
Spek et al. Journal of Mathematical Neuroscience           (2020) 10:21 
https://doi.org/10.1186/s13408-020-00098-5

R E S E A R C H Open Access

Neural field models with transmission delays
and diffusion
Len Spek1* , Yuri A. Kuznetsov2,1 and Stephan A. van Gils1,2

*Correspondence:
l.spek@utwente.nl
1Department of Applied
Mathematics, University of Twente,
Enschede, The Netherlands
Full list of author information is
available at the end of the article

Abstract
A neural field models the large scale behaviour of large groups of neurons. We extend
previous results for these models by including a diffusion term into the neural field,
which models direct, electrical connections. We extend known and prove new
sun-star calculus results for delay equations to be able to include diffusion and
explicitly characterise the essential spectrum. For a certain class of connectivity
functions in the neural field model, we are able to compute its spectral properties and
the first Lyapunov coefficient of a Hopf bifurcation. By examining a numerical
example, we find that the addition of diffusion suppresses non-synchronised
steady-states while favouring synchronised oscillatory modes.
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1 Introduction
In the study of neurological disease, non-invasive imaging techniques are often used to get
an understanding of the structure and functioning of the brain on intermediate scales. As
they give a course-grained view of the neuronal activity, mean-field models are a natural
fit to describe the observed dynamics [1, 2]. In this paper we use a neural field model with
gap-junctions, electrical connections between neurons, which are thought to be related
to observed synchronisation of neural tissue in Parkinson’s disease [3, 4]. We study the
effect of gap junctions on the dynamics of the model. We mainly focus on the stability of
steady-states, periodic oscillations and the bifurcations which lead to a qualitative change
in behaviour.

To properly address the difference in time-scales between gap-junctions and synap-
tic connections, we use a neural field with transmission delays for the synaptic connec-
tions. This leads to a complicated model which is infinite-dimensional and has spatially-
distributed delays. The dynamical theory for such models is not readily available. In this
paper, we address the analytic problems which arise from these abstract delay differential
equations.

We use the sun-star calculus as the basic functional analytic tool to cast the equation
in the variation-of-constants form. We exploit the results by Janssens [5, 6] that allow the
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linear part of the equation, without the delays, to be unbounded, as is the case for the
diffusion operator.

1.1 Background
Neural field models try to bridge the gap between single neurons models [7] and whole
brain models [8] by modelling the qualitative behaviour of large groups of neurons. In
the seminal work of Wilson and Cowan [9, 10], they modelled two populations of excita-
tory and inhibitory neurons and analysed the dynamical properties of the resulting model.
A neural field uses spatial and temporal averaging of the membrane voltage of a popula-
tion of neurons. The synaptic connections are modelled by a convolution of a connectivity
kernel and a nonlinear activation function. This leads to a set of two integro-differential
equations with delays.

These models have been simplified by Amari [11] by combining the excitatory and in-
hibitory populations into a single population and made more realistic by Nunez [12] by
including transmission delays. These delays arise from the finite propagation speed of ac-
tion potentials across an axon and the delay due to dendritic integration. There has been
considerable interest in the role of these delays in the spatiotemporal dynamics [13–21].
Further modelling work by Coombes, Venkov and collaborators show the usefulness of
these neural fields for understanding neural activity [22–25].

Roxin and collaborators first did a bifurcation analysis for neural fields with a single fixed
delay [26–28]. Faugeras and collaborators investigated the stability properties of stationary
solutions of these neural fields with distance dependent delays [29–32] using a functional
analytic approach based on formal projectors. In [33] it was shown that the neural fields
can be studied as abstract delay differential equations to which the sun-star framework
can be applied. They used this to compute normal form coefficients for bifurcations of
equilibria. Dijkstra et al. [34] expanded their analysis to Pitchfork–Hopf bifurcations, and
Visser et al. [35] analysed a neural field with delays on a spherical domain. We build on
[33, 34] by introducing gap-junctions into the neural field model and studying the resulting
bifurcations and dynamics.

Gap-junctions are electrical connections between neurons, which directly exchange
ions through a connexin-protein. This is in contrast to synaptic connections, where a
potential is induced across the synapse by neurotransmitters. These gap-junctions are
thought to be related to Parkinson’s disease by synchronising neurons in the globus pal-
lidus [3, 4]. Gap-junctions can be modelled as a simple diffusion process [24]. There have
been some attempts to incorporate gap-junctions into networks of coupled neurons [36–
38], but to our knowledge not yet within a proper neural field model.

1.2 Theoretical framework
As mentioned before, we use the sun-star calculus for delay differential equations to for-
mally analyse these neural field models with transmission delays. This mathematical the-
ory for delay differential equations was constructed by Diekmann et al., see [39] and the
references therein. This theory uses the space X�, pronounced X-sun, which is the largest
subspace of strong continuity of the adjoint semigroup. It allows us to employ the classi-
cal Fredholm alternative, which plays a key role in the computation of the normal form
coefficients. As a result, many of the mathematical techniques developed for the analysis
of ODEs, such as the centre manifold reduction and the Hopf bifurcation theorem, can be
generalised for these abstract delay differential equations.
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Recently, Janssens [5, 6] has begun expanding the sun-star calculus to the case where the
linear part, which contains no delays, is an unbounded operator. This allows us to study
both the neural field with and without diffusion in the same framework. This unifying
theory then allows us to fill in the gap in the proofs of [33], while obtaining the same
results for a neural field with diffusion.

There are also other theoretical frameworks possible. The first approach to develop a
geometric theory for delay equations along the lines of ODEs was proposed by Hale [40]
who used formal adjoint operators. Formal adjoint operators were also used by Faria and
Magalhaes [41–43] to study Hopf and Bogdanov–Takens bifurcations. Wu [44] used the
formal adjoint method to study reaction-diffusion systems with delays and prove the nec-
essary theorems for bifurcation analysis.

There is a difference whether to take as a starting point an abstract integral equation, like
we do, or an abstract ODE like in the integrated semigroup approach [45–47]. Integrated
semigroups have been used to deal with classical delay differential equations as abstract
ODEs with non-dense domains. By classical we here mean that the state space is Rn. In the
case of the neural field equations we consider, the state space is an abstract Banach space. It
might very well be possible that the formalism of integrated semigroups is general enough
to cover this as well, but as far as we know, this has not been done as yet. We prefer the
sun-star formalism as it allows us to work with the variation-of-constants formula in the
state space X, albeit after an excursion in the bigger space X�∗. In addition, the projectors
are based on duality pairing and the classical Fredholm alternative, while in the integrated
semigroup formalism the projectors are based on a formal inner product [48].

There are also two approaches to compute normal form coefficients. In the first ap-
proach, the abstract ODE is split into a finite dimensional and an infinite dimensional
one. By decoupling these step by step, the centre manifold is rectified and the equation
on it is normalised [45–47]. In the second approach, which we follow, we parametrise the
centre manifold and assume that the finite dimensional ODE on it is in normal form. As
the delay differential equation has an abstract state space, this ODE is also an abstract
ODE. The Taylor coefficients of the centre manifold are obtained in a step-by-step proce-
dure that simultaneously gives us the coefficients of the normal form [49, 50]. In this way,
the sun-star calculus approach leads to explicit, compact and easy to evaluate expression
for the normal form coefficients [51]. These coefficients are obtained using the true du-
ality pairing, for which the classical Fredholm alternative holds. Of course, the resulting
formulas are equivalent, but the approach we adopted is more straightforward.

In the sun-star calculus we choose to model the neural field as a continuous function in
space. In [29] and [31] the authors instead choose to use the L2-functions, based on the
work in [52–54]. This leads to some mathematical complications dealing with the smooth-
ness of the nonlinearity, as laid out previously in Sect. 2.4 of [55]. This was later rectified
in [56]. Moreover, from a physiological point of view, it is not clear why the potential of
the neural field should be merely square integrable, instead of continuous.

Finally, we want to briefly comment on the need of a theoretical framework to study
these neural fields. Software packages, such as DDE-BIFTOOL [57], can perform numer-
ical bifurcation analysis of delay equations. However, they cannot directly be applied to
these delayed integro-differential equations. While a discretised model can be studied with
these software packages, there is no guarantee that the dynamical properties converge to
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those of the full neural field. In this work, the formulas of the normal form coefficients are
exact and can be evaluated to arbitrary precision.

In this paper we build on the work of Janssens [5, 6] and prove the necessary theorems
to use the sun-star calculus to study our neural field model with diffusion and without
diffusion. We then derive the spectrum and resolvent of a neural field with delays, diffusion
and a connectivity kernel of a sum of exponentials. Finally, we compute the first Lyapunov
coefficient of a Hopf bifurcation and verify our results by simulating the full neural field
numerically.

1.3 Modelling
In this section we derive the neural field model with transmission delays and gap junctions.
This is largely based on a derivation by Ermentrout and Cowan [20].

We start with a collection of neurons i = 1, 2, 3, . . . and denote the (somatic) potential of
neuron i at time t by ui(t) and its firing rate by fi(t). We assume that there is a nonlinear
dependence of fi on ui given by

fi(t) = Si
(
ui(t)

)
.

We define �i,j(t) to be the postsynaptic potential appearing on postsynaptic cell i due to
a single spike from presynaptic cell j. We assume a linear summation of the postsynap-
tic potentials, so the total potential received at the soma due to the synaptic connection
between cell i and j can be modelled as

Gi,j(t) =
∫ t

–∞
�i,j(t – s)fj(s – τi,j) ds,

where τi,j is the delay due to the finite propagation speed of action potentials along an
axon and other factors such as dendritic integration. We define �i(t) to be the potential
appearing in neuron i due to a gap-junction current Ii,gap(t). The resulting model for ui

becomes

ui(t) = �i(t) +
∑

j

∫ t

–∞
�i,j(t – s)Sj

(
uj(s – τi,j)

)
ds. (1)

We can reduce this integral equation if we have a model for � and � . For cell i, let us
consider a passive membrane with a time constant 1/αi, a resistance Ri and an injected
postsynaptic current Ii,j,syn(t)

1
αi

d�i,j

dt
+ �i,j = RiIi,j,syn(t)

and similarly when a gap-junction current is injected

1
αi

d�i

dt
+ �i = RiIi,gap(t).

If we now apply the Laplace transform L to equation (1), we get

(
s
αi

+ 1
)
L(ui)(s) = RiL(Ii,gap)(s) + Ri

∑

j

L(Ii,j,syn)(s)L
(
Sj
(
uj(· – τi,j)

))
(s).
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We assume that the synaptic dynamics are dominated by the time-scale of the membrane.
This means we can reduce Ii,j,syn(t) to wi,jδ(t), where δ is the Dirac-delta distribution and
wi,j represents the strength of the synaptic connection, where a negative value corresponds
to inhibition. Taking the inverse Laplace transform results in a system of differential equa-
tions

(
1
αi

d
dt

+ 1
)

ui(t) = RiIi,gap(t) + Ri
∑

j

wi,jSj
(
uj(t – τi,j)

)
. (2)

We want to model this network of cells by a neural field. Suppose we have a sequence of
similar neurons i = 1, 2, . . . , M on the interval � = [–1, 1] and we model the gap-junctions
as a simple resistor between adjacent neurons, we arrive at the formula

(
1
α

d
dt

+ 1
)

ui(t) = Rg
(
ui–1(t) – 2ui(t) + ui+1(t)

)
+ R

∑

j

wi,jS
(
uj(t – τi,j)

)
. (3)

We will now take the limit as M → ∞, while scaling g by M2 and wi,j by 1/M, to find our
neural field model

∂u
∂t

(t, x) = d
∂2u
∂x2 (t, x) – αu(t, x) + α

∫

�

J
(
x, x′)S

(
u
(
t – τ

(
x, x′), x′))dx′. (4)

We have not specified yet what happens with the gap-junctions at the boundary of our
domain. It is natural to assume that no current leaks away at the boundaries, which cor-
responds to Neumann boundary conditions in the neural field

∂u
∂x

(t,±1) = 0.

1.4 Overview
This paper is divided into three parts, each of which can mostly be read independently.

In Sect. 2, we construct the sun-star calculus for abstract delay differential equations
and derive the variation-of-constants formula. In particular we prove a novel characteri-
sation for sun-reflexivity. Furthermore we consider linearisation, the corresponding spec-
trum and a normal form derivation for Hopf bifurcation of the nonlinear equations. In
appendix A we elaborate on the case when the unbounded linear operator is the diffusion
operator. We expect the reader to be familiar with the basics of the sun-star framework in
the book by Diekmann et al. [39].

In Sect. 3 we derive formulas for the eigenvalues and eigenvectors for a neural field with
a connectivity defined by a sum of exponentials. We also explicitly construct the solution
to the resolvent problem for this class of neural field models.

In Sect. 4 we do a numerical study for a neural field model with specific parameter val-
ues. We compute the first Lyapunov coefficient for the Hopf bifurcation and investigate
how it is influenced by the diffusion term. We also investigate the emergence of periodic
behaviour using numerical simulations of the neural field.

2 Abstract delay differential equations in the sun-star framework
In this section we first develop the sun-star calculus for a large class of abstract delay differ-
ential equations (ADDE). This leads to a variation-of-constants formulation of (ADDE).
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Next we study the linearisation and obtain results on the spectrum. Finally, we construct
a method for computing the first Lyapunov coefficient for a Hopf bifurcation of nonlin-
ear equations. We build on the theory developed by Janssens [5], who considers a class of
abstract delay differential equations with a possibly unbounded linear part.

Consider two Banach spaces Y and X = C([–h, 0]; Y ) overR orC. Let S be a strongly con-
tinuous semigroup on Y with its generator B, and let G : X → Y be a (nonlinear) globally
Lipschitz-continuous operator. Note that the assumption that the semigroup S is compact
is not necessary, in contrast to what is assumed by Wu [44].

We introduce now our main object of study:

⎧
⎨

⎩
u̇(t) = Bu(t) + G(ut),

u0 = ϕ ∈ X.
(ADDE)

Here ut ∈ X, where ut(θ ) = u(t + θ ) for t ≥ 0 and θ ∈ [–h, 0].
In the remaining sections we are mainly interested in the case where B is a diffusion op-

erator acting in the space of continuous functions Y = C([–a, a];R). We have summarised
the relevant properties of the diffusion operator in Appendix A. However, the theorems
which are proven in this section hold for any operator B that generates a strongly contin-
uous semigroup S on Y . This fills in some technical details missing in [33], where B = –αI ,
which does not generate a compact semigroup.

On X we consider the strongly continuous semigroup T0 defined by

(
T0(t)ϕ

)
(θ ) :=

⎧
⎨

⎩
ϕ(t + θ ) t + θ ∈ [–h, 0],

S(t + θ )ϕ(0) t + θ > 0.
(5)

Here ϕ ∈ X, t ≥ 0 and θ ∈ [–h, 0]. This semigroup is related to the problem for G ≡ 0, i.e.

⎧
⎨

⎩
v̇(t) = Bv(t) for t > 0,

v0 = ϕ for t ∈ [–h, 0].
(6)

The solution of problem (6) is then given by vt := T0(t)ϕ.

Lemma 1 ([58, Theorem VI.6.1]) The generator A0 of the semigroup T0 is given by

A0ϕ = ϕ̇, D(A0) =
{
ϕ ∈ C1([–h, 0]; Y

)|ϕ(0) ∈ D(B) and ϕ̇(0) = Bϕ(0)
}

. (7)

We will interpret (ADDE) as problem (6) with some nonlinear perturbation G : X →
Y and use a variation-of-constants formula in X to obtain results about the perturbed
problem, such as normal form coefficients for local bifurcations. As G maps X into Y ,
we would like to embed Y in a natural way into X. A naive approach would be to use a
delta-function as an embedding. However, this embedding is not bounded, so the domain
of A0 would not be preserved under perturbation. This is indeed the case, as the rule
for extending a function beyond its original domain, i.e. ϕ̇(0) = Bϕ(0), is incorporated in
D(A0). Hence adding a perturbation to the rule for extension changes the domain of the
generator. A way out is to embed this problem into a larger space. A natural choice would
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Figure 1 A schematic representation of the various Banach spaces in sun-star calculus [5]

be Y × X, where we have a continuous embedding � : Y → Y × {0}, and we can separate
the extension and translation part of A0 into Y × {0} and {0} × X respectively.

More formally we use the sun-star calculus as developed in the book by Diekmann et
al. [39] to construct the space X�∗, which contains the space Y × X. We will first restrict
the dual space X∗ to the sun space X�, on which T∗

0 is strongly continuous. Then taking
the dual we obtain the dual space X�∗. It is convenient to present the relationship of the
various spaces schematically in the following ‘duality’ diagram, see Fig. 1.

2.1 Characterisation of the sun-dual
Using a generalisation of the Riesz representation theorem, we can find a representation of
X∗, the dual space of X [59]. It can be represented as NBV([0, h]; Y ∗), the space of functions
f : [0, h] → Y ∗ of bounded variation on [0, h], normalised such that f (0) = 0 and f is right
continuous on (0, h). The (complex-valued) duality pairing between X and X∗ is given by
the Riemann–Stieltjes integral, for ϕ ∈ X and f ∈ X∗,

〈f ,ϕ〉 :=
∫ h

0
ϕ(–θ ) df (θ ).

Results on scalar functions of bounded variation and the corresponding Riemann–Stieltjes
integral can be extended to Y -valued functions, see [59].

It is possible to find an explicit representation of the adjoint operator A∗
0 and its corre-

sponding domain D(A∗
0). The adjoint operator exists and is unique as the domain D(A0) is

dense.

Theorem 2 The domain of A∗
0 is given by

D
(
A∗

0
)

:=
{

f ∈ NBV
(
[0, h]; Y ∗)|there exists y∗ ∈ D

(
B∗) and g ∈ NBV

(
[0, h]; Y ∗)

with g(h) = 0 such that f (t) = y∗χ0(t) +
∫ t

0
g(θ ) dθ

}
(8)

and the action of A∗
0 is given by A∗

0f = B∗y∗χ0 + g , where χ0 = 1(0,h], i.e. the characteristic
function of (0, h].

Proof We first prove the inclusion ⊆ for the domain D(A∗
0). Let f ∈ D(A∗

0) and ϕ ∈ D(A0).
Without loss of generality we can write A∗

0f = cχ0 +g , where c ∈ Y ∗ and g ∈ NBV([0, h]; Y ∗)
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and g(h) = 0. Using the integration by parts formulas for Riemann–Stieltjes integrals [60,
Appendix H], we obtain

∫ h

0
ϕ̇(–θ ) df (θ ) = 〈f , A0ϕ〉

=
〈
A∗

0f ,ϕ
〉

= 〈cχ0 + g,ϕ〉

=
∫ h

0
ϕ(–θ ) d

(
cχ0(θ )

)
+
∫ h

0
ϕ(–θ ) dg(θ )

=
〈
c,ϕ(0)

〉
+
〈
g(θ ),ϕ(–θ )

〉|h0 –
∫ h

0
g(θ ) dϕ(–θ )

=
〈
c,ϕ(0)

〉
+
∫ h

0

〈
g(θ ), ϕ̇(–θ )

〉
dθ .

(9)

We will now want to use some limiting argument. However, the Riemann–Stieltjes inte-
gral lacks good convergence properties. In the scalar case, we could interpret this integral
as a Lebesque–Stieltjes integral, which has better convergence properties. For a general
Banach space Y and continuous integrands, the equivalent would be the Bartle integral
[61, 62]. The Bartle integral has an equivalent theorem to the Lebesque dominated con-
vergence theorem. For uniformly bounded, pointwise converging sequences, we can in-
terchange the limit and the integral [62, Theorem 6].

For some 0 < s < t ≤ h and y ∈ Y , we may choose (ϕ̇n)n∈N as a uniformly bounded se-
quence in X such that ϕ̇n(0) = ϕn(0) = 0 and it converges pointwise to y1[–t,–s], i.e. the
characteristic function of [–t, –s]. We then substitute ϕ for ϕn in (9)

∫ h

0
ϕ̇n(–θ ) df (θ ) =

∫ h

0

〈
g(θ ), ϕ̇n(–θ )

〉
dθ .

Taking the limit as n → ∞, using the dominated convergence of the Bartle integral, we get
that

∫ h

0
y1[–t,–s](–θ ) df (θ ) =

∫ h

0

〈
g(θ ), y1[–t,–s](–θ )

〉
dθ ,

〈
f (t) – f (s), y

〉
=
∫ t

s

〈
g(θ ), y

〉
dθ .

Since y was arbitrary, we infer that

f (t) = f (s) +
∫ t

s
g(θ ) dθ .

Letting s ↓ 0, we obtain for t ∈ [0, h]

f (t) = y∗χ0(t) +
∫ t

0
g(θ ) dθ ,
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where y∗ = lims↓0 f (s). Now we substitute this formula for f into 〈f , A0ϕ〉 and use integra-
tion by parts and the fact that ϕ̇(0) = Bϕ(0) to find that

〈f , A0ϕ〉 =
〈
y∗, ϕ̇(0)

〉
+
∫ h

0

〈
g(θ ), ϕ̇(–θ )

〉
dθ

=
〈
y∗, Bϕ(0)

〉
+
∫ h

0

〈
g(θ ), ϕ̇(–θ )

〉
dθ .

We compare this to equation (9)

〈f , A0ϕ〉 =
〈
c,ϕ(0)

〉
+
∫ h

0

〈
g(θ ), ϕ̇(–θ )

〉
dθ .

Since ϕ(0) can be chosen arbitrary, 〈y∗, Bϕ(0)〉 = 〈c,ϕ(0)〉 implies that c ∈ D(B∗) and c =
B∗y∗.

Finally we prove the other inclusion ⊇ for the domain D(A∗
0) and simultaneously obtain

the formula for the action of A∗
0. Let f be of the form in (8), then by the above computations

we find that

〈f , A0ϕ〉 =
〈
B∗y∗,ϕ(0)

〉
+
∫ h

0
ϕ(–θ ) dg(θ ) =

〈
B∗y∗χ0 + g,ϕ

〉
. �

We can characterise the sun-dual X� as the subspace of X∗, where T∗
0 is strongly con-

tinuous, or equivalently X� = D(A∗
0), where the closure is with respect to the norm on X∗.

Similarly we can characterise the sun-dual Y � as the subspace of Y ∗, where B∗ is strongly
continuous, or equivalently Y � = D(B∗), where the closure is with respect to the norm on
Y ∗. In case B is the diffusion operator, see A for an explicit characterisation of Y �.

The following theorem can be proved by showing that T∗
0 is strongly continuous on

some set E given by (10), that D(A∗
0) ⊆ E, and that E is closed.

Theorem 3 ([5, Theorem 1 and Remark 4]) The space X�, the sun-dual of X with respect
to T0, is given by the set

{
f : [0, h] → Y ∗| there exists y� ∈ Y � and g ∈ L1([0, h]; Y ∗)

such that f (t) = y�χ0(t) +
∫ t

0
g(θ ) dθ

}
.

(10)

Furthermore, the map ι : Y � × L1([0, h]; Y ∗) → X� defined by

ι
(
y�, g

)
(t) := y�χ0(t) +

∫ t

0
g(θ ) dθ ∀t ∈ [0, h] (11)

is an isometric isomorphism.

From now on we identify X� with Y � ×L1([0, h]; Y ∗). The corresponding duality pairing
between X and X� is then given by

〈
ϕ�,ϕ

〉
:=

〈
y�,ϕ(0)

〉
+
∫ h

0

〈
g(θ ),ϕ(–θ )

〉
dθ . (12)
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Now we can describe the action of T�
0 and A�

0 , the restrictions of the operators T∗
0 and

A∗
0 to the subspace X�.

Definition 4 The strongly continuous semigroup T1 on L1([0, h]; Y ∗) is defined as

(
T1(t)g

)
(θ ) :=

⎧
⎨

⎩
g(t + θ ) t + θ ∈ [0, h],

0 t + θ > h.
(13)

Theorem 5 ([5, Theorem 1])
For the action of T�

0 on X�, we have

T�
0 (t)

(
y�, g

)
:=

(
S�(t)y� +

∫ min(t,h)

0
S∗(t – θ )g(θ ) dθ , T1(t)g

)
, (14)

where the integral is the weak∗ Lebesque integral with values in Y �.

Theorem 6 For the sun-dual of A0 on X�, we have that

D
(
A�

0
)

=
{(

y�, g
)|g ∈ AC

(
[0, h]; Y ∗) with g(h) = 0, y� ∈ D

(
B∗)

and B∗y� + g(0) ∈ Y �} (15)

and A�
0 (y�, g) = (B∗y� + g(0), ġ), with ġ a function in L1([0, h]; Y ∗) such that

g(t) = g(0) +
∫ t

0
ġ(θ ) dθ (16)

for t ∈ [0, h].

Proof By definition

D
(
A�

0
)

:=
{
ϕ� ∈ X�|ιϕ� ∈ D

(
A∗

0
)
, A∗

0ιϕ
� ∈ ι

(
X�)}

and ιA�
0 ϕ� = A∗

0ιϕ
�. We first prove the equivalence of the definition and (15).

Let ϕ� = (y�, g) ∈ X� such that ιϕ� ∈ D(A∗
0) and A∗

0ιϕ
� ∈ ι(X�). Recall that the embed-

ding ι is given by (11)

ιϕ�(t) = y�χ0(t) +
∫ t

0
g(θ ) dθ .

From Theorem 2, we can conclude that ιϕ� ∈ D(A∗
0) implies that y� ∈ D(B∗) and g ∈

NBV([0, h]; Y ∗) with g(h) = 0. As A∗
0ιϕ

� = B∗y�χ0 + g ∈ ι(X�), Theorem 3 implies that
B∗y� + g(0+) ∈ Y �, and we can write g as

g(t) = g(0+)χ0 +
∫ t

0
ġ(θ ) dθ ,

where g(0+) = limt↓0 g(t) and ġ some function in L1([0, h]; Y �). Hence g is absolutely con-
tinuous on (0, h]. As g is an L1-function (class), we may redefine g(0) := g(0+) to get an
absolutely continuous function on [0, h].
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Conversely, let ϕ� = (y�, g) ∈ X� such that it is in the right-hand side of (15). From
Theorem 2 and the fact that g – g(0) ∈ NBV([0, h]; Y ∗), we conclude that ιϕ� ∈ D(A∗

0) and
that A∗

0ιϕ
� = (B∗y� + g(0))χ0 + g . As g is absolutely continuous and B∗y� + g(0) ∈ Y �, this

implies that A∗
0ιϕ

� = ι(B∗y� + g(0), ġ) ∈ ι(X�). Hence, A�
0 ϕ� = (B∗y� + g(0), ġ). �

2.2 Characterisation of the sun-star space
We can represent X�∗, the dual of X�, as Y �∗ × (L1([0, h]; Y ∗)∗, where Y �∗ is the dual of
Y �. In case B is the diffusion operator, Y �∗ is explicitly characterised in Appendix A.

In general, (L1([0, h]; Y ∗)∗ cannot be identified with L∞([–h, 0]; Y ∗∗). However, the latter
space can be embedded into the former.

Theorem 7 ([63, Remark 1.4.18, Theorem 1.4.19]) There exists an isometric embedding
of L∞([–h, 0]; Y ∗∗) into (L1([0, h]; Y ∗)∗ with the duality pairing

〈ϕ, g〉 =
∫ h

0

〈
ϕ(–θ ), g(θ )

〉
dθ

for g ∈ L1([0, h]; Y ∗) and ϕ ∈ L∞([–h, 0]; Y ∗∗).
Moreover, (L1([0, h]; Y ∗)∗ can be identified with L∞([–h, 0]; Y ∗∗) if and only if Y ∗∗ has the

Radon–Nikodym property.

Lemma 8 (Dunford–Pettis) If Y is reflexive, then it has the Radon–Nikodym property.

We can embed both Y and X into Y × X which is a subspace of Y �∗ × L∞([–h, 0]; Y ∗∗).
The canonical embedding j : X → X�∗ is defined as 〈jϕ,ϕ�〉 = 〈ϕ�,ϕ〉. The continuous
embedding � : Y → X�∗ is defined as � = (jY y, 0), where jY is the canonical embedding of
Y into Y �∗. [5] It is possible to find an explicit representation of j.

Lemma 9 For ϕ ∈ X, jϕ = (jY ϕ(0),ϕ). Moreover, j is a continuous embedding and j–1 :
j(X) → X is bounded. T�∗

0 (t)j = jT0(t), consequently j(X) is contained in X��, which is
the subspace of X�∗ on which T�∗

0 is strongly continuous.

Proof Let ϕ ∈ X and ϕ� = (y�, g) ∈ X�, then

〈
jϕ,ϕ�〉

=
〈
ϕ�,ϕ

〉

=
〈
y�,ϕ(0)

〉
+
∫ h

0

〈
g(θ ),ϕ(–θ )

〉
dθ

=
〈
jY ϕ(0), y�〉

+
∫ h

0

〈
ϕ(–θ ), g(θ )

〉
dθ

=
〈(

jY ϕ(0),ϕ
)
,ϕ�〉

.

Hence jϕ = (jY ϕ(0),ϕ). The other statements are generally known to hold for the canonical
embedding of X into X�∗ [39, Appendix II, Cor. 3.16, Prop. 3.17]. �

As we do not have an explicit norm or measure on (L1([0, h]; Y ∗)∗, we cannot say any-
thing in general about A�∗

0 . However, it is possible to find a representation of A�∗
0 restricted

to the space Y �∗ × L∞([–h, 0]; Y ∗∗).
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Theorem 10 For (y�∗,ϕ) ∈ X�∗, the following statements are equivalent:
1. (y�∗,ϕ) ∈ D(A�∗

0 ) and A�∗
0 (y�∗,ϕ) ∈ Y �∗ × L∞([–h, 0]; Y ∗∗);

2. ϕ has an a.e. derivative ϕ̇ ∈ L∞([–h, 0]; Y ∗∗) for which

ϕ(t) = y�∗ –
∫ 0

t
ϕ̇(θ ) dθ

and ϕ(0) = y�∗ ∈ D(B�∗).
In this case the action of A�∗

0 is given by A�∗
0 (y�∗,ϕ) = (B�∗y�∗, ϕ̇).

Proof Let (y�∗,ϕ) ∈ D(A�∗
0 ) such that A�∗

0 (y�∗,ϕ) = (γ ,ψ) ∈ Y �∗ × L∞([–h, 0]; Y ∗∗), and
let (y�, g) ∈ D(A�

0 ). We have that

〈
y�∗, B∗y� + g(0)

〉
+ 〈ϕ, ġ〉 =

〈(
y�∗,ϕ

)
, A�

0
(
y�, g

)〉

=
〈
A�∗

0
(
y�∗,ϕ

)
,
(
y�, g

)〉

=
〈
γ , y�〉

+
∫ h

0

〈
ψ(–θ ), g(θ )

〉
dθ .

(17)

Let � ∈ L∞([–h, 0]; Y ∗∗) such that

�(t) = �(0) –
∫ 0

t
ψ(θ ) dθ .

Then, by Lemma 46 and Theorem 6, i.e. g(h) = 0, we can rewrite (17) as

〈
y�∗, B∗y� + g(0)

〉
=
〈
γ , y�〉

+
〈
�(0), g(0)

〉
+ 〈� – ϕ, ġ〉. (18)

Taking g ≡ 0, we get that 〈y�∗, B∗y�〉 = 〈γ , y�〉 for all y� ∈ Y � such that B∗y� ∈ Y � by
Theorem 6. Hence y� ∈ D(B�), which implies that y�∗ ∈ D(B�∗) ⊆ Y �� and γ = B�∗y�∗.
As Y �� can be embedded in Y ∗∗ [64, Corollary 4.2], we find that y�∗ ∈ Y ∗∗. Furthermore,
by [64, Theorem 4.3] we have, for all y�∗ ∈ D(B�∗) and y� ∈ D(B∗),

〈
B�∗y�∗, y�〉

=
〈
y�∗, B∗y�〉

.

Alternatively, we take �(0) = y�∗, g(0) = –
∫ h

0 ġ(θ ) dθ and y� ∈ D(B∗) such that B∗y� +
g(0) ∈ Y �. Then (18) reduces to 〈� – ϕ, ġ〉 = 0 for all ġ ∈ L1([0, h]; Y ∗), hence � ≡ ϕ.

Conversely, let (y�∗,ϕ) ∈ Y �∗ × L∞([–h, 0]; Y ∗∗), where ϕ(0) = y�∗ ∈ D(B�∗) and ϕ has
an a.e. derivative ϕ̇ ∈ L∞([–h, 0]; Y ∗∗) for which

ϕ(t) = y�∗ –
∫ 0

t
ϕ̇(θ ) dθ .

Then again using Lemma 46 we get that, for any (y�, g) ∈ D(A�
0 ),

〈(
y�∗,ϕ

)
, A�

0
(
y�, g

)〉
=
〈
y�∗, B∗y� + g(0)

〉
+
∫ h

0

〈
ϕ(–θ ), ġ(θ )

〉
dθ

=
〈
y�∗, B∗y�〉

+
∫ h

0

〈
ϕ̇(–θ ), g(θ )

〉
dθ
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=
〈
B�∗y�∗, y�〉

+
∫ h

0

〈
ϕ̇(–θ ), g(θ )

〉
dθ

=
〈(

B�∗y�∗, ϕ̇
)
,
(
y�, g

)〉
.

Hence A�∗
0 (y�∗,ϕ) = (B�∗y�∗, ϕ̇) ∈ Y �∗ × L∞([–h, 0]; Y ∗∗). �

Corollary 11 For ϕ ∈ X, the following statements are equivalent:
1. jϕ ∈ D(A�∗

0 ) and A�∗
0 jϕ ∈ Y �∗ × L∞([–h, 0]; Y ∗∗);

2. jY ϕ(0) ∈ D(B�∗) and ϕ has an a.e. derivative ϕ̇ ∈ L∞([–h, 0]; Y ).
In this case, the action of A�∗

0 is given by A�∗
0 jϕ = (B�∗jY ϕ(0), ϕ̇).

Proof This follows immediately from Theorem 10 and Lemma 9. �

Note that, for A�∗
0 , the rule for extension ϕ̇(0) = Bϕ(0) is no longer included in the do-

main of A�∗
0 , but is represented in the action of A�∗

0 , which resolves the problem with A0

stated at the beginning of this section.
The previous theorem allows us to formulate an equivalence between the sun-reflexivity

of X, i.e. X�� = j(X) and the ordinary reflexivity of Y , i.e. Y ∗∗ = jY (Y )

Theorem 12 X is sun-reflexive with respect to T0 if and only if Y is reflexive.

Proof Suppose that Y is reflexive. Then, by Theorem 7 and Lemma 8, X�∗ can be repre-
sented as Y �∗ × L∞([–h, 0]; Y ) and hence the full domain of A�∗

0 is given by Theorem 10:

D
(
A�∗

0
)

=
{(

y�∗,ϕ
) ∈ X�∗|ϕ(0) = y�∗ ∈ D

(
B�∗),ϕ has an a.e. derivative

}
.

We use that X�� is the closure of D(A�∗
0 ) with respect to the norm on X�∗. First the

closure of D(B�∗) with respect to the Y �∗-norm results in the space Y ��. As reflexivity
implies sun-reflexivity [65, Corollary 2.5], we have that Y �� = jY (Y ). Next we note that
C1 functions are dense in the continuous functions and C0 is closed with respect to the
L∞-norm. Hence we conclude that

X�� =
{(

y��,ϕ
) ∈ jY (Y ) × C

(
[–h, 0]; Y

)|ϕ(0) = y��}
= j(X).

Conversely, suppose that Y is not reflexive. From Theorem 7, Y �∗ × L∞([–h, 0]; Y ) is a
subset of X�∗ and hence

{(
y�∗,ϕ

) ∈ X�∗|ϕ(0) = y�∗ ∈ D
(
B�∗),ϕ has an a.e. derivative

} ⊆ D
(
A�∗

0
)
.

Taking the norm closure of both sides, we conclude that

{(
y��,ϕ

) ∈ Y �� × C
(
[–h, 0]; Y ∗∗)|ϕ(0) = y��} ⊆ X��.

As Y is not reflexive, C([–h, 0]; Y ) is a proper subset of C([–h, 0]; Y ∗∗). Hence j(X) is a
proper subset of X��, so X is not sun-reflexive. �

In case B is the diffusion operator, we use that Y is the space of continuous functions.
As this is a non-reflexive Banach space, X in this case is not sun-reflective.
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2.3 Variation-of-constants formulation
As the space X�∗ solves the problems mentioned at the beginning of this section, we can
formulate a variation-of-constants formula for (ADDE) as an abstract integral equation

ut = T0(t)ϕ + j–1
∫ t

0
T�∗

0 (t – τ )�G(uτ ) dτ . (AIE)

Here the embeddings j and � are as defined before Lemma 9. As the integrand of (AIE)
takes values in X�∗, the integral is taken to be a weak∗ integral. It is possible to show that
the integral maps to the range of j(X) and hence (AIE) is well defined.

Lemma 13 ([5, Proposition 8]) Let u ∈ C(R+, Y ) be given, then

∫ t

0
T�∗

0 (t – τ )�u(τ ) dτ = jψ ∀t ≥ 0, (19)

where

ψ(θ ) :=
∫ max{(t+θ ),0}

0
S(t – τ + θ )u(τ ) dτ ∀θ ∈ [–h, 0]. (20)

Moreover,

‖ψ‖ ≤ Meωh eωt – 1
ω

sup
0≤τ≤t

∥
∥u(τ )

∥
∥ ∀t ≥ 0, (21)

where M,ω > 0 are such that ‖S(t)‖ ≤ Meωt for all t ≥ 0.

The Banach fixed point theorem in combination with the bound in (21) gives the exis-
tence of a unique global solution of (AIE).

Corollary 14 ([5, Corollary 9]) Let G : X → Y be globally Lipschitz continuous. For ev-
ery initial condition ϕ ∈ X, there exists a unique solution v ∈ C(R+, X) such that ut = v(t)
satisfies (AIE) for all t ≥ 0.

We would like to show that this unique solution of (AIE) can be translated over to a (clas-
sical) solution of (ADDE). However, this is in general not the case when B is unbounded.
Therefore we recall a weaker solution concept from [44].

Definition 15 A function u ∈ C([–h,∞); Y ) is called a classical solution of (ADDE) if u is
continuously differentiable on R+, u(t) ∈ D(B) for all t ≥ 0 and u satisfies (ADDE).

Definition 16 A function u ∈ C([–h,∞); Y ) is called a mild solution of (ADDE) if u0 = ϕ

and u satisfies

u(t) = S(t)ϕ(0) +
∫ t

0
S(t – τ )G(uτ ) dτ ∀t ≥ 0. (22)

Note that Definition 15 is quite restrictive as only specific initial conditions ϕ ∈ X are
admissible. There is the following correspondence between classical and mild solutions of
(ADDE)
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Lemma 17 ([44, Theorem 2.1.4]) A classical solution of (ADDE) is also a mild solution of
(ADDE)

Conversely, when G has a globally Lipschitz continuous Fréchet derivative and ϕ ∈
C1([–h, 0]; Y ), ϕ(0) ∈ D(B) and ϕ̇(0) = Bϕ(0) + G(ϕ), then a mild solution of (ADDE) is
also a classical solution of (ADDE).

Note that Theorem 25 implies that the conditions in the second statement, starting with
conversely, are equivalent to the condition that ϕ ∈ D(A).

It is possible to construct a one-to-one correspondence between solutions of (AIE) and
mild solutions of (ADDE).

Theorem 18 ([5, Theorem 16]) Let ϕ ∈ X be an initial condition. The following two state-
ments hold.

1. Suppose that u is a mild solution of (ADDE). Define v : R+ → X by

v(t) := ut ∀t ≥ 0.

Then v is a solution of (AIE).
2. Suppose that v is a solution of (AIE). Define u : [–h,∞) → Y by

u(t) :=

⎧
⎨

⎩
ϕ(t) –h ≤ t ≤ 0,

v(t)(0) t ≥ 0.

Then u is a mild solution of (ADDE).

Corollary 19 Suppose that G is a globally Lipschitz operator and it has a globally Lipschitz
Fréchet derivative, then for all ϕ ∈ C1([–h, 0]; Y ) with ϕ(0) ∈ D(B) and ϕ̇(0) = Bϕ(0) + G(ϕ),
there exists a unique classical solution of (ADDE).

2.4 Linearisation
We want to investigate the behaviour near a fixed point. We will show that for the lin-
earised problem we can perturb the semigroup T0 with generator A0 to a semigroup T
with generator A. In the next section we investigate the spectral properties of A.

Linearising equation (ADDE) near a fixed point u, which we take without loss of gener-
ality to be u ≡ 0, results in the linear problem (LINP).

⎧
⎨

⎩
u̇(t) = Bu(t) + DG(0)ut ,

u0 = ϕ ∈ X.
(LINP)

As with the general nonlinear problem, we can define an abstract integral equation

ut = T0(t)ϕ + j–1
∫ t

0
T�∗

0 (t – s)Lut ds, (AIE)

where L := �DG(0). Then, due to Lemma 13 and Corollary 14, we can define the strongly
continuous semigroup T(t)ϕ := ut when DG(0) is globally Lipschitz.
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Lemma 20 ([5, Theorem 19]) Let DG(0) be globally Lipschitz continuous, then there exists
a unique strongly continuous semigroup T on X such that

T(t)ϕ = T0(t)ϕ + j–1
∫ t

0
T�∗

0 LT(τ )ϕ dτ (23)

for all ϕ ∈ X and for all t ≥ 0.

The strongly continuous semigroup T has a generator A. We want to establish how the
perturbed generator A relates to the original generator A0, which can be done using the
sun-star framework. A technical detail which we need to check is that the sun-dual space
X� is the same with respect to T and T0.

Lemma 21 ([5, Proposition 20]) X� is also the maximal subspace of strong continuity of
the adjoint semigroup T∗ on X∗. The adjoint generator A∗ is given by

A∗ = A∗
0 + L∗ with D

(
A∗) = D

(
A∗

0
)

(24)

and the generator A� of the T� is given by

A� = A�
0 + L� with D

(
A�)

= D
(
A�

0
)
. (25)

Finally, X�� is also the maximal subspace of strong continuity of the sun-star semigroup
T��.

One could think that we could extend this argument and show that D(A�∗) = D(A�∗
0 ) and

A�∗ = A�∗
0 +Lj–1. However, this is not the case when we lack sun-reflexivity, i.e. X�� �= j(X).

We can circumvent these problems by restricting the domain to j(X).

Lemma 22 ([5, Proposition 22]) It holds that

D
(
A�∗) ∩ j(X) = D

(
A�∗

0
) ∩ j(X) (26)

and A�∗ = A�∗
0 + Lj–1 on this subspace.

We can extend Corollary 11 for A�∗
0 to A�∗, which will be needed for the computation

of normal form coefficients.

Corollary 23 For ϕ ∈ X, the following statements are equivalent:
1. jϕ ∈ D(A�∗) and A�∗jϕ ∈ Y �∗ × L∞([–h, 0]; Y ∗∗);
2. jY ϕ(0) ∈ D(B�∗) and ϕ has an a.e. derivative ϕ̇ ∈ L∞([–h, 0]; Y ).

In this case, the action of A�∗ is given by A�∗jϕ = (B�∗jY ϕ(0) + jY DG(0)ϕ, ϕ̇).

Proof The statement on the domain follows immediately from Lemma 22 and Corol-
lary 11. Furthermore, we have that

A�∗jϕ = A�∗
0 jϕ + �DG(0)ϕ =

(
B�∗jY ϕ(0), ϕ̇

)
+
(
jY DG(0)ϕ, 0

)
. �

We are now able to state the result which relates A to A0.
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Theorem 24 ([5, Corollary 23]) For the generator A of the semigroup T , we have that

D(A) =
{
ϕ ∈ X|jϕ ∈ D

(
A�∗

0
)
, A�∗

0 jϕ + Lϕ ∈ j(X)
}

,

A = j–1(A�∗
0 j + L

)
.

(27)

We can cast (27) in a form which can also be found in Engel and Nagel [58, Theorem
VI.6.1] by using Corollary 11.

Theorem 25 For the generator A of the semigroup T , we have that

D(A) =
{
ϕ ∈ C1([–h, 0]; Y

)|ϕ(0) ∈ D(B), ϕ̇(0) = Bϕ(0) + DG(0)ϕ
}

,

Aϕ = ϕ̇.
(28)

Proof Let jϕ ∈ D(A�∗
0 ) and A�∗

0 jϕ + Lϕ ∈ j(X). As Lϕ ∈ jY (Y ) × {0}, we have that A�∗
0 jϕ ∈

Y �∗ × L∞([–h, 0]; Y ∗∗). By Corollary 11, jY ϕ(0) ∈ D(B�∗) and ϕ has an a.e. derivative ϕ̇ ∈
L∞([–h, 0]; Y ). Furthermore, we have that

A�∗
0 jϕ + Lϕ =

(
B�∗jY ϕ(0) + jY DG(0)ϕ, ϕ̇

) ∈ j(X).

By Lemma 9 this implies that B�∗jY ϕ(0) + jY DG(0)ϕ ∈ jY (Y ), ϕ̇ ∈ C([–h, 0]; Y ) and ϕ̇(0) =
Bϕ(0) + DG(0)ϕ. Hence ϕ ∈ C1([–h, 0]; Y ) and B�∗jY ϕ(0) ∈ jY (Y ).

Let B�∗jY ϕ(0) = jY y with y ∈ Y . As B�∗jY ϕ(0) ∈ Y ��, jY ϕ(0) ∈ D(B��). Let S�� be the
strongly continuous semigroup generated by B��. This implies that

jY
1
t
(
S(t)ϕ(0) – ϕ(0)

)
=

1
t
(
S��(t)jY ϕ(0) – jY ϕ(0)

)

for all t > 0 [39, Appendix II Proposition 3.17]. By the continuity of j–1
Y , this converges in

norm as t ↓ 0 to jY Bϕ(0) = B��jY ϕ(0) with ϕ(0) ∈ D(B).
Conversely, let ϕ ∈ C1([–h, 0]; Y ), ϕ(0) ∈ D(B) and ϕ̇(0) = Bϕ(0) + DG(0)ϕ. Furthermore,

let y� ∈ D(B�), then

〈
jY Bϕ(0), y�〉

=
〈
y�, Bϕ(0)

〉
=
〈
B�y�,ϕ(0)

〉
=
〈
jY ϕ(0), B�y�〉

.

Hence jY ϕ(0) ∈ D(B�∗) and, by Corollary 11, jϕ ∈ D(A�∗
0 ). Furthermore,

A�∗
0 jϕ + Lϕ =

(
B�∗jY ϕ(0) + jY DG(0)ϕ, ϕ̇

)

=
(
jY Bϕ(0) + jY DG(0)ϕ, ϕ̇

)

= jϕ̇ ∈ j(X).

Finally, for the action of A, we derive

Aϕ = j–1(A�∗
0 j + L

)
ϕ = j–1(jY Bϕ(0) + jY DG(0)ϕ, ϕ̇

)
= ϕ̇. �
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2.5 Spectral properties
In this section we state some results on the spectrum of the operator A, notably its essential
spectrum and a method for computing its eigenvalues.

For an operator A on X, the resolvent set ρ(A) is the set of all z ∈C such that the opera-
tor z – A has a bounded inverse. The resolvent operator R(z, A) : X → D(A) is then defined
as R(z, A) = (z – A)–1 for z ∈ ρ(A). The spectrum of A, σ (A) = C \ρ(A) can be decomposed
into the point spectrum σp(A) and the essential spectrum σess(A). We use Weyl’s defini-
tion of the essential spectrum, i.e. σess(A) := {λ ∈C|λ– A is not a Fredholm operator} [66].
Then σP(A) = σ (A) \ σess(A) is the discrete spectrum, i.e. isolated eigenvalues with a finite
dimensional eigenspace.

Lemma 26 For the respective spectra, we have σ (A0) = σ (A∗
0) = σ (A�

0 ) = σ (A�∗
0 ) = σ (B).

Furthermore, σess(A0) = σess(B).

Proof We have that σ (A0) = σ (A∗
0) = σ (A�

0 ) = σ (A�∗
0 ) [58, Proposition IV.2.18].

Next we consider the eigenvalues of A0. For some λ ∈ σ (A0), we need to find ϕ ∈ D(A0)
such that ϕ̇ = λϕ. Clearly, this is the case if and only if ϕ(θ ) = qeλθ for θ ∈ [–h, 0], with
q ∈ D(B) and Bq = Bϕ(0) = ϕ̇(0) = λq. Therefore λ ∈ σp(A0) if and only if λ ∈ σp(B) as the
corresponding eigenspaces have the same dimension.

Finally, we show that ρ(A0) = ρ(B), which completes the proof. If z ∈ ρ(B), then we can
find the resolvent of A0 explicitly as for all ϕ ∈ X and θ ∈ [–h, 0], [58, Proposition VI.6.7]

[
R(z, A0))ϕ

]
(θ ) = ezθ R(z, B)ϕ(0) +

∫ 0

θ

ez(θ–s)ϕ(s) ds. (29)

Hence z ∈ ρ(A0).
Conversely, suppose that z ∈ ρ(A0), and let y ∈ Y . Then the constant function ψ(θ ) := y

for θ ∈ [–h, 0] is in X and hence ϕ := R(z, A0)ψ ∈ D(A0). This implies that ϕ(0) ∈ D(B) and
(z – B)ϕ(0) = zϕ(0) – ϕ̇(0) = ((z – A0)ϕ)(0) = ψ(0) = y. Hence z – B is surjective. As z is not
an eigenvalue of A0, by the above reasoning it is not an eigenvalue of B, and hence z – B is
injective.

So we conclude that σ (A) = σ (B) and σess(A0) = σess(B). �

If DG(0) is compact, then we can make inferences on the essential spectrum of A from
the spectrum of A0.

Theorem 27 If DG(0) is compact, then σess(A) = σess(B).

Proof We will prove this by working in the dual space. This is possible as σess(A) = σess(A∗),
which is a consequence of the properties of Fredholm operators [66, Theorem IV.5.14].

On X∗, A∗ = A∗
0 + L∗ due to Lemma 21. As � is bounded, L = �DG(0) is compact and so

is its adjoint L∗ due to Schauder’s theorem [66, Theorem III.4.10]. Hence A∗ is a compact
perturbation of A∗

0. One of the defining properties of Weyl’s essential spectrum is that it
is invariant under compact perturbations [66, Theorem IV.5.35].

So we conclude that

σess(A) = σess
(
A∗) = σess

(
A∗

0
)

= σess(A0) = σess(B). �
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In case B is the diffusion operator, its essential spectrum is empty, see Lemma 40. This
means that also the essential spectrum of A is empty when DG(0) is compact.

For computation of the eigenvalues, we follow Engel and Nagel [58]. We introduce the
family of operators Kz : Y → Y , Hz : X → X and W z : X → Y parametrized by z ∈ C,
defined as

Kzy := DG(0)
(
yezθ ),

(
Hzϕ

)
(θ ) :=

∫ 0

θ

ez(θ–s)ϕ(θ ) ds,

W zϕ := ϕ(0) + DG(0)Hzϕ

(30)

for y ∈ Y , ϕ ∈ X and θ ∈ [–h, 0]. Using these, we can define the characteristic operator
�(z)

�(z) = z – B – Kz. (31)

Now we formulate the main theorem of this section, which allows us to reduce the com-
putation of the eigenvalues and eigenvectors in X to a computation on Y .

Theorem 28 ([58, Proposition VI.6.7]) For every z ∈C, ϕ ∈R(z – A) if and only if

�(z)q = W zϕ

has a solution q ∈ D(B). Moreover, z ∈ ρ(A) if and only if this q is unique. In that case the
resolvent is given by

(
R(z, A)ψ

)
(θ ) = ezθ�–1(z)W zϕ +

(
Hzψ

)
(θ ),

where θ ∈ [–h, 0] and ψ ∈ X. Finally, ψ ∈ D(A) is an eigenvector corresponding to λ ∈ σp(A)
if and only if ψ(θ ) = eλθ q, where q ∈ D(B) is nontrivial and satisfies

�(λ)q = 0.

2.6 Hopf bifurcation
We are interested in the nonlinear behaviour of (ADDE). In this section we develop tech-
niques to compute the first Lyapunov coefficient for (Andronov-)Hopf bifurcations. These
techniques can be extended to other local bifurcations, but we do not address those here.
In this section, we follow the methods from van Gils et al. [33].

Suppose that σ (A) contains a pair of simple purely imaginary eigenvalues λ = ±iω with
ω > 0 and no other eigenvalues on the imaginary axis. Let ψ ∈ X be the corresponding
eigenvector of A and ψ� ∈ X� be the corresponding eigenvector of A�, respectively,

Aψ = iωψ , A�ψ� = iωψ�. (32)

We normalise these vectors such that

〈
ψ�,ψ

〉
= 1. (33)



Spek et al. Journal of Mathematical Neuroscience           (2020) 10:21 Page 20 of 50

The centre subspace X0 is spanned by the basis � = {ψ , ψ̄} of eigenvectors corresponding
to the critical eigenvalues of A. Here ψ̄ denotes the complex conjugate of ψ .

In order to extend this to the nonlinear setting, we need a (locally) invariant critical
centre manifold W c

loc, which is tangent to X0 at the equilibrium at the origin. From [6], we
get a general result on the existence of this centre manifold.

Theorem 29 ([6, Theorem 41]) If the strongly continuous semi-group S generated by B is
immediately norm continuous, X0 is finite-dimensional, σ (A) is the pairwise disjoint union
of the sets

σ– :=
{
λ ∈ σ (A)|Reλ < 0

}
,

σ0 :=
{
λ ∈ σ (A)|Reλ = 0

}
,

σ+ :=
{
λ ∈ σ (A)|Reλ > 0

}
,

where σ– is closed and both σ0, σ+ are compact, and if

sup
λ∈σ–

Reλ < 0 < inf
λ∈σ+

Reλ,

then there exist a Ck-smooth mapping C : X0 → X and an open neighbourhood U of the
origin in X0 such that C(0) = 0, DC(0) = IX0→X , the identity mapping, and W c

loc = C(U) is
locally positively invariant for (ADDE) and contains every solution of (AIE) that exists on
R and remains sufficiently small for all time.

The conditions on σ (A) can be easily satisfied when σ0 and σ+ are composed of finitely
many eigenvalues of finite multiplicity. In case B is the diffusion operator, it is immediately
norm continuous by Lemma 39 and the essential spectrum σess(A) = σess(B) = ∅ by Theo-
rem 27 and Lemma 40. Also, when B = –αI , α > 0, we get that the conditions are likewise
satisfied.

If ζ ∈ X0, then we can write ζ = zψ + z̄ψ̄ for some z ∈ C. Using this we can recast C(U)
into the formal expansion H : C → W c

loc:

H(z, z̄) = zψ + z̄ψ̄ +
∑

j+k≥2

1
j!k!

hjkzjz̄k . (34)

Due to Theorem 18, (ADDE) and (AIE) formulations are equivalent. By weak∗ differentia-
tion of (AIE) and exploiting the finite dimensionality of W c

loc, one can show that a solution
v ∈ C(R+; X), v(t) = ut , of (AIE) satisfies the abstract ODE

v̇(t) = j–1(A�∗jv(t) + �R
(
v(t)

))
, (35)

where the nonlinearity R : X → Y is given by

R(ϕ) := G(ϕ) – DG(0)(ϕ) =
1
2

D2G(0)(ϕ,ϕ) +
1
6

D3G(0)(ϕ,ϕ,ϕ) + O
(‖ϕ‖4). (36)

Let ζ (t) = z(t)ψ + z̄(t)ψ̄ be the projection of v(t) onto the centre subspace X0. The func-
tion z(t) satisfies a complex ODE which is smoothly equivalent to the Poincaré normal
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form

ż = iωz + c1z|z|2 + O
(|z|4), (37)

where z, c1 ∈C. In polar coordinates, z = reiθ , this is orbitally equivalent to

⎧
⎨

⎩
ṙ = l1r3 + O(|r|4),

θ̇ = 1 + O(|r|2),
(38)

where l1 is the first Lyapunov coefficient determined by the formula

l1 =
1
ω

Re(c1). (39)

It is well known [67] that in generic unfoldings of (38), l1 < 0 implies that the bifurcation
is supercritical and that a stable limit cycle exists near one of the branches. On the other
hand, l1 > 0 implies that the bifurcation is subcritical and that an unstable limit cycle exists
near one of the branches.

The critical centre manifold W c
loc has expansion (34), and due to the time-invariance of

W c
loc, we have

v(t) = H
(
z(t), z̄(t)

)
. (40)

If we differentiate both sides with respect to time and use the abstract ODE (35) for the
left-hand side, we obtain the homological equation

A�∗jH(z, z̄) + �R
(
H(z, z̄)

)
= jHz(z, z̄)ż + jHz̄(z, z̄) ˙̄z. (41)

We can substitute the expansion of nonlinearity (36), the normal form (37) and the expan-
sion of the critical centre manifold (34) into the homological equation (41) to derive the
normal form coefficients. If we equate coefficients of the corresponding powers of z and
z̄, we obtain the following equations:

– A�∗jh20 = �D2G(0)(ψ ,ψ),
(
2iω – A�∗)jh11 = �D2G(0)(ψ , ψ̄),
(
iω – A�∗)jh21 = �D3G(0)(ψ ,ψ , ψ̄) + �D2G(0)(h20, ψ̄)

+ 2�D2G(0)(ψ , h11) – 2c1jψ .

(42)

They all have the form

(
z – A�∗)ϕ�∗ = ψ�∗. (43)

Here z ∈ C and ψ�∗ ∈ X�∗ are given. When z ∈ ρ(A), then (43) has a unique solution.
However, if z ∈ σ (A), then a solution ϕ�∗ does not necessarily exist for all ψ�∗. The fol-
lowing lemma, which is equivalent to [33, Lemma 33], provides a condition for solvability.
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Lemma 30 (Fredholm solvability) Let z /∈ σess(A). Then z – A� : D(A�) → X� has a closed
range. In particular (z – A�∗)ϕ�∗ = ψ�∗ is solvable for ϕ�∗ ∈ D(A�∗) given ψ ∈ X�∗ if and
only if 〈ψ�∗,ψ�〉 = 0 for all ψ� ∈N (z – A�).

Proof From the definition of the essential spectrum, R(z –A) is closed [66, Section IV.5.1],
and R(z – A∗) is also closed by Banach’s closed range theorem [66, Theorem IV.5.13]. Let
(ψ�

n )n∈N be a sequence in R(z – A�) such that ψ�
n → ψ� ∈ X�. Then there is a sequence

(ϕ�
n )n∈N in D(A�) such that

ψ�
n =

(
z – A�)

ϕ�
n =

(
z – A∗)ϕ�

n ∀n ∈N.

Hence ψ�
n ∈R(z – A∗) for all n ∈N, so there exists ϕ� ∈ D(A∗) such that (z – A∗)ϕ� = ψ�

and

A∗ϕ� = zϕ� –
(
z – A∗)ϕ� = zϕ� – ψ� ∈ X�.

Hence ϕ� ∈ D(A�), (z – A�)ϕ� = ψ� and ψ� ∈R(z – A�).
Due to Banach’s closed range theorem, ϕ�∗ is a solution of

(
z – A�∗)ϕ�∗ = ψ�∗

given ψ�∗ if and only if

〈
ψ�∗,ψ�〉

= 0 ∀ψ� ∈N
(
z – A�)

. �

We now return to equations (42). As {0, 2iω} ⊂ ρ(A) = ρ(A�), we can use the resolvent
of A�∗ to solve the first two equations. However, iω ∈ σ (A), so for the last equation of (42)
we need to use the theorem above. The corresponding eigenspace N (A∗ – λ) is spanned
by ψ�, so we can compute for the normal form coefficient by

jh20 = R
(
0, A�∗)�D2G(0)(ψ ,ψ),

jh11 = R
(
2iω, A�∗)�D2G(0)(ψ , ψ̄),

c1 =
1
2
〈
�D3G(0)(ψ ,ψ , ψ̄) + �D2G(0)(h20, ψ̄) + 2�D2G(0)(ψ , h11),ψ�〉

.

(44)

We are not yet able to compute the normal form coefficient explicitly as we do not have
an explicit representation of ψ� or a representation of the resolvent of A�∗. However, we
resolve this by using spectral projections.

Let P� and P�∗ be the spectral projections on X� and X�∗ corresponding to some eigen-
value λ, respectively. Then P�∗ϕ�∗ = νjψ for some ν ∈C and

〈
ϕ�∗,ψ�〉

=
〈
ϕ�∗, P�ψ�〉

=
〈
P�∗ϕ�∗,ψ�〉

= ν
〈
jψ ,ψ�〉

= ν.

Hence we seek to determine ν . From the Dunford integral representation it follows that

P�∗ϕ�∗ =
1

2π i

∮

∂Cλ

R
(
z, A�∗)ϕ�∗ dz = νjψ , (45)
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where Cλ is a sufficiently small open disk centred at λ and ∂Cλ is its boundary. The element
on the left in the pairing (44) is of the form ϕ�∗ = �y, y ∈ Y . In this case we can reduce
R(z, A�∗)ϕ�∗ to �–1(z)y by virtue of the following theorem.

Theorem 31 Suppose that z ∈ ρ(A). For each y ∈ Y , the function ϕ ∈ X, defined as ϕ(θ ) :=
ezθ�–1(z)y for θ ∈ [–h, 0], is the unique solution in {ϕ ∈ C1([–h, 0]; Y )|ϕ(0) ∈ D(B)} of the
system

⎧
⎨

⎩
(z – B)ϕ(0) – DG(0)ϕ = y,

zϕ – ϕ̇ = 0.
(46)

Moreover, ϕ�∗ = jϕ is the unique solution in D(A�∗) of (z – A�∗)ϕ�∗ = �y.

Proof Since z ∈ ρ(A), by Theorem 28 it follows that �–1(z) exists. We start by showing
that ϕ as defined above solves (46). Clearly, ϕ ∈ C1([–h, 0]; Y ) and ϕ(0) = �–1(z)y ∈ D(B).
Recall from the definition of Kz that for q ∈ Y , Kzq = DG(0)qezθ . Therefore,

(z – B)ϕ(0) – DG(0)ϕ = (z – B)�–1(z)y – Kz�–1(z)y = y.

Finally, by differentiating ϕ, we see that it satisfies the second equation in (46).
When ϕ(0) ∈ D(B), then jY ϕ(0) ∈ D(B�∗), because for all y� ∈ D(B�)

〈
jY Bϕ(0), y�〉

=
〈
y�, Bϕ(0)

〉
=
〈
B�y�,ϕ(0)

〉
=
〈
jY ϕ(0), B�y�〉

.

Then Corollary 23 implies that jϕ ∈ D(A�∗).

(
z – A�∗)ϕ�∗ =

(
jY (z – B)ϕ(0) – jY DG(0)ϕ, zϕ – ϕ̇

)
= (jY y, 0) = �y.

However, by Theorem 28, ρ(A�∗) = ρ(A), so ϕ�∗ = jϕ is the unique solution of (z –
A�∗)ϕ�∗ = �y. Consequently, ϕ itself is the unique solution in {ϕ ∈ C1([–h, 0]; Y )|ϕ(0) ∈
D(B)}. �

Now given that we can compute the resolvent �–1(z) and the Fréchet derivatives of G,
we have a method to compute the centre manifold coefficients h20 and h11, and the first
Lyapunov coefficient l1 = 1

ω
Re c1:

h20(θ ) = �–1(0)D2G(0)(ψ ,ψ),

h11(θ ) = e2iωθ�–1(2iω)D2G(0)(ψ , ψ̄),

c1ψ(θ ) =
1

4π i

∮

∂Cλ

ezθ�–1(z)
(
D3G(0)(ψ ,ψ , ψ̄) + D2G(0)(h20, ψ̄)

+ 2D2G(0)(ψ , h11)
)

dz.

(47)

3 Characterisation of the spectrum
In this section we return to the neural field as derived in Sect. 1.3. For certain choices we
can derive some explicit conditions for the spectrum and find an explicit expression for
the resolvent.
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We take Y = C(�) with � = [–1, 1] and use the (ADDE) formulation of Sect. 2
⎧
⎨

⎩
u̇(t) = Bu(t) + G(ut),

u0 = ϕ ∈ X,
(ADDE)

where B : D(B) → Y and G : X → Y are defined as

Bq := dq′′ – αq,

D(B) :=
{

q ∈ Y |q ∈ C2(�), q′(∂�) = 0
}

,

G(ϕ) := α

∫

�

J
(
x, x′)S

(
ϕ
(
t – τ

(
x, x′), x′))dx′.

Here, we assume that d ≥ 0, α > 0, J and τ are continuous functions and S ∈ C∞(R), with
S(0) = 0 and S′(0) �= 0. The assumption S(0) = 0 makes sure we have an equilibrium at u ≡ 0.
We interpret u as the deviation from this physiological resting state. This interpretation
then makes for cleaner notation.

We have the following properties for G and its derivatives.

Lemma 32 ([33, Lemma 3, Proposition 11]) G is compact, globally Lipschitz continuous
and k times Fréchet differentiable for any k ∈N. Furthermore, the kth Fréchet derivative of
G at ψ ∈ X, DkG(ψ) : Xk → Y , is compact and given by

(
DkG(ψ)(ϕ1, . . . ,ϕk)

)
(x)

= α

∫

�

[

J
(
x, x′)S(k)(ψ

(
–τ

(
x, x′), x′))

k∏

m=1

(
ϕm

(
–τ

(
x, x′), x′))

]

dx′.

As DG(0) is compact, we can find, due to Theorem 27 and Lemma 40, that the essential
spectrum of the linearisation A is given by

σess(A) =

⎧
⎨

⎩
∅ d > 0,

{–α} d = 0.
(48)

We want to be able to compute the eigenvalues, eigenvectors and resolvent for specific
choices of J and τ . We take J as a sum of exponentials and τ as a constant delay plus a
finite propagation speed, which we can normalise to 1 by scaling time.

J
(
x, x′) :=

N∑

j=1

ηje–μj|x–x′|,

τ
(
x, x′) := τ 0 +

∣∣x – x′∣∣,

where we take τ 0 ≥ 0 and ηj �= 0 for j ∈ {1, . . . , N}.
Due to Theorem 28, we have that λ is an eigenvalue and ψ an eigenvector if and only if

ψ(θ ) = qeλθ and q ∈ D(B) satisfies the characteristic equation (CE).

�(λ)q =
(
λ – B – Kλ

)
q = 0, (CE)
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where in this case Kz : Y → Y is a parametrized family of operators for z ∈ C defined as
follows:

Kz :=
N∑

j=1

Kz
j ,

Kz
j y(x) := cj(z)

∫ 1

–1
e–kj(z)|x–x′|y

(
x′)dx′,

(49)

where cj(z) := S′(0)αηje–τ0z �= 0 and kj(z) := μj + z.
The case without diffusion, i.e. d = 0, has already been extensively studied [33, 34], so

in this section we develop formulas for the eigenvalues, eigenvectors and resolvent with
nontrivial diffusion, i.e. d > 0.

For the following section, we adopt the notational convention that bold-faced variables
correspond to vectors a = (a1 · · ·an)T where its length is clear from the context.

3.1 Eigenvalues
So we are looking for nontrivial solutions q ∈ D(B) of

(
z – B – Kz)q = 0. (CE)

As this is a mixed differential-integral equation, it is in general hard to solve. We will use
the method of Dijkstra et al. [34] to convert (CE) into a differential equation (ODE), which
we can solve. Then substituting the general solution of (ODE) back into (CE) yields ap-
propriate conditions on q. This is possible due to the following observations.

Lemma 33 All solutions of (CE) are C∞(�).

Proof As q ∈ C2(�) and the range of Kz is contained in C3(�), we have that Bq ∈ C2(�),
which means that q ∈ C4(�). By induction, we conclude that q ∈ C∞(�). �

Differentiating the kernel functions in the (CE) in the distributional sense yields, for
j ∈ {1, . . . , N},

∂2

∂x2 e–kj(z)|x–x′| =
[
k2

j (z) – 2kj(z)δ
(
x – x′)]e–kj(z)|x–x′|.

So we define the differential operator Lz
j for j ∈ {1, . . . , N}:

Lz
j := k2

j (z) – ∂2
x .

For this operator Lj, we have that for j ∈ {1, . . . , N}

Lz
j Kz

j q = 2cj(z)kj(z)q.
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Hence, by applying the operator Lz =
∏N

p=1 Lz
p to (CE), we end up with an ordinary differ-

ential equation (ODE)

Lz�(z)q = (z – B)
N∏

p=1

Lz
pq – 2

N∑

j=1

cj(z)kj(z)
N∏

p=1
p�=j

Lz
pq = 0. (ODE)

This differential equation has a characteristic polynomial corresponding to exponential
solutions eρx

Pz(ρ) :=
(
α + z – dρ2)

N∏

p=1

(
kp(z)2 – ρ2) – 2

N∑

j=1

cj(z)kj(z)
N∏

p=1
p�=j

(
kp(z)2 – ρ2). (50)

Pz is an even polynomial of order 2(N + 1). Assuming that z is such that Pz has exactly
2(N + 1) distinct roots ±ρ1(z), . . . ,±ρN+1(z), the general solution q of (ODE) is a linear
combination of exponentials e±ρjx:

q(x) :=
N+1∑

m=1

[
am cosh

(
ρm(z)x

)
+ bm sinh

(
ρm(z)x

)]
). (51)

Writing q as a linear combination of cosine hyperbolic and sine hyperbolic leads to cleaner
notation below.

Before we substitute (51) back into (CE), we first prove two lemmas.

Lemma 34 If the characteristic polynomial Pz(ρ) has 2(N +1) distinct roots, then ρm(z) �= 0
for all m ∈ {1, . . . , N + 1} and kj(z) �= 0 for all j ∈ {1, . . . , N}.

Proof If Pz(ρ) has 2(N + 1) distinct roots ±ρ1(z), . . . ,±ρN+1(z), then ρm(z) is distinct from
–ρm(z) and hence ρm(z) �= 0 for m ∈ {1, . . . , N + 1}.

Let without loss of generality k1(z) = 0. In that case the characteristic polynomial be-
comes

Pz(ρ) = ρ2(α + z – dρ2)
N∏

p=2

(
kp(z)2 – ρ2) – 2ρ2

N∑

j=2

cj(z)kj(z)
N∏

p=2
p�=j

(
kp(z)2 – ρ2).

So ρ = 0 is a root of Pz . Hence we conclude by contradiction that kj(z) �= 0 for all j ∈
{1, . . . , N}. �

Define the set L as follows:

L :=
{

z ∈C|∃j ∈ {1, . . . N}, m ∈ {1, . . . , N + 1} such that kj(z) = ±ρm(z)
}

. (52)

Lemma 35 If characteristic polynomial Pz has 2(N + 1) distinct roots, then

L =
{

z ∈ C|∃j, p ∈ {1, . . . N}, j �= p such that k2
j (z) = k2

p(z)
}

.
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Proof We have that z ∈L if and only if Pz(kj(z)) = 0 for some j ∈ {1, . . . , N}.

Pz(kj(z)
)

= –2cj(z)kj(z)
N∏

p=1
p�=j

(
k2

p(z) – k2
j (z)

)
.

Hence Pz(kj(z)) = 0 if and only if k2
j (z) = k2

p(z) for some p ∈ {1, . . . N}, j �= p. �

For z /∈L, we can rewrite Pz(ρm) as follows:

Pz(ρm) =

[

α + z – dρ2
m –

N∑

j=1

2cj(z)kj(z)
k2

j (z) – ρ2
m(z)

] N∏

p=1

(
k2

p(z) – ρ2
m(z)

)
= 0.

We can divide out the product to conclude that, for m ∈ {1, . . . , N + 1} and j ∈ {1, . . . , N},

α + z – dρ2
m –

N∑

j=1

2cj(z)kj(z)
k2

j (z) – ρ2
m(z)

= 0. (53)

Next we find formulas for Kz
j cosh(ρm(z)x) and Kz

j sinh(ρm(z)x). To compute these inte-
grals, we split the interval [–1, 1] into the intervals [–1, x] and [x, 1]. On these intervals
e–k|x–x′| is a C1 function in x′, so we can compute the following anti-derivatives for these
smooth branches:

∫ x′
e–k|x–s| cosh(ρs) ds

=

⎧
⎨

⎩
e–k|x–x′| (k cosh(ρx′)–ρ sinh(ρx′))

k2–ρ2 + const. –1 ≤ x′ < x ≤ 1,

e–k|x–x′| (–k cosh(ρx′)–ρ sinh(ρx′))
k2–ρ2 + const. –1 ≤ x < x′ ≤ 1,

∫ x′
e–k|x–s| sinh(ρs) ds

=

⎧
⎨

⎩
e–k|x–x′| (k sinh(ρx′)–ρ cosh(ρx′))

k2–ρ2 + const. –1 ≤ x′ < x ≤ 1,

e–k|x–x′| (–k sinh(ρx′)–ρ cosh(ρx′))
k2–ρ2 + const. –1 ≤ x < x′ ≤ 1.

(54)

Using these anti-derivatives, we can evaluate the integrals Kz
j cosh(ρm(z)x) and

Kz
j sinh(ρm(z)x). For clarity, we omit the dependence on z in the remainder of this section.

Kj cosh(ρmx) =
2cjkj cosh(ρmx) – 2cje–kj cosh(kjx)(kj cosh(ρm) + ρm sinh(ρm))

k2
j – ρ2

m
,

Kj sinh(ρmx) =
2cjkj sinh(ρmx) – 2cje–kj sinh(kjx)(ρm cosh(ρm) + kj sinh(ρm))

k2
j – ρ2

m
.
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Now we are ready to substitute the general solution q of (ODE), (51), back into (CE):

N∑

m=1

[
am cosh(ρmx) + bm sinh(ρmx)

]
[
(
α + z + dρ2

m
)

+
N∑

j=1

2cjkj

k2
j – ρ2

m

]

+
N∑

j=1

cje–kj

[

– cosh(kjx)
N+1∑

m=1

am
kj cosh(ρm) + ρm sinh(ρm)

k2
j – ρ2

m

– sinh(kjx)
N+1∑

m=1

bm
ρm cosh(ρm) + kj sinh(ρm)

k2
j – ρ2

m

]

= 0.

(55)

Due to the characteristic equation (53), the first line in equation (55) vanishes. When
z /∈L, cosh(kjx) and sinh(kjx) for j ∈ {1, . . . , N} are linearly independent. Hence the second
line vanishes if and only if Sz,evena = Sz,oddb = 0, where matrices Sz,even and Sz,odd are defined
as follows:

Sz,even
j,m :=

kj cosh(ρm) + ρm sinh(ρm)
k2

j – ρ2
m

,

Sz,odd
j,m :=

ρm cosh(ρm) + kj sinh(ρm)
k2

j – ρ2
m

(56)

for j ∈ {1, . . . , N} and m ∈ {1, . . . , N + 1}.
As q ∈ D(B), we also need to take the boundary conditions into account as

q′(±1) =
N+1∑

m=1

[
bmρm cosh(ρm) ± amρm sinh(ρm)

]
= 0. (57)

To satisfy the boundary conditions, we augment the matrices Sz,even and Sz,odd as follows:

Sz,even
N+1,m := ρm sinh(ρm),

Sz,odd
N+1,m := ρm cosh(ρm).

(58)

Now we have square matrices Sz,even, Sz,odd ∈ C
(N+1)×(N+1). There exists a nontrivial solu-

tion q ∈ D(B) of (CE) if and only if det(Sz,even) = 0 or det(Sz,odd) = 0.

Theorem 36 Suppose that det(Pλ(ρ)) has 2(N + 1) distinct roots and λ /∈L for some λ ∈C,
then we have that λ ∈ σp(A) if and only if det(Sλ,even) det(Sλ,odd) = 0.

When det(Sλ,even) = 0, the corresponding eigenvector ψ ∈ X is given by

ψ(θ )(x) := eλθ

N+1∑

m=1

am cosh
(
ρm(λ)x

)
, (59)

where a is a vector in the nullspace of Sλ,even.
When det(Sλ,odd) = 0, the corresponding eigenvector ψ ∈ X is given by

ψ(θ )(x) := eλθ

N(N+1)∑

m=1

bm sinh
(
ρm(λ)x

)
, (60)

where b is a vector in the nullspace of Sλ,odd.
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Proof Let q ∈ D(B) be a solution of (CE) for some λ ∈ C. Then, by Theorem 33, q ∈ C∞,
so it is also a solution of (ODE).

Conversely, let q be a solution of (ODE). As det(Pλ(ρ)) has 2(N + 1) distinct roots,
q is of the form (51). Due to (55) and (57), it is a solution of (CE) if and only if
det(Sλ,even) det(Sλ,odd) = 0. �

We will call an eigenvalue ‘even’, respectively ‘odd’, when det(Sλ,even) = 0, respectively
det(Sλ,odd) = 0.

3.2 Resolvent
Due to Theorem 31, to compute the normal form coefficients, we need a representation of
�–1(z)y. It is defined for z ∈ ρ(A) as the unique solution q ∈ D(B) of the resolvent equation
(RE)

�(z)q =
(
z – B – Kz)q = y. (RE)

We can find an explicit form for this resolvent using a variation-of-constants ansatz when
z /∈ S , which is defined as follows:

S := σ (B) ∪L∪ {
z ∈C|Pz(ρ) has less than 2(N + 1) distinct zeros

}
(61)

with L as in (52).

Theorem 37 For z ∈ ρ(A) with z /∈ S , the unique solution q ∈ D(B) of (RE) is given by

q(x) := R(z, B)y(x) +
N+1∑

m=1

[
am(x) cosh

(
ρm(z)x

)
+ bm(x) sinh

(
ρm(z)x

)]
, (62)

where R(z, B) is the resolvent operator of B as in (97) and a(x) and b(x) as in (79)

Proof Our variation-of-constants ansatz q needs to satisfy three conditions. It must solve
(RE), �(z)q = y, it must satisfy the boundary conditions (q)′(±1) = 0 and the regularity
condition q ∈ C2(�). When we found some am(x), bm(x) such that q satisfies these con-
ditions, we have found the resolvent as it is unique due to Theorem 28. As R(z, B) maps
into D(B), the regularity condition is satisfied when a(x), b(x) ∈ C2(�). For this proof, we
suppress the dependencies on z.

To aid in the calculation of �(z)q, we first compute some integrals up front. We can
integrate by parts by splitting the interval [–1, 1] into [–1, x) and (x, 1] and using the anti-
derivatives in (54) to end up with

Kjam(x) cosh(ρmx)

= am(x) cosh(ρmx)
2cjkj

k2
j – ρ2

m

+ cje–kj(1+x)am(–1)Sz,even
j,m + cje–kj(1–x)am(1)Sz,even

j,m
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– cj

∫ 1

–1

a′
m(x′)

k2
j – ρ2

m
e–kj|x–x′|(sgn

(
x – x′)kj cosh

(
ρmx′) – ρm sinh

(
ρmx′))dx′,

Kjbm(x) sinh(ρmx)

(63)

= bm(x) sinh(ρmx)
2cjkj

k2
j – ρ2

m

– cje–kj(1+x)bm(–1)Sz,odd
j,m + cje–kj(1–x)bm(1)Sz,odd

j,m

– cj

∫ 1

–1

b′
m(x′)

k2
j – ρ2

m
e–kj|x–x′|(sgn

(
x – x′)kj sinh

(
ρmx′) – ρm cosh

(
ρmx′))dx′.

Now we substitute ansatz (62) into (RE) and collect the terms. Using the above calculations
and the fact that (z – B)R(z, B)y = y, we have that

0 =
N+1∑

m=1

[
am(x) cosh(ρmx) + bm(x) sinh(ρmx)

]

×
[
(
α + z – dρ2

m(z)
)

–
N∑

j=1

2cjkj

k2
j – ρ2

m

]

(64a)

–
N+1∑

m=1

d
[(

a′′
m(x) + 2ρmb′

m(x)
)

cosh(ρmx) +
(
b′′

m(x) + 2ρma′
m(x)

)
sinh(ρmx)

]
(64b)

–
N∑

j=1

cje–kj(1+x)

[N+1∑

m=1

am(–1)Sz,even
j,m –

N+1∑

m=1

bm(–1)Sz,odd
j,m

]

(64c)

–
N∑

j=1

cje–kj(1–x)

[N+1∑

m=1

am(1)Sz,even
j,m +

N+1∑

m=1

bm(1)Sz,odd
j,m

]

(64d)

–
N∑

j=1

cj

∫ 1

–1
e–kj|x–x′|

[

R(z, B)y
(
x′)

–
N+1∑

m=1

a′
m(x′)

k2
j – ρ2

m

(
sgn

(
x – x′)kj cosh

(
ρmx′) – ρm sinh

(
ρmx′))

–
N+1∑

m=1

b′
m(x′)

k2
j – ρ2

m

(
sgn

(
x – x′)kj sinh

(
ρmx′) – ρm cosh

(
ρmx′))

]

dx′. (64e)

We have that the above equation vanishes when all the terms within square brackets
vanish. Term (64a) vanishes naturally due to characteristic equation in (53) as z /∈L.

As R(z, B) maps into D(B), the boundary condition q′(±1) = 0 reduces to

N+1∑

m=1

[(
a′

m(±1) + ρmbm(±1)
)

cosh(ρm) ± (
b′

m(±1) + ρmam(±1)
)

sinh(ρm)
]

= 0. (65)

We can split equation (65) into three sufficient equations:

N+1∑

m=1

[
a′

m(±1) cosh(ρm) ± b′
m(±1) sinh(ρm)

]
= 0, (66a)
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N+1∑

m=1

[
ρmbm(1) cosh(ρm) + ρmam(1) sinh(ρm)

]
= 0, (66b)

N+1∑

m=1

[
ρmbm(–1) cosh(ρm) – ρmam(–1) sinh(ρm)

]
= 0. (66c)

Note that equations (66b) and (66c) are equivalent to

N+1∑

m=1

am(–1)Sz,even
N+1,m –

N+1∑

m=1

bm(–1)Sz,odd
N+1,m = 0,

N+1∑

m=1

am(1)Sz,even
N+1,m +

N+1∑

m=1

bm(1)Sz,odd
N+1,m = 0.

(67)

If we combine equations (67) with the terms in square brackets in (64c) and (64d), we get
the matrix equations:

Sz,evena(–1) – Sz,oddb(–1) = 0,

Sz,evena(1) + Sz,oddb(1) = 0.
(68)

The term in square brackets in (64b) vanishes if the following two equations vanish:

∂

∂x

N+1∑

m=1

[
a′

m(x) cosh(ρmx) + b′
m(x) sinh(ρmx)

]
= 0, (69a)

N+1∑

m=1

[
ρmb′

m(x) cosh(ρmx) + ρma′
m(x) sinh(ρmx)

]
= 0. (69b)

We see that in equation (69a) the sum should be constant. Using equation (66a), we see
that this constant is zero.

N+1∑

m=1

[
a′

m(x) cosh(ρmx) + b′
m(x) sinh(ρmx)

]
= 0. (70)

The remaining equations (64e), (69b), (70) form a system of differential equations with
boundary conditions (68):

N+1∑

m=1

[
a′

m(x)
k2

j – ρ2
m

kj cosh
(
ρmx′) +

b′
m(x)

k2
j – ρ2

m
kj sinh

(
ρmx′)

]
= 0,

N+1∑

m=1

[
a′

m(x)
k2

j – ρ2
m

ρm sinh
(
ρmx′) +

b′
m(x)

k2
j – ρ2

m
ρm cosh

(
ρmx′)

]
= –R(z, B)y(x),

N+1∑

m=1

[
ρmb′

m(x) cosh(ρmx) + ρma′
m(x) sinh(ρmx)

]
= 0,

(71)

N+1∑

m=1

[
a′

m(x) cosh(ρmx) + b′
m(x) sinh(ρmx)

]
= 0.
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We can rewrite these equations by introducing some matrices. We define the diagonal
matrices Ĉ, Ŝ ∈ C(�,C(N+1)×(N+1)), the square matrices K̂ , M̂, Q̂ ∈ C

(N+1)×(N+1) and the
operator R̂ : Y → Y N+1 as follows:

Ĉm,m(x) = cosh(ρmx),

Ŝm,m(x) = sinh(ρmx),

K̂j,m = ρmQ̂j,m,

M̂j,m = kjQ̂j,m,

Q̂j,m =

⎧
⎨

⎩

1
k2

j –ρ2
m

for j ∈ {1, . . . , N},
1 for j = N + 1,

(R̂y)i =

⎧
⎨

⎩
R(z, B)y for j ∈ {1, . . . , N},
0 for j = N + 1.

(72)

Here j, m ∈ {1, . . . , N + 1}, and we define kN+1 := 1.
We seek functions a(x) and b(x) which solve the system of differential equations

M̂
(
Ĉ(x)a′(x) + Ŝ(x)b′(x)

)
= 0,

K̂
(
Ŝ(x)a′(x) + Ĉ(x)b′(x)

)
= –R̂y(x),

(73)

with boundary conditions

Sz,evena(–1) – Sz,oddb(–1) = 0,

Sz,evena(1) + Sz,oddb(1) = 0.
(74)

For z ∈ ρ(A), we have that Sz,odd and Sz,even are invertible. Due to Lemmas 34 and 35,
when z /∈ S , Q̂ satisfies the conditions of Lemma 47, and hence Q̂ is invertible. We can write
the determinant of K̂ and M̂ in terms of the determinant of Q̂, det(M̂) = det(Q̂)

∏N
j=1 kj,

|K̂ | = det(Q̂)
∏N+1

m=1 ρm, and so K̂ and M̂ are both invertible too.
Now we multiply the first line of (73) by Ĉ(x)M̂–1 and the second line by Ŝ(x)K̂–1

Ĉ2(x)a′(x) + Ĉ(x)Ŝ(x)b′(x) = 0,

Ŝ2(x)a′(x) + Ĉ(x)Ŝ(x)b′(x) = –Ŝ(x)K̂–1R̂y(x).
(75)

If we now subtract these equations and use the trigonometric identity Ĉ2(x) – Ŝ2(x) = I ,
we arrive at the following equation:

a′(x) = Ŝ(x)K̂–1R̂y(x),

b′(x) = –Ĉ(x)K̂–1R̂y(x).
(76)

Here, we get the second line by a similar procedure. We note that R̂y ∈ C2(�) and
A(x), B(x) ∈ C∞(�), which implies that a(x), b(x) ∈ C3(�). Hence we satisfy the regular-
ity condition.
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We can now find a(x) and b(x) by taking an anti-derivative plus some constants of inte-
gration ac and bc. To satisfy the boundary equations (74), we take an anti-derivative such
that a(–1) + a(1) = 2ac and b(–1) + b(1) = 2bc.

a(x) = ac +
1
2

(∫ x

–1
Ŝ
(
x′)K̂–1R̂y

(
x′)dx′ –

∫ 1

x
Ŝ
(
x′)K̂–1R̂y

(
x′)dx′

)
,

b(x) = bc –
1
2

(∫ x

–1
Ĉ
(
x′)K̂–1R̂y

(
x′)dx′ –

∫ 1

x
Ĉ
(
x′)K̂–1R̂y

(
x′)dx′

)
.

(77)

By adding and subtracting boundary equations (74), we find that the constants of inte-
gration equal

ac =
1
2
(
Sz,even)–1Sz,odd

(∫ 1

–1
Ĉ
(
x′)K̂–1R̂y

(
x′)dx′

)
,

bc = –
1
2
(
Sz,odd)–1Sz,even

(∫ 1

–1
Ŝ
(
x′)K̂–1R̂y

(
x′)dx′

)
.

(78)

We can simplify this as follows:

a(x) =
1
2

∫ 1

–1

(
Ŝ
(
x′)sgn

(
x – x′) +

(
Sz,even)–1Sz,oddĈ

(
x′))K̂–1R̂y

(
x′)dx′,

b(x) = –
1
2

∫ 1

–1

(
Ĉ
(
x′)sgn

(
x – x′) +

(
Sz,odd)–1Sz,evenŜ

(
x′))K̂–1R̂y

(
x′)dx′.

(79)

�

For the computation of the first Lyapunov coefficient l1, we need to evaluate the Dun-
ford integral in (47). Similar to Dijkstra et al. [34], we can use residue calculus to find an
expression for this integral.

Theorem 38 Let λ ∈ σp(A) be a simple eigenvalue and λ /∈ S . Let Cλ be a sufficiently small
closed disk such that Cλ ∩ σ (A) = {λ} and Cλ ∩ S = ∅.

If λ is an ‘even’ eigenvalue with eigenvector

ψ(θ )(x) = eλθ

N+1∑

m=1

am cosh
(
ρm(λ)x

)
, (80)

where a is a nontrivial solution of Sλ,evena = 0, then

1
2π i

∮

∂Cλ

ezθ�–1(z)y dz = νψ(θ ) (81)

if and only if

adj(Sλ,even)
2 d

dz (det(Sλ,even))|z=λ

Sλ,odd
∫ 1

–1
Ĉ
(
x′)K̂–1R̂y

(
x′)dx′ = νa (82)

for all y ∈ Y , where adj(Sλ,even) denotes the adjugate of Sλ,even, and using the definitions in
(72).
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If λ is an ‘odd’ eigenvalue with eigenvector

ψ(θ )(x) = eλθ

N+1∑

m=1

bm sinh
(
ρm(λ)x

)
, (83)

where b is a nontrivial solution of Sλ,oddb = 0, then

1
2π i

∮

∂Cλ

ezθ�–1(z)y dz = νψ(θ ) (84)

if and only if

–adj(Sλ,odd)
2 d

dz (det(Sz,odd))|z=λ

Sλ,even
∫ 1

–1
B̂
(
x′)K̂–1R̂y

(
x′)dx′ = νb (85)

for all y ∈ Y , where adj(Sλ,odd) denotes the adjugate of Sλ,odd, and using the definitions in
(72).

Proof As σp(A) and σp(B) contain only isolated eigenvalues and ρm(z) and det(Pz(ki,j(z)))
are analytic in z, the set S contains only isolated values. Hence such Cλ exists.

Suppose that λ is an even eigenvalue. As S ∩ Cλ = ∅ and σ (A) ∩ Cλ = {λ}, we have that
�–1(z)y is given by Theorem 37 for z ∈ Cλ. We observe that all components of the resolvent
are analytic for all z ∈ Cλ except for the constants of integration ac(z). This analyticity
simplifies (81) to

eλθ

2π i

N(N+1)∑

m=1

cosh
(
ρm(λ)x

)∮

∂Cλ

ac
m(z) dz = νeλθ

N(N+1)∑

m=1

am cosh
(
ρm(λ)x

)

for all x ∈ �, θ ∈ [–h, 0]. We can substitute (78) and use the residue formula

1
2π i

∮

∂Cλ

(
Sz,even)–1 dz = Res

(
adj(Sz,even)
det(Sz,even)

,λ
)

=
adj(Sλ,even)

d
dz (det(Sz,even))|z=λ

.

Due to linear independence of cosh(ρm(λ)x) for m ∈ {1, . . . , N + 1}, this results in the for-
mula

adj(Sλ,even)
2 d

dz (det(Sz,even))|z=λ

Sλ,odd
∫ 1

–1
Ĉ
(
x′)K̂–1R̂y

(
x′)dx′ = νa.

The reasoning for odd eigenvalues is similar. �

4 Numerical results
In this section we examine a specific numerical example. We compute eigenvalues and the
first Lyapunov coefficient for a Hopf bifurcation and investigate the effect of varying the
diffusion parameter d.

For J , we choose the following difference of two exponentials, as in [34]:

J
(
x, x′) =

25
2

e–2|x–x′| – 10e–|x–x′|. (86)
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Figure 2 The wizard-hat connectivity of (86)

This connectivity is a model of a population of excitatory neurons acting on a short dis-
tance combined with a population of inhibitory neurons acting on a longer distance, see
Fig. 2.

For the activation function S, we choose the sigmoidal function

S(u) =
1

1 + e–γ u –
1
2

. (87)

As S is an odd function, S′′(0) = 0 and hence D2G(0) ≡ 0. This simplifies the computation
of first Lyapunov coefficient l1 of (47) to

1
4π i

∮

∂Cλ

ezθ�–1(z)D3G(0)(ψ ,ψ , ψ̄) dz = c1ψ(θ ). (88)

We can compute this integral using Theorem 38 with y = 1
2 D3G(0)(ψ ,ψ , ψ̄).

We fix the following values for parameters α = 1 and τ 0 = 3
4 and use γ as the bifurcation

parameter. We want to compare two cases: without diffusion, i.e. d = 0, and with diffusion,
i.e. d > 0.

4.1 Hopf bifurcation
For d = 0, we have a Hopf bifurcation for γ = 3.3482 at λ = 1.2403i with the corresponding
eigenvector

ψ(θ )(x) = e1.2403iθ[0.9998 cosh
(
(0.2770 – 0.8878i)x

)

× (–0.0178 + 0.0050i) cosh
(
(3.7185 + 3.2284i)x

)]
.

(89)

The normal form coefficient c1 = –1.132 – 0.282i and the Lyapunov coefficient �1 =
–0.9123, and hence the bifurcation is supercritical.

For d = 0.2, we have a Hopf bifurcation for γ = 3.3094 at λ = 1.2379i with the corre-
sponding eigenvector

ψ(θ )(x) = e1.2379iθ[0.9972 cosh
(
(0.2535 – 0.8490i)x

)

+ (–0.0727 – 0.0177i) cosh
(
(1.7315 + 3.2475i)x

)

+ (0.0029 – 0.0060i) cosh
(
(3.90746 + 0.3586i)x

)]
.

(90)
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Table 1 Parameter values of the Hopf bifurcation without and with diffusion respectively

Bifurcation α τ 0 η1 η2 μ1 μ2 d γ λ �1

Hopf 1 1 0.75 12.5 –10 2 1 0 3.3482 1.2403i –0.9123
Hopf 2 1 0.75 12.5 –10 2 1 0.2 3.3094 1.2379i –0.9314

Figure 3 The eigenvalues of A at parameter values in Table 1 of the Hopf bifurcation without and with
diffusion respectively

The normal form coefficient c1 = –1.153 – 0.258i and the Lyapunov coefficient �1 =
–0.9314, and hence the bifurcation is also supercritical. We have put these values for fur-
ther reference in Table 1.

As one might already have observed, the diffusion has little effect on the Hopf bi-
furcation. We observe more generally that the eigenvalues which are off the real axis
are barely effected by the introduction of diffusion, while the eigenvalues on the real
axis become more negative, see Fig. 3.a A possible explanation is that the eigenvec-
tor corresponding to the eigenvalue on the imaginary axis has very little spatial curva-
ture, see Fig. 4. As diffusion penalises curvature, its effect on this eigenvector would be
small.

4.2 Discretisation
To obtain an approximate solution of (ADDE), we discretise the spatial domain � into an
equidistant grid of nx points, x1, . . . , xnx , with a width of δ = 2

nx–1 . As in [29], we discretise
the integral operator G using the trapezoidal rule and the diffusion operator B using a
central difference method and a reflection across the boundary for the boundary condi-
tions. This results in a second order spatial discretisation. The discretisation of (ADDE)
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Figure 4 The corresponding eigenvectors of the eigenvalue λ =ωi at parameter values in Table 1 without
and with diffusion respectively. Note that with diffusion the eigenvector satisfies the boundary conditions at
x = 1 and x = –1, while this is not the case without diffusion

for n ∈ {1, . . . , nx} and t ∈R
+ becomes a set of delay equations (DDE):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t (t, xn)

= d
2δ2 (u(t, xn–1) – 2u(t, xn) + u(t, xn+1)) – αu(t, xn)

+ δ
∑nx

m=1 ξmJ(xn, xm)S(u(t – τ (xn, xm), xm)),

u(t, x0) = u(t, x2),

u(t, xnx+1) = u(t, xnx–1),

u(t, xn) = ϕ(t, xn).

(DDE)

Here ξm is defined as

ξm =

⎧
⎨

⎩
1 m ∈ {2, . . . , nx – 1},
1
2 m = 1or m = nx.

(91)

Now we are left with a set of nx ordinary delay differential equations which we solve with a
standard DDE-solver. Note that (DDE) is very similar to the discrete model (3) from which
(ADDE) is derived. Only the terms at the boundary are different due to the second order
discretisation.
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Figure 5 Simulation of (DDE) with the initial conditions ϕ1, ϕ2 of (92) and γ = 3 and d = 0.2

4.3 Simulations
We will now perform some simulations around the Hopf bifurcation with diffusion. We
set nx = 50 and take as initial conditions an odd function and an even function:

ϕ1(θ )(x) =
1
5

sin
1
2
πx,

ϕ2(θ )(x) =
1
5

cosπx.
(92)

For Fig. 5, we took γ = 3, and for Fig. 6, γ = 4.
For γ = 3, the solutions with both initial conditions (92) converge to the trivial equilib-

rium. The one with the odd initial condition converges monotonously to the trivial equi-
librium, while the one with the even initial condition converges to the trivial equilibrium
in an oscillatory manner. For γ = 4, there are (at least) two nontrivial stable states. The
odd initial condition converges to some nontrivial equilibrium, and the even initial condi-
tion converges to some limit cycle, which is due to the Hopf bifurcation. This is similar to
the results of Dijkstra et al. [34], where the nontrivial equilibrium arises from a pitchfork
bifurcation. The bi-stability is also exemplified in the eigenvalues, see Fig. 7, as we have a
positive real eigenvalue and a pair of complex eigenvalues with a positive real component.

We have seen that increasing the value of d decreases the eigenvalues on the real axis.
This would imply that the nontrivial equilibrium becomes unstable or disappears, proba-
bly through a pitchfork bifurcation. Indeed when we use the initial condition

ϕ3 = ϕ1 + ϕ2 (93)

and compare the dynamics for d = 0.2 and d = 0.5 in Fig. 8. The initial condition converges
to a nontrivial equilibrium when d = 0.2, but it converges to a limit cycle when d = 0.5.
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Figure 6 Simulation of (DDE) with the initial conditions ϕ1, ϕ2 of (92) and γ = 4 and d = 0.2

Figure 7 The eigenvalues of A for γ = 4 and d = 0.2

5 Discussion
We have proved the necessary theorems to construct the sun-star calculus for abstract
delay differential equations. In particular, we proved a novel characterisation for sun-
reflexivity in Theorem 12. The sun-star calculus provides a variation-of-constants for-
mulation for the nonlinear problem and produces results on the spectral properties of
the system, notably the essential spectrum. Using the results of Janssens [6] on the cen-
tre manifold reduction, we have derived a simple and explicit formula to compute the first
Lyapunov coefficient for the Hopf bifurcation. This procedure can quite easily be extended
to normal coefficients of other local bifurcations.

The neural field models, both with and without diffusion, can be cast as abstract delay
differential equations to which the same theoretical results can be applied. In the sun-star
calculus the relevant spaces, duality pairings and Fredholm alternative follow naturally by
considering the strong continuity of adjoint operators. Hence there is no need to construct



Spek et al. Journal of Mathematical Neuroscience           (2020) 10:21 Page 40 of 50

Figure 8 Simulation of (DDE) with the same initial condition ϕ3 (93) and γ = 4, d = 0.2 and γ = 4, d = 0.5
respectively

formal projectors. Moreover, for a specific example of the neural field, we could calculate
the first Lyapunov coefficient exactly and with arbitrary precision. Thus we conclude that
the sun-star calculus for delay equations is a natural setting to study neural field models,
with and without diffusion.

For certain specific connectivity functions, we have derived analytical conditions for λ

to be an eigenvalue for a neural field with a connectivity function that is a sum of ex-
ponentials. We have also constructed the corresponding eigenvectors and the resolvent.
Numerical results show that the diffusion term does not cause oscillations to arise due to
a Hopf bifurcation. However, stable equilibria which are not uniform disappear due to the
smoothing effect of the diffusion. So increasing the diffusion in a bi-stable system with a
nonuniform equilibrium and a synchronous oscillation leads to a system with only stable
synchronous oscillations. We hypothesise that this is a more general feature of equations
with diffusion and a delayed reaction.

Gap junctions, modelled by the diffusion term in our neural field, are thought to be
linked to synchronisation in Parkinson’s disease [3]. Further research could be undertaken
to see whether the effects can be observed in a neural field model with physiological values
for the parameters.

We used a neural field model with a connectivity function, which is a sum of expo-
nentials. This connectivity function is commonly used to aggregate the effect of multiple
different types of cells, e.g. excitatory and inhibitory neurons. However, introducing a dif-
fusion term into this model leads to gap junctions between similar and different popula-
tions of neurons of the same strength. This may not be physiologically feasible. A way to
circumvent this is to use a neural field model with multiple populations. In such a model,
it is possible to introduce only gap junctions between neurons of the same population.

We have studied a neural field on a one-dimensional closed domain. However, when
modelling the neuronal activity in the cortex, it is common to use two-dimensional do-



Spek et al. Journal of Mathematical Neuroscience           (2020) 10:21 Page 41 of 50

mains [24]. For a neural field with a rectangular domain, characterising the spectrum, as
is done in this paper in Sect. 3, is still an open problem. On a spherical domain, Visser et
al. [35] have characterised the spectrum for a neural field with transmission delays and
have computed normal form coefficients of Hopf and double Hopf bifurcations. It seems
possible to extend the analysis of that paper to include a diffusion term into that neural
field model. Due to the general nature of the theoretical results of Sect. 2, these results,
including the sun-star framework, the variation of constants formulation and the essential
spectrum, also hold for neural field models on arbitrary domains.

Appendix A: Properties of the diffusion operator
In this appendix we investigate the properties of the diffusion operator B in the context
of the sun-star calculus. We consider the space of continuous functions Y = C(�), where
we take our domain � to be the interval [–1, 1]. We define B : D(B) → Y , an unbounded,
closed, linear operator as follows:

Bq := dq′′ – αq,

D(B) :=
{

q ∈ Y |q ∈ C2(�), q′(∂�) = 0
}

.
(94)

A.1 Spectral properties
We start our analysis with this result on the semigroup S generated by B.

Lemma 39 ([58, Proposition VI.6.19]) The operator (B, D(B)) generates a strongly contin-
uous, positive and immediately compact semigroup (S(t))t≥0.

Sturm–Liouville theory gives the following well-known results on the spectral proper-
ties of the diffusion operator. We can explicitly derive the eigenvalues and eigenvectors
using separation of variables. This is entirely standard and therefore the calculation is
omitted.

Lemma 40 For the spectrum of B, we have that σ (B) = σp(B). All eigenvalues of B are simple
and given by λeven

n = –dn2π2 – α with even eigenvector cos(nπx) and λodd
n = –d(n + 1

2 )2π2 –
α with odd eigenvector sin((n + 1

2 )πx) for all n ∈ N0. Moreover, these eigenvectors form a
maximal set in Y , i.e. their span is dense in Y .

We can also explicitly find an explicit representation of the semigroup S(t) and resolvent
R(z, B) in terms of the eigenvectors.

Lemma 41 The semigroup S can be explicitly written as a convolution

S(t)ϕ(x) =
∫

�

ϕ
(
x′)G

(
t, x, x′)dx′ (95)

with Green’s function

G
(
t, x, x′) :=

∞∑

n=0

(
(1 + δ0n)–1 cos(nπx) cos

(
nπx′)e(–dn2π2–α)t

+ sin

((
n +

1
2

)
πx

)
sin

((
n +

1
2

)
πx′

)
e(–d(n+ 1

2 )2π2–α)t
)

.

(96)
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The resolvent R(z, B) : Y → D(B) for z ∈ ρ(B) can be explicitly written as a convolution

R(z, B)y(x) =
∫

�

y
(
x′)Gz(x, x′)dx′ (97)

with Green’s function

Gz(x, x′)

:=
∞∑

n=0

(
(1 + δ0n)–1(z + α + dn2π2)–1

cos(nπx) cos
(
nπx′)

+
(

z + α + d
(

n +
1
2

)2

π2
)–1

sin

((
n +

1
2

)
πx

)
sin

((
n +

1
2

)
πx′

))
.

(98)

Here, δmn is the Kronecker delta.

A.2 Sun-star calculus
We will now develop the sun-star calculus for the diffusion operator B. We can take d = 1
and α = 0 for this section, without loss of generality, as the sun-star calculus is invariant
with respect to bounded perturbations of the generator of the semi-group.

As a consequence of the Riesz representation theorem, Y ∗ can be represented as
NBV(�), the functions of bounded variation, normalised such that for y ∈ Y ∗, y(–1) = 0.
The corresponding norm on NBV(�) is the total variation norm, and the duality pairing
is given by the Riemann–Stieltjes integral:

〈
y∗, y

〉
:=

∫ 1

–1
y dy∗ (99)

We will now try to find a representation for B∗.

Theorem 42 The dual space Y ∗ can be represented as NBV(�). Furthermore, y∗ ∈ D(B∗)
if and only if for x ∈ (–1, 1]

y∗(x) = c1 +
∫ x

–1

(
c2 +

∫ s

–1
z∗(x′)dx′

)
ds, (100)

where c1, c2 ∈R and z∗ ∈ NBV(�) with z∗(1) = 0. For such y∗, we have that B∗y∗ = z∗.

Proof We start by proving the ‘only if ’ part of the theorem. Let y∗ ∈ D(B∗), y ∈ D(B) and
z∗ = B∗y∗. Furthermore, let

w∗(s) := c2 +
∫ s

–1
z∗(x′)dx′

for some c2 ∈ R. As y ∈ C2(�) and y′(±1) = 0, we get that using integration by parts for
Riemann–Stieltjes integrals [5, Proposition A.15, A.18, A.19]

∫ 1

–1
y′′(x) dy∗(x) =

〈
y∗, By

〉

=
〈
z∗, y

〉
=
∫ 1

–1
y dz∗
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= z∗(x)y(x)|1–1 –
∫ 1

–1
y′(x)z∗(x) dx

= z∗(1)y(1) +
∫ 1

–1
y′′(x)w∗(x) dx.

If we take y as a constant function, then we immediately see that z(1) = 0 is a necessary
condition. For any –1 < x′ < x < 1, we can take a sequence of yn ∈ D(B) such that y′′

n(s)
converges monotone to the characteristic function on the interval [x′, x]. Then, by the
Lebesque monotone convergence theorem, we get that

y∗(x) – y∗(x′) =
∫ x

x′
dy∗(s) =

∫ x

x′
w∗(s) ds.

Letting x′ ↓ –1, we get that

y∗(x) = lim
x′↓–1

y∗(x′) +
∫ x

–1
w∗(s) ds.

So we can write this y∗ as

y∗(x) = c1 +
∫ x

–1

(
c2 +

∫ s

–1
z∗(x′)dx′

)
ds.

Next we prove the ‘if ’ part of the theorem. Let y∗ have the form in equation (100) with
z(1) = 0. Then, for all y ∈ D(B), we have again by using integration by parts that

〈
y∗, By

〉
=
∫ 1

–1
y′′(x) dy∗(x)

=
∫ 1

–1
y′′(x)w∗(x) dx

= –
∫ 1

–1
y′(x)z∗(x) dx

=
∫ 1

–1
y(x) dz∗(x) =

〈
z∗, y

〉
.

Hence we can conclude that y∗ ∈ D(B∗) and B∗y∗ = z∗. �

Now we are in a position to find Y �, the sun-dual of Y with respect to S, which is the
closure of D(B∗) with respect to the total variation norm.

Theorem 43 The sun-dual Y � with respect to the semigroup S can be represented as R×
L1(�). For the sun-dual of B, we have that

D
(
B�)

:=
{(

c, w�) ∈ R× L1(�)|c ∈R,
(
w�)′ ∈ AC

(
[–1, 1]

)
,
(
w�)′(1) = 0

}
(101)

and B�(c, w�) := ((w�)′(–1), (w�)′′), where (w�)′′ is some L1 function such that

(
w�)′(x) =

(
w�)′(–1) +

∫ x

–1

(
w�)′′(s) ds. (102)



Spek et al. Journal of Mathematical Neuroscience           (2020) 10:21 Page 44 of 50

Proof Let y∗ ∈ D(B∗). Again using the notation we get that, for x, s ∈ (–1, 1],

y∗(x) = c1 +
∫ x

–1
w∗(s) ds,

w∗(s) = c2 +
∫ s

–1
z∗(x′)dx′

for some c1, c2 ∈ R and z∗ ∈ NBV(�) with z∗(1) = 0, we can rewrite the total variation
norm as

∥
∥y∗∥∥

Y∗ = |c1| +
∥
∥w∗∥∥

L1 .

For the space

W :=
{

c +
∫ s

–1
z∗(x′)dx′ ∣∣ c ∈ R, z∗ ∈ NBV(�), z∗(1) = 0

}
,

we have that {w∗ ∈ C2|(w∗)′(–1) = 0} ⊂ W ⊂ L1. As this first space of C2 functions is dense
in L1, we have that W is dense in L1. Hence, we can represent Y � as the space

{
y� ∈ NBV(�)

∣∣ y�(x) = c +
∫ x

–1
w�(s) ds where c ∈R, w� ∈ L1(�) for x ∈ (–1, 1]

}

which are the absolutely continuous functions on (–1, 1] with a jump from 0 to c at x = –1.
We can equivalently express Y � as R × L1(�) where y� = (c, w�) with c ∈ R and w� ∈

L1(�) equipped with the norm

∥
∥y�∥

∥
Y� := |c1| +

∥
∥w�∥

∥
L1 .

The domain of B� is defined as D(B�) = {y� ∈ D(B∗)|B∗y� ∈ Y �}. Using equation (100)
we have B∗y∗ = z∗. If z∗ ∈ Y �, then z∗ must be absolutely continuous on (–1, 1]. So for
y� = (c, w�) we find that (w�)′ = z∗ is absolutely continuous on (–1, 1]. As (w�)′ is an L1-
function, we can redefine (w�)′(–1) := (w�)′(–1+) to get an absolutely continuous function
on [–1, 1]. The boundary condition z(1) = 0 is transformed into (w�)′(1) = 0

Thus we can write that B�(c, w�) = ((w�)′(–1), (w�)′′), where (w�)′′ is an L1 function
such that

(
w�)′(x) =

(
w�)′(–1) +

∫ x

–1

(
w�)′′(s) ds. �

Note that the sun-dual Y � is almost the same as in the book by Diekmann et al. [39,
Theorem II.5.2], where it is taken with respect to the first derivative with the condition
ẏ(0) = 0. However, in that case there was an extra condition in Y � that functions g ∈ L1

could be extended to be zero for θ ≥ h. In our case with diffusion we have a fixed domain
on which the diffusion takes place, so this condition is not present.

Now we can take the dual again and end up at the dual space Y �∗.
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Theorem 44 The dual space Y �∗ can be represented as R× L∞(�). For the operator B�∗,
we have that

D
(
B�∗) =

{(
γ , w�∗)|(w�∗)′ is Lipschitz continuous,

w�∗(–1) = γ ,
(
w�∗)′(±1) = 0

}
(103)

and B�∗(γ , w�∗) := (0, (w�∗)′′), where (w�∗)′′ is an L∞(�) function such that

(
w�∗)′(x) =

∫ x

–1

(
w�∗)′′(s) ds. (104)

Proof The dual space of R × L1(�) can be represented as R × L∞(�) with the duality
pairing between Y �∗ and Y � being given by

〈(
γ , w�∗),

(
c, w�)〉

:= γ c +
∫ 1

–1
w�∗(x)w�(x) dx.

First we prove the ⊆ inclusion of (103). Let (γ , w�∗) ∈ D(B�∗) and B�∗(γ , w�∗) = (β , z�∗).
Let

v�∗(x) := v�∗(–1) +
∫ x

–1
z�∗(s) ds,

which is a Lipschitz continuous function as z�∗ ∈ L∞(�). Then, for all (c, w�) ∈ D(B�), we
get that

γ
(
w�)′(–1) +

∫

�

w�∗(x)
(
w�)′′(x) dx

=
〈(
γ , w�∗), B�(

c, w�)〉

=
〈(
β , z�∗),

(
c, w�)〉

= βc +
∫

�

z�∗(x)w�(x) dx

= βc + v�∗(x)w�(x)|1–1

–
∫

�

v�∗(x)
(
w�)′(x) dx

= βc + v�∗(–1)w�(x)|1–1 + γ
(
w�)′(–1)

+
∫

�

(
γ +

∫ x

–1
v�∗(s) ds

)
(
w�)′′(x) dx.

Here we used that (w�)′ ∈ AC[–1, 1] and (w�)′(1) = 0. As c and w�(±1) are arbitrary, we
see that necessarily β = 0, v�∗(±1) = 0. Furthermore,

w�∗(x) = γ +
∫ x

–1
v�∗(s) ds,

which implies that (w�∗)′ = v�∗ and w�∗(–1) = γ .
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Finally, we prove the ⊇ inclusion of (103). Let (γ , w�∗) be in the right-hand side of (103)
and (c, w�) ∈ D(B�). Then, by the calculations above, we get that

〈(
γ , w�∗), B�(

c, w�)〉
= γ

(
w�)′(–1) +

∫

�

w�∗(x)
(
w�)′′(x) dx

=
∫

�

(
w�∗)′′(x)w�(x) dx

=
〈(

0,
(
w�∗)′′),

(
c, w�)〉

,

from which we can conclude that (γ , w�∗) ∈ D(B�∗) and B�∗(γ , w�∗) := (0, (w�∗)′′). �

Finally, we characterise the sun bi-dual Y �� which is the closure of D(B�∗) with respect
to the Y �∗-norm, which is a supremum norm.

Theorem 45 The sun bi-dual Y �� can be represented as {(γ , w��)|w�� ∈
C(�), w��(–1) = γ }. The canonical embedding jY : Y → Y �∗ is given by jY y = (y(–1), y).
Moreover, Y is sun-reflexive with respect to the semigroup S, i.e. jY (Y ) = Y ��.

Proof Let y�∗ = (γ , w�∗) ∈ Y �∗. As the supremum norm does not preserve derivatives, i.e.
the C2 functions are dense in C0 with respect to the supremum norm, we have that only
the continuity and the condition w�∗(–1) = γ remain. For jY y = (y(–1), y), it can be easily
checked that, for any y� ∈ Y �,

〈
jY y, y�〉

=
〈
y�, y

〉
=
∫

�

(
γ +

∫ x

–1
v�∗(s) ds

)
(
w�)′′(x) dx = .

So jY is the canonical embedding between Y and Y �∗ and it is an isomorphism between
Y and Y ��. Hence Y is sun-reflexive. �

Appendix B: Proofs
Lemma 46 Let �,ψ ∈ L∞([–h, 0]; Y ∗∗) and g, ġ ∈ L1([0, h]; Y ∗) such that

�(–t) = �(0) –
∫ t

0
ψ(–θ ) dθ ,

g(t) = g(0) +
∫ t

0
ġ(θ ) dθ

for all t ∈ [0, h], then it holds that

〈
�(–t), g(t)

〉
=
〈
�(0), g(0)

〉
+
∫ t

0

〈
�(–θ ), ġ(θ )

〉
dθ –

∫ t

0

〈
ψ(–θ ), g(θ )

〉
dθ

for all t ∈ [0, h].

Proof Let �, ψ , g , ġ as above and define the scalar function ξ

ξ (t) :=
〈
�(–t), g(t)

〉

for t ∈ [0, h]. As � ∈ L∞([–h, 0]; Y ∗∗) and g ∈ L1([0, h]; Y ∗), ξ is integrable.
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By definition ξ is absolutely continuous on an interval I if, for every ε > 0, there is δ > 0
such that whenever a finite sequence of pairwise disjoint sub-intervals (sk , tk) of I with
tk , sk ∈ I satisfies

∑

k

(tk – sk) < δ,

then

∑

k

∥
∥ξ (tk) – ξ (sk)

∥
∥ < ε.

Both � and g are absolutely continuous and a.e. differentiable with derivative ψ and ġ
respectively [63, Corollary 1.4.31].

For t, s ∈ [0, h],

∣
∣ξ (t) – ξ (s)

∣
∣ =

∣
∣〈�(–t), g(t)

〉
–
〈
�(–s), g(s)

〉∣∣

=
∣∣〈�(–t) – �(–s), g(t)

〉
+
〈
�(–s), g(t) – g(s)

〉∣∣

≤ ∥
∥�(–t) – �(–s)

∥
∥ max

t∈[0,h]

∥
∥g(t)

∥
∥ +

∥
∥g(t) – g(s)

∥
∥ max

t∈[0,h]

∥
∥�(–t)

∥
∥.

Hence, by the absolute continuity of � and g , ξ is absolutely continuous and consequently
has an a.e. derivative ξ̇ , which is integrable, and for t ∈ [0, h]

ξ (t) = ξ (0) +
∫ t

0
ξ̇ (θ ) dθ .

Furthermore, we have that

ξ (t) – ξ (s)
t – s

=
〈
�(–s),

g(t) – g(s)
t – s

〉
–
〈
�(–t) – �(–s)

s – t
, g(t)

〉
.

Taking the limit as s → t, we can deduce that

ξ̇ (t) =
〈
�(–t), ġ(t)

〉
–
〈
ψ(–t), g(t)

〉
.

Hence we have that, for t ∈ [0, h],

〈
�(–t), g(t)

〉
=
〈
�(0), g(0)

〉
+
∫ t

0

〈
�(–θ ), ġ(θ )

〉
dθ –

∫ t

0

〈
ψ(–θ ), g(θ )

〉
dθ . �

Lemma 47 Define the matrix Q̂ ∈ C(N+1)×(N+1) as

Q̂j,m =

⎧
⎨

⎩

1
nj–pm

for j ∈ {1, . . . , N}, m ∈ {1, . . . , N + 1},
1 for j = N + 1, m ∈ {1, . . . , N + 1}.

When ni �= nj �= pm �= pl for i, j ∈ {1, . . . , N}, l, m ∈ {1, . . . , N + 1}, i �= j, l �= m, then Q̂ is invert-
ible.
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Proof We subtract the last column from the other columns. We get the following matrix
Q̃:

Q̃j,m =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pm–pN+1
(nj–pm)(nj–pN+1) for j, m ∈ {1, . . . , N},

1
nj–pN+1

for j ∈ {1, . . . , N}, m = N + 1,

0 for j = N + 1, m ∈ {1, . . . , N},
1 for j = m = N + 1.

Now row j of matrix Q̃ contains the factor 1
nj–pN+1

and column m contains the factor pm –

pN+1 for j, m ∈ {1, . . . , N}. Hence we can rewrite the determinant of Q̂ as follows:

det(Q̂) = det(Q̃) = det(Q)
N∏

i=1

pi – pN+1

ni – pN+1
.

Here matrix Q ∈ CN×N is defined as

Qj,m =
1

nj – pm
for j, m ∈ {1, . . . , N}.

We observe that Q is a Cauchy matrix when ni �= nj �= pm �= pl for i, j, l, m ∈ {1, . . . , N}, i �=
j, l �= m and hence invertible. Furthermore, the product

∏N
i=1

pi–pN+1
ni–pN+1

is non-zero, so we
conclude that Q̂ is invertible. �
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however, this is a degenerate case as Pλ(ρ) has a double root. Simulations of the linearised system did not indicate
the presence of an unstable mode, so we do not regard this point as an eigenvalue.
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