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Abstract
Binocular rivalry occurs when the two eyes are presented with incompatible stimuli
and perception alternates between these two stimuli. This phenomenon has been
investigated in two types of experiments: (1) Traditional experiments where the
stimulus is fixed, (2) eye-swap experiments in which the stimulus periodically swaps
between eyes many times per second (Logothetis et al. in Nature 380(6575):621–624,
1996). In spite of the rapid swapping between eyes, perception can be stable for
many seconds with specific stimulus parameter configurations. Wilson introduced a
two-stage, hierarchical model to explain both types of experiments (Wilson in Proc.
Natl. Acad. Sci. 100(24):14499–14503, 2003). Wilson’s model and other rivalry models
have been only studied with bifurcation analysis for fixed inputs and different types of
dynamical behavior that can occur with periodically forcing inputs have not been
investigated. Here we report (1) a more complete description of the complex
dynamics in the unforced Wilson model, (2) a bifurcation analysis with periodic
forcing. Previously, bifurcation analysis of the Wilson model with fixed inputs has
revealed three main types of dynamical behaviors: Winner-takes-all (WTA), Rivalry
oscillations (RIV), Simultaneous activity (SIM). Our results have revealed richer
dynamics including mixed-mode oscillations (MMOs) and a period-doubling cascade,
which corresponds to low-amplitude WTA (LAWTA) oscillations. On the other hand,
studying rivalry models with numerical continuation shows that periodic forcing with
high frequency (e.g. 18 Hz, known as flicker) modulates the three main types of
behaviors that occur with fixed inputs with forcing frequency (WTA-Mod, RIV-Mod,
SIM-Mod). However, dynamical behavior will be different with low frequency periodic
forcing (around 1.5 Hz, so-called swap). In addition to WTA-Mod and SIM-Mod, cycle
skipping, multi-cycle skipping and chaotic dynamics are found. This research provides
a framework for either assessing binocular rivalry models to check consistency with
empirical results, or for better understanding neural dynamics and mechanisms
necessary to implement a minimal binocular rivalry model.

Keywords: Bifurcation analysis; Periodic forcing; Rivalry model; Traditional rivalry;
Flicker and switch rivalry

1 Introduction
In bistable perception, our perceptual experience evolves dynamically with fixed sensory
inputs, thus providing a window into the intrinsic neural computations underlying the
dynamics of sensory processing. Binocular rivalry is one example from a broad range of
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bistable or multistable perceptually ambiguous stimuli. It occurs when the two eyes are
presented with incompatible monocular patterns (exclusively to one eye). Even though
the patterns are fixed, perceptual awareness alternates every 1–5 s between two per-
ceptual interpretations consistent with only one monocular pattern [3]. In other words,
one of the monocular patterns is suppressed totally and the other one is dominant (thus
winning the rivalry). This phenomenon has been investigated in a wide range of ex-
perimental approaches: human behavioral studies [1, 4], primate physiological exper-
iments [5, 6], fMRI (functional magnetic resonance imaging) studies [7, 8], and EEG
(electroencephalogram) recordings in humans [9]. Despite a long tradition of binocu-
lar rivalry research there are still questions about the neuro-computational basis and
the underlying mechanisms of this phenomenon. In addition to experimental investi-
gations, powerful tools such as mathematical modeling and bifurcation analysis have
been utilized to explain this phenomenon [10–12], but many interesting questions re-
main.

There are contradictory ideas about whether rivalry takes place between neural popu-
lations associated with each eye or associated with stimulus features [1, 13]. The complex
hierarchical architecture of visual cortical areas makes it difficult to associate object per-
ception to a particular locus in cortex. The locus of visual perception and the level at
which binocular rivalry is resolved are unknown. Previously, primary visual cortex (V1)
had been considered as the locus of rivalry alternations and the phenomenon known as
interocular eye rivalry [14–16]. According to this traditional interpretation, perceptual
rivalry occurs as a result of competition between monocular driven neurons in primary
visual cortex (V1) (eye-based rivalry). On the contrary, there are some studies which show
correlation between perception during rivalry and activity in feature-selective higher cor-
tical areas whose inputs are pooled from both eyes (supporting stimulus rivalry) [5, 6]. In
order to resolve this dispute, Logothetis et al. introduced a new stimulus paradigm, so-
called Flicker and Swap (F&S) in which monocular stimuli were swapped between two
eyes at 1.5 Hz (eye-swapping). The stimuli were flickered on and off at 18 Hz in order
to reduce the subject’s awareness of the swap times [1]. The notion of eye rivalry pre-
dicts that a subject’s perception must follow the stimulus as it switches between the eyes.
However, F&S experiments, similar to traditional experiments, showed that each period
of perceptual dominance lasts on average around 2 seconds and spans over six to seven
stimulus swaps [1]. It can be concluded from the F&S experiment that rivalry cannot be
the result of suppressing one eye completely (and dominance of the other eye). These re-
sults suggest that the stimulus rivalry hypothesis is a more accurate interpretation than
eye rivalry.

For decades, the common empirical paradigm for studying binocular rivalry has been
through stimulation of each eye with fixed stimuli (always on) [17, 18]. Several computa-
tional models of binocular rivalry have been proposed that were able to capture temporal
characteristics of traditional rivalry (eye-based) with a specific set of model parameters
[10–12, 19–23]. The minimal properties required to implement a model that is compat-
ible with the existing rivalry evidence is reciprocal inhibition between two monocular
neural populations and a slow process (spike-frequency adaptation or synaptic depres-
sion) together with nonlinearity of the spike rate gain function [21]. Although these mod-
els posed different features in the implementation of reciprocal inhibition, slow processes
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Figure 1 Two stage Wilson neural network model. (A) The first stage comprises monocular left and right
neurons selective to orthogonal gratings. Reciprocal inhibition between different eyes and grating
orientations are represented by heavy lines with filled circles at the ends. The second stage represents
binocular neurons in higher cortical layers that receive the summation of left and right monocular neurons
with the same grating orientation [2]. The isolated units at the first stage that we analyse are marked with the
dashed box. (B) Horizontal (H) and vertical (V) stimuli swapped between the left (L) and the right (R) eyes (no
flicker). At a specific time, one eye receives horizontal stimuli and the other receives vertical stimuli, each
stimulates their own corresponding population at the first stage

and gain function, all of them show common qualitative characteristics for neural compe-
tition [11].

Wilson sought to explain the stimulus rivalry with a two-stage model [2]. The first
stage represents monocular neurons in primary visual cortex, and the second stage rep-
resents binocular neurons in later (higher) stages of processing (Fig. 1(A)). The Wilson
model can account for maintained perceptual dominance across eye swaps with F&S
stimuli [2]. However, this model predicts that monocular neural activity is not mod-
ulated during stimulus rivalry, which is contradicted by experimental evidence [24].
Whilst a later paper from Wilson [21] suggested these could be accounted for by de-
scending connections to the monocular layer, Brascamp et al. claimed that it is possi-
ble to have stimulus rivalry without binocular contributions [24]. The Li et al. model
[25] similar to the Wilson model [2] included a second stage to explain stimulus ri-
valry; however, unlike the Wilson model this second layer is responsible for attentional
modulation rather than another layer of rivalry. Attentional modulation provides feed-
back to monocular layers, and thus stimulus rivalry can be seen in the first layer. Li et
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al. [25] also note that stimulus rivalry can occur without flicker in experiments if there
are blank intervals before swaps times [26, 27], which was not captured by the Wilson
model.

Traditional rivalry with a fixed stimulus in each eye was studied with the Wilson model
[2]. Earlier work presented a bifurcation analysis of the Wilson model with fixed inputs and
identified parameter regions with different dynamical behavior [11]. However, we found
that a richer bifurcation structure exists at the crucial transition from winner-take-all to
rivalry. Thus, a bifurcation analysis for fixed inputs that investigates all bifurcations oc-
curring between different dynamical states is required. Furthermore, Wilson’s model and
other rivalry models have been only studied using bifurcation analysis for fixed inputs,
whilst the different dynamical behavior that can occur with periodically forced inputs have
only been investigated at isolated parameter values with direct simulations (time histories)
[2], although see [28]. In general, sensitivity to model parameters with periodic inputs has
not been studied so far. To fully explain F&S experiments, we need to understand the bifur-
cations that distinguish different states such as perception following the stimulus swaps
and perception being stable for many seconds. Thus, a complete bifurcation analysis of
the model with fixed and periodic inputs with careful attention to complex dynamics phe-
nomena is required.

We aim to properly explain and understand the dynamics of binocular rivalry and how
they change with different kinds of inputs (traditional, flickering, swapping, and F&S stim-
uli). Here we focus on the Wilson model and we were successful in building a framework
to study rivalry models with, not only fixed input, but also with periodic forcing. For a
thorough dynamical analysis, we analyse the Wilson model with periodic input using nu-
merical continuation tools. This allows us to investigate different dynamical regimes and
boundaries between them (bifurcations), as computed for multiple parameters. The ap-
proach presented here is applicable to a range of models for bistable perception with pe-
riodically varying stimuli.

2 Methods

Here we focus on the two-stage, hierarchical Wilson model which can explain both
traditional and F&S experiments [2]. The first stage represents monocular neurons in
primary visual cortex, and the second stage represents binocular neurons in higher
cortical areas (Fig. 1(A)). These neurons self-adapt, as modelled by spike-frequency
adaptation, and there is mutual inhibition between monocular neurons representing
different eyes and grating orientations. We split the first level into two isolated sub-
units:

(1) competition between neurons representing the horizontal grating in the left eye
(HL) and the vertical grating in the right eye (VR).

(2) competition between neurons representing the vertical grating in the left eye (VL)
and the horizontal grating in the right eye (HR).
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Spike-rate equations for the first isolated subunit in the first stage of the Wilson model
[2] are given by

τ ĖHL = –EHL +
100(JHL(t) – gIVR)2

+
(10 + HHL)2 + (JHL(t) – gIVR)2

+
,

τHḢHL = –HHL + hEHL,

τI İHL = –IHL + EHL,

τ ĖVR = –EVR +
100(JVR(t) – gIHL)2

+
(10 + HVR)2 + (JVR(t) – gIHL)2

+
,

τHḢVR = –HVR + hEVR,

τI İVR = –IVR + EVR.

(1)

Here JHL and JVR are inputs to populations representing a horizontal grating in the left eye
and a vertical grating in the right eye, respectively. Ei is the firing rate of the excitatory
population i (i = HL, VR), Hi is the adaptation variable, and Ii is the inhibitory firing rate.
The asymptotic firing rate, the second term on the right-hand side of the first and fourth
expressions in (1), is determined by a Naka–Rushton function for positive values of its
argument (J – gI)+, where (J – gI)+ = J – gI if J ≥ gI and (J – gI)+ = 0 if J < gI (Naka and
Rushton 1966). The following values of the parameters are used: τ = 20 ms, τH = 900 ms,
τI = 11 ms, as in the original paper [2]. The values of inhibition strength g and adaptation
strength h are varied as part of the bifurcation analysis.

Here we only consider one of the isolated subunits in the first stage (marked by a dashed
box in Fig. 1(A)). By this simplification, we will only have two populations of neurons
which correspond to the monocular neurons sensitive to horizontal stimuli in the left
eye (HL) and vertical stimuli in the right eye (VR). For the traditional experiment, we
will not lose generality since each eye only receives horizontal or vertical stimuli and
one of the subunits always has no inputs. For the periodically forced cases, both sub-
units have their own inputs (Fig. 1(B)). However, because of symmetry and the feed-
forward nature of the network we can carry out our analysis without the other subunit
at monocular layer. We only investigate one of the subunits, which is further justified
and considered along with the implications of our results for the full model in the dis-
cussion.

Stimuli for different cases: traditional rivalry, swap only, flicker only, F&S, and B&S are
shown in Fig. 2. In order to produce periodic forcing stimuli, we add two ODEs to the
main equations in (1), which describe a nonlinear oscillator,

ẋs = xs + (2π fs)ys – xs
(
x2

s + y2
s
)
,

ẏs = –(2π fs)xs + ys – ys
(
x2

s + y2
s
)
,

(2)

with solutions: xs(t) = sin(2π fst), ys(t) = cos(2π fst), where fs is the frequency of oscillations.
In order to have a smooth square form wave rather than sinusoidal, we use a steep sigmoid,

x(t) =
1

1 + e–kxs(t) , (3)
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Figure 2 Stimuli for different input cases. Stimuli for monocular populations selective to the horizontal
grating in the left eye (HL) and vertical gratings in the right eye (VR) are shown with red solid and blue dashed
lines, respectively. (A) Fixed inputs for traditional rivalry. (B) Periodic 1.5 Hz square waves for swap only.
(C) Periodic 18 Hz square waves for flicker only. (D) Periodic 1.5 Hz square waves modulated with 18 Hz on/off
switches for F&S. (E) Periodic 1.5 Hz square waves with blank intervals (150 ms duration) inserted before swaps
for the B&S experiment

with k = 10. Thus our desirable periodic forcing for swap only (fs = 1.5 Hz) and flicker only
(fs = 18 Hz) cases can be applied by replacing JHL(t) = JVR(t) = x(t) in (1). For F&S stim-
uli, we have two forcing terms with different frequencies. Considering that the flickering
frequency is an integer multiple of swap frequency (ff = 12fs), we first build the lower fre-
quency forcing (xs) using Eqs. (2), and the higher frequency forcing (xf ) can be computed
by

xf (t) = Re
{[

xs(t) + iys(t)
]12}. (4)

Then the F&S stimuli can be produced from its components:

xfs(t) = xf (t)xs(t). (5)

The nonlinear gain function that appears in the right-hand side of the original Wilson
model is a discontinuous function in its first derivative due to the rectification operation
(J – gI)+. Numerical continuation routines require smooth systems of equations. In order
to solve this problem we have used a steep sigmoid function to smooth out the transition
at zero. So instead of the (J – gI)+ terms in (1), we substitute R(J – gI) as:

R(x) =
x

1 + e–k(x–θ ) . (6)

Where k = 30 defines the slope and θ = 0.05 defines the threshold. This becomes particu-
larly important when we want to follow the locus of torus bifurcations (T) in the parameter
plane. Further difficulties in following the locus of torus bifurcations were resolved by in-
troducing a small parameter (ε = 0.001) to break the HL ↔ VR symmetry in the first ODE
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in (1),

τ ĖHL = –EHL +
100(JHL(t) – gIVR)2

+
(10 + HHL + ε)2 + (JHL(t) – gIVR)2

+
. (7)

This removed a potential degeneracy in the torus bifurcation defining system that allowed
for the computations to be completed. The numerical integration of the initial value prob-
lems were carried out in MATLAB using a fourth-order Runge–Kutta method with time
step 0.1 ms. Numerical continuation was performed with the package AUTO07p, by and
large using relatively standard constants, but notably increasing the mesh size (NTST)
for the computation of periodic orbits in the forced cases and when the period became
large [29]. Source code for the model is available in the GitHub repository farzaneh-
darki/Darki2020_methods: https://github.com/farzaneh-darki/Darki2020_methods.

3 Results
3.1 Bifurcation analysis of traditional rivalry with fixed inputs
Previously, three main types of dynamical behaviors were found in many models of rivalry
with fixed inputs (including the Wilson model): Winner-take-all (WTA), Rivalry oscilla-
tions (RIV), Simultaneous activity (SIM). The bifurcation diagram with fixed inhibition
strength g = 1.5, and varying adaptation strength h, is presented in Fig. 3(A). A trivial
symmetric equilibrium always exists, which is stable for large values of adaptation strength
and corresponds to simultaneous activity (SIM) (Fig. 3(C)). This equilibrium loses its sta-
bility with decreasing adaptation strength and a stable limit cycle emerges from a super-
critical Hopf bifurcation (H). These relaxation oscillations correspond to rivalry (RIV).
For h increasing from zero on the symmetric unstable branch, a pair of unstable fixed
point branches emerge at a pitchfork bifurcation (PF) with the E1 = E2 symmetry broken.
The complementary branches undergo fold bifurcations (L) nearby but remain unstable.
These two unstable fixed point branches go through two supercritical Hopf bifurcations
and become stable. These two stable equilibria create a bistable parameter range known
as winner-take-all (WTA), which exists for small h. The qualitative transformation of the
system from RIV to WTA remains unclear and must involve as yet undetermined bifur-
cations at changes in stability on the RIV branch (Fig. 3(B), green curve).

In this study, a more complete numerical bifurcation analysis has been carried out to find
other stable solutions in the small parameter gap between the WTA and RIV (Fig. 3(B)).
As seen in Fig. 4(A), a pair of stable limit cycles emerge from two supercritical Hopf
bifurcations (on upper and lower WTA branches) as adaptation strength is increased.
These low-amplitude oscillations move around the top-most and bottom-most of the five
equilibrium branches existing between PF and L. We call this dynamical behavior low-
amplitude-winner-take-all (LAWTA) since there is bistability like WTA behavior; how-
ever, the stable states are oscillatory solutions with very small amplitude around asym-
metric unstable equilibria (Fig. 4(A)). By further increasing adaptation strength, a cascade
of period-doubling bifurcations emerges from the LAWTA branch (Fig. 4(C)). For exam-
ple, one period of the original limit cycle emerging from a supercritical Hopf bifurcation
looks like a sinusoidal signal with one peak and one trough. After the first period-doubling
bifurcation (PD), one period of oscillations will have two peaks and two troughs with tiny
differences between the peak and trough amplitudes. As seen in Fig. 5, even after three
PD bifurcations, the difference in amplitude between the 8 peaks remains small.

https://github.com/farzaneh-darki/Darki2020_methods
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Figure 3 Bifurcation analysis and time histories for traditional rivalry. (A) Bifurcation diagram for the Wilson
model (1) with fixed inputs varying adaptation strength h. Three main types of dynamical behaviors are
presented: Winner-takes-all (WTA), Rivalry oscillations (RIV), Simultaneous activity (SIM). Blue lines show fixed
point branches and the green line shows the maximum of E1 & E2 on the limit cycle branch. The minimum of
RIV branch oscillations is close to zero once away from Hopf bifurcation (not shown). (B) Details of the diagram
are shown in a zoomed panel. The period of oscillations on the unstable limit cycle branch shown with green
dashed lines increase sharply as we move toward a critical parameter value h ≈ 4.22843 and continuation
fails. The dotted green line shows the assumed location of a branch segment that proved difficult to compute
due to the orbits having large period. The sequence of bifurcations that transform the system fromWTA to RIV
periodic solutions has not been described previously. (C) Time histories associated with each dynamical
behavior: WTA (h = 1), RIV (h = 4.3), SIM (h = 15). Other parameters: g = 1.5, JHL = JVR = 10

On the other side, the limit cycle emerging from the supercritical Hopf bifurcation
(green branch labeled RIV in Fig. 3(A–B)) becomes unstable as adaptation strength de-
creases; however, the continuation software does not detect any bifurcation where the
stability changes. This appears to be a global bifurcation which is not detectable by lo-
cal analysis. We will refer to this putative global bifurcation at the change in stability at
the RIV branch as the global bifurcation. Without any specific bifurcation in hand, we
cannot follow any emerging stable branch. To tackle this issue we compute the stable pe-
riodic solution (assuming one exists, using numerical integration) for a specific value of
adaptation strength (in a range between last PD and the change in stability on the RIV
branch) and then follow any periodic solution branch using numerical continuation. On
the right side of the global bifurcation, time simulations show relaxation oscillations that
reach high amplitude rapidly and before relaxing to baseline (Fig. 6(B)). However, on the
left side of the change in stability (close to the global bifurcation), we observe that in ad-
dition to high amplitude oscillations, one low amplitude oscillation appears (Fig. 6(C)).
By further decreasing adaptation strength, there is always one high amplitude oscillation,
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Figure 4 Detailed bifurcation analysis for traditional rivalry. (A) Bifurcation diagram of the Wilson model (1)
with fixed inputs varying adaptation strength h, g = 1.5. In addition to WTA, RIV, and SIM, two other regions
with different dynamical behavior are revealed: (B) Mixed-mode oscillations (MMOs) emerging from high
amplitude relaxation oscillations (RIV) with discontinuous transitions between segments. Each period of these
MMOs has one high and one or more low-amplitude oscillations (see Fig. 6 for time histories). On MMO
branches n:m defines the n high to m low-amplitude oscillations ratio. The number of low-amplitude
oscillations starts from one and is increased by one as we move down in the bifurcation parameter. (C) Low
amplitude winner-take-all (LAWTA) oscillations emerge from supercritical Hopf bifurcation on the WTA branch
and by further increasing the bifurcation parameter, a cascade of period-doubling bifurcations emerges.
Panels B and C show the maximum of E1 & E2 on the limit cycle branches. The minimum of MMOs is close to
zero. (D) Boundaries of different dynamical behaviors are shown in parameter space (h,g). The region with the
periodic solution (RIV) is confined by Hopf bifurcation (red solid line) from beneath and by fold bifurcation (L,
green dashed line) from above. Other parameters: JHL = JVR = 10

but the number of low amplitude oscillations increases (Fig. 6(C–F)). The period of these
oscillations increase sharply as we move toward a critical parameter value h ≈ 4.22843
(Fig. 6(A)). This complex behavior is known as mixed-mode oscillations (MMOs) since it
is a mixture of low and high amplitude oscillations. Using the approach described above
we could compute stable branches on the left side of global bifurcation (Fig. 4(B)). Inter-
estingly, stable solutions occur through a series of discrete branches. The discontinuous
transitions from one branch segment to the next are similar to the spike-adding mech-
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Figure 5 LAWTA oscillations time histories for traditional rivalry. (A) Time history of LAWTA oscillatory activity
for two neural populations (solid and dashed lines correspondingly). (B) One period of LAWTA after PD3 in
Fig. 4(C). LAWTA has eight different high and low peaks. (C) Limit cycle in the E1–E2 plane. Parameters:
h = 4.22842214, g = 1.5, JHL = JVR = 10

anism from [30]. The bifurcation structure here appears similar to the canard-induced
MMOs identified in a spiking neuron model [31]. The sharp increase in amplitude of the
limit cycle branch over a short parameter range emerging near the critical value of h (Fig. 6
caption) suggests the complex behavior in this region is also associated with canards. Bi-
furcation analysis of another simple rivalry model with 4 ODEs and different nonlinearity
revealed a similar structure for MMOs through the interaction of canards and a singular
Hopf point [32]. Whilst, there are some similarities with the MMOs found in the present
study, a more rigorous approach would be needed to say whether these MMOs are canard-
induced, Hopf-induced, or result from an interaction of both mechanisms. The global
bifurcation and the transitions between MMO branches remain to be determined. The
behaviors reported here are confined to a narrow region of the (g, h) parameter plane near
the left-hand locus of Hopf bifurcation (Fig. 4(D)).

Here, a more complete analysis has revealed MMOs emerge from high amplitude
RIV oscillations (Fig. 4(B)) and a cascade of period-doubling bifurcations emerge from
LAWTA oscillations (Fig. 4(C)) which have not been reported before in the Wilson model.
This analysis describes the mechanism of state transition from WTA to RIV which was
not clear before. Whilst MMOs have been reported in another model of rivalry [32, 33],
the appearance of a stable PD cascade has revealed richer dynamics in the Wilson model
which may also play a part in the mechanisms that lead to appearance and disappearance
of limit cycles associated with MMOs. An interesting avenue of investigation will be to
understand how the low-amplitude PD cascade (Fig. 4(C)) interacts with periodic forcing.
This provides the context to fully understand the periodically forced case.

3.2 Bifurcation analysis of binocular rivalry with periodic forcing
3.2.1 Flicker (18 Hz) only
Bifurcation analysis with the flickering stimulus shows that periodic forcing with high fre-
quency (e.g. 18 Hz) modulates the three main types of behaviors that occur with fixed
inputs. Instead of WTA and SIM fixed point branches in traditional rivalry with a fixed
stimulus (Fig. 3(A)), modulated WTA (WTA-Mod) and modulated SIM (SIM-Mod) pe-
riodic solution branches are found with the flickering stimulus (Fig. 7(A)). Subsequently,
the SIM-Mod branch undergoes a torus bifurcation (T) giving rise to a torus branch with
aperiodic oscillations corresponding to modulated slow rivalry alternations (RIV-Mod).
Following the torus bifurcation in the (g, h) parameter plane defines the boundary of ri-
valry oscillations (Fig. 7(B)). The locus of a pitchfork bifurcation (BP) remains close to the
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Figure 6 Periods of oscillatory states and MMOs time histories for traditional rivalry. (A) Periods of oscillations
for three types of oscillatory dynamics: LAWTA (purple), MMOs (brown) and rivalry oscillations (green). The
period of oscillations increase sharply as we move toward a critical parameter value h≈ 4.22843 from either
side. (B–F) Time histories associated with different branch segments of MMOs with different adaptation
strength in each panel. Number of low-amplitude oscillations increases as adaptation strength is decreased:
(B) RIV (h = 4.3) (C) One (h = 4.26) (D) two (h = 4.243) (E) three (h = 4.24) (F) four (h = 4.237) low-amplitude
oscillations in one period. On MMOs branches n:m defines the n high to m low-amplitude oscillations ratio.
Other parameters: g = 1.5, JHL = JVR = 10

left-hand torus curve (Fig. 7(B), not shown). It appears that the MMO branches and PD
cascade identified for fixed inputs disappear with the introduction of flicker. This analy-
sis found evidence that slow rivalry alternations RIV-Mod can exist at parameter values
adjacent to regions where stimulus-induced oscillations exist (SIM-Mod). Time histories
of these dynamical behaviors are shown in (Fig. 7(C)). These results are consistent with
experiments: Flicker stimuli do not differ from the traditional rivalry case [13].
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Figure 7 Bifurcation analysis and time histories for the flicker only case. (A) Bifurcation diagram for the Wilson
model (1) with high frequency periodic forcing (flicker; 18 Hz) varying adaptation strength h, g = 1.5. Three
main types of dynamical behaviors are modulated by forcing frequency: (1) Modulated WTA (WTA-Mod),
(2) Modulated rivalry (RIV-Mod), (3) Modulated SIM (SIM-Mod). RIV-Mod branch which occurs through
supercritical torus bifurcation (T), is associated with slow rivalry alternations. Solid curve: stable limit cycle,
dashed curve: unstable limit cycle, filled circles: attracting torus. (B) Boundaries of different dynamical
behavior with high frequency periodic forcing (flicker 18 Hz) are shown in parameter space (h,g). The region
with the RIV-Mod solution is confined by the curve of torus bifurcation. (C) Firing activity of each competing
population E1 (solid lines) and E2 (dashed lines) with high frequency periodic forcing; flicker 18 Hz and
different adaptation strength h: WTA-Mod regime with h = 0.5, RIV-Mod regime with h = 2, SIM-Mod regime
with h = 6. Other parameters: [JHL]max = [JVR]max = 10

3.2.2 Swap (1.5 Hz) only
The dynamical behavior with low frequency periodic forcing (around 1.5 Hz, so-called
swap) is different, and in addition to WTA-Mod behavior (for small values of adaptation
strength) and SIM-Mod (for large values of adaptation strength), cycle skipping occurs
through a PD bifurcation on the SIM-Mod branch (Fig. 8(A)). Cycle skipping refers to the
response of each competing population to every other stimulus onset. This means two
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populations respond in turn to stimulus cycles and while one has high activity during a
cycle the other one stays inactive (Fig. 9(A)). We note that the period of the period-doubled
solution is 1.333 s and is plausibly the result of a resonance with the fixed-input limit-cycle,
which has a period >2 s, for larger values of h [11]. SIM-Mod and cycle skipping have been
reported in a simpler model of rivalry [34] and via direct simulations of the Wilson model
in [25].

As seen in (Fig. 8(B–C)), the cycle skipping branch loses stability at a fold bifurcation
(L) for decreasing h. For h increasing, branching off from the PD point on the WTA-mod
branch leads to a cascade of PD bifurcations (Fig. 8(D)). In order to find the possible sta-
ble periodic branches between the last PD and the fold bifurcation, we compute the stable
periodic solution (assuming it exists) using numerical integration for a specific value of
adaptation strength, and then start continuation from this solution. With this approach,
we found a family of discontinuous branches, which correspond to multi-cycle skipping
(Fig. 8(C)). On these branches, the number of stimulus cycles between switches of activ-
ity from one population to the other is variable and increases by one as the bifurcation
parameter decreases (Fig. 9(A–E)). Here we found a small region of bistability between
the one-cycle skipping and two-cycle skipping behaviors (at around h = 0.05 in Fig. 8(C)).
Therefore, in the full hierarchical model it would be possible to find an asymmetric so-
lution where the HL-VR units at the first stage behave differently. However, as explained
in the discussion the model normally operates close to the SIM-Mod region, which is far
away in parameter space from the cycle skipping region with bistability.

Another interesting behavior is the appearance of a chaotic attractor in a parameter
range between the PD cascade and multi-cycle skipping family branches (Fig. 8(C)). Fig-
ure 9(F–G) represents chaotic firing activity for each population in a 200 s simulation. The
number of cycles between switches does not show any regular or repeating pattern.

3.2.3 Flicker (18 Hz) & (1.5 Hz) Swap
The bifurcation structure with both high frequency flicker and low frequency swap ap-
pears to be analogous to bifurcation structure with swap only case (Fig. 10(A–B)). How-
ever, the right-hand PD bifurcation point in the transition from cycle skipping to SIM-
Mod moves down in adaptation strength. This is shown in a direct comparison of two-
parameter bifurcation diagrams for the F&S and swap only cases in (Fig. 11(A)). In fact,
with the same values of adaptation strength that we might expect cycle skipping from
swap only case, with F&S stimulus we can get SIM-mod, which turns out to be critical for
obtaining slow alternations, see discussion.

3.2.4 Blanks (150 ms) & (1.5 Hz) Swap
Our result shows that the effect of blank insertion before swap times, similar to the effect
of adding flicker to swap stimuli, moves the PD bifurcation point down the bifurcation pa-
rameter h (Fig. 11(B)), but to a much lesser extent than the introduction of flicker; compare
Fig. 11(A) and (B).

4 Discussion
4.1 Summary
Earlier work with models of bistable perception has identified parameter ranges with
winner-take-all dynamics (WTA), rivalry oscillations (RIV) and simultaneous activity
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Figure 8 Bifurcation analysis for swap only case. (A) Bifurcation diagram for the Wilson model (1) with low
frequency periodic forcing (swap; 1.5 Hz) varying adaptation strength h at g = 1.5. Dynamical behavior for
large values of adaptation strength is modulated SIM (SIM-Mod). Cycle skipping behavior appears through a
period-doubling bifurcation (PD) in which every population only responds to every other stimulus onset in
turn. There also exist a pair of stable limit cycles for very small values of adaptation strength which
corresponds to modulated WTA (WTA-Mod). Solid curve: stable limit cycle, dashed curve: unstable limit cycle.
(B) Detailed bifurcation diagram for the Wilson model with low frequency periodic forcing (swap; 1.5 Hz)
varying adaptation strength h at g = 25. (C) Multi-cycle skipping occurs through discontinuous branches. The
number of cycles skipped between switches increases by one as we move left from one branch segment to
the next. (D) A cascade of period-doubling bifurcations that leads to chaos. In panels C and D, the ordinate
shows maximum of E1 & E2. (E) Boundaries of different dynamical behaviors with low frequency periodic
forcing (swap 1.5 Hz) are shown in parameter space (h,g). The region with the cycle skipping solution is
confined by period-doubling (PD) bifurcations from beneath and by fold bifurcation from above (marked with
arrows). Other parameters: [JHL]max = [JVR]max = 10

(SIM) [35, 36]. Such regimes are known for the Wilson model as input strength is increased
[11]. Our results show that the Wilson model with fixed inputs is capable of generating
complex dynamical behaviors such as MMOs and LAWTA oscillations, previously not
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Figure 9 Cycle skipping, multi-cycle skipping and chaos time histories for the Swap only case. Firing activity
of each competing population E1 (solid lines) and E2 (dashed lines) with low frequency periodic forcing; swap
1.5 Hz and different adaptation strength h. (A) Cycle skipping regime with h = 1. (B–E) Multi-cycle skipping
regime with variable number of cycles to respond and skip between switches. (B) h = 0.03, (C) h = 0.02,
(D) h = 0.0185, (E) h = 0.017. Chaotic firing activity of (F) E1 and (G) E2 with irregular number of cycles to
respond or skip between switches, h = 0.01663. Other parameters: g = 25, [JHL]max = [JVR]max = 10

reported. We have also built a framework for studying rivalry models with periodic inputs
using numerical continuation. Given symmetry between orientations (0° & 90°) and eyes
(L&R), and the feed-forward structure of the hierarchical Wilson model, it is sufficient to
study one pair of units in the monocular layer. We found that periodic forcing with high
frequency (e.g. 18 Hz, known as flicker) modulates the three main types of behaviors that
occur with fixed inputs with forcing frequency (WTA-Mod, RIV-Mod, SIM-Mod). How-
ever, the dynamical behavior changes with low frequency periodic forcing (around 1.5 Hz,
so-called swap), and in addition to WTA-Mod and SIM-Mod, cycle skipping and multi-
cycle skipping behavior exist which can lead to chaotic dynamics. Cycle skipping behavior
with swap stimuli (1.5 Hz fast alternations) is not consistent with experiments [13, 37],
where we expect slow rivalry alternation (duration around 2 s). In order to understand the
dynamics of the full hierarchical model with periodic forcing, we should consider that the
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Figure 10 Bifurcation analysis for F&S rivalry. (A) Bifurcation diagram for the Wilson model (1) with high
frequency flickering (18 Hz) and low frequency swap (1.5 Hz) varying adaptation strength h at g = 1.5.
Dynamical behavior for large values of adaptation strength is modulated SIM (SIM-Mod). Cycle skipping
behavior appears through period-doubling bifurcation (PD) in which every population only responds to every
other stimulus onset in turn. There also exist a pair of stable limit cycles for very small values of adaptation
strength which corresponds to modulated WTA (WTA-Mod), not visible at this scale. Solid curve: stable limit
cycle, dashed curve: unstable limit cycle. (B) Boundaries of different dynamical behaviors are shown in
parameter space (h,g). The region with cycle skipping solution is confined by period-doubling (PD)
bifurcations. Other parameters: [JHL]max = [JVR]max = 10

Figure 11 Why does the Wilson model produce slow alternations with the F&S, but not with swap only and
B&S stimuli? Two parameter bifurcation diagram for the Wilson model (1) which defines regions with different
dynamical behaviors. Blue curves show the curve of PD bifurcation and the boundary for cycle skipping
behavior. Below this curve the dynamical behavior is SIM-Mod. The black dot defines the point at which the
Wilson model operates. (A) Comparison of swap and F&S cases. As seen, for swap only stimuli the monocular
layer operates in the cycle skipping regime; however, for F&S stimuli it operates in the SIM-Mod regime. The
binocular layer for F&S stimuli is effectively stimulated with flickering stimuli and by selecting the current
inhibition strength it is possible to get slow rivalry alternations in the second layer. (B) Comparison of swap
and B&S cases. Inserting blanks (with 150 ms durations) before swap times, like adding flicker, moves the
boundary between Cycle skipping and SIM-Mod regions up in the parameter plane (but to a lesser extent)
and the likelihood of being in the SIM-Mod region increases
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inputs for the second layer of the Wilson model are the responses of populations selective
to the same orientation from the first monocular layer (Fig. 1(A)). For example, if the iso-
lated subunits in the first layer are in the SIM-Mod regime (Fig. 11(A)), the stimuli for the
second layer will look like a fixed stimulus to the second layer (where SIM-Mod occurs in
the first layer for the Swap only stimulus) or a flickering stimulus (where SIM-Mod occurs
in the first layer for the F&S stimulus). This means the second layer is effectively stimu-
lated with traditional or flickering stimuli and by selecting the current inhibition strength
it is possible to get slow rivalry alternations in the second layer. This provides a deeper
explanation of how the Wilson model produces slow alternations with the F&S (but not
Swap only stimulus).

4.2 Rivalry model complexity and comparison with other models
There are other computational models that can capture properties of perceptual domi-
nance durations in both types of experiments (traditional experiments and F&S exper-
iments) [24, 25]. Brascamp’s model, with less complexity than Wilson’s, has only one
layer of monocular units with the extension of inhibition to within-eye and cross-eye iso-
orientation connections [38, 39]. The model proposed by Brascamp et al. correctly reflects
the fluctuations in monocular neurons; however, their model generates slow alternations
only when the blank intervals before swaps are short. The Li et al. model [25] with another
layer of attentional modulation (in addition to monocular and binocular layers) is the most
sophisticated binocular rivalry model, accounting for a wide range of phenomena but with
greatly increased complexity (14 ODEs).

MMOs have already been reported in a simpler rivalry model with four ODEs (without
an inhibition equation in each subunit) through interactions of singular Hopf and canard
[32, 33]. However, the LAWTA regime emerging through a PD cascade has not been re-
ported before. The question arises as to whether there is a distinct mechanism (from say
[32, 33]) specific in the Wilson model that leads to similar MMO dynamics. We found that
by assuming instantaneous inhibition dynamics (τI → 0 in Eqs. (1)) in the Wilson model,
all of the complex behaviors with traditional stimuli still persist (Fig. 12). Thus any differ-
ences to the bifurcation structure across different models are likely due to the differences
in the nonlinearity processing inputs to each unit. In the Wilson model the Hopf bifur-
cation is supercritical (subcritical in [32]) and stable branches emerging in a PD cascade
appear to terminate (lose stability) at the h-value where MMOs first emerge. The large
increase in period and the large excursion in phase space required to jump from the PD
branch to the full-amplitude MMO branches at a critical value of h are consistent with
a canard mechanism, but more exotic than reported previously. Indeed, further analy-
sis would be needed to resolve how the PD cascade terminates and the MMO branches
emerge through a common mechanism.

4.3 Limitations of the Wilson model
As discussed in [24, 25], the Wilson model is only capable of generating slow perceptual
alternations with the F&S stimulus, and it fails to do so with blank intervals inserted be-
fore each swap, so-called Blank & Swap (B&S) [26, 27]. Our results show that blank inser-
tion similar to a flickering stimulus moves the boundaries up in the adaptation–inhibition
strength plane (Fig. 11(B)), but to a lesser change than F&S. In order to be in the SIM-Mod
area, which as discussed before is necessary for slow rivalry alternations at the second
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Figure 12 (A) Detailed bifurcation diagram of the reduced Wilson model (instantaneous inhibition dynamics,
τI → 0 in Eq. (1)) with fixed inputs varying adaptation strength h at g = 1.5. The dotted green line shows the
assumed location of a branch segment that proved difficult to compute due to the orbits having large period.
All complex dynamical behaviors still persist: (B) Mixed-mode oscillations (MMOs) with discontinuous
transitions between segments. On MMO branches n:m defines the n high to m low-amplitude oscillations
ratio. The number of low-amplitude oscillations starts from one and is increased by one as we move down the
bifurcation parameter. (C) Low amplitude winner-take-all (LAWTA) oscillations emerge from Hopf bifurcation
on the WTA branch and by further increasing the bifurcation parameter, a cascade of period-doubling
bifurcations emerges. Panels B and C show the maximum of E1 & E2 on the limit cycle branches

stage, adaptation strength needs to be increased or inhibition strength decreased. On the
other hand, the existence of cycle skipping behavior with swap stimuli leads to perceptual
alternation with a frequency half of the swap rate at the second stage [25], which to our
knowledge is not consistent with empirical results [13, 37]. This reported limitation of the
Wilson model could simply be avoided if the parameters had been set in a way that the
model operated in the SIM-Mod regime. Our result casts a new light on binocular rivalry
with periodic forcing and it is now clear that these two limitations of the Wilson model
could be fixed by tuning model parameters.

4.4 Implications for experiments
Even though we showed that model parameters can be tuned for consistent behavior with
experimental results, our results also predict apparently spurious dynamical behaviors
such as cycle skipping with swap stimuli at the monocular level that has not been reported
by experimental work. It is possible that this behavior (a 1.5 Hz fast alternation) was not
distinguishable from 3 Hz fast alternation in perceptual reports. Future empirical studies
could investigate the existence of such behavior at the early stages of visual processing with
monocular contributions and at later stages, i.e. higher cortical layers where the activity
would propagate.
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4.5 Future work
Levelt’s propositions [17] with traditional rivalry are well known. However, they have not
been investigated with F&S stimuli in any of the existing models of rivalry. It has been
shown in experiments [1] that Levelt’s proposition II holds with F&S stimuli (whilst to our
knowledge Levelt’s proposition IV has yet to be investigated). By implementation of these
forcing cases with numerical continuation we now have the tools to determine constraints
on models such that they are consistent Levelt’s propositions with periodic forcing [2].

The PD cascade found in the traditional rivalry case suggests the existence of chaotic
dynamics in a small range of parameter between PD cascade and MMO branches. This
could be checked by computing Lyapunov exponents for a continuous-time dynamical
system. Note that these low-amplitude oscillations (LAWTA) appear to interact with pe-
riodic forcing to produce chaotic dynamics at high amplitude (Fig. 9).

Taking the unforced system and adding periodic inputs we might expect the fine struc-
ture from the traditional rivalry case to be washed out. This is true in e.g. the flicker case.
However, we find in the swap case that the periodic forcing does interact with the deter-
ministic dynamics to produce a family for cycle skipping branches and chaotic dynamics.
Noise plays an important role in rivalry, and this is often considered in models [35]. It
remains outside the scope of the current work to explore whether the regions of exotic
dynamics found in the traditional case and in the swap case would be washed out by the in-
clusion of noise. Nevertheless, the introduction of noise to timescale-separated dynamical
systems (like the Wilson model) can introduce dynamics not present in the deterministic
case, especially local to bifurcations [40]. Interactions between noise and the dynamics
may modify the exotic dynamics reported here in an interesting way, and could expand
the parameter regions where these states persist.

Our approach for studying perceptual bistability with periodic stimuli is applicable for a
range of other stimuli including auditory streaming [41], motion illusions [28] and haptic
bistability [42].

4.6 Conclusion
The main conclusions of this work are drawn together and presented here. First, the re-
sults of our study show that the transition from slow rivalry alternation to the WTA regime
is much more complicated than previously reported. As shown in Shpiro et al. [35], the
stochastic characteristic of the dominance durations in the presence of noise are best de-
scribed near this boundary (transition from RIV to WTA). It would be of interest to see
how these complex dynamics (MMOs & LAWTA) will interact with noise. Further anal-
ysis is needed to check whether these dynamical regimes persist or are modified in the
presence of noise.

Second, several competition models have been proposed to describe binocular rivalry
with periodic stimuli, however, interpretation of results from these models are based on
a specific set of parameters. Here we introduced a method to assess whether the exist-
ing models of binocular rivalry are valid or not in a specific parameter regime and, more
generally, to find the parameter regions where these models work. This research provides
a framework for either assessing binocular rivalry models for consistency with empirical
results, or for better understanding neural dynamics and the mechanisms necessary to
implement a minimal binocular rivalry model.
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