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Abstract

White matter pathways form a complex network of myelinated axons that regulate
signal transmission in the nervous system and play a key role in behaviour and
cognition. Recent evidence reveals that white matter networks are adaptive and that
myelin remodels itself in an activity-dependent way, during both developmental
stages and later on through behaviour and learning. As a result, axonal conduction
delays continuously adjust in order to regulate the timing of neural signals
propagating between different brain areas. This delay plasticity mechanism has yet to
be integrated in computational neural models, where conduction delays are
oftentimes constant or simply ignored. As a first approach to adaptive white matter
remodeling, we modified the canonical Kuramoto model by enabling all connections
with adaptive, phase-dependent delays. We analyzed the equilibria and stability of
this system, and applied our results to two-oscillator and large-dimensional networks.
Our joint mathematical and numerical analysis demonstrates that plastic delays act as
a stabilizing mechanism promoting the network’s ability to maintain synchronous
activity. Our work also shows that global synchronization is more resilient to
perturbations and injury towards network architecture. Our results provide key
insights about the analysis and potential significance of activity-dependent
myelination in large-scale brain synchrony.

Keywords: White matter plasticity; Kuramoto model; Synchronization; Delay
differential equations

1 Introduction

Synchronization, the mechanism by which oscillatory processes collectively organize to
align their phase, has been the focus of intense research across the field of non-linear
dynamics [1], especially in the biological sciences due to its involvement in myriads of
physiological processes. In the brain, such synchronized oscillatory patterns, observed in
the rhythmic discharge of neuronal electrical impulses, play a central role in neural com-
munication, information processing, and the implementation of higher cognitive function
[2]. However, the mechanisms by which these oscillations emerge and interact within and
across brain microcircuits and systems remain poorly understood.
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In the mammalian brain, local synchronized oscillatory activity are coordinated through
a vast network of myelinated axonal fibers called white matter. The intricate white matter
structure is formed under a population of glial cells called oligodendrocytes. The oligoden-
drocytes produce an insulating myelin sheath coiling around axonal membranes to greatly
increase the conduction velocities of propagating signals between neurons. As white mat-
ter develops to adopt a genetically programmed structure, oligodendrocytes determine
to which extent specific axons are myelinated. The resulting myelin structure of the net-
work is responsible for the emergence and evolution of a rich repertoire of spatiotemporal
activity patterns, notably oscillations with various spectral properties [3].

While white matter is highly relevant in shaping brain network dynamics, the mech-
anisms governing myelin development and its relationship with neural activity remain
mostly unknown [4]. Nevertheless, the general hypothesis surrounding this topic has been
shifting away from traditional viewpoints. Recent studies suggest that white matter struc-
ture undergoes continuous changes past the stages of developmental myelination and well
into adulthood, rather than remaining static as initially presumed [5]. Indeed, substantial
myelin formation continues to occur within the fully mature central nervous system in an
activity-dependent manner [6, 7]. Furthermore, newly discovered evidence implies that
white matter structure is responsive to experiences such as learning and social interac-
tions [8]. These findings unveil potential ways white matter can restructure itself to facili-
tate neurological function over time. In particular, white matter characterized as a plastic,
adaptive structure, can be critical in maintaining the essential oscillatory and synchronous
processes found in many neural systems [9].

Despite the complexity of the neurophysiological processes involved, it has been hypoth-
esized that myelin remodeling collectively reinforces synchronous dynamics and oscilla-
tory coordination in large-scale brain networks [8]. From this perspective, the temporal
structure of these plastic changes can provide a higher level of corrective adjustments,
improving the network’s ability to converge towards phase synchrony. As a first approach
to this intricate problem, we wish to use a simplified model to determine whether activity-
dependent delays impact the phase coordination of coupled oscillators when compared to
static delays. We have used the Kuramoto model, a phenomenological model which has
a long history of applications in neuroscience, notably to study the collective organiza-
tion of oscillatory neural systems [10]. The Kuramoto model, with or without time delay,
has been extensively studied [1, 11, 12], and is increasingly used to model local oscillatory
neural activity in brain-scale simulations informed by anatomical white matter connec-
tivity [13-15]. Appealing for its relative simplicity, we have enabled the Kuramoto model
with phase-dependent delays to examine the collective impact of adaptive conduction on
coupled phase oscillators. Specifically, we performed the stability analysis of this modified
system and examined its response to structural perturbations. While preliminary, these
results can provide new insights into the large-scale impact of white matter remodeling
and its potential role in neural synchrony.

This paper is structured as follows. In Sect. 2, we first introduce our network model com-
posed as a system of coupled phase-oscillators with state-dependent delays. In Sect. 3,
we derive the equations for an N-oscillator network’s synchronous state and its respec-
tive stability criteria. Section 4 applies the derived equations from Sect. 3 to a reduced
two-oscillator network. Section 5 applies the derived equations from Sect. 3 to a large-
dimensional oscillator network through taking an N-limit approximation by handling the
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asymptotic phases statistically. In Sect. 6, we conduct numerical experiments and provide
evidence supporting the analysis in Sects. 4 and 5 through simulated results. Section 7
explores the stabilization property in the context of spontaneous changes in network con-
nectivity and compares the resilience of the synchronized state with and without plastic
delays.

2 Model

We consider a prototypical model involving a network of N weakly-coupled non-linear
and delayed Kuramoto oscillators [9] whose phases 6;(¢) evolve according to the following
system of differential equations:

d

0;
4=

N
> aysin(g;(t - 7)) - 0,(8)), 1<i<N, 1)
j=1

Z|°°

where w; € R is the natural frequency of oscillator i, and g > 0 is a constant global cou-
pling gain. The coefficients a;; represent synaptic weights: a;; = 1 if there is a white matter
connection between oscillator j to i; otherwise, a; = 0. The axonal conduction delays z;
correspond to the conduction time taken by an action potential along a myelinated fiber.
The propagation speed c;; = c;(, £) fluctuates with respect to a propagating signal’s posi-
tion ¢ along the length of an axon as saltatory conduction occurs at successive nodes of
Ranvier. The conduction velocity c;(¢,£) also changes in time. As such, each conduction
delay may be written as

7(0) = / GlLOde, 1<ij<N, @)
P

i

That is, a line integral along the axonal pathway P; connecting oscillator j to i. It is uncer-
tain how neural activity and/or oscillatory brain dynamics influences myelin formation.
However, it is known that myelination correlates with information transmission within
and across brain areas [5], which are known to involve long range synchronization [16].
To represent this in our model, we echo previous work on oscillatory neural communi-
cation [8, 9, 17] and make axonal conduction delays phase-dependent. Specifically, we
assume that each conduction delay z;;(¢) evolves under the following sublinear plasticity
equation:

j 7(6) = H(7y(8)) - [~ ((8) - ) + & - sin(6;(¢) — 6:(2)) ], (3)
where 1 <, j < N. Here, o, is the homeostatic rate constant that sets the time scale of
the evolving delays. The plasticity coefficient ¥ > 0 sets the gain of the conduction delay
changes. The initial condition for delays 7;i(¢) at £ = 0 is provided by baseline lags ‘L'i? > 0.
That is, 7;5(0) = ri? for all i, j. The Heaviside function H(7) is defined as a smooth func-
tion such that H(t) = 0if t <0 and H(t) = 1 if T > & for some small ¢ > 0. The Heaviside
function H(r) is present to preserve non-negativity of the delays 7;(¢) at all times ¢ > 0.
For details on the construction of the smooth Heaviside function, we refer the reader to
Appendix A. According to this rule, fluctuations in conduction delays are governed by an
interplay between a local drift component that represents metabolic inertia towards an
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Figure 1 Schematic of a network of coupled oscillators with plastic conduction delays implementing temporal
control of global synchronization. The network is built of recurrently connected phase oscillators, and
connections are subjected to conduction delays. Those delays are regulated by a phase-dependent plasticity
rule. Depending on whether the phase difference between two-oscillators is positive, zero, or negative, the
delays are either increased (myelin retraction), unaltered, or decreased (stabilization)

initial baseline lag ri? representing minimal myelination, and a forcing term that depends
on the phase difference A := 6; — 6; between oscillators i and ;.

A schematic of the network structure as well as the activity-dependent plasticity rule are
plotted in Fig. 1. There, given |0; — 6;| < 7, one can see that whenever 6, > 6;, the time delay
increases due to an effective reduction in conduction velocity caused by myelin retraction.
The opposite occurs if 6; < 6; and the time delay decreases: the connection speeds up due
to myelin stabilization [8]. If the phase is the same, no changes in conduction velocity are
required, and the delay remains stable at its initial lag ri?.

3 Synchronized state and stability with plastic delays

We are interested in characterizing the influence of the delay plasticity rule Eq. (3) towards
the stability of global phase-locked solutions and, more generally, in stabilizing synchrony
between neural populations (i.e. oscillators). Enabled with adaptive delays, our model cor-
responds to an N + N2-dimensional functional differential equation with state-dependent
delays. The analysis of such systems is technically challenging, especially in terms of sta-
bility where a modified approach must be used [18—20]. Mathematically, we analyze the
network’s ability to asymptotically achieve the following synchronized state:

0:t) = 2t + ¢ @

for all i < N as t — oo, where £2 is the global fixed frequency of the oscillators and ¢; is
the asymptotic phase-offset of oscillator i as time £ — co. As we will see, adaptive delays
following the plasticity rule equation (3) require non-zero phase differences A ;;(t) := 6;(¢) -
0:(¢) in order to maintain its equilibrium values, from which the network can no longer
become in-phase. Nevertheless, the oscillators are able to become entrained to a common
frequency £2. Hence, we say that our network becomes synchronized when the nodes 6;(¢)
globally oscillate at some stable frequency §2 and become phase-locked under individual
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offsets ¢;. As we are primarily concerned with the effects of delays changes under the
plastic Eq. (3), we assume that all oscillators share the same natural frequency w; = wy for
all i in Eq. (1). To simplify the convergent behaviour of delays 7;(¢) following Eq. (3), we
seta; = 1.

Applying the ansatz Eq. (4) onto both the phases in Eq. (1) and the delays in Eq. (3),

we obtain the following expressions for the global frequency £2 € R and individual offsets

¢:(¢17'~'1¢N) ERN:

N

2 =wy+ %Z isin .Qrif + A,-j), (5)
j=1

rf = max(rg + i sin(Aj), 0), (6)

forall i, j, where A; = ¢; — ¢;. It must be true that if §2 satisfies Eq. (5), then £2 € [wo—g, wo +
gl. To assess the network’s stability at the synchronized state (£2, ¢) satisfying Egs. (5) and
(6), we introduce the perturbation terms €;(¢), 1;;(t) around the equilibrium states Eq. (4)

and Eq. (6) for 6;(t) and t;(¢), respectively. That is, we write

0;(t) = 2t + ¢; + €,(2), (7)

Tij(t) = TUE‘ + 7717(1‘), (8)

and examine the stability at the equilibrium point €;(£) = 1;(£) = 0. The delay perturbations
1;(t) abide by the linearized form of Eq. (3) around all positive delays tf = ‘L'g +xsin(Ay) >
0. For the equilibrium delays rf = 0, we proceed by assuming the corresponding pertur-
bation terms will act in an asymptotically stable manner. Specifically, for all phase-offset
differences such that rj]? = 0, by the nature of the Heaviside cutoff function H(z) in Eq. (3)
there exists some £,s, € R such that forall £ > £y, 7;(f) = 0 and consequently 7;;(t) = 0. That
is, if ri]E. = 0, the perturbation term is asymptotically 1;(¢) = 0. This condition will be satis-
fied given the synchronous state (£2, ¢) is indeed stable. Since the purpose of linearization
is to determine stability, the above assumption is valid to make before proceeding. Taken

together, the linearized equations for the terms n;;(¢) as 7;(f) — tl.f are given by

d -n;(t) + kC(€(t) — €:(2)) if tf >0,
—n®) =3 Y i )
dt 0 if rf =0,

where Cf}) := cos(Ay). We can use the linearization approach in the context of equations
with state-dependent delays [18—20] as follows. Inserting Eq. (7) and Eq. (8) into the Ku-

ramoto equation (1),
d g N
Eéi(t) =wo =24 Z r + H(rilE.)n,«j(t)) + Ay +e(t- 1:5) - (1)), (10)
j=1

where we have made the approximation €;(¢ — 7;;()) ~ €;(t - ‘L'E ) when 7;(¢) is near r . With

(£2, ¢) satisfying Eq. (5), and by taking a first-order expansion around the term — .er] , we
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obtain the linear system for the phase perturbation term given by
d g al
d—tfz’(t) =y > aCylei(t - ) - €i(t) - 2Hymy(8)], (11)
j=1

where we denote C;; = cos(—£2 Tf +Aj)and Hj=H (Tf). Hence, the network synchronizes
at (£2, @) given that all perturbation terms ¢;(t), n;;(t) following the linear system of fixed
delay differential Eqs. (9) and (11) converges to 0. From here, we can analyze the stability at
the synchronous point (£2, ¢) by setting the ansatz €;(¢) = v;", ny(t) = w,',»e“ with respect
to eigenvalue A € C. By Eq. (9), the coefficients w;; satisfy

W =k C! H,,( x_:l) (12)

forall 4, j, » # 1. Applying Eq. (12) to the coefficients wy;,

2 |

N
Av; = gz ,,[V, W — ;- 2 COH; <x ‘;)] (13)

That is, A is an eigenvalue if there exists an eigenvector v = (v,...,vy) € CV satisfying
Eq. (13). In matrix form, Eq. (13) can be expressed as M,V = 0, where M, = (My) is the

N-dimensional square matrix with entries

N
g
Mii = )L()L + 1) + ﬁ Zaijci/(k +1-— QKCgHi]'),
j=1 (14)

Y ..
Mij: ]%ale,-j[.QKCf}Hi,—()\+ 1)6 » Y ], 17{]

In summary, we acquire the following stability criterion: The system is stable around the
synchronized state (£2, @) if for all eigenvalues A € C satisfying det M, = 0, Re(1) < 0. Ap-
pendix A discusses the existence and uniqueness of solutions 6;(¢), 7;(t), as well as the
justification of the above linearization and respective stability analysis.

Of note is that our approach is an extension of the non- plastic case. Indeed, without

plasticity « = 0, the delays remain fixed at the baseline lag 0, and as a result there is no

ij?
need for the delays to establish an equilibrium with positive phase-offset differences A;.
Hence, the oscillators become perfectly in-phase with ¢; = 0 during synchronization. Con-
sequently, Eq. (5) for the global frequency £2 reduces to the one-dimensional fixed-point

expression

Q=wy+ a;sin(-21). (15)

Z o=

Ll
—_

J

By employing similar steps as above, the phase perturbation terms ¢;(t) follow the linear
system

4 N
EGl,(t) :%Za cos(-27)) (¢(t - 7)) — () (16)

~.
I
—_
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resulting in the corresponding eigenvalue matrix M, defined with entries

ZI<>q

N
E COS
j=1

10
M = —%al; cos(—.Qrg)e %,

(17)

With non-plastic delays, stability analysis at 9;(¢) = £2¢ has been accomplished through
other means. Lyapunov functionals [21] have shown that a sufficient criterion for syn-
chronization around 6;(¢t) = 2t is cos(.Qfl?) > 0 for all active connections i, j such that
a; =1, and §2 satisfies Eq. (15). This criterion becomes necessary given a unique baseline
lag ‘L' = 7% [22]. That is, it can be shown that the oscillators synchronize if and only if
cos(.Q 79 > 0.

4 Synchronization of two coupled oscillators with plastic delays

Asa firstillustrative approach to the general case when the number of coupled oscillators is
large, let us first consider a reduced two-oscillator network. The following setup is similar
to the system analyzed in [23]. We first let N = 2 with a;5 = a3; = 1 and remove all self-
integration terms by setting a1; = a2 = 0. We also set the baseline delays to be equal with
10, = 74y = 7°. Then the phases 6;(¢), 6,(¢) follow the Kuramoto system,

(9{ (t) = wo +gsin(92 (t - T12(t)) - Gl(t)),

(18)
Oé(t) =wo +gSil’1(91 (t —T21 (t)) - 92(t)),
with respective plasticity equations
11, () = H(112(8)) - [~ (712(8) = 7°) + K sin(62(8) - 6,(9))], (19)

7:2/1 (t) = H(‘L’Ql(t)) . [—(‘L’zl(t) - ‘L’O) —K sin(ég(t) - Gl(t))]

By symmetry we may let Ay = ¢ — ¢1 > 0. We proceed by setting a sufficiently large

plasticity gain with « > t° Then it follows that the respective equilibrium delays are

tf = 1% + ke sin(A12) and t4; = 0, resulting in a single positive equilibrium delay. Hence, by

Eq. (5) the frequency 2 and offset A;, satisfies

2 = wp +gsin(-2tf, + Ap), (20)

2 = wy — gsin(Aqy). (21)

Solving for A;; above, we obtain

-
Aqp = arcsin(w0 ) >0, (22)
g

where positivity holds only when £2 < wy. This leads to the oscillators synchronizing at a
lower frequency £2 € [wy — g, wp). Substituting A;, in Eq. (20) with Eq. (22), if we define
the root function

Re(2):= 2 —wp —gsin(—.Q (ro +K<w°; Q)) + arcsin(a)O(; 9)), (23)
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then 6;(¢), 6,(¢) synchronizes at a common frequency £2 implicitly satisfying R, (£2) = 0.
Since it was assumed that £, = 0, for self-consistency the synchronous frequency 2 must
also satisfy % — k sin(A1,) < 0, which can be written as 2 < wy — gk 17 ~ w, since we
set k > 1°. Without plasticity ¥ = 0, the oscillators become in-phase with A}, = 0 and

synchronizes at a frequency §2 that is a root of the function
Ro(£2) = 2 — wo + g sin(L27°) (24)

as stated by Eq. (15). Figure 2(A) plots functions R, (§2) on the interval [wy — g, wo) with
respect to representative values k = 0,20, 30 of the plasticity gain. We observe that higher
plasticity gains « > 0 generally leads to a greater number of potential synchronization fre-
quencies §2 for our system. In Fig. 2(A), one can see that the functions R (£2) and Ryo($2)
have single roots within the interval [wy — g, w), while R3¢(£2) has five.

The stability in the two-dimensional case can be easily determined. Indeed, as derived in

Sect. 3, the stability of the oscillators at the synchronization state (§2, A;3) is determined

>
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Figure 2 Theoretical stability plots for two-oscillator system. A. Plot of error functions R (§2) with varying fixed
gain k =0 (magenta), k = 20 (yellow), k =30 (blue). All roots £2 € [wo — g, wo) of R (§2) are potential
synchronization frequencies for the two-oscillator system. The number of roots §2 for R, (§2) = 0 increase
with larger k. B. The plasticity gain is set to k = 30. Plot of the real part of the non-zero branches A+ (§2),
A2(£2) (orange, cyan) of the polynomial root equation Po (A) + Qg (A) = 0 over §2 € [wo — g, wo). Ticks on the
£2-axis (blue) indicate the frequencies £2; solving R (£2)) = 0 where the system can synchronize. The plotted
branches imply that the oscillators will synchronize at §2 = §2;, §23, and avoid the unstable frequency

2 = 2, with Re A1(§2;) > 0. C, D. Error heatmaps with §2 = £21, §2,, respectively, approximate the
distribution of eigenvalues A € C solving P (A) + Qg (A\)e™T =0 near A =0, scaled and normalized for
visibility. Spots near zero error (white) suggest potential eigenvalue locations. Markers plot the eigenvalues
Ao =0,11(82),12(82) (blue, orange, cyan) for T = 0. The heatmap in D indicates an eigenvalue A near
A1(£2,) > 0, which implies instability at £2 = £2,. All other eigenvalues A appear to be distributed either at

A =0 oron the left-side of the imaginary axis. Here, 27 = 0.626 and §2, = 0.783. For all plots, ar = 0.5,
g=15/2,w0=10,k=30,and7°=0.15
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by the distribution of eigenvalues A € C that satisfy

(h+1) + Cialh+ 1= 2kCp)  —Cra(e*™2(h+1) - 2 Co)|
_C21 A+ C21 -

A
det 0, (25)

where Cis =gcos(—.(2rf2 + A1), Cy1 = gcos(Aqp), Co = cos(A1). This results in the root
equation P (1) + Qe (A)e™ " = 0, where T = £, is the single positive delay and P (1), Qe (%)
are polynomials given by

PQ ()\.) = )\3 + (1 + C12 + CZl))\.Z + [IECIZ + (1 + CIZ)C21])‘- + C12C21, (26)

Qa(A) ==CCyu(r + 1), (27)

where & =1 - 2k Cy. Note that Pg; (0) + Qg (0) = 0, which means we have neutral stability.
If we make the approximation t = 0, the eigenvalues A correspond to exact cubic roots
of Po(1) + Qg (A). It is possible for the stability of the system under 7 > 0 to align with
the stability under t = 0, particularly for small . If we ignore the neutral stability of our
zero transcendental equation, Theorem 1 of [24] states that under certain conditions, the
stability of the system at t = 0 and at any t > 0 does not change. For rigorous purposes
however, we are still interested in finding the distribution of eigenvalues A € C solving
Eq. (25), particularly if it is accessible through numerical approximation.

Setting the plasticity gain « = 30, Fig. 2(B) shows the real parts of the two non-zero
branches A1, A, of the roots P () + Qe (A) = 0, plotted with respect to the global fre-
quency £2. If any of the branches are positive, it implies by the above discussion that the os-
cillators will not synchronize at the state (£2, A1;), where Ay = A15($2) is given by Eq. (22).
We denote §2; < £2; < £23 to be the three largest synchronization frequencies correspond-
ing to equilibria solutions §2; < w of the root equation R, (£2;) = O as presented in Fig. 2(A).
The eigenvalue branches imply that frequencies £2;, £23 are stable with Re(11),Re(X;) <0
at §2 = §21, 23, while £2; is an unstable frequency with Re(A;) > 0 at £2 = £2,. Figure 2(C),
(D) shows heatmap approximations of complex roots A of Eq. (24) at 22 = 21, 2 = £2,
respectively. We can see that at £2 = £2;, both non-zero cubic roots are located on the
left-side of the imaginary axis, and the error heatmap shows that the eigenvalues are lo-
cated on the left-hand side of the imaginary axis. At £2 = £2,, all cubic roots are real with
a single positive root A; > 0. Consistent with the stability of our system at t = 0, the error
heatmap implies there exists an eigenvalue A € C satisfying Eq. (25) near the positive root
A1. This highlights that under sufficiently large plasticity gain, adaptive delays introduce
multiple stable states (§2, A1) in a two-oscillator system, whose stability can be assessed
under the zero delay approximation t;; ~ 0. Our stability analysis reveals that the oscilla-
tors can synchronize at multiple possible frequencies, which suggests a greater degree of
adaptability in our system.

5 Synchronization in large-scale oscillator networks with plastic delays

Using inspiration by the two-dimensional case in Sect. 4, we consider here a large-
dimensional system using N-limit approximations. Again for simplicity, we set the base-
line lags to be constant with rg = 7° and the connection topology to be all-to-all with
a;; = 1. We approach the synchronization state (£2, ¢) of the network with adaptive delays,
given by Egs. (5) and (6), in the following statistical sense. Suppose that the phase-offsets
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¢; are i.i.d. under some distribution. We can set the offsets to be centered at 0 by defining
the re-centered offsets A; := ¢; — ¢, where ¢ is the mean of ¢. Then Aj=¢i—di=Aj— A,
We take A; to bei.i.d. under some density function p(A). Setting a random A; in the global
frequency equation (5) for each i < N, and then taking the limit N — oo, we obtain the
following N-limit approximation for frequency £2 and density p(A):

2 = wo +g/oo sin(-275(A - A) + (A= A'))p(A)dA (28)

o ¢}

for all fixed A’ € R, where £(A) = H(z® + k sin A) - (z° + k sin A). In order to apply Eq. (28)
to obtain the global frequencies 2, we parametrize the unknown density p(A) by assum-
ing it is Gaussian under some small phase-offset variance §2. That is, we have

ps(A) =

1 —-A?
exp| — (29)
N2m 82 252

and we set p(A) = ps(A). If the variance §2 is small, we can approximate the fixed offset
in Eq. (28) as A’ & 0, as well as make the approximation t%(A) ~ H(t® + k A) - (t° + k A)
since A is small. Hence, our large-scale network synchronizes near a global frequency £2
with Gaussian distributed phase-offsets with variance §2 given that (2, §2) is a root of the
function

o0

R(£2,6%) =y -2 +g/ sin(-2t5(A) + A) ps(A) dA. (30)
Without plasticity, we recall that we have in-phase synchronization at global frequency £2
which is a solution to Ro(§2,0) = 0. That is,

2 = wo + gsin(-27°). (31)

Figure 3(A) plots the curve R($2, §2) for various fixed-values of § > 0 on £2 € [wy —g, wo +g].
We find that there is a unique but different root 2 to R(£2,82) = 0 at each fixed variance
82 > 0. Hence, we can obtain an implicit curve £2 = £2(8) by parametrizing the level curve
R(£2,8%) = 0O withrespect to § > 0. The curve is plotted in Fig. 3(B), and shows a continuous
range of potential synchronization states (£2(8), 82) along § > 0 to a large N-dimensional
system of oscillators. The graph of the level curve R(£2,82) = 0 also shows that £2(8) < wy
for all § > 0, implying that the oscillators are drawn to synchronize at a lower frequency
from their natural frequency.

For small offset differences, the equilibrium delays are approximately tl.f ~ 10+ kA if
Ay >0,and tf =0if Aj < 0. Before proceeding, we set « to be sufficiently larger than the
baseline lag ° such that ’K—O ~ 0. Then most negative offset differences A;; <0 fall below
the Heaviside cutoff 7° + k A;; < 0. From this, the Heaviside term becomes approximately
dependent to the sign of A;; with H;; & H(Ay) for all i, j. For large gain «, two categories
of equilibrium delays emerge that contribute to the global frequency §2 in Eq. (30): For
half the connections with offset difference A; < 0, the corresponding delays t;(¢) decay
to tl.f =0 as we have 7% < —« A < 0 with 79 « k. Otherwise, with Ay > 0 the delay 7;(¢)
establishes a positive equilibrium at rf = 1%+ kK A;;. The positive delays rif become widely
distributed under large standard deviation «4.
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Figure 3 Theoretical stability plots for large N-dim oscillator system. A. Plots of error function R(£2,82) with
varying fixed § > 0 over §2 € [wo — g, wo + gl. The function is truncated between interval [-0.5,0.5] for visibility.
There is a unique root R(£2,8%) = 0 for each fixed 8 > 0. B. Colour map of sgn £(£2, 82) over states

(£2,8%) € [wo - g, w0 + g] x (0,0.52), along with the implicit solution curve (purple) §2 = £2(8) parametrizing
level set R(£2,8%) = 0. Stable regions correspond to sgn £(£2,82) = -1 (blue) and unstable regions correspond
to sgn £(£2,82) = 1 (red). The network synchronizes near a state (§2(8),8°) overlapping the stable region.

C. Plot of stability term s.log £(£2,87) along the solution curve £2 = £2(8) over § € (0,0.5). There is a small
interval § € (0.08,0.1) for which (£2(8),82) is in the stable region (blue). Other states are in the unstable region
(red). D. Complex plot of non-zero eigenvalues of P(A | £2,8%) + Q(A | £2,82) on solution states (£2(82),82)
across varying 8 > 0, scaled by s.log for visibility. The eigenvalues in plot D were computed at respective
states (£2,82) in plot C indicated by the same colour. Power terms for polynomial Q(A | §2,82) were computed
up to degree M = 3. The parameters used for all plots are ¢y =1.0,g=1.5, wo = 1.0, k =80, and 9=01s

The coupled network can synchronize towards any stable point (§2, §2) along the curve
R(£2,8%) = 0. To assess the stability at each state (£2, §2), consider our N-dimensional eigen-
value stability criterion M, v = 0 for eigenvector ¥ € CN and matrix M; whose entries are
given by Eq. (13). That is,

N
|: A+1)+ £ Z z]) )\'+ 1-kCo(£2 )H(Aij)):|vt
j=1

2 |

N

% 3 CalA) (RCo(AYH(A) — (1 + D)™ )y = 0 (32)

j=1

for all i < N, where & = 2k, Co(A) = cos(A), Co(A) = cos(—2tE(A) + A), and £(A) =
H(A)(z° + K A). Once again, if our offset variance 82 is small for Eq. (31) we can approx-
imate the terms Aj; = A; — A; & A; by assuming A; ~ 0 at each i. We derive an N-limit
version of the eigenvalue Eq. (32) as follows. Likewise to the frequency equation £2, we
can obtain a similar N-limit approximation to Eq. (32) as follows. We define a continu-
ous eigenfunction v: [0,1] — C such that v; = v(i/N). Then, taking the limit N — oo to
Eq. (32) with A;; ~ A; ~ N(0,6 2), we obtain the continuous eigenvalue criterion for A with

Page 11 of 25
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respect to eigenfunction v(x) given by

[x(,\ +1)+ [oo Co(A)(A+1- kCo(A)H(A))pg(A)dA]v(x)

o0

0 1
- ( / Co(D)[RCy(AH(A) = (. + 1)e ™ P pys(A) dA) / v(y)dy=0  (33)
—o0 0
for every x € [0, 1]. Justification regarding the N-limit step to derive Eq. (33) is provided in
Appendix B. Here, the only continuous eigenfunction solution to the above equations is
the constant function v(x) = 1.* Hence, Eq. (33) simplifies to the following N-limit eigen-
value equation for A:

A :g/(;oo C.Q(A)(e_ME(A) - l)pg(A)dA. (34)

We claim that the synchronization state (2, §2) is (neutrally) stable given that for all A € C
satisfying Eq. (34), Re(1) < 0. Note that for all A = u + iv satisfying Eq. (34),

x| 5g(|11| + / e ¥ p(A) dA>, (35)
0

where I_; = f0°° Co(A)p(A)dA. By Eq. (35), if u — o0, |A| < g|l_1|, which is a contradic-
tion. It follows that, as |A| — 00, Re(A) — —oo for the distribution of eigenvalues A sat-
isfying Eq. (34). If k = 0, then the frequency £2 solving Eq. (31) is (neutrally) stable if all
eigenvalues A € C given by

A :gcos(.QrO) (e_“o - 1) (36)

have non-positive real parts Re(A) < 0. As shown in [22], the non-plastic delay network
synchronizes at 2 if and only if cos(£27°) > 0.

At this point, the N-limit approximate eigenvalue Eq. (34) has done little to improve
the N-dimensional criterion detM, = 0, due to exponential blow-up that persists within
the integrand term. We proceed to reduce the eigenvalue Eq. (34) into an exponential
polynomial root equation as follows. Rescale A — R} by some radius R > «,

A= Rg(e‘“k f Co(A)e ™ Rp(A)dA - 1_1> (37)
0

R

with rescaled small delay term t® = t°/R. Expressing the power series of the exponential A

term up to degree M in Eq. (37), we obtain the approximate exponential polynomial root
equation

P(112,8%) +Q(r| 2,87 =0 (38)

with polynomials

M
P(%|82,6%) =1 +Rgly,  Q(r|£2,6%) =) L.", (39)
m=0
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and power term coefficients

fon U8

m 00

) / Ca(A)A"ps(A)dA, 0<m=<M. (40)
m! R 0

Choosing a large radius R > «, the rescaled delay term t® and coefficients I,, for larger
degrees m become arbitrarily small. From this, we claim that the stability at (£2,8%) is
predominantly determined by the first few terms of the exponential power expansion.
That is, the stability at synchronization state (£2,8%) is determined by the finitely many
polynomial roots A € C satisfying Eq. (38) with 7% ~ 0 and some degree M. Denoting
A(£2,8%) = {A1,..., ) as the roots of M-degree polynomial P() | £2,82) + Q(A | £2,582),
the synchronization state (§2, §2) is (neutrally) stable given that

E(£2,8%) :=max{Re(A) : » € A(£2,8%),1 #0} <O0. (41)

We note that these analytic results are reminiscent of what we obtained for two-
dimensional systems in Sect. 4 with the cubic exponential polynomial equation Pg(A) +
Qg (A)e™* =0 as defined by Eqgs. (26) and (27).

As we experienced large scale fluctuations of stability term E(£2,52), we processed its
value with either the sign function sgn(x) or the sign logorithm s.log(x) defined as

1, x>0,

sgn(x) = 1 -1, x<0, (42)
0, x=0,

s.log(x) = sgn(x) log(1 + |x]). (43)

In Fig. 3(B), we plot sgn E($2,62) for all £2 € [wy — g, wo + g] and small § > 0. Stable re-
gions are indicated where sgn E(£2,8%) = —1. In computing E(£2,§%), eigenvalues satisfy-
ing |Re(A)| > 1078 were considered to be non-zero. We notice that a section of the level
curve R(£2,82) = 0 overlaps part of the stable region for (§2,2). Indeed, Fig. 3(C) plots
the stability term s.log E(§2,82) along all points (£2,82) on the implicit solution curve
£2 = £2(8). As the plot shows, there is a small interval (§;,5,) such that (£2(8), 8) is stable
for all § € (8, 8,) such that E(£2, §2) < 0. Figure 3(D) shows the transition of the eigenvalues
reCof P(A ] £2,5%) + Q(r | £2,82) = 0, corresponding to state (£2(8), §2) as § leaves the in-
terval (8;,8,). We see that the eigenvalues shift towards the right-side of the imaginary axis,
which shows the transition from stability to instability along the solution curve (£2(8), §2).

The results above were obtained by setting the polynomial degree to M = 3 for Q(A |
£2,62), while the approximation failed for powers M > 3. In addition, it remains unre-
solved whether the distribution of eigenvalues Ay satisfying the N-dimensional Eq. (32)
with some eigenvector ¥ € CN generally converge to the N-limit eigenvalues A satisfying
Eq. (33) with corresponding continuous eigenfunction v: [0,1] — C. That is, whether for
each € > 0 there is some large N such that for all Ay € C satisfying Eq. (32) each at N di-
mensions, there exists some eigenvalue A € C satisfying Eq. (33) such that |A\x — A| < €. In-
tegral equation theory has proven some relevant theorems. For instance, it can be proven
[25] that there exists a non-zero eigenvalue A € C to Eq. (33) such that Ax) — A for some
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subsequence of eigenvalues Ay € C satisfying Eq. (32) at dimension N = N(k). Never-
theless, our N-limit analysis highlights an approximate region of points (£2,8%) where a
large-dimensional system of oscillators will synchronize. We demonstrate in the follow-

ing section that this region aligns with synchronous behavior in numerical simulations.

6 Comparison to numerical simulations

Here, we validate the theoretical analysis committed in the previous sections through
comparisons with numerical simulations. We obtain the global frequency £2 and asymp-
totic phase-offsets ¢; numerically, and systematically compare them with their analytical
counterparts. Given numerical solution 6;(¢), i < N to the Kuramoto equation (1) with
corresponding derivative solution 6/(t),i < N, we can obtain the asymptotic frequencies
for each oscillator by summing over the time interval [¢, ¢ + /4] and taking the limit £ — oo.
That is,

. t+h

1
2;:= lim . 6;(t) dt (44)
t

t—00

and estimate the global frequency £2 as the sample mean of individual frequencies
1N
Q=2 (45)

Likewise, we can numerically estimate the asymptotic phase-offsets ¢, for each oscillator
by taking the difference q?,»(t) = 0,(t) — Qtand defining the limit

R 1 t+h A
¢i = t1—1>Igo z / ¢i(t) dt. (46)
t

After modding a, so that q?l € [-m, ), we can estimate the offset variance §2 by taking the

sample variance
. 1 X
5 .- b — ) 47
N1 ;(qs %) (47)
and the average (asymptotic) phase ¢ by taking the sample mean,

_ o1 X
$i=—> ¢ (48)

If our solutions 6;(¢) synchronize towards some synchronous frequency £2, offsets ¢;, then
22, ¢; are estimators for £2, ¢;, respectively. Numerically, we evaluate the estimators by
taking the average over interval ¢, ¢ + /] starting at some large time ¢ > 0.

We set all baseline delays to be a unique value ° > 0, so that 7;(0) = ‘L'g = 70, Since the
plasticity rule Eq. (3) is an ordinary differential equation, it suffices for all delays to have an
initial value at ¢ = 0. Before ¢ = 0, we set the phases 6;(¢) to be positioned in accordance to

some initial frequency £2, and initial phase-offsets ¢?. That is, we define the linear initial
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0t + ¢? and set 6;(t) = ¢;(t) on ¢t < 0.” In order to have reasonably behav-
ing solutions 0(£), we modify the function ¢;(¢) so that it satisfies the necessary condition

function ¢;(t) =

2 |

N
= 23 sin(-20t° + 40 - 97) (49)
i=1

for all i. This adjustment is needed in order to avoid numerical discontinuities for 0;(£) at
t = 0. For details, refer to Appendix C.

Figure 4 plots the results of a series of numerical simulations in the reduced two-
oscillator network as set up in Sect. 4. All trials were run from 0-200 s, with estimated
values 2, ¢; obtained by averaging the arrays over the last 20 seconds. The same parameter
values used in Fig. 2 were applied here when running the numerical trials. We demonstrate
the existence of two stable synchronization states with different frequencies. Figure 4(A),
(B), (C) shows the asymptotic behaviour of two trials (purple, orange) that started with
different initial functions, plotting over the first 50 seconds. Figure 4(A) plots the deriva-
tive arrays 0;(¢), 05(¢) of each trial. We observe in Fig. 4(A) that each pair of oscillator
frequencies entrain to a common frequency over time. The two trials converge to differ-
ent common frequencies, estimated to be 2=0916 (purple lines) and 2=0625 (orange
lines), respectively. Figure 4(B) plots the offset arrays sin 51(15); sin (7;2(15) of each trial. For
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Figure 4 Numerical plots for two-oscillator system. For plots A, B, C, two trials with different initial conditions
are graphed. Trial 1, 2 (purple, orange) starts with initial frequency and phase difference

(820, Ag) = (0473, 0402) (0.727,0.860), respectively. A. Plots ofder\vatlves 07 (1), 05(t) over time. For each trial,
0;(t) (dashed) and 65(t) (dotted) converge to a common value Q asymptotlcally Each trial of oscillators
entrain to a dlfferent frequency, |mp\y|ng the existence of multiple synchronization frequencies. B. Plots of
sine phases sin ¢, ), where d), 6,(t) - £t For both trials, the oscillators asymptotically phase-lock with
qb, — ¢,, i= dotted) (dashed) The phase-lock difference Au = ¢2 —¢1 is also different for the two
trials. C. Plots of adaptive delays T12(t) (dashed), 721 (¢) (dotted) over time. For each trial, delay 71,(t) converges
to some positive equilibrium =€, and delay 751 (1) decays to 0. D. Plots showing where two-oscillators with
randomized initial conditions (§20, Ao) (orange) synchronize towards in terms of asymptotic frequency and
phase-offset (ﬁ, 312) (magenta) across 80 trials. Each of the two trials in A, B, C have their initial condition
plotted as a diamond marker of matching colour. Theoretical synchronization states (§2, A1) given by Egs.
(20) and (22) are also plotted (blue). Trials converge to two states (ﬁ, &12) =(0.625,0.522),(0.916,0.111),
which align with the two theoretically stable states shown in Fig. 2. The parameters used for all plots are

ar =05,6=001,g=15/2,k =30,w0=10,7°=0.15
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each trial, the two-oscillators become phase-locked as az(t) - $1(t) converges asymptoti-
cally to estimated constant differences Zm =0.111 (purple lines) and 112 =0.523 (orange
lines), where Klz = ?52 - al. Figure 4(C) plots the connection delays 71,(t), 721(£) over time.
By choosing our plasticity gain « = 30 > 0.1 = t°, it follows that for both trials, 715(¢) con-
verges to some positive equilibrium delay % and 75, (¢) decays to 0.

The above results imply that there exist at least two stable synchronization states,
and that the frequency the system converges towards is dependent on the initial func-
tions ¢1(£), ¢2(¢). To provide further confirmation towards this proposition, the trials
shown in Fig. 4 were repeated 80 times randomized across sampled initial frequency
§20 € [wo — g, wo + g] and initial phase difference Ag € (0,1). The point (£29, Ag) (circle
markers) defines the initial functions ¢; (£) = £20¢, ¢2(£) = 20t + Ag. The theoretically stable
states corresponding to frequencies §2 = £2; and §2 = 25 are plotted as orange and pur-
ple stars, respectively, which are both close to the asymptotic frequency of the matching
coloured trial discussed above. The rest of the theoretical synchronous states given by the
roots of Eq. (23) are plotted as blue stars. Each trial’s solution arrays synchronized near one
of the two stable states, as shown by the connecting coloured lines. The matching colours
indicate which of the two stable frequencies £2; the trial’s solution arrays synchronized to-
wards, such that the |§ — ;] <5x 1073, Each of the two trials graphed in Fig. 4(A), (B), (C)
are also plotted in Fig. 4(D) with a diamond marker of matching colour. Convergence of
the points is suggestive of a separatrix curve between the basins of attraction of both sta-
ble fixed points. It was also observed that the system synchronized towards the frequency
£2 = 23 faster than £2 = §2;, which suggests that the state £2 = £23 has a greater force of
attraction. Hence, the experimental results align with the analysis outlined in Sect. 4. We
draw the conclusion that in our reduced two-oscillator system, plastic delays are able to
generate multiple synchronization states in comparison to non-plastic delays.

Figure 5 provides the numerical results of a similar experiment performed as in Fig. 4
with a large-dimensional network N = 50 and all-to-all network. All trials were run
from 0-100 s, with estimated values £2, ¢; obtained by averaging the arrays over the
last 10 seconds. The same parameter values are used as in Fig. 3. The initial function
@(t) for each trial was set up by choosing some frequency £2 € [wy — ‘%,wo + %1 and
deviation 8y € (0,0.5). The initial phases ¢? were i.i.d. sampled uniformly from the in-
terval [—+/380,+/38]. The ith oscillator was equipped with the initial linear function
i(t) = 2ot + d)?. Figure 5(A), (B), (C), (D) graphs a single numerical trial with £2; = 0.913,
80 = 0.295. Figure 5(A) plots the derivative arrays 0;(¢), which we note converges to some
constant frequency estimated as 2 =0.839. Figure 5(B) plots the offset arrays sin ai(t),
which shows that each ¢;(t) converges to some constant phase-offset estimated by bi.
Hence, the oscillators become asymptotically phase-locked under distributed offsets with
estimated variance 3% = 0.0502. Figure 5(C) plots a sample of 50 adaptive delays z;(t),
which become part of the positive equilibrium distribution rif > 0 or decay to 0. Fig-
ure 5(D) plots the density of centered phases A; = ¢; — ¢. As we assumed that the cen-
tralized phase-offsets follow a Gaussian distribution, we perform a normality test on the
numerical asymptotic offsets A;. The Shapiro—Wilk test for non-normality returned a p-
value of 0.005 for A;, which suggests another distribution would be more accurate. Visu-
ally, a Gaussian curve N (0,37) (black line) is fit over the density in Fig. 5(D). Neverthe-

less, the relevance of the Gaussian approximation, which greatly simplifies the analysis,
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Figure 5 Numerical plots of N-oscillator system. A. P|O§ of derivatives 6/ (t) over time. We see thatall 6/ (1)
converge to a common frequency, estimated to be §£2 = 0.839. B. Plots of sine phases sin(¢;(t)), where

@(t) =6;(t) - Q1. All oscillators appear to asymptotically phase-lock to one another. C. Plots of a sample of 50
adaptive delays Tj(t) over time. Some delays T;(t) converge to some positive equilibrium tUE while others
decay to 0.D. Densi%of centralized phase-offsets Z,- = a — @, which was assumed to be Gaussian. The
Gaussian curve N(0,6°) (black line) is fit over the density. E. Plot showing oscillators with randomized initial
frequency and phase deviation (§2¢, 8o) (yellow) synchronizing towards respective estimated asymptotic
frequency and phase deviation (Q\,;S\) (magenta star) across 10 trials. The yellow diamond refers to the trial
plotted in A, B, C. The numerical values are plotted directly over Fig. 3(B). As shown, the network synchronizes
near the theoretical stable region. The parameters used were N =50, € =0.01, ¢ =0.1,g= 1.5,k =80,
wo=10,7=015

becomes apparent as the numerical and analytical results nearly coincide. Other approx-
imations could be used to facilitate the analysis further, and are left for future work.

The numerical simulation, as presented above, was repeated 10 times with randomized
initial conditions (£2o,82). For each trial, £, 8y was sampled uniformly from intervals
[wo — %, wo + %] and (0, 1), respectively. Figure 5(E) plots the following convergence results.
Each trial with initial condition (£2o, 83) (yellow markers) synchronized near the respective
estimated point (2,5?) (magenta markers). We can see that every trial synchronized at ap-
proximately the same state (§2, §2). To determine whether the numerical results align with
the analysis discussed in Sect. 5, the numerical values were plotted on top of Fig. 3(B). We
observe that for each trial, the network synchronizes near the portion of the level curve
R($2,82) = 0 within the stable region where E($2,82) < 0. Hence, the numerical experi-
ment for N = 50 generated results that validates the theoretical N-limit stability analysis
in Sect. 5.

7 Neuroscience application: resilience to injury with sparse and uniform
connectivity

One of the most salient examples of white matter plasticity comes from neuroimaging in

the presence of a lesion. In these cases, white matter remodeling takes place in order to

restore and maintain function, a process that notably impacts neural synchronization [26].

Let us now investigate whether the plasticity mechanism can be used to stabilize phase-

locked states in the presence of network damage. That is, we would like to know whether
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changes in time delays can be used to compensate for a reduction in effective connec-
tivity and make the global synchronous state more resilient. To investigate this problem,
we model injury as a loss in connections a;;. Defining y € [0,1] as the insult index, we

introduce here the sparse synaptic connectivity weights given by

a = - (50)

where pj; is a uniformly distributed i.i.d. sampling on [0, 1]. y represents the connectivity
damage through an increase in the sparseness of network connections. Note that if y =0,
then we obtain the all-to-all connection topology a; = 1 corresponding to no injury in
the system. If y = 1, we have the trivial system a;; = 0 which means no signals between the
oscillators occur. For any y we have the probability to retain the connection P(a; = 1) =
1 — y. Without plasticity, the mean phase dynamics for N — oo is given by

2 =w +(1—y)gsin(—.(21°); (51)

see Eq. (31). By observation, one can see that we are in the presence of the same network
dynamics, but with an effective coupling coefficient given by geg := (1 — y)g. Thus, dam-
age simply reduces the net coupling. To demonstrate this point, we start with a strong
coupling parameter and decrease it until stability is either lost or preserved by plasticity.
According to Eq. (51), 2 — wg as ¥ — 1. Hence, if the baseline lag 7° is chosen such that
cos(£27°%) > 0 and cos(wy1°) < 0, the network without plastic delays is susceptible to injury
destabilizing the synchronous state.

We ran numerical simulations by applying similar parameter values as Sect. 6 while in-
troducing injury y = 0.8 to the connections at time ¢ = t,, set at tj,; = 80 s. The initial
condition of the network was fixed at (£2, 8¢) = (w0, 0.25) for all trials. Figure 6(A) shows
the destruction of existing connections following injury, comparing connection grids for
a;; before and after t,;. Figure 6(B) shows the distribution of the delays 7;(t) with existing
connections a;; = 1 at timestamps ¢ = 0's, £ = 79 s (pre-injury), £ = 160 s (post-injury). With
fewer connections available, the ability for the surviving delays to adjust themselves are
crucial in re-stabilizing the system’s synchrony. Figure 6(C) (no gain) and Fig. 6(D) (with
gain) show that both networks entrain to a global frequency successfully before and after
inflicted injury towards the network. The entrainment frequencies pre-injury £2p. ~ ﬁpre
and post-injury £2,05 X §post were estimated by taking the average of 6/(t) at times 148—
160 s and 304—320 s, respectively, for each i < N. Figure 6(E) (no gain) and Fig. 6(F) (with
gain) plots the sine phase-offsets sin #i(t) over time, given by

- 0,(t) = Qoret,  t<tin,
¢l(t) _ l( ) Apre 1nj (52)
Gi(t) - postt’ t=> tinj-

Following injury, from Fig. 6(E) the network without adaptive delays collectively falls out
of phase. In contrast, Fig. 6(F) shows the network with adaptive delays demonstrating re-
silience against the injury as most oscillators are able to collectively phase-lock within
close proximity to each other.
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Figure 6 Comparing resilience against injury between plastic and non-plastic delays. Injury towards the
connection topology aj is introduced at tin; = 160 s (red line). A. Plots of the connection matrix A = (a;) before
injury (y =0) and after injury (y = 0.8), with g;; = 1,0 indicated in white, black, respectively. B. The log
histogram plots of delays at initial time t = 0 s (purple), midtime before injury t = 160 s (green), and at the end
time following injury t =320 s (red). The delays become distributed away from t;; = 79 to either some largely
varying equilibrium delays ‘[,»»E > 0 or decay to 0. Following injury, there are fewer delays available to stabilize
the synchronous network. C, D. Plots of derivatives 6/ (1) over time, without and with plasticity, respectively.
Both networks entrain in frequency pre-injury. Following injury, both networks entrain to a new frequency
closer to wy. E, F. Plots of sin ¢;(t) over time, without and with plasticity, respectively. Following injury, the
oscillators with plastic delays are able to coherently phase-lock within close proximity to each other, while the
network without plastic delays remain in a non-convergent state. The parameters used were N = 50, ¢ = 0.01,
a;=10,g=15k=80,wpy=10,and 1% =205

Figure 7 examines the effect of gradually increasing the severity of injury towards the
system’s global frequency £2 ~ 2 and its phase-offset variance 82 ~ 32. For each trial at
injury y, the same initial condition and parameters were used as in Fig. 6. Figure 7(A)
shows that connection loss generally leads to the system’s synchronization frequency £2
becoming closer to the natural frequency wy. Figure 7(B) plots the estimated phase stan-
dard deviation 3 with respect to increasing injury. The network without plastic delays
exhibits a significant loss in coherent synchrony with increasing 3 > 0 as more connec-
tions are lost. In contrast, the network equipped with adaptive delays persistently displays

phase coherence with 3« 1 until higher injury levels y.

8 Discussion

Our goal was to provide a mathematical framework that captures the synchronizing prop-
erties of networks with adaptive delays. We sought to implement the activity-dependent
property of myelinated connection delays by modifying the Kuramoto model as proposed
in [9]. The focus was to determine whether such adaptive delays significantly improve the
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Figure 7 Comparing of post-injury network asymptotic behaviour with increasing injury between plastic and
non-plastic delays. Each numerical trial was run over 320 s, and all asymptotic values were evaluated by
averaging over the final 16 s. Injury was introduced at t = 160 s. Both plots show trials with adaptive delays
(red) and fixed delays (purple). A. Plot of post-injury asymptotic frequency §2 for trials with injury y > 0. As y
increases, ? — wo. B. Plot of post-injury asymptotic standard deviation 3 for trials with injury y >0.As y
increases, & has significant increase for trials without plasticity, while § remains relatively small for trials with
plasticity until y = 0.9. The parameters used were N =50, ¢ =0.01, oz =1.0,g=1.5, k =80, wp = 1.0, and
9=205

oscillatory system’s ability to become in-phase and to entrain to a global frequency. Given
that this is the case, the results of the model’s study reinforces the proposition that myelin
plasticity is essential in maintaining the synchrony in the developing or injured brain.

White matter plays a critical role in maintaining brain function through the coordi-
nation of neural dynamics across multiple temporal and spatial scales. Recent evidence
has shown that through the action of glia, white matter properties evolve continuously in
time. Specifically, conduction velocity within and across brain areas is adjusted to promote
efficient neural signaling. While the mechanism remains poorly understood, the conse-
quences of such plastic processes on brain dynamics and synchronization can be readily
examined and characterized using simplified mathematical models.

To accomplish this, we here examined the influence of adaptive conduction delays on the
synchronization of neural oscillators. We developed a repertoire of mathematical tools to
better examine the stability of phase-locked solutions. In theory, we derived implicit equa-
tions for the global frequency £2 and eigenvalues A € C that provide a rigorous criterion
for the stability around the synchronous state in two-dimensional and large-dimensional
settings. Based on our model, flexibility in the white matter structure introduces an ad-
ditional corrective dynamic next to the phase interactions that can further drive the net-
work’s phase alignment. Higher stability with adaptive delays was demonstrated as the
Kuramoto model had higher resilience against injury perturbations. However, adaptive
delays improve the system’s synchronous features only when the delays adjust with a suf-
ficiently high degree of plasticity, as represented by the plasticity gain «.

There are many limitations in the prototypical model we used and its corresponding
results. Myelination is bound by many physiological constraints, some of which remain
uncertain [4]. It is established that white matter restructures itself in response to ongoing
neural activity [8]. We primarily incorporated this fact in our plasticity rule in a manner
that promotes local synchrony. Indeed, each connection delay changes at a rate propor-
tional to the sine of the oscillator’s phase difference. This rule remains a tentative construc-
tion, as more research is needed to develop more biological relevant models in activity-
dependent myelination. In addition, the use of phase oscillators to model local neural dy-
namics remain limited and is relevant mostly in the context of large-scale neural systems.
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In our analysis, we relied heavily on i.i.d. parametrical frameworks in order to establish
our N-limit approach, which may not be feasible as network elements are correlative in
nature.

Moving forward, we hope to build upon our analysis alongside newly found experimen-
tal results pertaining to myelin. Despite its shortcomings, the mathematical approaches
used and its results can potentially be applied to more complex, biological relevant mod-
els. The conduction delays 7;(¢) o c;jl(t) can be alternatively modelled with respect to a
system of adaptive conduction velocities c;(¢). In the realm of temporal equations, other
parametric avenues have yet to be explored. For instance, the delays 7;;(f) can exhibit slow
convergence by setting the rate constant «; < 1. The aforementioned concepts are some
proposed examples that may further lead to uncharted dynamics in the scope of neuro-

computational models.

Appendix A: Existence, uniqueness, and linearization

We sketch out the arguments needed to justify the existence, uniqueness, and stabil-
ity analysis of our proposed Kuramoto model with adaptive delays. Our model can be
expressed as an N + N? system of oscillators 0(t) = (6;(t))1<i<x € RN and delays (¢) =
(tj()1<ij<n € RY*N, where R, := [0,00), defined by the state-dependent functional dif-
ferential equations

0(t) = F(0,,(0)), (53)
(t) = G(6(8), (1)), (54)

where 0, € C := ([-r,0], RY) defined by 6,(s) = 6(¢ +s), s € [-r,0], and C is the space of all
continuous functions from interval [-r, 0] for some r > 0. Here, F : C x RN — R¥ is the
function whose ith co-ordinate F;(6;, T(¢)) is given by Eq. (1) and G : RN x RN — RN>N
is the function whose ijth co-ordinate G;;(6;(¢), 6;(¢), 7;;(t)) is given by Eq. (3). We note that,
from Eq. (3), each delay solution t(¢) is bounded for all £ > 0. This is clear since given

(1) > °

+ k&, we must have 7;(¢) < 0. Hence, it suffices to define the space C with any
r>10+k.

Denote C' C C to be the subspace of all continuously differentiable functions. Let
6o(s) = ¢(s) for some C! initial function ¢ : [-r,0] — RN and 7(0) = % € RY*N be the ini-
tial delays. Since Eq. (54) is a system of ordinary differential equations, t(¢) is independent
of initial values on ¢ < 0. Hence, we represent an initial function for 7 (¢) with an initial point
7% € RV*N Existence and uniqueness of solution (6(¢), 7 (¢)) follows from theorems in [18]
given that both F, G are continuously differentiable functions over (¢, 7% € C! x RV*N,
The ith co-ordinate F;(¢,t°) is a linear combination of terms sin(qoj(ti?) — @;), which is
continuously differentiable over ¢ € C!. G is continuously differentiable given the Heavi-
side function H(t) is smooth. The Heaviside function used throughout the paper is con-
structed as follows. Setting some arbitrarily small ¢ > 0, we define the smooth mollifier
function #: R — R by

e @D D e ok,
h(x) = (55)
0

otherwise.
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Then our smooth Heaviside function H(t) is defined as

Jo h(-1+2e71s)ds .

Ay lf T> 0,

H(z) = Jo h(-1+2e"1s)ds (56)
0 otherwise.

Then each co-ordinate G;; is smooth with respect to terms ¢;, ¢;, 0,

Linearization and stability of our system around the synchronized state (§2,¢) can be
justified as follows. We can express Egs. (53) and (54) under perturbation terms (e(£), n(z))
of (6(¢), 7(¢)) defined by Egs. (7) and (8). That is, consider the autonomous equations

é(t) = F(ern(@)), (57)
7(t) = G(e(®), (1)), (58)

where the ith co-ordinate of F(e,, 7(t)) is given by Eq. (10) and Gle(t),n(t) = G(t + ¢ +
€(t), 7% + 1(t)). Then, if (£2, §) satisfies Eq. (5), F(0,0) = G(0,0) = 0. Hence, the stability of
(6, 7) around (£2, ¢) depends on the linearization of F, G around (0,0). One can compute
that the corresponding linearized system (€(¢), 7(¢)) = L(e(t), n(¢)) is given by Egs. (9) and
(11). To prove that this linearization is valid and provides the eigenvalue stability criteria
det M, =0, we can replicate the proof for Theorem 2.1 in [20]. Indeed, E, G are composed
of Lipschitz continuous terms that allow the steps to be valid for our perturbation Egs. (57)
and (58).

Appendix B: Derivation of N-limit equations

Here, we justify the limit steps taken in Sect. 5 to derive the limit-N equations for global
frequency £2 and stability eigenvalues A around the synchronous state. First, denote Eg(X)
as the expectation of random variable g(X). That is, given X has distribution p(x),

Bg(0) - [ o) d. (59)
The main proposition we applied is as follows.

Theorem 1 Let (vi)k>1 be a bounded sequence of real numbers, and X be a random vari-
able such that EX = 0, E|X| < co. Suppose (Xx)k>1 is an i.i.d. sequence of random variables
such that each X; has the same distribution as X. Then

N

1

ﬁ E Vka -0 (60)
k=1

almost surely as N — 00.

Proof For some M > 0, |vi| < M for all k. By the classic Strong Law of Large Numbers,

1 g 1
ﬁ E Vi Xk SM’N E X —0 (61)
k=1 k=1

almost surely as N — oo. O
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What directly follows from Theorem 1 is the following limit result, which we utilize to
derive the limit-N equations for the global frequency §2 and the stability eigenvalues A.

Corollary 1 Let (vi)i>1 be a bounded sequence in C, and X be a random variable such
that E|X| < co. Suppose (Xi)i>1 is an i.i.d. sequence of random variables such that each X;
has the same distribution as X. Then

N

1

N > wiXi — VEX, (62)
k=1

where V is the well-defined asymptotic sample mean of the coefficients:
1N
V= A}l_r)r})o N Z Vk. (63)
k=1
In particular, if v [0,1] — C is a continuous function and vy = v(k/N), then
1 & 1
— Xy —>EX | v(y)dy. 64
N kzﬂ: '« Xk /0 ) dy (64)

Proof Thisimmediately follows by applying Theorem 1 to the i.i.d. sequence Y = X —EX.
It remains to show that v exists. Denoting vy = ﬁ Zf:l vk as the sample mean among the
first N coefficients with |vx| < M for all k, we show that (Vy)n>1 is a Cauchy sequence. We
have

lN 1 N+1

In—Tnal= =Y - —— S
vl =[ - g
N

N+1
1
= (N+ 1) Vk—N Vi
N (NN Y
2M
< <€ (65)
N+1

for sufficiently large N. Hence, the limit v = limy_,o Vx exists. In the case where v; =
v(i/N), it is clear that v = fol v(x) dx by taking Riemann sums. O

We applied Corollary 1 to random sequences of the form X = f(Ag, t°) where Ay is
Gaussian distributed, and 7° is the constant baseline lag. The eigenfunction coefficients
vk are from ansatz €;(¢) = vie* as N — oo.

Appendix C: Numerical setup

All numerical simulations in Sects. 6, 7 were done using MATLAB’s ddesd function. We
have a system of delay differential equations for the phases 6;(¢), i < N given by Eq. (1)
and an N? system of ordinary differential equations for the state-dependent delays 7;(¢),
1 <i,j < N given by Eq. (3). The initial data before starting time ¢ = 0 are as follows. We
have a history function ¢ : [-7,0] — RY for the phases, such that ;(¢) = ¢;(t) for all £ < 0.
We considered only the simple case where delays 7;;(¢) have a unique baseline lag 7;;(0) =
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79 € R. As shown in Appendix A, it is sufficient to consider C! initial phase functions ¢(t)
to ensure unique solutions. However, we are not guaranteed to have reasonably behaving
solutions unless we have continuity of ' (¢) at ¢ = 0 [19]. This is also a necessary condition
for providing accurate numerical simulations, as interpolation steps in ddesd rely on 6’(¢)
being continuous everywhere.

For our numerical experiments in Sects. 6 and 7, we consider the linear initial func-
tions ¢;(t) = 2ot + d)?, i < N with respect to initial frequency §2y € R and phase-offsets
(@Y,...,¢%) € RN. As discussed above, we require that our linear initial function must sat-
isfy the necessary condition Eq. (49). Given any initial C! function ¢(t) for 6(¢), we define
the modified C! function ¢(¢) of ¢(t) that satisfies the necessary condition as follows. We
can obtain the modified slope ¥ € RN by imposing the condition on ¢(£). That is,

N
Y= % > _sin(g(~°) - ¢:(0)). (66)

i=1

Then for each i we define the cubic polynomial p; : R — R that interpolates ¢(¢) between
t = 0,—7° using the modified slope. That is, p;(t) = ¢;(¢) att = 0,—~t° and p(0) = v;, p/(-7°) =
¢;(~1). Then the modified initial function @(¢) is given by

s @i(8), t<-1°,
@i(t) = (67)
pi(t)’ _7:0 < t < 07

fori < N. All numerical trials were conducted using the corresponding modified functions
@i(t) of pi(t) = 2t + $p?, i <N.
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Endnotes
@ We can represent any connection topology of the network as an integral operator a: [0, 12 = {0, 1} such that
a; = ali/N,j/N), for which we find the eigenfunction v : [0, 1] — C satisfying

1
ovix)= / alx, y\viy) dy
0

with respect to eigenvalue o

B Tials were done using other types of initial functions ¢;(t), and yielded similar convergence results. However, the
synchronization occurred at a slower rate.
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