is to add synaptic dynamics by letting the input current I
satisfy the equation

τsyn İ = P(n) – I, (39)

where τsyn is the time-constant governing the synaptic dynamics. In the limit τsyn → 0 the
synaptic dynamics are instantaneous and we recover the previous model. Again, with (35)
the Ott–Antonsen equations (19) and (39) form a closed system of equations that describe
the dynamics in the mean-field limit.

Gap junctions Along with synaptic coupling, the other major form of coupling between
neurons is via gap junctions [210], in which a current flows between connected neurons
proportional to the difference in their voltages. Using the equivalence of the Theta and QIF
neuron, it was shown in [211] that adding all-to-all gap junction coupling to (7) results in
the equations

θ̇k = 1 – cos θk – κGJ sin θk + (1 + cos θk)

(

ηk + κI +
κGJ

N

N∑

j=1

tn(θj)

)

, (40)

where κGJ is the strength of gap junction coupling and the function tn(θ ) := sin θ/
(1+cos θ +ε) with 0 < ε � 1 stems from the coordinate transformation between Theta and
QIF neurons. Note that (40) is still a sinusoidally coupled system. Assuming a Lorentzian
distribution of excitability ηk centered at η̂ with width �, the dynamics in the limit of
infinitely many oscillators are given by the Ott–Antonsen equation,

Ż =
1
2
(
(iη̂ – �)(1 + Z)2 – i(1 – Z)2) +

1
2
(
i(1 + Z)2(κI + κGJQ

)
+ κGJ(1 – Z2)), (41)

where

Q =
∞∑

m=1

(
bmZm + b̄mZ̄m)

, bm =
i(ρm+1 – ρm–1)

2
√

2ε + ε2
, (42)

and ρ =
√

2ε + ε2 – 1 – ε. Note that the input current is still to be defined: There could be
gap junction only coupling, I = 0, instantaneous synaptic input (38) or synaptic dynam-
ics (39) as defined above.

The reduced equations allow one, for example, to study what effect the strength of the
gap junction coupling has on the dynamics. Laing [211] found that for excitatory synaptic
coupling (i.e., κ > 0) increasing the strength of gap junction coupling could induce oscil-
lations in the mean field via a Hopf bifurcation, and destroy previously existing bistability
between steady states with high and low mean firing rates. For inhibitory synaptic cou-
pling (i.e., κ < 0) increasing the strength of gap junction coupling stabilized a steady state
with high mean firing rate, inducing bistability in the network. In spatially extended sys-
tems, it was found that gap junction coupling could destabilize “bump” states via a Hopf
bifurcation, and create traveling waves of activity.

Note that in recent work [212] the authors showed that one can take the limit ε → 0 in
the above derivation, thus simplifying the analysis and allowing one to treat synaptic and
gap junctional coupling (in an infinite network of QIF neurons) on equal footing.
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Conductance dynamics The above models for Theta neurons have all assumed that
synaptic coupling is via the injection of current pulses. However, Ref. [60] considers a
model in which synaptic input was in the form of a current, equal to the product of a
conductance and the difference between the voltage of a QIF neuron and a reversal po-
tential V rev. Converting to Theta neuron variables, a particular case of their model can be
written as

θ̇k = 1 – cos θk + (1 + cos θk)
(
ηk + g(t)V rev) – g(t) sin θk (43)

with a time-dependent gating function

g(t) = κgP∞(t) (44)

that depends on the network output modulated by the coupling strength κg > 0. (Note
that quantities like g and V rev have been non-dimensionalized by scaling relative to di-
mensional quantities.) The corresponding Ott–Antonsen equations read

Ż =
1
2
(
(iη̂ – �)(1 + Z)2 – i(1 – Z)2) +

1
2
(
i(1 + Z)2gV rev +

(
1 – Z2)g

)
(45)

which is closed since g(t) is a function of Z by (37).
The dynamics of this network are straightforward and as expected: For inhibitory cou-

pling (V rev < 0) there is one stable fixed point for all η̂ while for excitatory coupling
(V rev > 0) there can be a range of negative η̂ values for which the network is bistable be-
tween steady states with high and low average firing rates. This bistability in an excitato-
rially self-coupled network is of interest as such a network can be thought of as a one-bit
“memory”, stably storing one of two states.

4.2.2 Populations of Winfree oscillators
The state of a Winfree oscillator [79] is also described by a single angular variable. The
Winfree model predates the Kuramoto model and mimics the behavior of biological sys-
tems such as flashing fireflies or circadian rhythms in Drosophila [213]. In general, the
Winfree model does not exhibit sinusoidal coupling. But under suitable assumptions, a
network of Winfree oscillators is amenable to simplification through the Ott–Antonsen
reduction [214]. Consider a network of N Winfree phase oscillators which evolve accord-
ing to

θ̇k = ωk +
ε

N

N∑

j=1

P̂(θj)Q(θk) (46)

for k = 1, . . . , N and 2π-periodic functions Q and P̂. The function Q is the phase response
curve of an oscillator, which can be measured experimentally or determined from a model
neuron [215]. If we set Q(θ ) = sinβ – sin (θ + β) with parameter β then we have a sinu-
soidally coupled phase oscillator network. Moreover, suppose that network interaction is
given by a pulsatile function P̂(θ ) = Pn(θ –π ). While P̂ has its maximum at θ = 0 (unlike the
interactions for the Theta neuron), it can be expanded in a similar way as (35) into powers
of the Kuramoto order parameter. Assuming that the intrinsic frequencies are distributed
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as a Lorentzian, we obtain an Ott–Antonsen equation that describes the dynamics in the
limit of infinitely large networks; see [214] for details.

Several groups have used this description to study the dynamics of infinite networks
of Winfree oscillators. Pazó and Montbrió [214] found that such a network typically has
either an asynchronous state (constant mean field) or a synchronous state (periodic oscil-
lations in the mean field, indicating partial synchrony within the network) as attractors.
They also found that varying n (the sharpness of Pn) had a significant effect on the syn-
chronizability of the network. Laing [206] studied a spatially-extended network of Win-
free oscillators and found a variety of stationary, traveling, and chaotic spatiotemporal
patterns. Finally, Gallego et al. [216] extended the work in [214], considering a variety of
types of pulsatile functions and phase response curves.

4.2.3 Coupled populations of neurons
While the previous sections discussed a network consisting of a single population of all-
to-all coupled model neurons, an obvious generalization is to consider networks of two
or more populations. Consider M populations of Theta neurons and let P(n)

τ denote the
output of population τ . For example for synaptic interaction amongst populations, (38)
generalizes to

Iσ (t) =
M∑

τ=1

κστ P(n)
τ (t), (47)

where κστ is the input strength from population τ to population σ . Writing each Pτ

in terms of the order parameter Zτ of population τ , we obtain a closed set of M Ott–
Antonsen equations (19) that describe the dynamics for infinitely large populations.

Interacting populations of neural oscillators give rise to neural rhythms. Laing [206]
considered a network of two coupled populations of Theta neurons, one inhibitory and
one excitatory. Such networks support a periodic PING rhythm [56] in which the activity
of both populations is periodic, with the peak activity of the excitatory population activity
preceding that of the inhibitory one. Analyses of similar types of networks were performed
in [52, 60, 102]. Periodic behavior of the mean-field equations of coupled populations of
Theta neurons (or equivalently QIF neurons) allows one to extract macroscopic phase
response curves [217] which allows one to treat such ensembles as single oscillatory units
in weakly coupled networks.

Coupled populations of Winfree oscillators support a range of dynamics. In Ref. [214]
the authors considered a symmetric pair of networks of Winfree oscillators. They ob-
served a variety of dynamics such a quasiperiodic chimera state in which one population
is perfectly synchronous while the order parameter of the other undergoes quasiperiodic
oscillations. They also found a chaotic chimera state where one population is phase syn-
chronized while the order parameter of the other one fluctuates chaotically.

4.2.4 Further generalizations
The oscillator populations considered above do not have any sense of space themselves,
apart from possibly two networks being at different points in space. The brain is three-
dimensional, although the presence of layered structures could lend itself to a description
in terms of a series of coupled two-dimensional domains. Regardless, the spatial aspects of
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neural dynamics should not be ignored. Several authors have generalized the techniques
discussed above to spatial domains, deriving neural field models: spatiotemporal evolu-
tion equations for macroscopic quantities [94, 206, 211, 218–221]. The main advantage of
using this new generation of neural field models is that unlike classical models [58, 59],
the derivations from networks of Theta neurons are exact rather than heuristic. Rather
than considering neural field models on continuous spatial domains, one could consider
them on a discretized network where each node is a brain region and coupling strength
are given, for example, by connectome data. We will briefly touch upon these approaches
in Sect. 5 below.

All of the networks above have been all-to-all coupled which is rarely the case in real-
world systems. The in-degree of a neuron is the number of neurons connecting to it,
whereas the out-degree is the number of neurons to which it connects. For all-to-all cou-
pled networks all neurons have the same in- and out-degree (N – 1 for a network of N
neurons with no self-coupling). Several groups have considered networks in which the
degrees are distributed, having a power law distribution, for example [172, 222–224]. The
mean-field reduction techniques discussed above can be used to accurately and efficiently
investigate the influence of this aspect of network structure on dynamics, and this is of
great interest.

Networks of identical oscillators (whether finite or infinite) are described by the
Watanabe–Strogatz equations. While the application to Kuramoto-type oscillator net-
works is fairly standard, the corresponding mean-field equations for Theta neurons (27a)–
(27c) have only recently been analyzed.

5 Applications to neural modeling
The mean-field reductions and their applications to populations of neural units—as next-
generation neural mass models—can give new modeling approaches to understand the
dynamics of large-scale neural networks. In the previous section, we took a descriptive
dynamical systems perspective to understand the asymptotic dynamics and their bifurca-
tions. We now change the perspective to elucidate how the mean-field reductions can give
new insights into neural network dynamics.

5.1 Dynamics of neural circuits and populations
Example 3 How does a heterogeneous network of all-to-all coupled QIF neurons react
to a transient stimulus (see Problem 3 above)? To answer this question using exact mean-
field reductions, we analyze a situation similar to that studied by Montbrió et al. [102]:
Consider a network of QIF neurons (9) with dynamics governed by

V̇k = V 2
k + Ik + κr(t) + s(t) (48)

for k = 1, . . . , N with the rule that when the voltage Vk = ∞, it is reset to Vk = –∞. The Ik are
chosen from a Lorentzian distribution with mean η̂ and width parameter �, and neurons
are coupled all-to-all with coupling strength κ . The mean firing rate is given by

r(t) =
1
N

N∑

j=1

∑

�

δ
(
t – t�

j
)
,
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representing the average neural activity in the past, i.e., t�
j is the firing time of the jth neu-

ron and � is summed only over past firing times, t�
j < t. The input current s(t) will be

specified below. Letting N → ∞ the network is described by (23), which in the present
case becomes

Ẇ = iη̂ + � – iW 2 + i
(
κr(t) + s(t)

)
, (49)

where r = Re(W )/π . Suppose we set � = 0.1, η̂ = –0.5 and κ = 5. Having η̂ < 0 means that
in the absence of coupling most neurons will be excitable rather than firing, and κ > 0
models excitatory coupling.

We set the transient input to be s(t) = 0.3 for 50 < t < 150 and s(t) = 0 otherwise. The
mean firing rate and voltage (i.e., averages over the ensemble of all neurons) of the network
are shown in Fig. 6 (top and bottom, respectively) for both the network (48) and the mean
field description (49). For these parameters the network is bistable: After the input current
is removed, the network settles into an active state rather than returning to the quiescent
state that it was in before stimulation. The agreement between the two descriptions is
excellent, but the mean-field description is obviously much easier to numerically integrate
and is also amenable to bifurcation analysis, as for example shown in [102].

The influence of oscillatory drive on network dynamics related to cognitive processing
in simple working memory and memory recall tasks was studied by Schmidt et al. [225]
in coupled populations of inhibitory and excitatory QIF neurons. The authors use the
exact mean-field reductions reviewed here to elucidate how oscillatory input frequency
stimulates the intrinsic dynamics in networks of recurrently coupled spiking neurons to
change memory states. They find that slow delta and theta band oscillations are effective
in activating network states associated with memory recall, while faster beta oscillations
can serve to clear memory states via resonance mechanisms.

Figure 6 Response of the network (48) (blue lines) and the mean field description (49) (red lines) to a
transient input turned on at t = 50 and off at t = 150 (shaded background). A network of 1000 neurons was
used and the data from the network was smoothed by convolution with a Gaussian of standard deviation
0.05 time units before plotting
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Balanced sparse networks of inhibitory QIF neurons were studied by di Volo and
Torcini [226] to explain the onset of self-sustained collective oscillations via reduction
to mean-field dynamics. This is achieved by applying the mean field reductions to sparse
networks with diverging coupling strength, an approximation which works surprisingly
well as their bifurcation diagrams show the onset of collective oscillations. The applica-
tion of the mean-field reductions to sparse networks is ad hoc and further mathematical
insights to define a well-defined limit would be desirable.

The work by Dumont and Gutkin [227] used exact phase reductions to identify the bio-
physical neuronal and synaptic properties that are responsible for macroscopic dynamics,
such as the interneuronal gamma (ING) and the pyramidal-interneuronal gamma (PING)
population rhythms. The key ingredient is the phase response curve of oscillatory macro-
scopic behavior of two coupled populations of QIF neurons [217], one excitatory and one
inhibitory, as mentioned above. Assuming weak coupling between two sets of two pop-
ulations (i.e., four populations total) the authors extracted phase locking patterns of the
coupled multipopulation model.

A number of other studies have employed mean-field reductions for populations of QIF
neurons to elucidate how microscopic neural properties affect the macroscopic dynam-
ics [228, 229]. This includes insights into networks of heterogeneous QIF neurons with
time delayed, all-to-all synaptic coupling [230, 231], or two such networks [232]. More-
over, the mean-field reductions are also useful to analyze spatially extended networks of
both Theta and QIF neurons, where localized patterns—such as bump states—can occur;
cf. [94, 220].

5.2 Large-scale neural dynamics
The theory above is particularly pertinent for the study of mesoscopic or macroscopic
brain dynamics, i.e., dynamics arising from tissue that contains large populations of neu-
rons. Such dynamics are recorded using a variety of different modalities in animal or hu-
man studies, including local field potentials (LFP) and magneto- or electroencephapholo-
graphic (MEG/EEG) recordings [19]. These recording modalities pick up changes in
dynamics that arise in conjunction with fluctuations in populations of neurons. Thus,
when recordings are taken from multiple sensors in different positions simultaneously,
one can map the spatiotemporal dynamics of large regions of the brain. The inclusion of
multiple sensors yields a natural way to construct a large-scale network representation
of the dynamics of the brain, in which sensors are nodes of the network. Alternatively,
dynamics can be attributed to distributed regions of interest within the brain, for exam-
ple using approaches to solve the inverse problem and thereby reconstruct a network in
source space [233, 234].

Having defined nodes, to determine interactions [235] there are several ways to define
the edges of large-scale brain networks; in a general context this inverse problem is known
as network reconstruction [236]. Broadly speaking, edges of brain networks can be char-
acterized as either functional, structural, or effective connections [19, 237]. In the former,
a measure of statistical interrelation is used to quantify the extent that the dynamics of
nodes co-evolve (see, for example, [238]), with edges linking pairs of nodes that are highly
correlated being assigned large weights. Structural connectivity, on the other hand, de-
scribes a means to define edges on anatomical grounds, for example via tracing of axonal
tracts [239]. Finally, edges in effective connectivity networks are defined as connection
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strengths in explicit dynamic models that are tuned such that dynamic recordings are well
explained by the model [240].

These different ways of representing the brain in terms of networks yield several avenues
for investigation that are relevant to the discussion above. Specifically, network analyses
have provided insight into the mechanisms of both function and dysfunction [18, 31, 241,
242], and modeling frameworks such as those described above are required in order to
explain findings and develop testable predictions [243]. A particularly pertinent challenge
is to understand to what extent structural connectivity—the structural property of the
network—shapes emergent functional connectivity—properties of the dynamics—in both
healthy and disease conditions [16, 17, 19, 244–247]

Functional connectivity has been shown to be altered in myriad disorders of the brain,
including epilepsy and Alzheimer’s disease [241, 248–251]. It is therefore becoming an
important marker for brain disorders, as well as a potentially important means of under-
standing disease and designing therapy [18, 21]. However, in order to link different data
modalities and to develop effective and efficient treatment, it is crucial to understand why
specific changes in dynamics occur. The reduction methods described herein could help
in this direction by bridging fundamental properties of neurons into emergent properties
of neuronal networks, which can then be coupled to build an understanding of mesoscopic
or whole-brain dynamics [3].

We conclude this section with two very recent examples how the mean-field reductions
used here have been used to understand the dynamics of macroscopic brain activities from
experimental data. First, Weerasinghe et al. [252] employed the Kuramoto model and its
mean-field reduction to develop new closed-loop approaches for deep brain stimulation
to improve treat patients with essential tremor and Parkinson’s disease. Specifically, the
Ott–Antonsen equations yield expressions for the mean-field response of an oscillator
population, which can be compared with experimentally measured response curves ob-
tained from patients [253]. The idea is that such a model-supported approach eventually
yields efficient treatment strategies, for example, by stimulating at the optimal phase and
amplitude to maximize efficacy and minimize side effects. Second, Byrne et al. [254] re-
cently developed a novel brain model based on coupled populations of QIF neurons and
use it in a number of neurobiological contexts, such as providing an understanding of the
changes in power-spectra observed in EEG/MEG neuroimaging studies of motor-cortex
during movement. Such a model is the first step to bridge the microscopic properties of
individual neurons to macroscopic brain dynamics.

6 Conclusions and open problems
The mean-field descriptions presented in this review are able to bridge spatial scales in
coupled oscillator networks since they provide explicit descriptions of the macroscopic
dynamics in terms of microscopic quantities. This provides insights into how network
coupling properties (for example, a neural connectome) relate to dynamical properties
(and thus functional properties) of an oscillator network. Importantly, the equations are
not just a black box, but tools from dynamical systems theory that allow us to study ex-
plicitly how the dynamics change as network parameters are varied. We conclude by high-
lighting three sets of challenges for future research.

The first set of challenges relates to the reductions themselves and the mathematics be-
hind them; some of them were already discussed in Sect. 3.3, and further along the way.



Bick et al. Journal of Mathematical Neuroscience            (2020) 10:9 Page 37 of 43

Phase oscillator networks that arise through phase reduction typically have nonsinusoidal
coupling due to higher harmonics and nonadditive terms in the interactions. These can
arise through strongly nonlinear oscillations or nonlinear interactions between oscilla-
tors; see [150, 151, 153] and other references above. Hence, the influence of such inter-
actions on the mean-field reductions still needs to be clarified: While they could fail in
certain instances [133], first results indicate that they may still provide useful information
over some timescales [136]—further work in this direction is desirable. As an example,
Thiem et al. [255] recently used manifold learning and a neural network to learn the Ott–
Antonsen equations governing the Kuramoto model; these techniques are quite generally
applicable. Real-world networks are often modeled as systems subject to noise. Here, we
point to very recent results that extend the mean-field reductions presented here in these
directions by using a “circular cumulants” approach [73–75].

The second set of challenges concerns the relationship between the mean-field reduc-
tions, the underlying microscopic models, and real-world data in the context of neuro-
science. How do LFP or EEG measurements relate to the mean-field variables that con-
stitute the reduced system equations? Connectivity can be estimated via neural imaging
techniques, but how does this data relate to the coupling strength and phase-lag param-
eters that appear in the Ott–Antonsen equations of coupled Kuramoto–Sakaguchi pop-
ulations? Or how does data relate to the coupling parameters of the microscopic models
that are compatible with the reduction? These questions become even more intricate for
coupled populations of Theta neurons; cf. [254].

The last set of challenges goes well beyond the mean-field reductions presented here.
Mathematical tools are helpful to describe the dynamics, but how do the dynamics re-
late to functional aspects of the (neural) oscillator network? How do we identify dynamics
that are pathological, and validate and use models of these dynamics to predict treatment
responses? On the large scale, some pathologies such as epilepsy reveal salient abnormal
dynamics [25], but alterations in other conditions are more subtle, and therefore model-
driven analyses could prove itself to be very useful in the clinical context [20, 250–252].
Insights into these fundamental questions will allow one to make the mean-field reduc-
tions presented in this review even more useful to design targeted therapies for neural
diseases.
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Endnotes
a Naturally, any mean-field approach (including the Ott–Antonsen reduction we consider here) that disregards

(finite-size) fluctuations to analyze finite networks cannot capture dynamical effects where these fluctuations are a
characteristic property. This includes the balanced state [256, 257].

b Such networks may be thought of as “networks of networks” [258, 259].
c Note, however, that the mesoscopic description in terms of collective variables of each subnetwork can have a

“phase” and “amplitude” such as the mean phase and the amount of synchrony.
d In Eq. (1) the coupling is through a pure first harmonic. However, the results presented here are generally valid for

coupling through any pure single harmonic of higher order; see for example [155, 260].
e The order “parameter” Z is an observable which encodes the state of the system, and should not be confused with

a system parameter.
f If only one population is considered, M = 1, we simply write αστ = α and Kστ = K ; this corresponds to the
Kuramoto–Sakaguchi model. Furthermore, if α = 0, we recover the Kuramoto model (2). Here, we regard the
number of populations M to be fixed; to take a limit M → ∞ one should assume that the coupling strengths Kστ

scale appropriately.
g Such form of interactions typically arise in an additional averaging step performed after the phase

reduction [43, 261].
h One may also consider co-rotating frames with time-dependent frequencies. For example, for any given

oscillator (τ , j) one can choose a co-rotating frame in which its phase θτ ,j appears stationary via the transform
θσ ,k 
→ θσ ,k – θτ ,j . This transformation changes the structure of (4) but it does not affect the qualitative dynamics.

i This convention is in line with the firing of the equivalent quadratic integrate and fire neuron introduced below.
j If the oscillators are subject to noise, the continuity equation is a Fokker–Planck equation which contains an
additional diffusive term [105, 133, 142, 156].

k Transport equations are common in physics. There they are also known as the continuity equation (or Liouville
equation in classical statistical physics describing the ensemble evolution in time) and play the important role of
describing conservation laws. To visualize, in the context of fluid dynamics, the density in (10) plays the role of a
mass density and (10) then implies that the total mass in the system is a conserved quantity [262].

l Here we are making an implicit assumption on the regularity of Hσ on time (and potentially an additional
parameter): Hσ has to be sufficiently smooth that (14) yields an aσ (ω, t) such that the residue theorem can be used
to evaluate (15) at any time t.

m This problem can however be solved by respecting the symmetries underlying the system, i.e., either by integrating
the WS equations or the dynamic equations governing the Möbius transformations, which in turn can be used to
compute trajectories for individual oscillators.

n Compactly supported distributions of intrinsic frequencies have been approximated by rational
distributions [263, 264], but it is not clear whether the limit is independent of the approximation.

o The resulting frequency distribution is curiously similar to Norbert Wiener’s notion of the frequency distribution of
brain waves around the alpha wave band; see, e.g., [265].

p By symmetry there is a corresponding pattern in SD = {R1 = 1,R2 < 1}.
q A heteroclinic trajectory between two distinct saddles is a solution that is attracted to one saddle as time increases

and to the other saddle as time evolves backward.
r Unfortunately, the term “network” has a double meaning here: on the one hand, we study oscillatory units which
form networks through their (physical and functional) interactions, on the other hand, heteroclinic networks are
abstract networks of dynamical states linked by heteroclinic trajectories which allow dynamical transitions.
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