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Abstract
The reconstruction mechanisms built by the human auditory system during sound
reconstruction are still a matter of debate. The purpose of this study is to propose a
mathematical model of sound reconstruction based on the functional architecture of
the auditory cortex (A1). The model is inspired by the geometrical modelling of vision,
which has undergone a great development in the last ten years. There are, however,
fundamental dissimilarities, due to the different role played by time and the different
group of symmetries. The algorithm transforms the degraded sound in an ‘image’ in
the time–frequency domain via a short-time Fourier transform. Such an image is then
lifted to the Heisenberg group and is reconstructed via a Wilson–Cowan
integro-differential equation. Preliminary numerical experiments are provided,
showing the good reconstruction properties of the algorithm on synthetic sounds
concentrated around two frequencies.

1 Introduction
Listening to speech requires the capacity of the auditory system to map incoming sensory
input to lexical representations. When the sound is intelligible, this mapping (‘recogni-
tion’) process is successful. With reduced intelligibility (e.g. due to background noise), the
listener has to face the task of recovering the loss of acoustic information. This task is very
complex as it requires a higher cognitive load and the ability of repairing missing input.
(See [28] for a review on noise in speech.) Yet, (normal hearing) humans are quite able
to recover sounds in several effortful listening situations (see, for instance, [27]), ranging
from sounds degraded at the source (e.g. hypoarticulated and pathological speech), during
transmission (e.g. reverberation) or corrupted by the presence of environmental noise.

So far, work on degraded speech has informed us a lot on the acoustic cues that help the
listener to reconstruct missing information (e.g. [18, 31]); the several adverse conditions in
which listeners may be able to reconstruct speech sounds (e.g. [2, 28]); and whether (and
at which stage of the auditory process) higher-order knowledge (i.e. our information about
words and sentences) helps the system to recover lower-level perceptual information (e.g.
[22]). However, most of these studies adopt a phenomenological and descriptive approach.
More specifically, techniques from previous studies consist in adding synthetic noise to
speech sound stimuli, performing spectral and temporal analyses on the stimuli with noise
and the same ones without it to identify acoustic differences, linking the results of these
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analyses with the outcome from perceptual experiments. In some of these behavioural
experiments, for instance, listeners are asked to identify speech units (such as consonants
or words) when listening the noisy stimuli. Their accuracy scores provide a measure to the
listeners’ speech recognition ability.

As it stands, a mathematical model informing us on how the human auditory system is
able to reconstruct a degraded speech sound is still missing. The aim of this study is to
build a neuro-geometric model for sound reconstruction, stemming from the description
of the functional architecture of the auditory cortex.

1.1 Modelling the auditory cortex
Knowledge about the functional architecture of the auditory cortex is scarce, and there
are difficulties in the application of Gestalt principles for auditory perception. For these
reasons, the model we propose is strongly inspired by recent advances in the mathematical
modeling of the functional architecture of the primary visual cortex and the processing of
visual inputs [9, 13, 24, 32], which recently yield very successful applications to image
processing [10, 16, 20, 35]. This idea is not new: neuroscientists take models of V1 as a
starting point for understanding the auditory system (see, e.g. [30] for a comparison, and
[23] for a related discussion in speech processing). Indeed, biological similarities between
the structure of the primary visual cortex (V1) and the primary auditory cortex (A1) are
well-known to exist.

An often cited V1–A1 similarity is their ‘topographic’ organization, a general principle
determining how visual and auditory inputs are mapped to those neurons responsible for
their processing [38]. Substantial evidence for V1–A1 relation is also provided by studies
on animals and on humans with deprived hearing or visual functions showing cross-talk
interactions between sensory regions [41, 44]. More relevant for our study is the exis-
tence of receptive fields of neurons in V1 and A1 that allow for a subdivision of neurons in
‘simple’ and ‘complex’ cells, which supports the idea of a ‘common canonical processing
algorithm within cortical columns’ [42, p. 1]. Together with the appearance in A1 of sin-
gularities typical of V1 (e.g. pinwheels) [34, 41], these findings speak in favour of the idea
that V1 and A1 share similar mechanisms of sensory input reconstruction. In the next
section we present the mathematical model for V1 that will be the basis for our sound
reconstruction algorithm.

1.2 Neuro-geometric model of V1
The neuro-geometric model of V1 finds its roots in the experimental results of Hubel and
Wiesel [25], which inspired Hoffman [24] to model V1 as a contact space.a This model has
then been extended to the so-called sub-Riemannian model in [8, 9, 13, 33]. On the basis of
such a model, exceptionally efficient algorithms for image inpainting have been developed
(e.g. [10, 15, 16]). These algorithms have now several medical imaging applications (e.g.
[45]).

The main idea behind this model is that an image, seen as a function f : R2 →R+ repre-
senting the grey level, is lifted to a distribution on R

2 × P1, the bundle of directions of the
plane.b Here, P1 is the projective line, i.e. P1 = R/πZ. More precisely, the lift is given by
Lf (x, y, θ ) = δSf (x, y, θ )f (x, y) where δSf is the Dirac mass supported on the set Sf ⊂R

2 × P1

of points (x, y, θ ) such that θ is the direction of the tangent line to f at (x, y). Notice that,
under suitable regularity assumptions on f , Sf is a surface.
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When f is corrupted (i.e. when f is not defined in some region of the plane), the lift is
corrupted as well, and the reconstruction is obtained by applying a deeply anisotropic dif-
fusion adapted to the problem. Such diffusion mimics the flow of information along the
horizontal and vertical connections of V1 and uses as an initial condition the surface Sf

and the values of the function f . Mathematicians call such a diffusion the sub-Riemannian
diffusion in R

2 × P1, cf. [1, 29]. One of the main features of this diffusion is that it is in-
variant by rototranslation of the plane, a feature that will not be possible to translate to
the case of sounds, due to the special role of the time variable.

In what follows, we explain how similar ideas could be translated to the problem of sound
reconstruction.

1.3 From V1 to sound reconstruction
The sensory input reaching A1 comes directly from the cochlea [14]: a spiral-shaped, fluid-
filled, cavity that composes the inner ear. Vibrations coming from the ossicles in the middle
ear are transmitted to the cochlea, where they propagate and are picked up by sensors (so-
called hair cells). These sensors are tonotopically organized along the spiral ganglion of the
cochlea in a frequency-specific fashion, with cells close to the base of the ganglion being
more sensitive to low-frequency sounds and cells near the apex more sensitive to high-
frequency sounds, see Fig. 1. This early ‘spectrogram’ of the signal is then transmitted to
higher-order layers of the auditory cortex.

Mathematically speaking, this means that when we hear a sound (that we can think as
represented by a function s : [0, T] → R), our primary auditory cortex A1 is fed by its
time–frequency representationc S : [0, T]×R→C. If, say, s ∈ L2(R2), the time–frequency
representation S is given by the short-time Fourier transform of s, defined as

S(τ ,ω) := STFT(s)(τ ,ω) =
∫
R

s(t)W (τ – t)e2π itω dt.

Here W : R → [0, 1] is a compactly supported (smooth) window, so that S ∈ L2(R2). Since
S is complex-valued, it can be thought as the collection of two black-and-white images, |S|
and arg S. The function S depends on two variables, the first is time, that here we indicate
with the letter τ , and the second is frequency, denoted by ω. Roughly speaking, |S(τ ,ω)|

Figure 1 Perceived pitch of a sound depends on the location in the cochlea that the sound wave stimulated.
High-frequency sound waves, which correspond to high-pitched noises, stimulate the basal region of the
cochlea. Low-frequency sound waves are targeted to the apical region of the cochlear structure and
correspond with low-pitched sounds
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Figure 2 A sound signal and the corresponding short-time Fourier transform

represents the strength of the presence of the frequency ω at time τ . In the following, we
call S the sound image (see Fig. 2).

A first attempt to model the process of sound reconstruction into A1 is to apply the
algorithm for image reconstruction described in Sect. 1.2. In a sound image, however,
time plays a special role. Indeed,

1. While for images the reconstruction can be done by evolving the whole image
simultaneously, the whole sound image does not reach the auditory cortex
simultaneously, but sequentially. Hence, the reconstruction can be performed only in
a sliding window.

2. A rotated sound image corresponds to a completely different input sound and thus
the invariance by rototranslations is lost.

As a consequence, different symmetries have to be taken into account (see Appendix B)
and a different model for both the lift and the processing in the lifted space is required.

In order to introduce this model, let us recall that, in V1, neural stimulation stems not
only from the input but also from its variations. That is, mathematically speaking, the
input image is considered as a real-valued function on a 2-dimensional space, and the ori-
entation sensitivity arises from the sensitivity to a first order derivative information on
this function, i.e. the tangent directions to level lines. This additional variational infor-
mation allows lifting the 2-dimensional image space to the aforementioned contact space,
and defining the sub-Riemannian diffusion [1, 11].

In our model of A1, we follow the same idea: we consider the variations of the input as
additional variables. Input sound signals are time-dependent real-valued functions sub-
jected to a short-time Fourier transform by the cochlea. As a result the A1 input is con-
sidered as a function of time and frequency. The first time derivative ν = dω/dτ of this
object, corresponding to the instantaneous chirpiness of the sound, allows adding a sup-
plementary dimension to the domain of the input. As in the case of V1, this gives rise to a
natural lift of the signal to an augmented space, which in this case turns out to be R

3 with
the Heisenberg group structure. (This structure very often appears in signal processing;
see, for instance, [21] and Appendix B.)

As we already mentioned, the special role played by time in sound signals does not per-
mit modeling the flow of information as a pure hypoelliptic diffusion, as was done for
static images in V1. We thus turn to a different kind of model, namely Wilson–Cowan
equations [43]. Such a model, based on an integro-differential equation, has been suc-
cessfully applied to describe the evolution of neural activations. In particular, it allowed
theoretically predicting complex perceptual phenomena in V1, such as the emergence of
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hallucinatory patterns [12, 17], and has been used in various computational models of the
auditory cortex [26, 37, 46]. Recently, these equations have been coupled with the neuro-
geometric model of V1 to great benefit. For instance, in [4–6] they allowed replicating
orientation-dependent brightness illusory phenomena, which had proved to be difficult
to implement for non-cortical-inspired models. See also [39] for applications to the de-
tection of perceptual units.

On top of these positive results, Wilson–Cowan equations present many advantages
from the point of view of A1 modelling: (i) they can be applied independently of the un-
derlying structure, which is only encoded in the kernel of the integral term; (ii) they allow
for a natural implementation of delay terms in the interactions; and (iii) they can be easily
tuned via few parameters with a clear effect on the results. On the basis of these positive
results, we emulate this approach in the A1 context. Namely, we will consider the lifted
sound image I(τ ,ω,ν) to yield an A1 activation a(τ ,ω,ν) via the following Wilson–Cowan
equations:

∂ta(t,ω,ν) = –αa(t,ω,ν) + βI(t,ω,ν)

+ γ

∫
R2

kδ

(
ω,ν‖ω′,ν ′)σ (

a
(
t – δ,ω′,ν ′))dω′ dν ′. (WC)

Here (t,ω,ν) are coordinates on the augmented space corresponding to time, frequency,
and chirpiness, respectively; α,β ,γ > 0 are parameters; σ : C →C is a non-linear sigmoid;
kδ(ω,ν‖ω′,ν ′) is a weight modelling the interaction between (ω,ν) and (ω′,ν ′) after a delay
of δ > 0. The presence of this delay term models the fact that the time-scale of the input
signal and of the neuronal activation are comparable.

The proposed algorithm to process a sound signal s : [0, T] →R is the following:
A. Preprocessing

(a) Compute the time–frequency representation S : [0, T] ×R →C of s, via
standard short-time Fourier transform (STFT);

(b) Lift this representation to the Heisenberg group, which encodes redundant
information about chirpiness, obtaining I : [0, T] ×R×R→C (see Sect. 2.1 for
details);

B. Processing Process the lifted representation I via Wilson–Cowan equations adapted
to the Heisenberg structure, obtaining a : [0, T] ×R×R →C.

C. Postprocessing Project a to the processed time–frequency representation
Ŝ : [0, T] ×R →C and then apply an inverse STFT to obtain the resulting sound
signal ŝ : [0, T] →R.

Remark 1 All the above operations can be performed in real-time, as they only require
the knowledge of the sound on a short window [t – δ, t + δ].

Remark 2 Notice that in the presented algorithm we are assuming neural activations to
be complex-valued functions, due to the use of the STFT. This is inconsistent with neural
modelling, as it is known that the cochlea sends to A1 only the spectrogram of the STFT
(that is, |S|), see [40]. When striving for a biologically plausible description, one can easily
modify the above algorithm in this direction (i.e. by computing the lifted representation I
starting from |S| instead than S). However, during the post-processing phase, in order to



Boscain et al. Journal of Mathematical Neuroscience            (2021) 11:2 Page 6 of 18

invert the STFT and obtain an audible signal, one then needs to reconstruct the missing
phase information via heuristic algorithms. See, for instance, [19].

1.4 Structure of the paper
In Sect. 2, we present the reconstruction model. We first present the lift procedure of a
sound signal to a function on the augmented space, and then introduce the Wilson–Cowan
equations modelling the cortical stimulus. In Sect. 3, we describe the numerical imple-
mentation of the algorithm, together with some of its crucial properties. This implementa-
tion is then tested in Sect. 4, were we show the results of the algorithm on some simple syn-
thetic signals. Such numerical examples can be listened at www.github.com/dprn/WCA1,
and should be considered as a very preliminary step toward the construction of an efficient
cortical-inspired algorithm for sound reconstruction. Finally, in Appendix B, we show how
the proposed algorithm preserves the natural symmetries of sound signals.

2 The reconstruction model
As discussed in the introduction, the cochlea decomposes the input sound s : [0, T] → R

in its time–frequency representation S : [0, T]×R→ C, obtained via a short-time Fourier
transform (STFT). This corresponds to interpreting the ‘instantaneous sound’ at time τ ∈
[0, T], instead of as a sound level s(τ ) ∈ R, as a function ω �→ S(τ ,ω) which encodes the
instantaneous presence of each given frequency, with phase information.

2.1 The lift to the augmented space
In this section, we present an extension of the time–frequency representation of a sound,
which is at the core of the proposed algorithm. Roughly speaking, the instantaneous sound
will be represented as a function (ω,ν) �→ I(τ ,ω,ν), encoding the presence of both the
frequency and the chirpiness ν = dω/dτ .

Assume for the moment that the sound has a single time-varying frequency, e.g.

s(τ ) = A sin
(
ω(τ )τ

)
, A ∈R. (1)

If the frequency is varying slowly enough and the window of the STFT is large enough, its
sound image (up to the choice of normalising constants in the Fourier transform) coincides
roughly with

S(τ ,ω) ∼ A
2i

(
δ0

(
ω – ω(τ )

)
– δ0

(
ω + ω(τ )

))
,

where δ0 is the Dirac delta distribution centered at 0. That is, S is concentrated on the two
curves τ �→ (τ ,ω(τ )) and τ �→ (τ , –ω(τ )), see Fig. 3. Let us focus only on the first curve.

Figure 3 Short-time Fourier transform of the signal in (1), for a positive and
increasing ω(·)

http://www.github.com/dprn/WCA1
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Because of the sensitivity to variations of the input, as discussed in Sect. 1, the curve
ω(τ ) is lifted in a bigger space by adding a new variable ν = dω/dτ . In mathematical terms,
the 3-dimensional space (τ ,ω,ν) is called the augmented space. It will be the basis for the
geometric model of A1 that we are going to present.

Up to now the curve ω(τ ) was parameterized by one of the coordinates of the contact
space (the variable τ ), but it will be more convenient to consider it as a parametric curve
in the space (τ ,ω). More precisely, the original curve ω(τ ) is represented in the space
(τ ,ω) as t �→ (t,ω(t)) (thus imposing τ = t). Similarly, the lifted curve is parameterized
as t �→ (t,ω(t),ν(t)). To every regular enough curve t �→ (t,ω(t)), one can associate a lift
t �→ (t,ω(t),ν(t)) in the contact space simply by computing ν(t) = dω/dt. Conversely, a
regular enough curve in the contact space t �→ (τ (t),ω(t),ν(t)) is a lift of planar curve
t �→ (t,ω(t)) if τ (t) = t and if ν(t) = dω/dt. Now, defining u(t) = dν/dt, we can say that a
curve in the contact space t �→ (τ (t),ω(t),ν(t)) is a lift of a planar curve if there exists a
function u(t) such that

d
dt

⎛
⎜⎝

τ

ω

ν

⎞
⎟⎠ =

⎛
⎜⎝

1
ν

0

⎞
⎟⎠ + u(t)

⎛
⎜⎝

0
0
1

⎞
⎟⎠ . (2)

Letting q = (τ ,ω,ν), equation (2) can be equivalently written as the control system

d
dt

q(t) = X0
(
q(t)

)
+ u(t)X1

(
q(t)

)
,

where the X0 and X1 are two vector fields in R
3 given by

X0 =

⎛
⎜⎝

1
ν

0

⎞
⎟⎠ , X1 =

⎛
⎜⎝

0
0
1

⎞
⎟⎠ .

Notice that the two vector fields appearing in this formula generate the Heisenberg group.
However, we are not dealing here with a sub-Riemannian structure, since the space {X0 +
uX1 | u ∈R} is a line and not a plane. (One would get a plane by considering two controls,
namely {u0X0 + u1X1 | (u0, u1) ∈R

2}.)
Following [9], when s is a general sound signal, we lift each level line of |S|. By the implicit

function theorem, this yields the following subset of the contact space:


 =
{

(τ ,ω,ν) ∈R
3 | ν∂ω|S|(τ ,ω) + ∂τ |S|(τ ,ω) = 0

}
. (3)

If |S| ∈ C2 and Hess |S| is non-degenerate, the set 
 is indeed a surface. Finally, the external
input from the cochlea is given by

I(τ ,ω,ν) = S(τ ,ω)δ
(τ ,ω,ν). (4)

Here δ
 denotes the Dirac delta distribution concentrated at 
. The presence of this dis-
tributional term is necessary for a well-defined solution to the evolution equation (WC).
Such en equation is introduced in the next section.
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2.2 Cortical activations in A1
On the basis of what described in the previous section and the well-known tonotopical
organization of A1 (cf. Sect. 1), we propose to consider A1 to be the space of (ω,ν) ∈ R

2.
When hearing a sound s(·), the external input fed to A1 at time t > 0 is then given as the
slice at τ = t of the lift I of s to the contact space. That is, hearing an ‘instantaneous sound
level’ s(t) reflects in the external input I(t,ω,ν) to the ‘neuron’ (ω,ν) in A1 as follows: The
‘neuron’ receives an external charge S(t,ω) if (t,ω,ν) ∈ 
, and no charge otherwise, where

 is defined in (3).

We model the neuronal activation induced by the external stimulus I by adapting to this
setting the well-known Wilson–Cowan equations. These equations are widely used and
proved to be very effective in the study of V1 [12, 43]. According to this framework, the
resulting activation a : [0, T] ×R×R → C is the solution of the following equation with
delay δ > 0:

∂ta(t,ω,ν) = –αa(t,ω,ν) + βI(t,ω,ν)

+ γ

∫
R2

kδ

(
ω,ν‖ω′,ν ′)σ (

a
(
t – δ,ω′,ν ′))dω′ dν ′, (5)

with initial condition a(t, ·, ·) ≡ 0 for t ≤ 0. Here α,β ,γ > 0 are parameters, kδ is an in-
teraction kernel, and σ : C → C is a (non-linear) saturation function, or sigmoid. In the
following, we let σ (ρeiθ ) = σ̃ (ρ)eiθ where σ̃ (x) = min{1, max{0,κx}}, x ∈ R, for some fixed
κ > 0. The fact that the non-linearity σ does not act on the phase is one of the key ingre-
dients in proving that this processing preserves the natural symmetries of sound signals,
see Proposition 4 in Appendix B.

When γ = 0, equation (5) becomes the standard low-pass filter ∂ta = –αa + I , whose
solution is the convolution of the input signal I with the function

ϕ(t) =

⎧⎨
⎩

e–tα if t > 0,

0 otherwise.

Setting γ �= 0 adds a non-linear delayed interaction term on top of this exponential
smoothing, encoding the inhibitory and excitatory interconnections between neurons.
Next section is devoted to the choice of the integral kernel kδ .

Remark 3 In (5) we chose to consider a simple form for the interaction term. A more
precise choice would indeed need to take into account the whole history of the process,
for example, by considering

∫ +∞

τ

e–�(s–τ )
∫
R2

ks
(
ω,ν‖ω′,ν ′)σ (

a
(
t – s,ω′,ν ′))dω′ dν ′ ds, � > 0.

2.3 The neuronal interaction kernel
Considering A1 as a slice of the augmented space allows deducing a natural structure for
neuron connections as follows. Going back to a sound composed by a single time-varying
frequency t �→ ω(t), we have that its lift is concentrated on the curve t �→ (ω(t),ν(t)) such
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that

d
dt

(
ω

ν

)
= Y0(ω,ν) + u(t)Y1(ω,ν), (6)

where Y0(ω,ν) = (ν, 0)
, Y1(ω,ν) = (0, 1)
, and u : [0, T] → R.
As in the case of V1 [8], we model neuronal connections via these dynamics. In practice,

this amounts to assuming that the excitation starting at a neuron X0 = (ω′,ν ′) evolves as
the stochastic process {At}t≥0 naturally associated with (6). This is given by the following
stochastic differential equation:

dAt = Y0(At) dt + Y1(At) dWT , A0 =
(
ω′,ν ′), (7)

where {Wt}t≥0 is a Wiener process. The generator of {At}t≥0 is the second order differential
operator

L = Y0 + (Y1)2 = ν∂ω + b∂2
ν .

In this formula, the vector fields Y0 and Y1 are interpreted as first-order differential op-
erators. Moreover, we added a scaling parameter b > 0, modelling the relative strength of
the two terms.

It is natural to model the influence kδ(ω,ν‖ω′,ν ′) of neuron (ω′,ν ′) on neuron (ω,ν)
at time δ > 0 as the transition density of the process {At}t≥0. It is well-known that such
transition density is obtained by computing the integral kernel at time δ of the Fokker–
Planck equation corresponding to (7) that reads

∂tI = L∗I, where L∗ = –Y0 + (Y1)2 = –ν∂ω + b∂2
ν . (8)

The existence of an integral kernel for (8) is a consequence of the hypoellipticityd of
(∂t – L∗). The explicit expression of kδ is well-known, and we recall it in the following
result, proved in Appendix A.

Proposition 1 The integral kernel of equation (8) is

kδ

(
ω,ν‖ω′,ν ′) =

√
3

2πbδ2 exp

(
–

gδ(ω,ν‖ω′,ν ′)
bδ3

)
, (9)

where

gδ

(
ω,ν‖ω′,ν ′) = 3

(
ω – ω′)2 – 3δ

(
ω – ω′)(ν + ν ′) + δ2(ν2 + νν ′ + ν ′2).

3 Numerical implementation
For the numerical experiments, we chose to implement the proposed algorithm in Julia [7].
As already presented, this process consists in a pre-processing phase, in which we build
an input function I on the 3D contact space, a main part, where I is used as the input of
the Wilson–Cowan equation (WC), and a post-processing phase, where the reconstructed
sound is recovered from the result of the first part.

In the following, we present these phases separately.
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3.1 Pre-processing
The input sound s is lifted to a time–frequency representation S via a classical implemen-
tation of STFT, i.e. by performing FFTs of a windowed discretised input. In the proposed
implementation, we chose to use a standard Hann window (see, e.g. [36])

W (x) =

⎧⎨
⎩

1+cos(2πx/L)
2 if |x| < L/2,

0 otherwise.

The resulting time–frequency signal is then lifted to the contact space through an approx-
imate computation of the gradient ∇|S| and the following discretisation of (4):

I(τ ,ω,ν) =

⎧⎨
⎩

S(τ ,ω) if ν∂ω|S|(τ ,ω) = –∂τ |S|(τ ,ω),

0 otherwise.

Discretisation issues While the discretisation of the time and frequency domains is a
well-understood problem, dealing with the additional chirpiness variable requires some
care. Indeed, even if we assume that the significant frequencies of the input sound s be-
long to a bounded interval � ⊂ R, in general the set {ν ∈ R | I(τ ,ω,ν) �= 0} is unbounded.
Indeed, one can check that as (τ ,ω) moves to a point where the countour lines of |S| be-
come vertical, the set of chirpinesses ν ’s such that ν∂ω|S|(τ ,ω) = –∂τ |S|(τ ,ω) will converge
to ±∞.

In the numerical implementation, we chose to restrict the admissible chirpinesses to a
bounded interval N ⊂ R. This set is chosen in a case by case fashion in order to contain
the relevant slopes for the examples under consideration. Work is ongoing to automate
this procedure.

3.2 Processing
Equation (WC) can be solved via a standard forward Euler method. Hence, the delicate
part of the numerical implementation is the computation of the interaction term.

As is clear from the explicit expression given in Proposition 1, kδ is not a convolution
kernel. That is, kδ(ω,ν‖ω′,ν ′) cannot be expressed as a function of (ω – ω′,ν – ν ′). As a
consequence, a priori we need to explicitly compute all values kδ(ω,ν‖ω′,ν ′) for (ω,ν) and
(ω′,ν ′) in the considered domain. As is customary, in order to reduce computation times,
we fix a threshold ε > 0 and for any given (ω,ν) we compute only values for (ω′,ν ′) in the
compact set

Kε
δ(ω,ν) =

{(
ω′,ν ′) | kδ

(
ω,ν‖ω′,ν ′) ≥ ε

}
.

The structure of Kε
δ(ω,ν) is given in the following, whose proof we defer to Appendix A.

Proposition 2 For any ε > 0 and (ω,ν) ∈ R
2, we have that Kε

δ(ω,ν) is the set of those
(ω′,ν ′) ∈R

2 that satisfy

|ν – ν ′|2 ≤ Cε := –4bδ log

(
2πbτ 2
√

3
ε

)
,

∣∣∣∣ω′ – ω +
δ(ν + ν ′)

2

∣∣∣∣ ≤ δ

2
√

3

√
Cε – |ν – ν ′|2.



Boscain et al. Journal of Mathematical Neuroscience            (2021) 11:2 Page 11 of 18

Remark 4 One has Cε ≥ 0 if and only if

ε ≤
√

3
2πbδ2 .

Indeed, for any (ω,ν) ∈R
2, the right-hand side above corresponds to max kδ(ω,ν‖·, ·), and

thus Kε(ω,ν) = ∅ for larger values of ε.

The above allows numerically implementing kδ as a family of sparse arrays. That is, let
G ⊂ � × N be the chosen discretisation of the significant set of frequencies and chirpi-
nesses. Then to ξ = (ω,ν) ∈ G we associate the array Mξ : G → R defined by

Mξ

(
ξ ′) =

⎧⎨
⎩

kδ(ξ‖ξ ′) if ξ ′ ∈ Kε(ξ ),

0 otherwise.

Therefore, up to choosing the tolerance ε � 1 sufficiently small, the interaction term in
(WC), evaluated at ξ = (ω,ν) ∈ G, can be efficiently estimated by

∫
R2

w
(
ξ‖ξ ′)σ (

a
(
t – δ, ξ ′))dξ ′ ≈

∑
ξ ′∈Kε(ξ )

Mξ

(
ξ ′)a

(
t – δ, ξ ′).

3.3 Post-processing
Both operations in the pre-processing phase are inversible: the STFT by inverse STFT, and
the lift by integration along the ν variable (that is, summation of the discretized solution).
The final output signal is thus obtained by applying the inverse of the pre-processing (inte-
gration then inverse STFT) to the solution a of (WC). That is, the resulting signal is given
by

ŝ(t) = STFT–1
(∫ +∞

–∞
a(t,ω,ν) dν

)
.

The following guarantees that ŝ is real-valued and thus correctly represents a sound
signal. From the numerical point of view, this implies that we can focus on solutions of
(WC) in the half-space {ω ≥ 0}, which can then be extended to the whole space by mirror
symmetry.

Proposition 3 It holds that ŝ(t) ∈ R for all t > 0.

Proof Let us denote

Ŝ(t,ω) =
∫ +∞

–∞
a(t,ω,ν) dν,

so that ŝ = STFT–1(Ŝ). Moreover, for any function f (t,ω,ν), we let f �(t,ω,ν) := f̄ (t, –ω, –ν).
To prove the statement, it is enough to show that

a(t, ·, ·) ≡ a�(t, ·, ·) ∀t ≥ 0. (10)

This is trivially satisfied for t ≤ 0, since in this case a(t, ·, ·) ≡ 0.
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We now claim that if (10) holds on [0, T] it holds on [0, T + δ], which will prove it for all
t ≥ 0. By definition of I and the fact that S(t, –ω) = S(t,ω), we immediately have I ≡ I�. On
the other hand, the explicit expression of kδ in (9) yields that

kδ

(
–ω, –ν‖ω′,ν ′) = kτ

(
ω,ν‖ – ω′, –ν ′).

Then, for all t ≤ T + δ, we have
∫
R2

kδ

(
–ω, –ν‖ω′,ν ′)σ (

a
(
t – τ ,ω′,ν ′))dω′ dν ′

=
∫
R2

kδ

(
ω,ν‖ω′′,ν ′′)σ (

a�
(
t – τ ,ω′′,ν ′′))dω′′ dν ′′

=
∫
R2

kδ

(
ω,ν‖ω′′,ν ′′)σ (

a
(
t – τ ,ω′′,ν ′′))dω′′ dν ′′.

A simple argument, e.g. using the variation of constants method, shows that these two
facts imply the claim, and thus the statement. �

4 Experiments
In Figs. 4–7 we present a series of experiments on simple synthetic sounds in order to
exhibit some key features of our algorithm. These experiments can be reproduced via the
code available at https://www.github.com/dprn/WCA1. For all experiments, the chosen
delay is δ = 0.0625 s and we present the STFT of the original and the processed sound.
Each time, only the positive frequencies are shown: negative frequencies are recovered
via the Hermitian symmetry of the Fourier transform on real signals.

Figure 4 Experiments with linear chirp

Figure 5 Experiments with interrupted chirp

https://www.github.com/dprn/WCA1


Boscain et al. Journal of Mathematical Neuroscience            (2021) 11:2 Page 13 of 18

Figure 6 Experiments with intersecting chirps

Figure 7 Experiments with non-linear chirp

The first example, Fig. 4, is a simple linear chirp such that the dominating frequency
depends linearly on time (i.e. corresponding to ω(t) = μt for some μ ∈ R). One observes
that the processed sound presents the same feature but for a longer duration. The param-
eters in the experiment (α = 55, β = 1, γ = 55, b = 0.05) have been chosen to emphasize
the effect of the modelling equation: the reconstruction should not present a tail that is as
pronounced, however, this allows highlighting the diffusive effect along the lifted slope.

The second example, Fig. 5, corresponds to the same linear chirp as Fig. 4, that has been
interrupted in its middle section, creating two disjoint linear chirps. The parameters are
the same as in the previous experiment. Thanks to the transport effect of the algorithm,
the gap between the two chirps is bridged in the processed signal. For this illustration, the
interruption lasts about twice as long as the delay.

The third example, Fig. 6, consists of the sum of two linear chirps with different slopes.
The slopes have been picked to suggest that linear continuations of the chirps should in-
tersect. This is indeed what happens in the processed signal with parameters α = 53, β = 1,
γ = 55, b = 0.01. However, notice that the resulting crossing happens almost as a sum of
the two chirps processed independently, with close to no interaction at the crossing. This
is purely an effect of the lift procedure. The increasing chirp is (predominantly) lifted to a
stratum corresponding to a positive slope, while the decreasing chirp is lifted to a negative
slope stratum. De facto, their evolution under the Wilson–Cowan equation is decoupled
in the 3D augmented space.

The fourth and last example, Fig. 7, corresponds to a non-linear chirp, roughly corre-
sponding to choosing ω(τ ) = sin(mτ ) in (1). The chosen parameters are α = 53, β = 1,
γ = 55, b = 0.2. The construction of the model favors linearity in the evolution of per-
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ceived frequencies. We can observe how the more linear elements of the input result in
more diffusion.

5 Conclusion
In this work we presented a sound reconstruction framework inspired by the analogies
between visual and auditory cortices. Building upon the successful cortical inspired image
reconstruction algorithms, the proposed framework lifts time–frequency representations
of signals to the 3D contact space, by adding instantaneous chirpiness information. These
redundant representations are then processed via adapted integro-differential Wilson–
Cowan equations.

The promising results obtained on simple synthetic sounds, although preliminary, sug-
gest possible applications of this framework to the problem of degraded speech. The next
step will be to test the reconstruction ability of normal-hearing humans on originally de-
graded speech material compared to the same speech material after algorithm reconstruc-
tion. Such an endeavour will contribute to the understanding of the auditory mechanisms
emerging in adverse listening conditions. It will furthermore help to deepen our knowl-
edge on general organization principles underlying the functioning of the human auditory
cortex.

Appendix A: Integral kernel of the Kolmogorov operator
The result in Proposition 1 is well-known. For example, by applying [3, Proposition 9] and
letting x = (ω,ν) and x′ = (ω′,ν ′), one gets that the kernel is

kδ

(
ω,ν‖ω′,ν ′) =

1
2π

√
det Dδ

exp

[
–

1
2
(
x′ – eδAx

)
D–1
δ

(
x′ – eδAx

)]
,

where

A =

(
0 –1
0 0

)
and B =

(
0√
2b

)
,

and

Dδ = eδA
[∫ τ

0
e–σABB∗e–σA∗

dσ

]
eτA∗

.

Direct computations yield

Dδ = 2b

(
δ3/3 –τ 2/2

–δ2/2 τ

)
and det Dδ =

b2τ 4

3
.

Therefore,

1
2

D–1
δ =

1
bτ 3 M, where M =

(
3 3δ/2

3δ/2 δ2

)
.

Finally, the statement follows by letting

gδ

(
x‖x′) =

(
x′ – eδAx

)
M
(
x′ – eδAx

)
.
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We now turn to an argument for Proposition 2. Observe that kδ(x‖x′) ≥ ε if and only if

gδ

(
x‖x′) ≤ η := –bδ3 log

(
2πbδ2
√

3
ε

)
.

Then, we start by solving z
Mz ≤ η, for z ∈ R
2. One can check that this is verified if and

only if

|z2| ≤
√

4η

δ2 and
∣∣∣∣z1 +

δ

2
z2

∣∣∣∣ ≤ δ

2
√

3

√
4η

δ2 – z2
2.

Since Cε = 4η/δ2, the statement follows by computing the above at z = x′ – eτAx.

Appendix B: Heisenberg group action on the contact space
Recall that the short-time Fourier transform of a signal s ∈ L2(R) is given by

S(τ ,ω) := STFT(s)(τ ,ω) =
∫
R

s(t)W (τ – t)e2π itω dt.

Here W : R → [0, 1] is a compactly supported (smooth) window, so that S ∈ L2(R2). Fun-
damental operators in time–frequency analysis [21] are time and phase shifts, acting on
signals s ∈ L2(R) by

Tθ s(t) := s(t – θ ) and Mλs(t) := e2π iλts(t),

for θ ,λ ∈ R. One easily checks that Tθ and Mλ are unitary operators on L2(R). By conju-
gation with the short-time Fourier transform, they naturally define the unitary operators
on L2(R2) given by

Tθ S(τ ,ω) = e–2π iωθ S(τ – θ ,ω), (11)

MλS(τ ,ω) = S(τ ,ω – λ).

The relevance of the Heisenberg group in time–frequency analysis is a direct conse-
quence of the commutation relation

Tθ MλT–1
θ M–1

λ = e–2π iλθ Id.

Indeed, this shows that the operator algebra generated by (Tθ )θ∈R and (Mλ)λ∈R coincides
with the Heisenberg group H

1 via the representation U : H1 → U (L2(R2)) defined by

U(θ ,λ, ζ ) = e–2π iζ Tθ Mλ. (12)

The above discussion shows that the Heisenberg group can be regarded as the natural
space of symmetries of sound signals. In particular, any meaningful treatment of these
signals should respect such a symmetry. In the case of our model, this is the content of the
following result.
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Proposition 4 The sound processing algorithm presented in this paper commutes with the
Heisenberg group action (12) on sound signals. That is, if the input sound signal s ∈ L2(R2)
yields ŝ as a result, then, for any (θ ,λ, ζ ) ∈ H

1, the input U(θ ,λ, ζ )s yields U(θ ,λ, ζ )ŝ as a
result.

Proof We can schematically write the algorithm as:

ŝ = STFT–1 ◦Proj◦WC◦Lift◦STFT(s).

Here Lift is the lift operator defined in Sect. 2.1, WC denotes the Wilson–Cowan evolution
(WC), and Proj denotes the projection from the augmented space to the time–frequency
representation, defined by

Proj a(t,ω) =
∫ +∞

–∞
a(t,ω,ν) dν.

Observe that (11) shows that U induces a representation of H1 on L2(R2), the codomain
of the STFT, which we will denote by Ũ . Thus, to prove the statement it suffices to show
that

[
Proj◦WC◦Lift, Ũ(θ ,λ, ζ )

]
= 0, ∀(θ ,λ, ζ ) ∈H

1.

Recall now that Lift associates with S ∈ L2(R2) a distribution of the form Lift[S](τ ,ω,ν) =
S(ω,ν)δ
(τ ,ω,ν) for some 
 ⊂R

3. Due to the fact that 
 is defined via the modulus of S,
it is unaffected by the phase factors appearing in the representation Ũ . That is, the lift of
Ũ(θ ,λ, ζ )S is given by

Lift
[
Ũ(θ ,λ, ζ )S

]
(τ ,ω,ν) = e–2π i(ζ+ωθ )δ
(τ – θ ,ω – λ,ν)S(τ – θ ,ω – λ)

= e–2π i(ζ+ωθ ) Lift[S](τ – θ ,ω – λ,ν).

It is then immediate to check that [Proj◦Lift, Ũ(θ ,λ, ζ )] = 0.
We are left to verify that the operator WC commutes with Ũ(θ ,λ, ζ ). The commutation

is trivial for the linear terms. On the other hand, the non-linearity introduced in the inte-
gral term commutes with Ũ(θ ,λ, ζ ) thanks to the fact that σ (ρeiφ) = eiφσ (ρ) for all ρ > 0,
φ ∈R. �
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Endnotes
a A 3-dimensional manifold M becomes a contact space once it is endowed with a smooth map M � q �→ D(q) where

D(q) is a a plane in the tangent space TqM passing from q. There is an additional requirement on this map. Locally
one can always writeD(q) = span{X0(q),X1(q)}, where X0 and X1 are two smooth vector fields. Then at every point q
one should require dim(spanq{X0,X1, [X0,X1]}) = 3. Here [·, ·] is the Lie bracket of the vector fields. The main
consequence of this condition is that no surface can be tangent toD at all points.

By assigning to everyD(q) an inner (Euclidean) product that is smooth as a function of q, we endow M with a
sub-Riemannian structure. The simplest way of defining locally such a structure on a 3-dimensional manifold is to
assign two vector fields X0 and X1 postulating, on the one hand, thatD(q) = span{X0(q),X1(q)} (assigning in this way
the contact structure) and, on the other hand, that they have norm one and are mutually orthogonal (assigning in
this way the inner product).

The simplest example of sub-Riemannian structure on R
3 is given by the so-called Heisenberg group for which

the vector fields X0 = (1,ν , 0)
 and X1 = (0, 0, 1)
 are orthonormal (here we write coordinates in R
3 as (τ ,ω,ν)). Such

a structure is called Heisenberg group since defining X2 = (0, 1, 0)
 one has the Lie brackets [X0,X1] = X2 ,
[X0,X2] = [X1,X2] = 0, that are the commutation relations appearing in quantum mechanics.

b Note that in mathematics, the term ‘direction’ corresponds to what neurophysiologists call ‘orientation’, and vice
versa. In this study, we use the mathematical terminology.

c Actually, its spectrogram |S| : [0, T ]×R→ [0, +∞), see Remark 2.
d That is, if f is a distribution defined on an open set � and such that (∂t –L∗)f ∈ C∞(�), then f ∈ C∞(�).
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