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1 Introduction

Self-organizing maps (SOMs) are neural networks mapping a high-dimensional space
to a low-dimensional one through unsupervised learning. They were first introduced by
Grossberg [14] and later by Kohonen [19]. SOMs are widely used in computer science and
data analysis for quantization and visualization of high-dimensional data [25, 38]. They
also constitute a suitable tool in computational neuroscience to study the formation and
maintenance of topographic maps in primary sensory cortices such as the visual cortex
[24, 31] and the somatosensory cortex [13, 34]. Many variations and applications of Ko-
honen’s SOM algorithm can be found in [16] and [27].

A type of self-organizing map based on neural fields theory has been introduced in [8],
where neural fields are used to drive the self-organizing process. Neural fields are inte-
grodifferential equations that describe the spatiotemporal dynamics of a cortical sheet
[3-5]. The SOM proposed in [8] describes the topographic organization of area 3b of the
primary somatosensory cortex of monkeys [21, 28]. The model relies on an earlier work
[29] known as the dynamic SOM (DSOM) algorithm. DSOM provides an online SOM
learning algorithm, where the Kohonen’s SOM time-dependent learning rate and neigh-
borhood function have been replaced by time-invariant ones. The DSOM neighborhood
function and learning rate solely depend on the distance of the winner unit (i.e., the most
active neuron) from the input. The model proposed in [8, 9] combines the DSOM time-

invariant learning rate and neighborhood function with Oja’s learning rule [26]. As thor-
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oughly described in [8, 9], the model is compatible with anatomical evidence of how area
3b in monkeys develops, maintains, and reorganizes topographic representations of a skin
patch of the index finger.

In this work, we provide theoretical insights on the stability and convergence of the neu-
ral field SOM algorithm proposed in [8, 9] by studying a more general class of systems than
that originally proposed in [8]. We use Lyapunov’s stability theory adapted to neural field
dynamics [11]. Since typical activation functions employed in the model (such as abso-
lute values or rectification functions) are not necessarily differentiable, we do not rely on
linearization techniques but rather directly assess the stability of the original nonlinear
dynamics. Yet, the obtained results are local, meaning that they are valid only for initial
conditions in the vicinity of the considered equilibrium. Nonetheless, we show that they
agree with numerical simulations. The stability conditions derived in this work can be used
toward the direction of tuning neural field models such that they achieve the best possi-
ble results in developing self-organizing maps and thus more generalized representations.
Moreover, the conditions we propose indicate that the balance between lateral excitation
and inhibition keeps the system stable, thus ruling out possible configurations in which
learning does not take place properly. These findings are in line with both experimental
observations [18, 30] and computational modeling [35-37].

The paper is organized as follows. In Sect. 2, we recall the SOM model under concern
and its basic mechanisms. In Sect. 3, we present our main theoretical results, which we
confront to numerical simulations in Sect. 4. A discussion on the obtained results is pro-
vided in Sect. 5. Mathematical proofs are given in Sect. 6.

2 Self-organizing neural fields
2.1 Neural population dynamics
We consider the following neural fields equation:

g0 [l el )+ W

where € is a connected compact subset of R? (g = 1,2, 3). For g = 2, the integral of a func-
tion g: Q = Q; x Qy — R is to be understood as [, g(r) dr = le sz g(r1,r2) dry dry with
r = (r1,72), and similarly for g = 3; u(r, £) represents the mean membrane potential at posi-
tion r € Q and time ¢ > 0, 7 is a positive decay time constant, / denotes an external input,
and w; is a function that represents the strength of lateral synaptic coupling. It is given by

wi(x) = we(x) — wi(x), 2)
where the excitation and inhibition synaptic weights are typically given by

We(x) = K& 1202 (32)
and

w;(x) = K™ 127 (3b)

with K, K, 0,,0; > 0.1In [8, 9] the input is provided through a two-dimensional skin model.
The skin model is composed of a two-dimensional grid and receptors. The receptors are
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points distributed on the surface of the grid (uniformly). When a stimulus is applied on
the grid, the receptors sample the input signal and convey the information to the cortical
model. The skin stimulus is a noisy Gaussian-like function, and the input to the neural
fields model is provided by the following function:

lwy(r, 8) = s(p)ly

m

I(r,p,t) =1 - (4)
where |- |1 denotes the 1-norm: |x[; = Y 1", |x;],and s : R? — [0,1]" is a function that maps
the raw input from the two-dimensional skin space to [0, 1]™. For instance, for a tactile
stimulus at position p € R? on the skin, s(p) € R™ could be defined as the normalized
distance from p to the location of each receptor, thus potentially of much higher dimension
than 2. For a more detailed description of receptor model, see [9]. The function w; : Q x

R-¢ — R represents feed-forward synaptic weights with value updated according to

2,0 = (5tp) ~ wy 0,1 / we((|r = ') rect(u(r', ) dr’, )
Q

where y is a positive constant that represents the learning rate, and rect(x) = max{x, 0}. It is
worth observing that since s(p) € [0, 1]™, ws(r,t) € [0,1]" for all r € 2 and ¢ > 0 given any
initial conditions satisfying wy(r,0) € [0,1]” for all r €  (this can be seen by observing
that the entries of adltf (r,t) are negative as soon as the corresponding entries of wy(r, t) be-
come greater than 1; similarly, they are positive when the corresponding entries of wy(r, t)

get below 0: see (5)). Hence M € [0,1]

at all times. Thus expression (4) can be
interpreted as a high input when the feedforward weights are close to s(p) and as a lower
input when these are more distant.

The overall model (1), (4), (5) reflects the dynamics of a cortical neural population in
combination with a learning rule of the feed-forward connections wy, which convey infor-
mation from receptors to the cortical sheet. As described in [8, 9], this model can express
a variety of different behaviors, depending on the lateral connectivity kernels w, and w;.

The main advantage of the learning rule given by Eq. (5) is that it is a biologically plau-
sible modification of the DSOM learning rule [29]. In DSOM the learning rate and neigh-
borhood function are time-invariant and can adapt to the input according to one single
parameter, called elasticity. This particular modification leads to the following behavior: if
the winner neuron (i.e., the neuron that has the shortest distance from the input stimulus
to its corresponding codebook—weight) is close to the stimulus, then the neighborhood
function shrinks around it. This results in making the weights of neurons within the dy-
namic neighborhood stronger and the weights of the other units weaker. However, when
the winning unit is very far from the current input, the neighborhood function exhibits a
broad activity pattern, promoting learning of every unit in the network. Therefore in [8]
the neighborhood function has been replaced by the term fQ wo(|r = r'|) rect(u(v', £)) dr’,
providing a more realistic and biological plausible learning algorithm for self-organizing

maps in the context of neuroscience.

2.2 Self-organizing maps
We start by briefly describing how the SOM model introduced in [8] and [9] works. The al-
gorithm starts by initializing the feed-forward weights randomly (usually uniformly), and
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Figure 1 Neural field self-organizing map. Graphical representation of the learning algorithm introduced in
[8,9]. (A) Tactile bidimensional stimuli are mapped to an m-dimensional space through a function s that
involves the skin receptors. This function is used to update the codebooks, which are then mapped to the
neural space €2 of lower dimension. The input / receives the mapped input sample and provides input to the
neural field and codebook equations. (B) The numerical steady-state solution of Eq. (1) (i.e, bump) defines the
neighborhood (the group of neurons) that will have its neurons updating their codebooks based on Eq. (5)

the neural field activity u(r, 0) is set to zero. The second step is sampling the input space by
randomly drawn samples of dimension m from an input distribution. At every epoch, one
sample is given to the neural field (1) and (5) through Eq. (4). This first step is depicted in
Fig. 1(A), where a two-dimensional point p = (p1, p2) is sampled from a uniform distribu-
tion, p1, pa ~ U(0,1). The samples are mapped to the neural space through the function s
and then are passed to Eq. (4). At this point, we should point out that there are two ways
of presenting stimuli while training a self-organizing map. The first is predetermining an
amount of input samples and present one at each epoch (online learning) and the second
is collecting all the input samples into a batch and giving all of them at once to the network
(batch learning). In this work, we use the former (online learning) since it is biologically
plausible.

Then the algorithm proceeds with computing the numerical solution of Egs. (1) and (5).
To that aim, Egs. (1) and (5) are discretized and solved numerically using Euler’s forward
method. The numerical solution of Eq. (1) is typically a bell-shaped curve (bump) centered
on the neuron that is the closest unit to the input sample and therefore is called the win-
ner neuron or best matching unit (BMU). In Fig. 1(B), this is depicted as a black disc on
a discrete lattice. The lattice represents a discretization of the field where each tile corre-
sponds to a neuron. Neurons that lie within the vicinity (within the black disc in Fig. 1(B))
defined by the solution of Eq. (1) update their weights based on Eq. (5). The rest of the neu-
rons feed-forward weights remain in their previous state. Once the temporal integration
of Egs. (1) and (5) is complete, the activity of the field is reset to its baseline activity. Then
another input sample is drawn, and the whole process repeats itself. Once the number of
epochs is exhausted, the learning stops, and the mapping process is completed.

To make the aforementioned algorithm directly comparable to Kohonen SOM [19],
we provide some insights. First, in Kohonen’s SOM, we compute the distance between
the input and the codebooks. Here we do the same using Eq. (4). The neighborhood
function that Kohonen’s SOM uses to update the feed-forward weights is replaced here
by the numerical solution of the neural field (Eq. (1)) and more precisely by the term
fQ w,(|r — r'|)rect(u(r’, £)) dr'. Both the learning rate and the width of the neighborhood
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function are time-independent in our case, as opposed to Kohonen’s SOM, where they
are both time-dependent. Our learning rule is different since we use a modified Oja rule
[26], which is based on Hebbian learning [15], and it is therefore biologically plausible [1].
The dimensionality reduction in both models, the Kohonen and ours, takes place at the
level of the learning rule. This means that Eq. (5) is responsible for learning the repre-
sentations and mapping the input distribution (of dimensions m) on a manifold of lower

dimension g € {1,2,3}.

3 Explicit conditions for stability

The most important question when one trains a self-organizing map is: Will the learning
process converge and properly map the input space to the neural one? In most of the cases, it
is not possible to predict this. However, in the specific case of the self-organizing algorithm
provided by [8], here we show that it is possible to obtain an analytical condition that
guarantees the stability of the equilibrium point of system (1)—(5). Stability during learning
is a prerequisite to generate a meaningful mapping and thus a proper topographic map.
Moreover, a byproduct of deriving such a stability condition is providing some insights on
how to properly tune model parameters.

To this end, we now proceed to the mathematical analysis of the model. For generality,
the adopted mathematical framework is slightly wider than merely Egs. (1), (4), (5) and
encompasses more general classes of activation functions and synaptic kernels. We start
by introducing the considered class of systems and then provide sufficient conditions for

its stability and convergence.

3.1 Model under study
The self-organizing neural field (1), (4), (5) is a particular case of the more general dynam-

ics
o )
(r,t) =—u(r ,t)+/9w1(r,r) ;( (r t))dr +fs(wf rt —s(p) (6a)

zlf(r,t)_ (s(0) = wy (1)) / we (P Vo 1(r ) b (6b)
Q

where 7,y >0, w;, w, € Ly(Q%, R), the set of all square-integrable functions from Q2 to R,

and f;, f; and f; are Lipschitz continuous functions.

3.2 Existence of equilibrium patterns
Assuming that inf,cq fQ We(r, r')fo(u*(r')) dr’ # 0, any equilibrium pattern (z*, w}‘) of (6a)
and (6b) satisfies the following equations:

u*(r) = £(0) + / wy (r, r/) l(u* (r/)) ar’, (7a)
Q
w}k(r) = s(p). (7b)

Since w; € Ly(2%,R), [12, Theorem 3.6] ensures the existence of at least one such equilib-

rium pattern.
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3.3 Stability analysis of Eq. (6a) and (6b)

We recall that an equilibrium x* of a system x(£) = f(x(¢)), where x(¢) : 2 — R” for each
fixed t > 0, is called globally exponentially stable if there exist k,& > 0 such that, for all
admissible initial conditions,

|(8) = x*|| < k[|2(0) —x*||e*, Ve=0, (8)

where || - || denotes the spatial L,-norm. This property ensures that all solutions go to the
equilibrium configuration x* in the L, sense (global convergence) and that the transient
overshoot is proportional to the Ly-norm of the distance between the initial configuration
and the equilibrium (stability). The equilibrium pattern x* is said to be locally exponen-
tially stable if (8) holds only for solutions starting sufficiently near from it (in the L, sense).
We refer the reader to [11] for a deeper discussion on the stability analysis of neural fields.

Our main result proposes a sufficient condition for the local exponential stability of
Eq. (6a) and (6b). Its proof is given in Sect. 6.1.

Theorem 1 Let Q2 be a compact connected set of R, let wy € Ly(Q%,R), and let w, : Q> — R
be a bounded function. Assume further that f}, f;, and f, are Lipschitz continuous functions,
and let £; denote the Lipschitz constant of ;. Let (u*, w}“) denote any equilibrium of Eq. (6a)
and (6b), as defined in Eq. (7a) and (7b). Then, under the conditions

N2 1. l
\//;Zfszwl(r,r) dr dr<€l 9)

and

inf/ we(r, r/) e(u* (r’)) dr' >0, (10)
Q

re2
the equilibrium pattern (u*, wf*) is locally exponentially stable for Eq. (6a) and (6b).

Condition (9) imposes that the synaptic weights of the lateral coupling w; are sufficiently
small: stronger lateral synaptic weights can be tolerated if the maximum slope ¢; of the
activation function f; is low enough, meaning that the system given by Eq. (6a) is less self-
excitable. Recall that if f; is a differentiable function, then £; can be picked as the maximum
value of its derivative. Nonetheless, Theorem 1 does not impose such a differentiability
requirement, thus allowing us to consider nonsmooth functions such as absolute values,
saturations, or rectification functions. Note that it was shown in [33] that condition (9)
ensures that the system owns a single equilibrium pattern. It is also worth stressing that
the slopes of the functions f; and f, do not intervene in the stability conditions.

Condition (10) requires a sufficient excitation in the vicinity of the equilibrium u*.
Roughly speaking, it imposes that the considered equilibrium pattern u#* does not lie in a

region where f, is zero.

3.4 Stability analysis of the SOM neural fields
Theorem 1 provides a stability condition for the model described by Eq. (6a) and (6b).
We next apply it to the model given in [8] to derive more explicit and testable stability
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conditions. More precisely, the self-organizing neural fields (1), (4), (5) can be put in the
form of Eq. (6a) and (6b) by letting f.(x) = fi(x) = rect(x), fs(x) = 1 — %, and

We (r, r') = I(ee"""’/lzm”ez, (11a)
wi(r, ') = Kie (11b)
w;(r, r/) = we(r, r’) - wi(r, r’). (11c)

In view of (7a) and (7b), the equilibrium patterns of Eqgs. (1), (4), (5) are given by

wt(r)=1+ / w(r,r')rect(u*(r')) dr, (12a)
Q

w}‘(r) = s(p). (12b)

The Lipschitz constant of f; is £; = 1. Based on this, we can also derive the following

corollary, whose proof is provided in Sect. 6.2.

Corollary 1 Assume that 2 is a compact connected set of R?, and let w,, w;, and w; be as
in (11a)—(11c). Then, under the condition that

/ /(1(66—\r—r’|2/2032 _I<ie—\r—r/|2/20i2)2 dr' dr <1, (13)
QJQ

the equilibrium (u*, w}‘), as defined in Eq. (12a) and (12b), is locally exponentially stable
for Egs. (1)—(5).

A particular case for which local exponential stability holds is when the excitation and
inhibition weight functions are sufficiently balanced. Indeed, it appears clearly that Eq. (13)
is fulfilled if K, >~ K; and o, = 0;. See the discussion in Sect. 5 for further physiological
insights on this condition.

The integral involved in (13) can be solved explicitly. For instance, in the two-

dimensional case (g = 2) the condition boils down to the following:

Corollary 2 Let Q = [a,b] x [a, D] for some a,b € R with b > a, and let w,, w;, and w; be
as in (11a)—(11c). Define

2 _ 2
E,p(0):= (20’2(6_(2:2) - 1) +0+2m(a—Db) Erf(u>> , Vo >0, (14)
o2

where Erf : R — (-1, 1) denotes the Gauss error function. Then, under the condition

K264(00/N/2) + K24(01//2) — 2K, Kie (L> <1, (15)

/2 2
O‘e +0i

the equilibrium (u*, w}k), as defined in Eq. (12a) and (12b), is locally exponentially stable
for Eq. (1)-(5).
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Plenty of approximations are available for the Erf function in the literature. For instance,
the following expression approximates it with a 5.107* error:

1
(1 + a1x + arx® + azx3 + asx*)*

Erf(x) >~ 1 -

with a; = 0.278393, a, = 0.230389, a3 = 0.000972, and a4 = 0.078108; see, for instance, [2].
The Erf function is also commonly implemented in mathematical software, thus making
Eq. (15) easily testable in practice.

4 Numerical assessment on a two-dimensional map
To numerically assess whether the above stability condition correctly predicts the perfor-
mance of the learning process, we focus on a simple example of a two-dimensional map
(g = 2) and a two-dimensional input space (n = 2). Furthermore, we choose s(p) to be the
identity function since we do not consider any receptors: the position of the tactile stimuli
is assumed to be directly available. This choice is motivated by the fact that the presence or
absence of a receptors grid does not affect the theoretical results of the current work. We
refer to [8, 9] for a more complex application of the neural field self-organizing algorithm.
We sample two-dimensional inputs from a uniform distribution. Therefore we have
si(p) = (p1,p2), where i indicates the ith sample, and p;,p, ~ U(0,1). In all our simula-
tions, we use 7000 sample points and train the self-organizing map over each of them
(7000 epochs). It is worth stressing the difference between the training time (epochs) and
the simulation time. The former refers to the iterations over all the input samples (stim-
uli): one such input is presented to the model at each epoch. The latter is attributed to the
numerical temporal integration of Eqs. (1)—(5). Thus each epoch corresponds to a prede-
fined number of simulation steps. At the end of each epoch the activity of the neural field
is reset to baseline activity before proceeding to the next epoch.

4.1 Parameters and simulation details

The neural fields equations are discretized using k = 40 x 40 units. Accordingly, the two-
dimensional model (1)—(5) is simulated over a spatial uniform discretization 2, of the
spatial domain 2 = [0, 1] x [0, 1], namely €2, = Ui?zl(ﬁ, 4%). The considered input space,
over which the stimuli are uniformly distributed, is also [0,1] x [0,1] (two-dimensional
input vectors). The temporal integration is performed using the forward Euler method,
whereas the spatial convolution in Egs. (1)—(5) is computed via the fast Fourier transform
(FFT). The learning process runs for 7000 epochs. The components of the feed-forward
weights are initialized from a uniform distribution 2/(0,0.01), and the neural field activity
is set to zero. At each epoch, we feed a stimulus to Egs. (1)—(5), and the system evolves
according to its dynamics, whereas the feed-forward weights are being updated. Then we
reset the neural fields activity to zero. We run each experiment ten times using a different
pseudorandom number generator (PRNG) seed each time (the PRNG seeds are given in
Appendix 7: the same initial conditions and the set of PRNG seeds were used in each
experimental condition).

The source code is written in Python (Numpy-, Numba-, Sklearn, and Matplotlib-
dependent) and are freely distributed under the GPL 3-Clause License
(https://github.com/gdetor/som_stability). All the parameters used in numerical simula-
tions are summarized in Table 1. All simulations ran on an Intel NUC machine equipped


https://github.com/gdetor/som_stability

Detorakis et al. Journal of Mathematical Neuroscience (2020) 10:20 Page 9 of 20

Table 1 Simulation parameters. K, and K; are the amplitudes of excitatory and inhibitory lateral
connections, respectively; o, and o; are the variances of excitatory and inhibitory lateral connections,
respectively; T is the decay time constant, dt is the integration time step in ms, t is the simulation
time in seconds, and y is the learning rate. In each epoch, one stimulus is presented to the model

Ke Oe K o T dt t y epochs
Figure 2 0.90 0.11 0.86 1.0 1.0 0.015 25.0 0.002 7000
Figure 3 3.0 0.1 2.80 1.0 1.0 0.015 25.0 0.002 7000

with an Intel i7-10th generation processor and 32 GB of physical memory, running Ubuntu
Linux (20.04.1 LTS, Kernel: 5.4.0-47-generic). The simulation of one self-organizing map
consumes 493 MB of physical memory, and it took 2671 seconds to run the 7000 epochs.

4.2 SOM quality measures

We measure the quality of the self-organizing maps using two performance indicators,
the distortion D [6] and the dx — §y representation [7]. We recall here that Q, is the spa-
tial uniform discretization of 2 = [0,1] x [0,1] and k = 40 x 40 is the number of nodes
(neurons). Furthermore, for eachj € {1,...,k}, ugc(t*) denotes the steady-state value of the
feed-forward weights at the jth node of the spatial discretization, and t* corresponds to
the time at the end of an epoch.

The distortion assesses the quality of a self-organizing map. It measures the loss of infor-
mation over the learning process. In other words, it indicates how good a reconstruction
of an input will be after the mapping of all inputs to a lower-dimensional neural map.
In a sense, distortion measures how well a SOM algorithm “compresses” the input data
with respect to the neighborhood structure. Mathematically, the distortion is computed
according to its discrete approximation:

n

1
Dzzz

i=1

7, (16)

mink}|si(p) - %(t*)

je{l,...,

where 7 is the number of samples we use during the training of the self-organizing map.

Distortion is essentially an indicator of the map convergence, but it is not a reliable tool
for assessing its quality. To gauge the quality of the map, we use the §x — §y representation
[7]. It shows when a map preserves the topology of the input space and hence how well a
topographic map is formed. To estimate the 5x — §y, we compute all the pairwise distances
between the feed-forward weights, dx = §x(i,j) = |w}(t*) - M&(t*)|, and all the distances
between the nodes of the uniform discretization of the input space [0, 11, 8y(i,) = |y; — y]
for i,j = 1,...,k, where y; are the discrete nodes of ;. We plot the x — 8y (i.e., dx is the
ordinate, and 8y the abscissa) along with a straight line, named L;,_s,, that crosses the
origin and the mean of §x points. If the point cloud representation of §x — §y closely follows
the line Ls,_s,, then the map is considered well-formed and preserves the topology of the
input space.

To quantify the éx — §y representation through a scalar performance index, we per-
form a linear regression on the point cloud of §x — §y without fitting the intercept (ma-
genta line in figures), and we get a new line named L. Then we define the measure
P = Zf;l(a; — b;)?, where a; € L;,_s, and b; € L. Naturally, P should approach zero
as the two lines are getting closer, indicating that the self-organizing map respects the
topology of the input space, and thus it is well-formed.
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4.3 Stable case

We start by simulating the model described by Egs. (1)—(5) with the parameters given in
the first line of Table 1. With these parameters, condition (15) is fulfilled (0.47 < 1), and
Corollary 2 predicts that the equilibrium is exponentially stable over each epoch. Accord-
ingly, the model succeeds in building up a self-organizing map as shown in panel (A) of
Fig. 2. The white discs indicate the feed-forward weights after learning, and the black dots
indicate the input data points (two-dimensional rectangular uniform distribution).

Panels (B) and (C) show the §x — 8y representation and the distortion, respectively. We
observe that the dx — §y representation indicates a correlation between the feed-forward
weights and the rectangular grid points (aligned with the mean of §x—red line). This means
that the self-organizing map is well-formed and conserves the topology of the input. More-
over, the distortion declines and converges toward 0.0025, pointing out first that the loss
of information during learning is low and that the structure in the self-organizing map is
preserved. However, the boundary effects (the density of points is higher at the boundary
of the map in panel (A)) affect both the distortion (it does not converge to zero; see panel
(C) in Fig. 2) and the §x — 8y representation (it is not perfectly aligned with the red line; see
panel (B) in Fig. 2). In spite of these boundary effects, the obtained §x — 8y performance
indicator is good (P = 0.01).

The evolution of the norm-2 of feed-forward weights of three randomly chosen units
(r* =(0.25,0.25), (0.1,0.225), (0.35,0.075)) is shown in the panel (D) of Fig. 2. This implies
that the weights converge to an equilibrium after a transient period of about 2000 epochs.
The oscillations around the equilibrium are due to a repeated alteration of the input stim-
ulus, which causes a shift to the feed-forward weights values of each winner neuron (see
[8] for more detail).

4.4 Unstable case

The second line of Table 1 provides parameters for which Condition (15) is violated
(5.25 > 1). According to our theoretical predictions, the model might not be stable and
thus may not be able to develop any self-organizing map at all. To make sure that this
is the case (and not merely a transient effect), we have let the training take more epochs
(20,000). Nevertheless, here we present only the 7000 first epochs for consistency with the
rest of our experiments. This situation is illustrated in Fig. 3, where the self-organizing
process has failed to generate a well-formed map (panel (A)). In this case, it is apparent
that self-organization process has failed to generate a topographic map.

The 5x— 38y representation in panel (B) of Fig. 3 looks like a diffused cloud, indicating that
there is no correlation between the grid points and the feed-forward weights, meaning that
there is no preservation of the topology of the input space. Accordingly, the performance
index reaches the value P = 0.41, thus higher than the stable case. Moreover, the distortion
in panel (C) of Fig. 3 oscillates without converging to an equilibrium, pointing out that the
loss of information remains high and therefore the mapping is not successful. Finally, the
norm-2 of feed-forward weights of three units (r* = (0.25,0.25), (0.1, 0.225), (0.35,0.075))
are shown in panel (D): it is apparent that they do not converge to an equilibrium. Instead,
they oscillate violently and never stabilize around an equilibrium configuration.

4.5 Numerical assessment of Corollary 2
Finally, we numerically tested condition (15) of Corollary 2 for different values of the pa-
rameters K, and K; (all other parameters remained the same as in Table 1). For each pair
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Figure 2 Two-dimensional SOM performance in the stable case. (A) Feed-forward weights (white discs) as
they have been organized into a topographic map after 7000 epochs. The input in this case is a
two-dimensional rectangular uniform distribution (black dots). (B) 6x — §y representation (black cloud), mean
of 8x (red line), and the linear regression of the §x — 8y representation (magenta line). The fact that the cloud
is aligned around the red line indicates that the topographic map is well organized, as confirmed by a good
index performance P = 0.01. (C) Distortion indicates that the loss of information during the learning process
decreases, and the mapping of the input data to a two-dimensional self-organizing map respects the
structure of the neighborhoods. (D) Temporal evolution of norm-2 of feed-forward weights of three neurons
placed at r* =(0.25,0.25), (0.1,0.225), and (0.35,0.075)). Condition (15) is fulfilled, and therefore the weights
converge to an equilibrium giving rise to a well-formed topographic map

(Ke, K;), we computed the left-hand side of Eq. (15), the distortion D (averaged over the
last 10 epochs), and the dx — §y performance index P; see Fig. 4. We observe that for high
values of K, and K;, the stability condition of Corollary 2 is violated (the black solid line
overpasses the black dashed line). The distortion (orange curve) closely follows the left-
hand side of condition (15) (up to a scaling factor), suggesting that distortion can serve as
a measure of stability of system (1)—(5). Furthermore, the distortion and the §x — 8y per-
formance index P indicate that the learning process degrades for high values of (K, K;), in
line with the fact that condition (15) is violated. Figure 5 confirms this good alignment be-
tween the theoretical stability condition and the performance of the self-organizing map:
for the first five cases, it properly maps the input space to the neural one, whereas the
topology of the input space is not preserved in the last two cases, and a malformed topo-

graphic map is obtained.
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Figure 3 Two-dimensional SOM performance in the unstable case. (A) Feed-forward weights (white discs) as
they have failed to organize into a topographic map after 7000 epochs. The input in this case is a
two-dimensional rectangular uniform distribution (black dots). (B) §x — 8y representation (black cloud), mean
of §x (red line), and the linear regression of the §x — 8y representation (magenta line). The fact that the cloud
looks diffused indicates that the topographic map is not well organized, as confirmed by a high value of

P =041.(C) Distortion indicates that the loss of information during the learning process never drops
(converges to an equilibrium) instead it oscillates. This means that the mapping of the input data to a
two-dimensional map has failed. (D) Temporal evolution of norm-2 of feed-forward weights of three neurons
placed at r* =(0.25,0.25), (0.1,0.225), and (0.35,0.075)). Condition (15) is violated, and accordingly the weights
do not converge to an equilibrium

5 Conclusion

In this work, we have presented theoretical conditions for the stability of a neural field
system coupled with an Oja-like learning rule [26]. Numerical assessments on a two-
dimensional self-organizing map indicate that the theoretical condition is closely aligned
with the capacity of the network to form a coherent topographic map.

Previous works have shown through simulations that the dynamical system described
by Egs. (1)—(5) can develop topographic maps through an unsupervised self-organization
process [8, 9]. The model relies on the activity of a neural field to drive a learning process.
This type of models are capable of developing topographic maps and reorganize them in
face of several kinds of disturbances. Here we proceed to a rigorous theoretical analysis of
such kind of models by employing neural field Lyapunov theory.

The obtained stability conditions are reminiscent of those obtained for general neural
fields dynamics, in which the spatial L,-norm of synaptic weights plays an essential role
[11, 22, 33]. In our setting, these conditions translate in a good balance between excita-
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Figure 4 Numerical investigation of Corollary 2. Eight different pairs of the parameters (Ke, K;) were used to
investigate the conservativeness of the stability condition given by Corollary 2. We ran eight different
simulations for 7000 epochs, keeping always the rest of the parameters as in Table 1 and the same PRNG seed
as before (7659). The black curve indicates the numerical value of the left-hand side of (15): the stability is
guaranteed if it is below the black dashed line. The green curve indicates the 8x - 8y performance index P.
The orange curve represents the distortion D averaged of the 10 last epochs. It is apparent that as the values
of (K, K;) increase the Corollary 2 becomes violated and the self-organizing map fails to map the input space
to the neural one (see Fig. 5 for more detail)
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Figure 5 Numerical Investigation of Corollary 2. For the same eight experiments as in Fig. 4, the obtained
self-organizing map is provided (first line), together with its §x — 8y representation (second line) and the
evolution of the distortion (third line). The mean §x is represented as a red line, whereas the slope of the linear
regression is given as a magenta line. (A): (Ko = 0.30, K; = 0.25), (B): (Ko = 0.4, K = 0.35), (C): (K. = 0.5, K; = 0.45),
(D): (K, =0.7,K; = 0.63), (E): (K. = 0.9, K; = 0.86), (F): (K. = 1.0, K; = 0.92). In line with Fig. 4, a relevant map is
obtained for the first five experiments (for which condition (15) is fulfilled), whereas for the two last
self-organizing maps (G): (K. = 2, K; = 1.85) and (H): (K. = 3, K; = 2.85), the stability condition (15) is violated.
This violation results in a nonstable neural field equation, and thus the self-organizing maps do not learn
properly the representations
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tion and inhibition for the exponential stability of the model equilibrium, thus allowing the
self-organizing process to develop topographic maps. It is worth stressing that the proof
techniques employed here do not rely on a linearization of the system around the consid-
ered equilibrium; it thus allows us to cover nondifferentiable activation functions (such as
classical saturation or rectification functions).

These stability conditions provide a means to identify the parameters set within which
the unsupervised learning works efficiently and thus provides an indication on how to tune
them in practice. In particular, they can be used to further investigate how the dynamics of
an underlying system affects the learning process during an unsupervised training process
and what is the effect of the parameters on the final topographic map: as Fig. 4 indicates,
the parameters of the model directly affect the quality of the topographic map. However,
a limitation of the present work is that it does not offer a way of choosing the param-
eters in an optimal way. Furthermore, although the conditions provided by Theorem 1
guarantee the stability of the neural field, they do not predict the quality of the obtained
map: Stability ensures that the learning will converge to an equilibrium, but the quality of
the obtained map strongly depends on the structure of this equilibrium and hence on the
chosen initial values of the feed-forward weights. This is a well-known problem with self-
organizing maps [19], which is generally solved using a decreasing neighborhood, starting
from a very wide one. In our case the neighborhood function is directly correlated with
the profile of the field activity and is fixed (stereotyped). We thus cannot always ensure
the proper unfolding of the map. It is to be noted that when the neighborhood of a Koho-
nen is kept fixed, it suffers from similar problems. Nevertheless, the numerical assessment
of the proposed theoretical stability conditions suggests that the stability condition accu-
rately predicts the emergence of topographic maps through unsupervised learning: see
Figs. 4 and 5.

Other works have studied stability conditions for Kohonen maps and vector quantiza-
tion algorithms using methods from linear systems stability theory [32] or through energy
functions [10]. However, these works focus on the learning rule for the Kohonen self-
organizing maps [20], and the dynamics are not explicitly given by dynamical systems.
Our work goes beyond by taking into account not only the learning dynamics, but also
the neural dynamics that drives the self-organizing process.

Last but not least, it has been shown that neural adaptation is crucial in the develop-
ment of the neocortex [23] and neurons tend to adapt their input/output relation accord-
ing to the statistics of the input stimuli. Our theoretical results provide conditions under
which this input/output adaptation successfully takes place at least at a computational

level.

6 Proof of the theoretical results
6.1 Proof of Theorem 1

To place the equilibrium at the origin, we employ the following change of variables:

u(r,t) = u(r,t) — u*(r),

wr(r,£) = wy(r, t) - wf*(r),
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where u* and w}" denote the equilibrium patterns of Eq. (6a) and (6b), as defined in Eq. (7a)
and (7b). Then system (6a) and (6b) can be written as

r%(r, t) = —i(r,t) + / wi(r, r’)ﬁ (v, u(r,t))dr + i (i (r, 1), (17a)
ot o

O 1 8) = iy, 1) / we(r, V(7 2)) (17b)
ot o

where forallx e Rand all r € 2,

filrx) = fi(x + u* () = fi(w* (7)),
fix) = fix) - £(0),
JACR)) =fe(x +u*(r)).

With this notation, we have ﬁ(r, 0) = fS(O) =0 for all r € 2, meaning that (17a) and (17b)
owns an equilibrium at zero. Thus the stability properties of the origin of (17a) and (17b)
determine those of the equilibria of (6a) and (6b).
First, observe that since w, is a bounded function and €2 is compact, there exists w, >0
such that
/ we (7, r’)zdr’ <w’, VreqQ. (18)
Q
To assess the stability of (17a) and (17b), we may be tempted to rely on linearization
techniques. Nevertheless, the linearized system (17a) and (17b) around the origin would
necessarily involve the derivative of f; at zero, which may be undefined if f; is not differ-
entiable at zero (which is the case for the system of interest (1)—(5), where f; involves an
absolute value). Consequently, the proof we propose here relies on Lyapunov methods

[17], which were extended to neural fields in [11].

Consider the following Lyapunov functional:

V() = % /Q Zt(r,t)zdr+% /Q iy (r, )2 d, (19)

where p > 0 denotes a parameter whose value will be decided later. First, observe that the
following bounds hold at all £ > 0:

a(lat, o] + w0 = vy <a@(|ac, 0 + | 0]), (20)

where « := %min{t;p/y} >0and o := %max{t;p/y} > 0. The derivative of V along the
solutions of (6a) and (6b) reads

o . ou(r,t) o [ . owy(r, 1)
V(t)—t/ﬂu(r,t) y dr+y/ﬂwf(r,t) y dr

= / u(r,t) |:—Zt(r, t)+ / wi(r, r/)ﬁ (v, th(r’, t)) ar' +f, (17vf(r, t)):| dr
Q Q

_p/s;[ﬁ/f(r, t)zlzwe(r,r’)ﬂ(r',ﬁ(;”, t)) dr’] dr. (21)
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Moreover, denoting by £, £,, and ¢; the Lipschitz constants of £;, f., and f; respectively, we
have that for all x e R and all r € Q.

[fir,2)| < €11x, (22)
@) < €%, (23)
[fo(r, %) = fu(r, 0)| < €clxl. (24)

Applying the Cauchy—Schwarz inequality and using Eq. (22), it follows that
/ wi(r,(r,a(r,t)) dr’ < / lwi(r, ) (r, t)) | dr’
Q Q
< E;/ ‘w;(r, r’) ’ |12(r’, t) | ar
Q

Sﬁz\// Wz(r,r’)zdr/\// it(r’,t)zdr’.
Q Q

Hence, using again the Cauchy—Schwarz inequality,

/Qﬁ(r,t)[[gwl(r,r’)ﬁ(r’,ﬁ(r/,t))dr/i| dr
561/Q|Zz(r,t)|[\//g wl(r,r’)Zdr’\//QZt(r/,t)zdr’] dr
551\//9 lft(r,z.‘)%ir\//g|:/Q wl(r,r’)zdr//git(r/,t)zdr/:| dr.

Observing that [, #(r',t)* dr’ is independent of r and defining

1, —_ ! 2 /
Wy = \//S;/;zwl(r,r) dr' dr, (25)

it follows that

f a(r,t)[ / wl(r,r/)ﬁ(r’,ﬁ(r’,t))dr/:| dr < 4w, / a(r,t)? dr. (26)
Q Q Q

Furthermore, using Eq. (23), we have that

/ i(r, O)fy (wr(r,0)) dr < £ f |iu(r, t)||wy (r,8)| dr
Q Q

5&\// ﬁ(r,t)zdr\// wy(r, t)2dr.
Q Q

Invoking the inequality 2ab < (a*/A + Ab?) for all a,b € R and A > 0, we obtain that

~ 7~ £s ~ 2 L[ 2
fﬂu(r,t)fs(wf(r,t)) dr < E(A/ﬂu(;’,t) dr+X/wa(r,t) a’r) (27)

for any A > 0.

Page 16 of 20
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Now assumption (10) ensures that inf,cq fQ we(r, r’)j’e(r’, 0)dr’ > 0. It follows that there
exists ¢ > 0 such that

/ we(r, r’);(r’,O) dr' >2c, VYreQ.
Q

Consequently, using (24) and the Cauchy—Schwarz inequality, we get that for any v €
Ly(Q,R),

[ w0
:/Qwe(r, Ve (r',0) +/Qwe (' ()) -Fo(,0)) dr
= 20= [ ()| [l v(r)) i, 0)
=20 [ fuaoor) ()|

> 2c—£e\/ /Q we(r,r/)zdr/\/ /Q o) dr

2 2¢— eeﬁ/e”V”!

where the last bound comes from (18). Let B, denote the ball (in L,-norm) of radius € >
0, that is, B, := {v € Lo(,R) : ||lv|| < €}. Letting ¢ := ¢/£,w,, we conclude from the above
expression that

/ we (7 r/)ﬁ(r/,v(r/)) dr' >c, VreQ,VvebB.. (28)
Q

Consider an initial condition such that #(-,0) € B, and let T € [0, +oc0] denote the time
needed for u(-, t) to leave 3. Then, by definition, #(-,£) € B, forall t € [0, T), and (-, T) ¢
B, if T is finite. Note that by the continuity of solutions, 7' > 0. Moreover, in view of (28),

/ we(r, r’)ﬁ(r’, ﬁ(r’, t)) dr' >c¢, Vtel0,T),VreQ. (29)
Q

Combining Egs. (21), (22), (23), and (29), we obtain that for all ¢ € [0, T),

V(t)f—(l—ﬁn@;—%)/ ﬁ(r,t)2dr—( c—%)/wf(r,t) dr
Q

Pick & = (1 — £;w;)/¢,. Note that A > 0 since £;w; < 1 by assumption (see Eq. (9)). Then the
2
choice p = [— = (IEW > 0 leads to

. 1,. -
V@) <=3 [aCo]" - S w0l

1
<~ min(1p0) (0] + [0 ).
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Using (20) and letting o := % min{1; pc} > 0, we finally obtain that
V()< -aV(), Vtelo,T).
Integrating this gives V() < V(0)e™* for all ¢ € [0, T), which yields, using (20),

a0l + [0 < S (Ja. 0 + 5.0 ), veelo,D). (30)

Thus if initial conditions are picked within the L,-ball of radius %, then |u(.,t)| +
lwr(-, £)|l < € atall times ¢ > 0. This means that for these initial conditions, solutions never
leave the ball B,, and hence T = +o0o. Thus Eq. (30) ensures the exponential stability on
this set of initial conditions.

6.2 Proof of Corollary 1

Assumption described by Eq. (13) is equivalent to requiring w; < 1, with w; defined in
Eq. (25). Since the Lipschitz constant of the rectification is ¢; = 1, this makes Eq. (9) ful-
filled.

Moreover, we claim that the solution u* of the implicit Eq. (12a) and (12b) is necessarily
positive on some subset of Q2 of nonzero measure. To see this, assume on the contrary
that u*(r) < 0 for almost all r € Q. Then rect(u*(r)) = 0 for almost all r € @2, which implies
that

/ wl(r, r’) rect(u* (r’)) dar' =0, VreQ.

Q

In view of Eq. (12a) and (12b), this implies that #*(r) = 1 for all r € , thus leading to a
contradiction. Consequently, as claimed, u#* is necessarily positive on some subset Q* of

Q2 of nonzero measure. Recalling that here 2 is assumed to be a compact set, it follows
that

. 12 2 . (2 2
inf | el 20 rect(u*(r)) dr > inf e T2 K (1 dr > 0,
reQ2 Q reQ2 QF

which makes Eq. (10) satisfied. The conclusion then follows from Theorem 1.

6.3 Proof of Corollary 2

The following one-dimensional relation holds:

b opb 2
[ [ &5 anay= Vet (31)

To compute its two-dimensional counterpart, let r = (r1,r2) and v’ = (r},r}). Then, for Q =
[a,b] x [a,b],

|2 b prb pb pb AV VAV
/ / e 22 dr dr:/ / / / exp <— (n=n) +(r=r) )dri drydry dry.
QJQ a Ja Ja Ja 202
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Using Fubini’s theorem, it follows that

e
L L[ oo 5

By Eq. (31) this gives

Johe

d/ dr

‘Mlz ar dr-/ / exp< rl_rl) )w/éab o)dr dr;.
=&4p(0). (32)

The left-hand term of Eq. (13) then reads

r|2

7“_,/'2 \r—
f/([(ee 27— Kie ) dar' dr
QJa

/2 = | UgUl

=2 =] _
= / / (K?e @ +KZe °F —2KKe Vi )dr dr
QJIQ

= K360p(0e/'2) + K £ap(01/V/2) = 2KKiap (L)

/ _2 2
O'e+0'i

which concludes the proof.

7 PRNG seed
We ran both stable and nonstable experiments ten times with different PRNG seeds. All
the PRNG seeds we used are 10, 74, 433, 721, 977, 1330, 3433, 5677, 9127, 7659.
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