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Abstract
Howmuch visual information about the retinal images can be extracted from the different
layers of the visual pathway? This question depends on the complexity of the visual
input, the set of transforms applied to this multivariate input, and the noise of the
sensors in the considered layer. Separate subsystems (e.g. opponent channels, spatial
filters, nonlinearities of the texture sensors) have been suggested to be organized for
optimal information transmission. However, the efficiency of these different layers has
not been measured when they operate together on colorimetrically calibrated
natural images and using multivariate information-theoretic units over the joint
spatio-chromatic array of responses.
In this work, we present a statistical tool to address this question in an appropriate

(multivariate) way. Specifically, we propose an empirical estimate of the information
transmitted by the system based on a recent Gaussianization technique. The total
correlation measured using the proposed estimator is consistent with predictions
based on the analytical Jacobian of a standard spatio-chromatic model of the
retina–cortex pathway. If the noise at certain representation is proportional to the
dynamic range of the response, and one assumes sensors of equivalent noise level,
then transmitted information shows the following trends: (1) progressively deeper
representations are better in terms of the amount of captured information, (2) the
transmitted information up to the cortical representation follows the probability of
natural scenes over the chromatic and achromatic dimensions of the stimulus space,
(3) the contribution of spatial transforms to capture visual information is substantially
greater than the contribution of chromatic transforms, and (4) nonlinearities of the
responses contribute substantially to the transmitted information but less than the
linear transforms.

Keywords: Retina–cortex pathway; Cones; Chromatic adaptation; Opponent
channels; Chromatic saturation; Texture sensors; Chromatic and achromatic Contrast
sensitivity functions (CSFs); Divisive normalization; Transmitted information; Total
correlation; Mutual information; Gaussianization

1 Introduction
Neuroscience has a long tradition in using information theory both to quantify the per-
formance of neurons [1] and to formulate principles that explain observed behavior using
the so-called Efficient Coding Hypothesis [2, 3]. Information theory is useful at many scales
of sensory processing [4–6].
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On the one hand, a large body of the literature studies information transmission start-
ing from a spiking neuron [7], including all sorts of additional constraints such as energy
or size [8–12]. From these estimates of transmitted information in single cells, different
summation strategies [13] or independence assumptions [14] are considered to give global
estimates of the amount of information transmitted by a set of sensors.

This detailed low-level descriptions are certainly the basis for higher-level behavioral
effects, but psychophysics is usually described with more abstract models. In fact, cas-
cades of linear+nonlinear layers of more schematic neurons [15–18] describe a wide range
of psychophysical phenomena, including color [19, 20], spatial texture [21, 22], and mo-
tion [23]. On the other hand, these more schematic neural layers are also studied according
to the Efficient Coding Hypothesis. Examples include the emergence of linear opponent
chromatic channels [24] and their saturation [25–27], and the emergence of linear tex-
ture sensors (not only achromatic [28, 29], but also spatio-chromatic [30, 31], equipped
with chromatic adaptation [32]). Here texture sensors refer to mechanisms with receptive
fields with excitatory and inhibitory patterns of different frequency and orientation. Re-
dundancy reduction also explains the emergence of linear sensors sensitive to motion [33].
Finally, the saturation of the responses of these spatio-temporal sensors has also been de-
rived from information theoretic arguments in the case of achromatic textures [34, 35]
and motion [36].

In this work, we use these higher-level models [18–23], which, being connected to phys-
iology, are more related to the psychophysics of color and spatial texture. Information-
theoretic study of psychophysical models may address biologically relevant questions like:
What perceptual behavior is more relevant to encode images? color constancy? or contrast
adaptation? What mechanisms contribute to extract more information about the images?
the chromatic opponent channels or the texture filters? What is the improvement due to
the nonlinearities? being more flexible is always better? What kind of images are better
represented by the visual system? smooth achromatic shapes or sharp chromatic patterns?

Quantitative answers to these questions require reliable estimators of transmitted in-
formation over the cascade of layers. These estimators have to work on high-dimensional
vectors, and more importantly, estimations should not depend on the specific expression
of the response so that they could be applied to any model or even to raw experimental
data.

In this work, we introduce a recent estimator of mutual information between multivari-
ate variables based on Gaussianization [37–39] to address relevant sensory questions such
as those stated before. Here we illustrate the kind of answers that can be found through this
method by exploring the transmission of spatio-chromatic information through a cascade
of standard linear+nonlinear layers that address in turn basic psychophysical phenomena
on color and texture [19–22]. A model of known analytic Jacobian [40, 41] is convenient
because, for some redundancy measures such as total correlation, the model-free estima-
tions proposed here can be compared to estimations that use the analytical model. It is
interesting that here we discuss that the analytical insight obtained from the model Jaco-
bian for total correlation (as done in [40, 42, 43]) is not always applicable to predict the
transmitted information. However, this poses no major problem if the estimator at hand
does not depend on the model, which is the case in the proposed method.

The conventional way to check the Efficient Coding Hypothesis goes in the statistics-to-
biology direction. In that case, biologically plausible behaviors are shown to emerge from
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the optimization of specific information-theoretic measures [24–36]. On the contrary, fol-
lowing [43, 44], here we go in the opposite direction from biology to statistics. Here we take
a standard psychophysical model, which was not explicitly optimized to encode natural
images, and we show it is remarkably good in terms of transmitted information.

Our results should not be misunderstood as a claim of infomax as the ultimate organi-
zation goal. Note that we do not propose to optimize the system according to that goal,
but just show that a fixed plausible system performs quite well according to the goal. In
fact, a large body of the literature includes additional constraints to information maxi-
mization [8–12, 26, 27, 29, 32, 36, 45]. Beyond disputes among specific goals, the method
proposed here can be used to include transmitted information together with other goals
in a combined cost function if the statistics-to-biology strategy is preferred.

2 Materials: illustrative vision model and calibrated images
The Gaussianization tool presented in this work to measure the transmitted information
is illustrated in a standard spatio-chromatic retina–cortex model fed with color-calibrated
natural stimuli.

In this section, we first review the elements of this standard model, and then we show the
distribution of natural images used in our experiments in terms of luminance, achromatic
contrast, and chromatic contrast.

2.1 A standard spatio-chromatic psychophysical pathway
The model considered here for illustrative purposes is a cascade of linear+nonlinear layers
[18, 40, 41, 43]. In this setting, the ith layer takes the array of responses coming from a
previous layer x(i–1), applies a set of linear receptive fields that lead to the responses r(i),
and these outputs interact to lead to the saturated responses x(i):

· · · x(i–1)

L(i)

r(i)

N (i)

x(i) · · · (1)

Specifically, the model used in the simulations below consist of three of such differen-
tiable and invertible linear+nonlinear layers:

x(0)

LMS

r(1)

Adapt.

x(1)

ATD

r(2)

Satur.

x(2)

DCT-CSF

r(3)

Div. Norm.

x(3) (2)

where we can identify the following standard processing elements (explicit equations in
Appendix A).

Linear spectral integration The spectral image x(0) is analyzed at each spatial location by
linear photoreceptors tuned to long, medium, and short (LMS) wavelengths; in particular,
we use the standard cone fundamentals LMS in [46]. The r(1) array contains the LMS
retinal images.

Chromatic adaptation We use the simplest chromatic adaptation scheme: the classical
von Kries normalization [20], where the linear LMS signals are divided by an estimate of
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what is considered to be white in the scene. The x(1) array contains the von Kries-balanced
LMS retinal images.

Linear opponent color space The LMS signals at each spatial location are linearly recom-
bined into an opponent representation with Achromatic (luminance), Tritanopic (red–
green) and Deuteranopic (yellow–blue) sensors. Specifically, r(2) contains the achromatic,
tritanopic, and deuteranopic (ATD) images of Jameson & Hurvich opponent sensors [47–
49].

Weber-like saturation The linear ATD responses saturate [50, 51] to give brightness
(nonlinear A) and nonlinear versions of images T and D. This saturation can be mod-
eled in sophisticated ways with psychophysical [20, 52, 53] or statistical grounds [26, 27],
but in x(2), we will use a simple dimensionwise nonlinearity using a γ < 1 exponent with
parabolic correction at the origin [40] to avoid singularities in the Jacobian. This exponen-
tial with fixed γ is the simplest model for the Weber-like luminance–brightness relation
and the observed saturation in chromatic opponent channels [49].

Up to x(2) the model consists of purely chromatic transforms that operate at each spa-
tial location. In these initial layers, spatial context is not considered except for the scarce
use made in chromatic adaptation to estimate the white. The final linear+nonlinear layer
addresses spatio-chromatic texture.

Linear texture filters and contrast sensitivity In the simple model considered here, spa-
tial transforms are applied over all images A, T, and D in parallel. Neglecting the inter-
actions between ATD images is consistent with the results found in analyzing the spatio-
chromatic statistics of natural images: the chromatic variation of the statistical filters fol-
lows von Kries-corrected ATD directions regardless of the spatial distribution of the re-
ceptive field [32]. Here we use a crude local-DCT model for the local-oriented receptive
fields in V1: the local oscillations applied to channel A account for the achromatic tex-
ture sensors [54], and those applied to arrays T and D account for the double-opponent
cells [55]. These texture sensors are shown in Appendix A. The gain of these linear filters
(receptive fields) is weighted according to their frequency using achromatic and chromatic
contrast sensitivity functions (CSFs) [56, 57]. The weights for the local-DCT functions are
based on the CSFs of the standard spatial observer defined for sinusoids [58] and on a pro-
cedure to transfer the weights from one domain to another [59]. The bandwidths of the
achromatic and chromatic CSFs are markedly different. This bandwidth is related to the
frequency response of magno, parvo, and konio cells [55, 60, 61]. The array r(3) consists of
the spatial transforms of patches A, T, and D, frequency weighted and stacked one after
the other.

Nonlinear interactions between texture sensors Following [15–18, 22], the saturation
of the sensors tuned to chromatic/achromatic textures has been modeled using a psy-
chophysically-tuned divisive normalization [40, 41, 62]. Note that alternative cortical non-
linearities such as Wilson–Cowan equations [63] have been found to be equivalent to di-
visive normalization [64]. The same parameters for the normalization have been used for
the achromatic part and the chromatic parts of the response. As in the linear case, no in-
teraction has been considered between channels A, T, and D . Appendix A illustrates the
impact of the parameters of divisive normalization on the flexibility of the nonlinearity.
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2.2 Plausibility of the psychophysical model
Here we illustrate the plausibility of the specific blocks described before (with specific
parameters described in Appendix A) by predicting results in image distortion psy-
chophysics.

In image quality databases [65], observers assess the visibility of a range of distortions
seen on top of natural images. A vision model is good if the predicted visibility corre-
lates with human opinion. The visibility of a distortion from a psychophysical response
model is computed by measuring the distance from the response vector of the original
image to the response vector of the distorted image [66, 67]. In this context, we made
two simple numerical experiments: (1) we checked if the consideration of more and more
standard blocks in the model leads to consistent improvements of the correlation with
human opinion, and (2) we checked how substantial modifications to the standard blocks
affect its performance. In particular, (a) we changed the flexibility of the baseline masking
model by decreasing or increasing the semisaturation constant in the denominator of the
divisive normalization, which leads to more flexible and more rigid models, respectively;
and (b) we generated a totally rigid model by neglecting all the nonlinearities. Appendix A
illustrates these changes in flexibility of the response.

Figure 1 confirms that the progressive consideration of the blocks leads to consistent
improvements in correlation. The final model (the whole cascade of standard modules)
is plausible because of two reasons. First, the final correlation with human behavior is
similar to state-of-the-art image quality metrics [40, 41, 58, 68]. Second, Table 1 shows that
the cascade of standard modules (baseline model) is better than more adaptive or more
rigid versions of the model. This means that the considered parameters make biological
sense. Of course, the correlation substantially increases with the spatial size of the image
patches and receptive fields, but a model with exactly the same parameters on small image
patches shows the same trend when considering the series of layers. These results illustrate
the meaningfulness of the considered psychophysical blocks and its appropriate behavior
when functioning together.

Finally, intuition about the information-theoretic performance of the considered model
may be obtained by visualizing the geometrical effect of the series of transforms on the
manifold of natural images. This intuition is discussed in Appendix B.

2.3 Calibrated natural images
The IPL color image database [27, 32, 36] is well suited to study color adaptation because
its controlled illumination under CIE A and CIE D65 allows straightforward application
of von Kries adaptation. With the knowledge of the illumination, there is no need for extra
approximations (e.g. gray-world) to estimate the white. Controlled scene acquisition and
resulting CIE xy data are illustrated in Fig. 2.

Alternative calibrated choices could be the spectral-image datasets [69, 70] or the
tristimulus-calibrated dataset [71], which also provide the illumination information from
gray spheres located in the scenes.

We extracted 19 · 106 image patches from the database (expressed in CIE XYZ tristimu-
lus values) and transformed them into the linear LMS representation. In fact, in this work,
we consider the behavior of the model from r(1). This amounts to considering that the in-
put to the system is the set of linear LMS images. To keep the dimensionality small for a
proper comparison of the empirical and theoretical estimates of information, we kept the
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Table 1 Pearson correlation with human viewers using different building blocks (or model layers)

Spatial extent r(1) r(2) x(2) r(3) x(3)

More flexible model (0.27 deg) 0.38 0.38 0.42 0.77 0.51
Baseline model (0.27 deg) 0.38 0.38 0.42 0.77 0.84
More rigid model (0.27 deg) 0.38 0.38 0.42 0.77 0.79
Totally rigid model (0.27 deg) 0.38 0.38 0.38 0.68 0.68

Baseline model (0.05 deg) 0.26 0.27 0.31 0.37 0.40

Figure 2 Calibrated images used in the experiments: natural scenes under CIE D65 (left image panel) and CIE
A (right image panel) illuminations. The CIE xy diagram shows the shift in chromaticity (samples under D65 in
blue and samples under A in red)

spatial extent small, only 3 × 3 pixels. As a result, the input stimuli r(1) and the response
arrays live in 27-dimensional spaces.

To check whether the transmitted information through the system is adapted to the
statistics of the natural input, we consider the distribution of the considered samples over
three relevant visual features: the average luminance, the achromatic contrast, and the
chromatic contrast of the pattern in the image. To define these features, LMS images are
expressed in the Jameson & Hurvich ATD space using no chromatic adaptation. In this
representation, average luminance in cd/m2 units is simply the average of image A. The
achromatic contrast is defined as the RMSE contrast of image A (standard deviation di-
vided by the mean luminance). Similarly, the chromatic contrast is defined as the mean
of the RMSE contrasts of images T and D, where the corresponding standard deviation is
divided by the norm of the average color in the patch.

By computing these three features for the 19 ·106 images we find a markedly nonuniform
probability density function (PDF): image patches are mostly dark, and the variance of the
deviations with regard to the mean is small both in luminance and in color (see Fig. 3).
This distribution shows that in nature some regions of the image space are more frequent
that others. The efficient coding hypothesis generically argues that the performance of the
visual system should be shaped by this uneven distribution. Here we propose a quantitative
comparison. In Sect. 5, we plot the information transmitted up to the cortical sensors (at
layer x(3) in Eq. (2)) over the luminance/contrast dimensions to check if the transmitted
information for specific images is related to how frequent these images are.
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3 Methods: transmitted information from Gaussianization
In a sensory system where the input undergoes certain deterministic transform S, but the
sensors are noisy:

r

S

x = s(r) + n, (3)

the mutual information between input and output, I(r, x), is the information about the
input vector r, which is shared by the response vector x [72] (Chap. 2). We will refer to
I(r, x) as the information about the input captured by the response or as the information
transmitted from the input to the response. This mutual information I(r, x) is also the
information about the input available at the representation x.

In the context of the Efficient Coding Hypothesis, it is interesting to compare different
image representations s(r) in terms of the amount of information they capture about the
input for some given noise n. This would tell us about the relative contribution of the
different operations in a model to get a better representation of the visual signal. Ideally,
we would like to describe the trends of this performance measure I(r, x) from the analytical
description of the response s(r), but this may not be possible, as discussed later in Sect. 6.
Therefore empirical estimations from stimulus-response pairs are very interesting.

Estimation of I(r, x) directly from samples and using the definitions based on the PDFs
is not straightforward: it implies the estimation of multivariate PDFs, and this challeng-
ing problem introduces substantial bias in the results. This is also true for surrogates for
performance such as the reduction of redundancy measured by the reduction in total cor-
relation �T(r, x) [42].

In this work, we solve the estimation of the transmitted information up to different lay-
ers of the visual pathway through the relation between the transmitted information I and
the total correlation T . In particular, we use a novel estimator of T [38, 39], which only
relies on (easy-to-compute) univariate density estimations: the rotation-based iterative
Gaussianization (RBIG) [37].

The RBIG is a cascade of L nonlinear+linear layers, and the lth layer is made of marginal
Gaussianizations � (l)(x(l)), followed by a rotation R(l). Each of such layers is applied to the
output of the previous layer:

x(l+1) = R(l) · � (l)(x(l)). (4)

For a big enough number of layers, this invertible architecture is able to transform any
input PDF p(x(0)) into a zero-mean unit-covariance multivariate Gaussian even if the cho-
sen rotations are random [37]. Theoretical convergence is obtained as the number of lay-
ers tends to infinity. However, in practical situations, early stopping criteria can be pro-
posed taking into account the uncertainty associated with a finite number of samples [37].
Convergence even with random rotations implies that both elements of the transform are
straightforward, univariate equalizations and random rotations. The differentiable and in-
vertible nature of RBIG makes it a member of the normalizing flow family [73, 74]. Within
this general family, differentiable transforms with the ability to remove all the structure of
the PDF of the input data are referred to as density destructors [75]. By density destruction
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the authors in [75] mean a transform of the input PDF into a unit-covariance Gaussian or
into a d-cube aligned with the axes. The considered Gaussianization [37, 38] belongs to
this family by definition. Total correlation describes the redundancy within a vector, that
is, the information shared by the univariate variables [76, 77]. Note that strong relations
between variables indicate a rich structure in the data.

Density destruction together with differentiability is useful to estimate the total correla-
tion within a vector T(x(0)). Imagine that the considered RBIG transforms the PDF of the
input x(0) into a Gaussian through the application of L layers (L individual transforms).
As the redundancy of the Gaussianized signal gx(x(0)) = x(L) is zero, the redundancy of the
original signal T(x(0)) should correspond to the cumulative sum of the individual varia-
tions �T (l) with l = 1, . . . , L, which take place along the L layers of RBIG while converting
the original variable x into the Gaussianized variable gx(x). It is interesting that the indi-
vidual variation in each RBIG layer only depends on (easy to compute) univariate negen-
tropies, and therefore, after the L layers of RBIG, the total correlation is [39]

T(x) =
L∑

l=1

�T
(

x(l–1), x(l)) =
L∑

l=1

Jm
(

x(l)), (5)

where the marginal negentropy of a d-dimensional random vector is given by a set of d
univariate divergences Jm(v) =

∑d
i=1 DKL(p(vi)|N (0, 1)). Therefore, using RBIG, the chal-

lenging problem of estimating one d-dimensional joint PDF to compute T(x) reduces to
solving d ×L univariate problems. Moreover, as opposed to the computation of variations
of total correlation depending on the model transform, as, for instance, Eq. (9) discussed in
Sect. 6, RBIG estimation is model-free and does not involve any averaging over the whole
dataset.

In the density destructor framework, where T is easy to compute using RBIG, the trans-
mitted information from the input LMS image, r, to any of the considered layers down-
stream x, namely I(r, x), can be obtained from T in two ways:

I(r, x) = T
(
[r, x]

)
– T(r) – T(x), (6)

I(r, x) = T
([

gr(r), gx(x)
])

, (7)

where the relation in Eq. (6) is straightforward from the definitions of I and T in terms
of entropies, and the sum would imply three Gaussianization transforms: one for the in-
put, one for the responses, and an additional one for the concatenated input-response
vectors [r, x]. Equation (7) also implies three Gaussianization transforms: the variables gr

and gx come from the Gaussianization transforms of the images and the neural responses,
respectively, and then we make a single computation of total correlation for the concate-
nated variable [gr(r), gx(x)] through an extra Gaussianization. It is important to note that,
as opposed to Eq. (6), the strategy represented by Eq. (7) only implies one computation of
T , not three.

Equation (7) is possible because I does not change under invertible transformations ap-
plied separately to each dataset [78]. Therefore I(r, x) = I(gr(r), gx(x)). Since we removed T
within each individual dataset by applying individual density destructors, the only redun-
dant information that remains in the concatenated vectors is that shared by the original
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datasets, and therefore I(gr(r), gx(x)) = T([gr(r), gx(x)]), and hence Eq. (7). See [39] for a
more elaborate proof.

These two strategies (6) and (7) involve different numbers of computations of ‘T . There-
fore their accuracy depends on the nature of the data. Appendix C compares the estima-
tions of transmitted information given by Eqs. (6) and (7) (and other estimators [79–81])
in scenarios where analytical solutions are available. The result of such an analysis is that
for image-like heavy tailed variables, the sum in Eq. (6) leads to a greater error. Therefore
results in the experimental section are computed using Eq. (7).

4 Experiments
We conduct experiments to quantify (1) how much visual information is captured by dif-
ferent image representations along the layers of the neural model and (2) how much in-
formation is transmitted by the vision model for images with different visual features (e.g.
different luminance, achromatic contrast, or chromatic contrast as considered in Sect. 2.3).

Here we describe the magnitudes measured. Then we describe the assumptions on the
noise made throughout the experiments, and finally we describe global and local experi-
ments, that is, made for all visual scenes and for scenes with specific features, respectively.

4.1 Measurements of transmitted information and redundancy reduction
In the experiments, we measure the mutual information between the LMS input and dif-
ferent layers of the considered networks, I(r(1), x), where x stands for one of the considered
image representations (or layers in Eq. (2)). Therefore I(r(1), x) is the amount of informa-
tion transmitted up to layer x or available at layer x. We also check how the input redun-
dancy at the retinal representation, measured in terms of total correlation, gets reduced
along the different image representations, that is, we compute �T(r(1), x) = T(r(1)) – T(x)
for different layers x.

The RBIG estimator of I uses Eq. (7). The RBIG estimator of �T uses Eq. (5) to estimate
T(r(1)) and T(x), and then it subtracts these results.

Regarding the ability to interpret the visual world, measuring the information available
at certain image representation is more related to the visual function than measuring the
(more technical) amount of redundancy reduced at that layer. Redundancy reduction is
sometimes taken as a convenient surrogate of transmitted information, but, as discussed
further in Sect. 6, �T and I are not always aligned. However, the analysis of �T is techni-
cally interesting because alternative estimators of �T based on the analytical expression
of the vision model can be used to check the accuracy of the RBIG estimators. As the
alternative estimator of �T discussed in Sect. 6, Eq. (9), only depends on the analytical
expression of the model and on univariate entropies (for which very reliable estimators ex-
ist [80]), it will be referred to as theoretical estimation. The RBIG estimations of �T will
be compared to this theoretical estimation given by Eq. (9), and checking �T is important
because the proposed estimator of I relies on measures of T , as seen in Eqs. (6) and (7).

4.2 Assumptions on the noise and interpretation of results
Transmitted information between two layers of a network depends on the noise in the
response. The noise in psychophysical systems is related to the discrimination ability of
the observers [82, 83], but the nature of the noise is still under debate [84, 85]. Noise may
have different sources, and its amount may depend on attention [86–88].
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The specific debate on the noise is out of the scope of this work. However, the advan-
tage of the RBIG estimate of transmitted information is that it does not rely on a specific
analytical PDF of the noise, but only on the availability of noisy samples. Therefore it can
handle responses corrupted with arbitrary noise sources.

Our experiments to estimate I consider a crude noise model using the following as-
sumptions.

• Assumption 1: single-step transforms. In the path from the input up to the ith layer, we
assume that noise is added to the signal only at the ith layer. This choice is equivalent
to assuming that the mapping into the ith representation is a single-step transform in
which all the intermediate stages are noise-free.

• Assumption 2: fixed signal-to-noise ratio (SNR). The additive noise is assumed to be
Gaussian with diagonal covariance. Moreover, each marginal standard deviation is
assumed to be proportional to the mean amplitude of the signal for that coefficient at
the ith layer. Specifically, we set the noise standard deviation at 5% of the amplitude of
the signal in every case.

Assumption 1 should be understood correctly to avoid misinterpretations of the results.
For instance, considering r(1) → x(2) and r(1) → x(3) as single-step transforms means that
noise is added in x(2) in the first case and in x(3), but not in x(2), in the second case. There
is no problem to compare the representations x(2) and x(3). Particularly, if the mechanisms
that perform these single-step transforms have the same quality in terms of signal-to-noise
ratio (set in Assumption 2). The design question under these assumptions is: if you were
able to build a mechanism to lead you either to representation x(2) or x(3), but the quality of
the mechanism could not be better than certain SNR, which image representation would
you prefer?

On the contrary, assuming that r(1) → x(3) ≡ r(1) → x(2) → x(3), where noise is injected
both in x(2) and in x(3), is a quite different alternative scenario. Under Assumption 1, the
information captured by x(3) may be greater than the information captured by x(2), but this
is not be possible in the alternative scenario where noise is injected at every layer. In this
latter case the data processing inequality [72] (Chap. 2) states that the information lost
(due to the noise) at the second layer cannot be recovered afterward.

Assumption 1 (or the single-step transform assumption) and the alternative multiple-
step transform are just different ways to consider where the noise comes from. Given that
no conclusive prescription for the amount of noise is available for all the considered psy-
chophysical stages [82–88], arbitrary assumptions would also be necessary in the multiple-
step transform case.

In summary, for illustration purposes, Assumption 1 is valid as the alternative multiple-
stage transform scenario, and it allows us to compare different image representations with
a clear design restriction (fixed signal-to-noise ratio). Nevertheless, it is clear that results
obtained from Assumption 1 have not to be interpreted in terms of the data processing
inequality. This is because in all the experiments, we compare multiple single-step trans-
forms and not cascades of noisy blocks in which information loss propagates though the
network. Similarly, the specific nature of the noise and the specific noise level set by As-
sumption 2 are just convenient choices for illustration purposes.

To conclude, let us recall again that RBIG estimation does not depend on the noise
model. Therefore the procedure described further would not change using different as-
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sumptions (i.e. more sophisticated uncertainties in the sensors or noisy responses from
actual measurements).

4.3 Global and local experiments
Information measures are defined as integrals over the whole space of inputs r(1) and the
corresponding responses x. Experiments considering stimuli all across the input space
will be referred to as global. Nevertheless, it is also interesting to consider how different
regions of the image space are encoded. For instance, stimuli with specific visual features
as those introduced in Sect. 2.3, for example, different luminance, achromatic contrast,
or chromatic contrast. It is possible that a sensory system is specialized on stimuli with
certain features. This question can be quantified by computing the amount of transmitted
information about samples belonging to specific regions of the image space. Experiments
considering specific regions of the image space will be referred to as local, that is, local in
the space of image features.

In the global experiments below, 10 realizations of each estimation are done using 0.5 ·
106 randomly chosen stimuli from the image dataset that consists of 19 · 106 samples. Of
course, the corresponding responses are also considered in each case.

In the local experiments below, the estimations at each location of the stimulus space
are based on the images belonging to the corresponding luminance/contrast bin of the
histogram shown in Fig. 3. In the local experiments, 10 realizations of each estimation
are done for the data in each bin. In principle, each realization randomly selects 80% of
the samples available in the bin. However, in the low-luminance/low-contrast bins the
population is very large, and considering that many samples slows down the estimation.
Therefore no more than 5 ·105 of these randomly chosen samples were considered in each
case. On the other hand, bins with less than 500 samples (in the high-luminance/high-
contrast corner) were discarded in the estimation because results may not be reliable. In
the results below, in those low-populated bins, we plot a constant value from the boundary
of bins with population bigger than 500, but this value is arbitrary, and these regions are
not considered in the discussion.

In all the experiments, images and the corresponding responses are 27-dimensional as
stated in Sect. 2.3. The specific measurements shown are as follows.

• Global experiments:
– Global 1: Redundancy reduction at different layers of different models.
– Global 2: Information available at different layers of different models.

• Local experiments:
– Local 1: Redundancy reduction in V1 for different kinds of stimuli.
– Local 2: Redundancy reduction at different layers of the model and at different

locations of the image space.
– Local 3: Information available at different layers for different stimuli.
– Local 4: Information available at V1 and the PDF of natural images.

5 Results
5.1 Global experiment 1: redundancy reduction at different layers of different

models
In this experiment, we compare the RBIG estimates of �T with the so-called theoretical
estimate given by Eq. (9). In this work, redundancy reduction experiments are just instru-
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Figure 4 Left: Redundancy reduced at different layers of the network (labels in the horizontal axis)
considering samples over the whole image manifold (global experiment). Redundancy is measured in total
correlation (in bits/sensor). Lines in different colors refer to different models, and different line styles
(solid/dashed) refer to the empirical RBIG estimate given by Eq. (5) and the theoretical estimate given by Eq. (9).
Each result accumulates the reductions due to previous layers. Right: Redundancy reduced at the V1 layer (last
layer) using different variations of the baseline model: more flexible and more rigid divisive normalization and
totally rigid (totally linear) model. In both plots (left and right), error bars stand for the standard deviation over
the 10 realizations of the estimation. The theoretical estimation also has error bars because the univariate
entropies in Eq. (9) were empirically estimated

ments to illustrate the reliability of the RBIG estimations of I , which depend on estimat-
ing T . Therefore, in these instrumental experiments on �T , only deterministic responses
were considered to apply the estimate given by Eq. (9). The considered layers are those in
Eq. (2). Redundancy reduction was computed in the baseline model (the one leading to
the best correlation with human opinion in Fig. 1 and Table 1) and also with more rigid
and more flexible versions of the model. As stated before, RBIG estimations subtract T(x)
from T(r(1)), whereas the theoretical estimates accumulate the reductions �T that happen
at every intermediate layer. The results are displayed in Fig. 4.

The technical conclusion is that in general the RBIG estimate of �T is consistent with
theoretical estimate. Note that the only significant exception is for the case of the model
with more flexible divisive normalization. Nevertheless, even in this case, both estimates
lead to the same qualitative conclusion: this too flexible model leads to less redundancy
reduction than the baseline model. This general agreement suggests that total correlation
estimates (the core under RBIG information transmission estimates, as seen in Eqs. (6)
and (7)) can be trusted.

From the functional point of view, it is interesting to note that redundancy reduction in
the nonlinear stages of the baseline model is almost negligible. For instance, see the plateau
in r(2) → x(2) (Weber-like nonlinearities) or in r(3) → x(3) (divisive normalization of texture
sensors). However, it seems that this kind of nonlinear processing actually prepares the
data so that subsequent linear stages can do a better job in removing redundancy. Note that
the identical linear parts x(1) → r(2) (opponent transform) and x(2) → r(3) (Filters+CSFs)
attain bigger reductions after the application of the von Kries nonlinearity and the Weber-
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like nonlinearity. This is clearer by looking at the cumulative effect at the last layer: the
baseline model (in black) is substantially better than a totally linear model (in blue).

5.2 Global experiment 2: information available at different layers of different
models

This experiment compares the different image representations along the network in terms
of the amount of information they share with an ideal input (noise-free LMS image). This
global experiment for I includes the baseline model and six interesting variations: the more
flexible and less flexible versions due to different divisive normalization semisaturation,
the corresponding versions neglecting chromatic adaptation, and a totally linear version,
which of course has no adaptation at all.

Measures at different layers include I(r(1), r(1)), I(r(1), x(1)), . . . , I(r(1), x(3)). As stated in
Sect. 4.2, we assume that in different representations, noise is added after a single-step
transform, and the relative amount of noise in all the representations is the same (the
deviation of the noise in each dimension is 5% of the dynamic range of that individual
response). For instance, in the first case, referred to as I(r(1), r(1)), we compute the shared
information between noise-free LMS images and LMS images corrupted with Gaussian
noise with the selected SNR in each pixel and color channel.

Results in Fig. 5, left, show that the cortical representation (adaptive contrast in local
frequency in ATD) is much better than the original representation in the spatial domain
and in the LMS color space. The cortical representation doubles the amount of informa-
tion captured by retinal sensors (assuming equivalent SNR). It may seem that the von Kries
adaptation is not worth it (if it was the last signal representation): see how it shares less in-
formation with the input than the LMS representation for the same noise level. However,
when combined with other processing blocks, the resulting representations capture more

Figure 5 Information available from different layers and different models. Estimations assume single-step
transforms and the same signal-to-noise ratio at every marginal sensor. Left: Mutual information between
noise-free LMS and the noisy response at the considered layer (labels at the horizontal axis) for different
variations of the model (different color/style). Right: Information transmitted up to the cortical layer by
different variations of the model: baseline model (in black), more flexible and more rigid divisive normalization
(in red and green, respectively), and totally rigid linear model (in blue). The corresponding versions of these
models that neglect chromatic adaptation are represented in the same color but connected by a dashed line



Malo Journal of Mathematical Neuroscience           (2020) 10:18 Page 16 of 40

information form the input than if it was not present. These results indicate the overall
progressive improvement of the stimulus representation along the pathway.

Recall that according to the noise assumptions discussed in Sect. 4.2, each point along
one of the curves in Fig. 5, left, actually mean the amount of information available for a
system that would perform the considered processing from the input in a single step, that
is, with all the noise added at that specific layer. Therefore increasing I does not violate
the data processing inequality. It just points out that these inner representations are in-
trinsically better because they capture more information with sensors of the same SNR
quality.

These results also show that the baseline model (which gets the best correlation with
human opinion in Table 1) is also the one that captures more information about the in-
put. Note that the different modifications of the model, that is, doing it more rigid (by
canceling chromatic adaptation, by doing divisive normalization more rigid, or by con-
sidering a totally linear version) or more flexible (by increasing the adaptivity of divisive
normalization) leads to poorer representations in terms of transmitted information. This
conclusion is clearer by looking at different versions of the last representation (after the
divisive normalization) at Fig. 5, right.

The nonlinear operations both in the saturation of ATD chromatic channels and in con-
trast adaptation lead to significant improvements in the amount of captured information.
Note that about 28% of the improvement in available information at the final representa-
tion comes from the nonlinear operations, whereas 72% of the improvement comes from
the linear operations. These increments in I in Fig. 5, left, are interesting taking into ac-
count that these nonlinear operations make almost negligible contributions to redundancy
reduction (see �T ≈ 0 for these layers in Fig. 4, left).

It is also interesting to note that spatial transforms (texture filters and contrast adap-
tation) definitely have a bigger contribution to the amount of captured information than
chromatic transforms (von Kries adaptation, opponent channels, and Weber-like nonlin-
earities). Note that Fig. 5, left, shows that 67% of the improvement in available information
at the final representation comes from the spatial operations, as opposed to the 33%, which
comes from the chromatic operations. This is remarkable given the fact that tiny patches
of 0.05 degrees were considered in our computations.

5.3 Local experiment 1: redundancy reduction at V1 for different kinds of stimuli
In all local experiments (which involve computations over the different bins of the image
space), we considered only the baseline model.

In this first local experiment, RBIG estimations of �T(r(1), x(3)) at different locations of
the image space are compared to the corresponding theoretical estimates. This experiment
is interesting to check that the global accuracy of the information estimates illustrated in
Fig. 4 actually hold for every location across the stimulus space. As stated before, exper-
iments involving comparison with the theoretical estimate (Eq. (9)), require the use of
deterministic responses.

The results in Fig. 6 show that the empirical RBIG estimate (top row) closely follows
the theoretical estimate (middle row) all over the stimulus space. Note also that the differ-
ence between the estimates is small (green surfaces in the plots of the theoretical result),
and this difference is similar to the uncertainties both estimates combined (green surfaces
in the plots of the RBIG result). The average values of the relative difference and relative
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standard deviation are 0.12 and 0.09, respectively. Similar agreement is obtained for all
the previous layers. Agreement of both estimates not only points out the accuracy of the
proposed estimator but also the correctness of the analytical Jacobian involved in the theo-
retical estimate since the Jacobian of the response at the last layer includes all the previous
layers.

This confirms that information estimates based on RBIG computation of total correla-
tion can be trusted for every location of the stimulus space (not only globally as pointed
out by the agreement of the estimates in Fig. 4).

Finally, the term of Eq. (9) that depends on the analytical Jacobian is shown in the bot-
tom row. The analytical Jacobian not always represents the trends of �T . This illustrates
that analytical description of the model is not enough to get complete insight on the
information-theoretic performance of the model. In the specific example in Fig. 6 the ana-
lytical term roughly determines the behavior for high chromatic contrast, but it is not the
case for low chromatic contrasts. This limitation of the knowledge that can be extracted
from the analytical expression of the model emphasizes the need of empirical estimators
such as RBIG. Section 6 elaborates on this point.

5.4 Local experiment 2: redundancy reduction at different layers and different
locations of the image space

This experiment extends the redundancy reduction values at the different layers presented
in Fig. 4 to specific regions of the image space. Note that specific operations may reduce
more redundancy for some stimuli than for others.

Figure 7 shows �T along the network in the achromatic contrast/luminance plane for
two chromatic contrasts (the minimum and maximum in our images). We can identify
general trends, which also apply to the other values of chromatic contrast not shown in
the figure: (1) �T is always positive, that is, redundancy is effectively reduced by the sys-
tem; (2) �T always increases along the pathway, which suggests that inner representations
are better than earlier representations in terms of the information captured; and finally,
(3) the increments along the way mainly occur at the linear stages, that is, the transform
to opponent color representation and the transform from the spatial domain to the local-
frequency domain. This relevance of linear stages in redundancy reduction is consistent
to that found in Fig. 4. Note that these two linear stages are those that rotate the represen-
tation similarly to PCA (see Appendix B).

5.5 Local experiment 3: information available at different layers and different
stimuli

The object of this experiment (transmitted information per unit of volume, or per bin,
of the stimulus space) highlights the kind of stimuli better represented by different lay-
ers. Figure 8 shows the information about the scenes (in bits/sensor) available from the
different neural layers assuming that the same signal-to-noise ratio of the sensors.

Only two chromatic contrasts are shown in Fig. 8, but the following trends also hold of
the other chromatic contrasts omitted in the figure: assuming single-stage transforms and
sensors with the same SNR, (1) the cortical representation is substantially better than the
retinal representation since it captures more information about the scene, (2) different
intermediate representations are progressively better from retina to cortex, and (3) im-
provements of the representation come from both linear and nonlinear stages.
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Note that the total available information at certain layer (the global result in Fig. 5) is
not the integral of the corresponding surface of local values in Fig. 8. However, progres-
sive increase of the value for a region of the image space along the network can also be
interpreted as an improvement of the representation. Similarly, the increments in I do not
violate the data processing inequality given the single-stage transform assumption we are
doing here.

It is important to note the differences of this I result, Fig. 8, with regard to the �T
result, Fig. 7. First, whereas no substantial gain is obtained through the nonlinear stages
in terms of redundancy reduction, the improvements in transmitted information due to
the nonlinearities are significant. This is consistent with what was found in Figs. 4 and 5.
Second, the distribution of I and �T over the stimulus space is substantially different;
take, for instance, the bottom right plots in Figs. 7 and 8, respectively. The distribution of
transmitted information seems more consistent with the statistics of the natural scenes in
Fig. 3. That is the object of the comparison in the next section.

5.6 Local experiment 4: transmitted information and the PDF of natural images
Figure 9 explicitly compares the transmitted information up to the cortical layer x(3) for
stimuli at all the locations of the considered image space (top) with the distribution of
natural scenes over that space (bottom).

This comparison addresses the following questions: Does the system transmit the same
amount of information for different images? if not, is this uneven transmission similar to
the PDF of natural scenes?

This result shows that the considered psychophysically tuned network (no statistical
knowledge was used in this crude biological model) transmits more information in the
more frequent regions of the image space: note that the peak of transmitted information
shifts to higher achromatic contrasts for bigger chromatic contrasts (as the PDF of nat-
ural images), and the amount of transmitted information decreases for high chromatic
contrasts (as the PDF).

This result indicates a remarkable match between the properties of the cortical represen-
tation and the relative frequency of the stimuli in the image space. Note that the amount
of available information for different images is not a byproduct of the relative probability
of the images. For instance, if the luminance or contrast nonlinearities were expansive (as
opposed to compressive as they are), then the noise would have more impact in the low-
luminance/low-contrast end. This would reduce the amount of available information for
those signals using the same database to compute the results.

6 Discussion and final remarks
Efficiency of the network and hierarchy of transforms The proposed method to estimate
transmitted information allows a quantitative analysis of the different perceptual compu-
tations along the considered retina–cortex pathway.

The measurements presented above imply that the considered cortical representation
captures substantially more information about the scene (factor ×2) than the retinal rep-
resentation with sensors of the same signal-to-noise quality.

Not all the perceptual computations contribute to the improvement of the signal repre-
sentation in the same way. Transforms acting on spatial content of the signal lead to bigger
improvements in information transmission than the purely chromatic transforms carried
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out in the first layers (67% versus 33%). The biggest contribution is due to the analysis
of ATD images through local-oriented filters and divisive normalization. The linear op-
erations are responsible for most of the improvement in information transmission (about
72%), but the nonlinear/adaptive behavior of the system is responsible of a substantial 28%.

It is interesting that if model adaptivity is modified so that it has lower correlation with
human opinion, then the amount of transmitted information reduces too. Moreover, local
analysis on specific stimuli shows that the cortical representation captures relatively more
information in the regions of the image space where natural images are more frequent.
These two facts indicate that this biologically plausible model (not explicitly optimized
for transmission) is efficient in terms of this information measure and it is well matched
to the stimuli it faces.

This is in line with the approaches to the efficient coding hypothesis that go from
biology-to-statistics [43, 44], with the advantage of using a more appropriate performance
measure (I(r, x) as opposed to �T(r, x)). More generally, the proposed method can be
used to estimate transmitted information in improved multigoal cost functions where
constraints of different nature (energy, wiring, reconstruction error, adaptation, etc. [8–
12, 26, 27, 29, 32, 36, 45]) can be taken into account. These improved multigoal cost func-
tions can lead to interesting results in the conventional approach from statistics-to-biology.

Transmitted information and analytical Jacobian Here we discuss up to which point the
trends of the transmitted information over the image space can be predicted from the
analytical response. We will see that whereas the analytical Jacobian may be enough to
understand the behavior of the system at a single layer (as done in [40, 43]), the relative
relevance of different layers cannot be easily inferred from the corresponding derivatives.
Therefore, a model-free tool such as that presented is extremely useful in this context.

First we recall the relation between transmitted information (I(r, x), or information
about the input captured by the inner image representation) and total correlation within
the response (T(x), or information shared by the responses of different sensors xi).
Whereas maximizing I(r, x) is a sensible goal for a decoder devoted to solve visual prob-
lems from the response x, reduction of the redundancy T(x) is an alternative goal related
to the maximization of transmitted information. Reasoning with T(x) may be useful in
some situations because it is related to the analytic expression of the perception model.

From the definitions of mutual information in terms of entropy and conditional en-
tropy [72] (Chap. 2), I(r, x) = h(r) + h(x) – h(r, x) = h(x) – h(x|r); and from the concept
of total correlation [76, 77], T(x) =

∑
i h(xi) – h(x), it is easy to see that the following ex-

pression holds:a

I(r, x) =
∑

i

h(xi) – T(x) – h(n). (8)

Assuming that the intrinsic noise of the biological sensors cannot be reduced (and hence
h(n) is fixed), Eq. (8) points out what the system should do to increase the transmitted
information: (i) it should reduce the redundancy (the total correlation T ) within the re-
sponse array, and (ii) it should increase the sum of entropies of the responses of the individ-
ual sensors. On the one hand, in the particular case of independent noise in every sensor
the transform should make the responses independent to obtain T(x) = 0. On the other
hand, the entropies h(xi) cannot be arbitrarily increased via trivial response amplification



Malo Journal of Mathematical Neuroscience           (2020) 10:18 Page 24 of 40

because of energy constraints. Therefore, once redundancy has been decreased as much
as possible (ideally, set to zero), as the energy (or variance) of each coefficient has to be
limited, the first term can be maximized by marginal equalization. Note that marginal op-
erations do not modify the total correlation [42]. Therefore, marginal equalization could
be used to maximize entropy with constrained variance (e.g., obtaining uniform or Gaus-
sian PDFs [72, Chap. 12]) without increasing T and thus maximizing I .

Equation (8) identifies univariate and multivariate strategies for information maximiza-
tion. When trying to assess the performance of a sensory system, reduction of the mul-
tivariate total correlation T(x) seems the relevant term to look at because univariate en-
tropy maximization can always be performed after joint PDF factorization through a set
of (easy-to-do) univariate equalizations.

Then the reduction in redundancy �T(r, x) = T(r) – T(x) is a measure of performance
that could be aligned with I(r, x). It is interesting that for deterministic responses, this per-
formance measure �T can be written in terms of univariate quantities and the response
model [42]:

�T(r, x) =
∑

i

h(ri) –
∑

i

h(xi) + Er
{
log2 |∇rS|}

= �hm(r, x) + Er
{
log2 |∇rS|}. (9)

Equation (9) is good for our purposes for two reasons: (1) in case the marginal difference
�hm is approximately constant over the space of interest, the performance is totally driven
by the Jacobian of the response, so it can be theoretically studied from the model, and
(2) even if �hm is not constant, the expression is still useful to get reliable estimates of
�T because the multivariate contribution may be obtained analytically from the Jacobian
of the model and the rest reduces to a set of univariate entropy estimations (for which
reliable estimates do exist [80]). In Sect. 5, estimates of �T using Eq. (9) were referred to as
theoretical estimation (as opposed to model-agnostic empirical estimates purely based on
Gaussianization of samples) because of this second reason. Note that as the Jacobian of the
composition is the product of Jacobians, Eq. (9) implies that �T(r(1), x(j)) = �T(r(1), x(i)) +
�T(x(i), x(j)).

In previous works, Eq. (9) has been used to describe the communication performance
either in linear systems [89] or in nonlinear transforms such as divisive normaliza-
tion [40, 42] and Wilson–Cowan interaction [43]. In those cases, interesting insight could
be gained from the analytical expressions of the corresponding Jacobian. In the linear case
the Jacobian is constant over the image space, and therefore it is relevant when considering
different linear models, but it is irrelevant when comparing the transmitted information
for different stimuli. In the nonlinear cases, authors used Eq. (9) to analyze the perfor-
mance at a single layer, and �hm was explicitly shown to be roughly constant over the
stimulus domain. Therefore the analytical Jacobian certainly explained the behavior of
the system.

However, �hm may not be constant in general, and hence the trends obtained from the
Jacobian of the model can be counteracted by the variation of �hm.

In particular, the situation gets complicated if we want to study the relative effect of
different layers in the cascade. At a single layer (whose Jacobian accumulates the effect
of all previous layers [40]) the marginal difference of entropies with regard to the input
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may be constant over the domain and hence negligible. However, reasoning only with the
Jacobians in the case of comparisons between multiple layers will only be valid if all the
marginal differences of entropy between every layer are constant over the domain. This
more strict condition is harder to fulfil in a specific network. For instance, in the illustrative
model considered in our experiments, this condition not always holds (see the differences
between the Jacobian and �T in Fig. 6).

Therefore, since the intuition from the analytical response is conclusive only in re-
stricted situations, there is a need for empirical methods to estimate the transmitted in-
formation directly from sets of stimuli and the responses they elicit.

Relation to previous work The analysis done here has a number of relevant differences
with previous work that already analyzed the statistical performance of psychophysically
plausible transforms.

For instance, previous works were limited either because explored a limited range of
models or because they used limited performance measures. In [89] the authors addressed
the interesting study of the gain that can be obtained from different redundancy reduction
transforms, basically using Eq. (9), but restricted the analysis to linear cases to neglect
the term that depends on the Jacobian. In [44] the authors do consider a more general
(nonlinear) model, but their analysis is limited because they did not use a multivariate
measure for the redundancy, but rather a set of mutual information measures between
pairs of coefficients at the considered layer.

From the technical point of view, our analysis is related to the work of Foster et al., who
are also concerned about the use of accurate information-theoretic measures to study hu-
man vision [90]. The similarity is that they also use nonparametric measures of mutual
information that operate directly on natural samples. The main difference is their focus
on color vision and specifically on characterizing the performance of humans in different
illumination conditions (e.g. determining the number of discriminable colors) [91–93].
This is related to the amount of color information in a scene that can be extracted from
color measurements under other illumination [81, 90]. These problems are related to en-
tropy and mutual-information measures (which is the same problem that we address with
RBIG), but they do not quantify the information flow through the visual pathway (mutual
information between layers and redundancy within layers) that we address here to identify
the most relevant computations. As an example, in [92, 94] the redundancy is considered
only because of its impact on the available information for illumination compensation, but
not as a measure of information transmission in the visual pathway.

An example of the conceptual difference is that chromatic transforms actually are less
important for information transmission than spatial transforms when considering spatio-
chromatic aspects at the same time. Moreover, note that the von Kries color adaptation
transform is actually the only transform leading to a representation that captures less in-
formation than the input representation (for sensors with the same SNR). Color adapta-
tion may be more related to manifold alignment to improve color-based classification (the
kind of goal studied by Foster et al.) than to improve information transmission (the goal
we study here). Despite these differences, the interesting improvements of Kozachenko–
Leonenko entropy estimator [79] proposed in [81] should be compared in the future with
RBIG because these two alternative estimators may be applicable to other problems of
visual neuroscience [95].
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This work originated from the analytical results for total correlation developed for cas-
cades of linear+nonlinear networks [40] and from the analysis of redundancy reduction
in Wilson–Cowan networks [43]. In both cases the analysis was restricted to achromatic
stimuli. In [40] the approach was totally analytical, whereas [43] included RBIG estima-
tions for the first time. However, the main difference is that those works considered not
the transmitted information, but the redundancy reduction surrogate. In this work, we
show that, in general, �T may not be a good descriptor for I .

Consistency between different databases and models Although [43] is purely achromatic
and does not consider I (which are crucial conceptual differences), comparison with those
results is interesting for different reasons: (1) results of the redundancy at the input retinal
representation are comparable (beyond the achromatic/chromatic difference), and some
interesting consequences can be extracted; (2) the small gain in redundancy reduction at
the Weber saturation and at the divisive normalization saturation (also obtained in [43])
has been better explained here.

First, it is interesting to note that this work and [43] use different databases: the colori-
metrically calibrated IPL database [27, 32] and the radiometrically calibrated database by
Foster, Nascimento, and Amano [69, 70] respectively. It is interesting that (for the users of
the databases) the redundancy measures at the retinal input are comparable, which means
that the statistics of both databases is similar. Specifically, for achromatic patches subtend-
ing 0.06 deg in the Foster et al. database the total correlation is about 3.8 bits/sensor [43].
Here, for color patches subtending a smaller angle (0.05 deg in the IPL database), the to-
tal correlation is 4.1 bits/sensor. This redundancy is a little bit bigger because it includes
color, which is redundant, but not that big because the size is smaller, and hence less spa-
tial structure is present, which should increase redundancy too. Moreover, this suggests
that consideration of color on top of spatial information increases the redundancy by a
small amount, which is consistent with the fact that spatial operations are more relevant
in removing redundancy and transmitting information.

Second, the models considered in both works have similar structure, but they are not
exactly the same: the one here has no specific layer for contrast computation and preserves
the dimension in the local frequency transform. However, in both cases, small gain in �T
is obtained at the Weber-like saturation and at the cortical divisive normalization. This
consistency of behavior is a safety check for the models, but it is more interesting that
the analysis of I proposed here and the point made about the advantage of using I as
descriptor of performance explains the benefits of these saturations even though they do
not contribute to the reduction of redundancy.

Further work: consequences in image quality metrics and image coding The visual infor-
mation fidelity (VIF) [96, 97] is an original approach to characterize the distortion intro-
duced in an image, which is based in comparing the information about the scene that a
human could extract from the distorted image with respect to the information that he/she
could extract from the original image.

The results presented here can be incorporated in that attractive framework in different
ways. On the one hand, we may improve the perceptual model including nonlinearities and
more sophisticated noise schemes with no restriction because the nonparametric RBIG
estimation is insensitive to the complexity of the model. On the other hand, estimations
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of mutual information in the original VIF scheme made crude approximations on the PDF
of the signals to apply analytical estimations, which may be too biased. Better measures of
I , not subject to approximated image models, do improve the original VIF results [98].

Following previous tradition of improvements of JPEG/MPEG compression based on di-
visive normalization [62, 99], current state-of-the-art in image coding also uses this kind of
perceptually inspired linear+nonlinear architectures [100]. The difference is that current
architectures are optimized through the powerful automatic differentiation tools refined
for deep-learning [101]. In this case the encoding and decoding transforms are optimized
to minimize simultaneously the bitrate and the perceptual distortion. Nowadays these two
magnitudes have different nature. However, with the considerations done here, VIF dis-
tortion, which is expressed in information-theoretic units, could have more meaningful
values, and the rate in the image coder could be bounded or modulated by the amount of
information transmitted by the perceptual system, thus leading to a better optimization
goal.

Appendix A: Equations of the standard vision model
In this appendix, we list the equations for the linear and the nonlinear parts of the layers.
The linear transforms in the model are always of the form

r(i) = L(i) · x(i–1), (10)

where the matrix L(i) depends on the meaning of the layer. The input layer transforms the
spectral radiance in each spatial location into the LMS tristimulus vectors. In this case the
matrix L(1) is made of the color matching functions of LMS cones [46].

The linear part of the second layer transforms von Kries-adapted LMS responses into
ATD channels. In this case, the matrix L(2) is the linear change of basis from LMS to ATD,
and in our model, we chose the Jameson and Hurvich ATD space [47].

The linear part of the third layer transforms the Weber-saturated ATD images into a
local-frequency representation, and the responses of different frequencies are weighted
according to the CSF. Therefore L(3) = �CSF ·B, where the rows of the matrix B contain the
basis functions of a local 2D discrete cosine transform, and �CSF is a diagonal matrix with
the weights corresponding to each frequency and color channel. The shape of the receptive
fields (basis functions or texture sensors) in B is shown in Fig. 10. Here the sensitivities for

Figure 10 Receptive fields of the spatio-chromatic texture sensors used in our implementation
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the achromatic and the chromatic channels in the Fourier domain [56, 57] are transformed
into the cosine domain according to the procedure described in [59].

The first nonlinear transform performs von Kries adaptation [20]:

x(1) = M
(
r(1)) · r(1), (11)

where the scaling matrix is diagonal with M(r(1))ii = Ti(canonical)
Ti(scene) , where Ti are the tristimu-

lus values of what is considered to be white in the input scene and in a canonical scene.
The second nonlinear transform is a Weber-like saturation [20, 50, 51], which here is

implemented as a simple pointwise exponentiation (with γ < 1):

x(2) = sign
(
r(2)) · ∣∣r(2)∣∣γ . (12)

The third nonlinear transform is implemented using the standard divisive normaliza-
tion [18]:

x(3) = sign
(
r(3)) · K · |r(3)|γ

b + H · |r(3)|γ , (13)

where the stabilization constant K and the interaction kernel H are computed as proposed
in [41] to scale the responses of each subband as in the local-frequency domain. This is
related to the underlying Wilson–Cowan implementation of divisive normalization [64].
Note that the vector of semisaturation constants b controls the flexibility of the nonlinear-
ity. If b is reduced, then the signal-dependent term in the denominator is more relevant.
On the contrary, very large semisaturations imply a rigid nonlinearity. This is illustrated
in Fig. 11.

Our implementation is based on the Matlab libraries Colorlab [102] and Vistalab [103],
and it is available at http://isp.uv.es/code/visioncolor/infoDN.html.

Appendix B: Manifold of images through the visual pathway
Here we present scatter plots of the spatio-chromatic samples at different layers of the
considered model and the marginal PDFs throughout the network. These transforms il-
lustrate in practice the comments made in Sect. 6 on Eq. (8): to increase the transmitted
information, redundancy between the responses at each layer throughout the pathway
should be reduced, and the marginal PDFs should be equalized.

Moreover, visualization of the marginal PDFs and the corresponding joint PDFs is in-
teresting in case we want to propose models for the marginals, as in [44, 104], to make
analytical estimations of the marginal entropies in Eqs. (8) or (9).

Figure 12 shows the geometrical effect of the pointwise chromatic transforms that occur
at the first layers of the network. We display selected projections of the 27-dimensional
arrays to illustrate (1) the distribution of the chromatic information (response of color
sensors, LMS or ATD, at a fixed spatial location, in the scatter plots of the first row) and
(2) the distribution of the spatio-chromatic information (response of color sensors, A, T,
and D tuned to different spatial locations, either close spatial neighbors (middle row) or
more distant neighbors (bottom row)).

http://isp.uv.es/code/visioncolor/infoDN.html


Malo Journal of Mathematical Neuroscience           (2020) 10:18 Page 29 of 40

Figure 11 Flexibility of the nonlinearities of the texture sensors as a function of the semisaturation constants.
Here flexibility is modified in different rows by changing the semisaturation b in the divisive normalizations
(100× b in the first row and 0.01× b in the third row). In these plots, we show the responses of texture
sensors tuned to low, medium, and high frequencies (left, center, and right columns respectively) for multiple
images (each point in the scatter plots is one image). The central row shows the response of the sensors in
the baselinemodel. Note how the nonlinearity is image-dependent, and hence there is no a single response
curve, but rather a scatter plot. As the flexibility is increased (from the top row to the bottom row), the
response goes from a fixed curve to a wider family of curves

In the input representation of LMS or r(1) vectors, the responses are strongly correlated,
both between sensors of different spectral sensitivity and between sensors tuned to differ-
ent spatial locations (see the alignment of the scatter plots and the numbers in blue rep-
resenting 2nd-order correlation). This represents the spectral [106, 107] and spatial [108]
smoothness of natural scenes. As no chromatic adaptation has been applied yet, the scenes
under reddish illumination lead to a distinctly separated blob in the color manifold (top
plot of the first column). Note also the lower length of this cluster due to the lower lu-
minance of the CIE A illumination in the experimental setting. In the spatio-chromatic
rows (still the first column), note that alignment of the scatter plot corresponding to sen-
sors that are closer in space is bigger, consistently with a bigger correlation measure. Not
surprisingly, spatial smoothness decays with distance.

Divisive normalization by the white (von Kries adaptation, 2nd column) aligns the dis-
tinct clusters corresponding to the CIE D65 and CIE A in the input representation (see
scatter plot and increased correlation measure), but it does not introduce qualitative
changes in the distributions with spatial information.
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Transform to opponent channels (3rd column) substantially reduces the correlation be-
tween color sensors at a fixed location. It is remarkable how Jameson and Hurvich op-
ponent transform rotates the manifold as a sort of PCA even though it is not based on
any statistical consideration. This is consistent with efficient coding interpretations of this
stage [24]. Nevertheless, responses of chromatic sensors T and D are still strongly corre-
lated to their spatial neighbors. In fact, the spatial correlation of the chromatic sensors
is similar to the achromatic counterpart (in previous columns). In the case of chromatic
sensors, spatial correlation also decays with distance.

Nonlinear saturation of the response at each chromatic sensor (4th column) reduces the
correlation even further. Note that here we just picked a crude exponential saturation with
fixed exponent following the Weber-like curves of the brightness and opponent mecha-
nisms [50, 51]. However, this psychophysically inspired choice reduced the correlation
again, consistently with efficient coding interpretations of this nonlinearity [26, 27]. How-
ever, as in the previous layers, this chromatic transform also has small effect on the spatial
interaction between the sensors (mid and bottom rows of the 4th column). Finally, it is im-
portant to mention the effect of this saturation in the joint PDF: note the four-leaf-clover
shape of the color manifold projected onto the nonlinear T-D plane (top-right scatter plot).
This four-leaf-clover shape is a characteristic consequence of the saturation since it also
appears in the spatial transforms based on divisive normalization and has consequences
on the bimodal nature of the marginal PDFs (see Figs. 13–14) reported before [44].

Figure 13 illustrates the effect of the spatial transforms: texture sensors with local ori-
ented receptive fields tuned to different frequencies weighted by achromatic and chro-
matic CSFs (linear responses r(3)) and divisive normalization (nonlinear responses x(3)).

In each case, linear and nonlinear, on the left and right panels, respectively, we display
samples in 3d spaces corresponding to sensors tuned to zero frequency and to two low-
frequency components of vertical and horizontal orientation. We also represent samples
in 2d projections for a better assessment of the shape of the joint PDF. This is done for three
kinds of chromatic sensors: achromatic, red-green, and yellow-blue (on the top, med, and
bottom rows, respectively).

In this case, the 2nd-order correlation measure C, given in the previous figure (numbers
in blue), was not included because here differences are more subtle: C is basically negligible
in all cases, and differences are in the level of the estimation error. Actually, differences
between these representations have to be described by more appropriate higher-order
(multivariate) estimates proposed in this work, the total correlation, and the transmitted
information.

The scatter plots in the first column illustrate how the texture sensors reorient the PDFs
of the spatial neighbors of the previous layers. In the bottom rows of the previous figure
the PDFs were systematically correlated regardless of the chromatic manipulations. The
spatial transforms applied to the A, T, and D parts of the array x(2) virtually remove the
2nd-order correlation. This is consistent with the efficient coding interpretation of this
linear filter bank [28–32].

The top left scatter plot shows that stimuli with specific visual features actually give the
expected response because it is located in the corresponding region of the space: note, for
instance, the horizontal/vertical patterns of high contrast and different polarity aligned
along their corresponding axis and located along the zero-frequency axis according to
their brightness.
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Figure 14 Marginal PDFs of chromatic and spatial-texture sensors along the visual pathway

As always throughout this Appendix, equivalent plots represent the same sets of sam-
ples. Therefore the scatter plots of the second and third rows (still left column) represent
the very same set of images as the top-left scatter plot. However, the location of these
images in the chromatic texture axes is markedly different because of two reasons: (1)
chromatic contrast is smaller than achromatic contrast in natural images (note that im-
ages with high chromatic contrast in Fig. 3 are less frequent), and on top of that; (2) the
chromatic CSFs has lower bandwidth than the achromatic filter, so the high frequency
color oscillations are strongly attenuated by the system. As a result, the images are clus-
tered along the DC color axis. This difference in amplitude of the oscillations can be seen
in the extent of the samples over the 2d scatter plots on the left panel. It is interesting that
in these 2d plots, we can see that the elliptically symmetric distribution, reported before
for natural achromatic images [42], also happens in the T and D channels.

The right panel shows the result of a divisive normalization transform applied to the re-
sponses of the linear sensors. Divisive normalization implies saturation in each dimension,
but (as opposed to the crude dimensionwise saturation done in the chromatic channels)
here the saturation of the response of a sensor for certain stimulus depends on the activity
of the sensors tuned to other textures [22, 62]. Saturation is apparent in the 3d scatter plots
because the higher contrast patterns in the achromatic plot have been pushed toward the
DC axis and the low-brightness region has been expanded. In the chromatic cases, satu-
ration is also apparent since the low-saturation region has been expanded.

The 2d scatter plots show how, due to divisive normalization, the elliptically symmet-
ric distribution characteristic of local-frequency representations change to this four-leaf-
clover shape, as in the case of the color distribution after the saturation (previous figure,
top-right scatter plot).

Figure 14 shows that saturation operations also lead to bimodal marginal PDFs for chro-
matic sensors together with classical results for marginal PDFs [25, 104, 108–110]. These
bimodal marginal PDFs had only been reported for achromatic texture sensors [40, 44].
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Regarding well-known results, Fig. 14 (top left) shows how the first layers contribute to
equalization of the PDF of the responses associated to brightness: von Kries adaptation
expands the range of the responses to the stimuli under darker illumination, and the sat-
uration contributes to reduce the peak at the dark region [25, 109]. In the chromatic case
(bottom left), before von Kries adaptation the tail in the reddish region is heavier (half of
the samples are under the reddish CIE A illumination). Then adaptation reduces the bias
in the PDF, and saturation leads to a bimodal PDF of reduced support in the red-green sen-
sors (yellow-blue sensors behave similarly). The column at the center displays heavy-tailed
PDFs in the case of linear texture sensors, either achromatic (center top) or chromatic
(center bottom), with decreasing variance depending on the frequency [104, 108, 110].

On the other hand, the right column and bottom-left plot of Fig. 14 show how the joint
distributions with a mode in each quadrant (four-leaf-clover shapes) in Figs. 12 and 13
lead to the bimodal marginal PDFs. These marginal PDFs are not specific of the con-
sidered dataset: they appear in the van Hateren radiance calibrated dataset and in the
Foster–Nascimento–Amano dataset [69, 70], as reported in [43, 44], respectively. This
shape appears when applying divisive normalization saturations with appropriate expo-
nent: in [44], we proposed a functional form for this marginal related to the parameters
of the divisive normalization, and this kind of four-leaf-clover joint PDFs and resulting
bimodal marginal also appear when optimizing divisive normalization for image coding
[100] (personal communication from the authors).

According to Eq. (8). analytical modeling of these marginal PDFs can be helpful to char-
acterize the performance. However, in this illustrative section, we just want to show new
evidences (now for chromatic sensors) about the fact that the family of possible PDFs after
divisive normalization is not restricted to Gaussian, as sometimes assumed [111].

The suggestions made in this Appendix are actually quantified using the proposed Gaus-
sianization tool in Sect. 5.

Appendix C: Performance of RBIG estimators of I for t-student and Gaussian
sources

In this appendix we justify the use of a specific RBIG estimator for the transmitted infor-
mation (Eq. (7)), for image-like sources r and sensory-like systems x = s(r) + n. As a conve-
nient reference, we also consider the transmitted information in the trivial case x = r + n
when both signal and noise are Gaussian.

Natural images are known to be non-Gaussian since empirical image histograms are
found to have heavier tails than Gaussian PDFs (see Appendix B and [104, 108, 110]). This
motivated the use of different sorts of models (such as Gaussian scale mixtures [112], mix-
tures of heavy-tailed distributions with controlled correlation [33], Lp-symmetric den-
sities [113], Gaussian densities with signal-dependent covariance [44], etc.). In this ap-
pendix, we assume a simpler image model based on t-student densities defined in a local
frequency domain. We do this for convenience in sample generation and in the compu-
tation of an analytical ground truth for transmitted information. Image models based on
t-student have been used in natural image coding [114], and they are a common illustra-
tive example when discussing the properties of natural images [32, 42, 44]. Another ad-
vantage of t-student models is that they can be turned into Gaussian PDFs by increasing
the degrees-of-freedom parameter ν that controls the kurtosis of the density.
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Figure 15 Idealized image model and sensory system. (1) A simple analytical expression for transmitted
information, I(r,x) =

∑d
i=1(

A–ai
A log2(A) +

ai
A log2(e

1/2A) – log2(ai)); (2) a simple procedure to generate image
samples to check the information estimators

Figure 15 describes both a simple linear+nonlinear noisy sensory system and a proce-
dure for sample generation. For a simple computation of the transmitted information, the
linear and nonlinear stages of the sensory system match the elements of the image model.
First, the linear transform identifies the independent components of the images (because
it uses the inverse of the selected mixing matrix), and then it marginally equalizes the
outputs (because it uses the marginal cumulative density functions (CSFs) of the selected
t-student PDFs to lead to a joint uniform PDF, a d-cube of size A). Finally, the response in
this uniform domain is subject to uniform noise, eventually with different amplitudes ai

for each coefficient. The advantage of this idealized setting is that the transmitted infor-
mation can be computed analytically and samples are easy to obtain with proper choices
for the transforms.

In this setting, synthetic images are obtained in the following way. First, samples drawn
from the uniform density in the d-cube are passed through the inverse univariate CDFs of
the selected t-student PDFs to obtain independent univariate heavy-tailed samples. Then
these independent sources are mixed using a d×d mixing matrix. In order to have sensible
image samples, the mixing matrix for this illustration is the inverse of three sets of 2D-
DCT filters of size 3×3 (d = 27 as in the experiments done with real images). The t-student
sources are defined in a color-opponent space (the same used in the model). Therefore the
resulting opponent images after the inverse DCTs are linearly mixed again according to
the ATD-to-LMS matrix to finally obtain 9 × 9 image patches in the LMS color space.
Note that, given the known frequency and color meaning of the ith column of the mixing
matrix, if the amplitudes of the t-student variables are multiplied by a frequency and color
dependent factor, then we can reproduce the classical 1/f spectrum of natural images [104,
109, 110, 115] and the relative energy of the opponent channels [30].

The analytical transmitted information is also easy to compute using Eq. (8). First, the
joint entropy of the noise is h(n) =

∑d
i1 log2(ai) because it is drawn from a d-rectangle

of sizes ai. Second, we see that T(x) = 0 because the components of the noisy response
are independent since the PDFs of s(r) and n are uniform d-rectangles aligned with the
axes. Finally, the computation of

∑d
i=1 h(xi) is also easy because noise additivity implies

that the marginal PDFs are the convolutions of the PDFs of the deterministic response
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Table 2 Performance of I estimators for t-student and Gaussian samples (Relative Error in %)

Shape # Samples Eq. (7) Eq. (6) KL+offset [81] KL [79] k-NN [80]

T-STUDENT source/Ideal Infomax System
ν = 3 1 · 103 24 ± 7 40±30 58±2 278±2 239±1

4 · 103 5 ± 2 16±7 56±1 259±9 225±1
1 · 104 4 ± 2 16±6 55±1 246±1 215±1
4 · 104 12 ± 2 18±4 53±1 229±1 203±1

ν = 4 1 · 103 17 ± 8 25±15 43±2 255±1 222±1
4 · 103 3 ± 3 16±8 43±1 238±1 210±1
1 · 104 7 ± 3 15±6 41.1±0.5 224±1 199±1
4 · 104 17 ± 2 21±7 39.4±0.2 208±1 188±1

ν = 100 1 · 103 15 ± 7 25±14 20±1 203±1 185±1
4 · 103 5 ± 2 18±4 21.4±0.7 187±1 173±1
1 · 104 9 ± 2 21±4 21.1±0.1 174±1 164±1
4 · 104 23±3 29±4 20.4 ± 0.1 160±1 153±1

GAUSSIAN source/Trivial System
1 · 103 24±1 12±2 6.0 ± 0.2 91.5±0.2 95.6±0.1
4 · 103 16±3 9±3 6.4 ± 0.4 90.4±0.4 95.1±0.2
1 · 104 10±2 4 ± 1 6.4±0.2 88.5±0.2 93.8±0.2
4 · 104 7±3 3 ± 2 6.1±0.2 86.3±0.2 92.3±0.2

and the noise. That means the convolution of two unit-volume rectangles of support A for
the response and ai for the noise. This leads to marginal PDFs with truncated-pyramid
shape. Therefore the entropy integral can be broken into the known entropy integrals of a
rectangle and a triangle, and hence h(xi) = A–ai

A log2(A) + ai
A log2(e1/2A) for the case ai < A.

These amplitudes have to be interchanged if ai > A.
An analytical solution is also possible in the trivial case (Gaussian source, identity trans-

form, and Gaussian noise independent of the response). In that case, using that I(r, x) =
h(x) – h(n) and the known entropy of the Gaussian, we have I(r, x) = 1

2 log2(|2πe(�r +
�n)|) – 1

2 log2(|2πe�n|).
Table 2 shows the relative error with regard to the analytical value (in percentage of

the actual information) in the two cases, t-student and Gaussian. We compare the RBIG-
based expressions (7) and (6) with different implementations of classical mutual informa-
tion estimators based on k-NN estimators of entropy [79, 80] and a recent improvement
of the Kozachenko–Leonenko estimator [81]. Different values of the kurtosis (from more
image-like ν = 3, 4 to more Gaussian ν = 100) are explored, as well as different number of
samples in the estimation.

The results show that whereas the method proposed in [81] shows better behavior for
Gaussian sources, the estimator proposed here, Eq. (7), gives better results with heavy-
tailed samples and the kind of systems considered in this work.
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