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Abstract
The fruit fly’s natural visual environment is often characterized by light intensities
ranging across several orders of magnitude and by rapidly varying contrast across
space and time. Fruit fly photoreceptors robustly transduce and, in conjunction with
amacrine cells, process visual scenes and provide the resulting signal to downstream
targets. Here, we model the first step of visual processing in the
photoreceptor-amacrine cell layer. We propose a novel divisive normalization
processor (DNP) for modeling the computation taking place in the
photoreceptor-amacrine cell layer. The DNP explicitly models the photoreceptor
feedforward and temporal feedback processing paths and the spatio-temporal
feedback path of the amacrine cells. We then formally characterize the contrast gain
control of the DNP and provide sparse identification algorithms that can efficiently
identify each the feedforward and feedback DNP components. The algorithms
presented here are the first demonstration of tractable and robust identification of
the components of a divisive normalization processor. The sparse identification
algorithms can be readily employed in experimental settings, and their effectiveness
is demonstrated with several examples.

Keywords: Sparse functional identification; Contrast gain control; Fruit fly;
Photoreceptor; Divisive normalization

1 Introduction
Sensory processing systems in the brain extract relevant information from stimuli whose
amplitude can vary orders of magnitude [1–4]. Consequently, at each layer of processing,
starting right from sensory transduction, neurons need to map their output into a range
that can be effectively processed by subsequent neural circuits. As an example, photore-
ceptors [5–8] and olfactory receptor neurons [9, 10] in both vertebrates and invertebrates
respectively adapt to a large range of intensity/temporal contrast values of visual and odor-
ant stimuli. Adaptation to mean and variance of the stimuli has been observed in the au-
ditory system [11, 12] as well. Further down the visual pathway, motion sensitive neurons
in vertebrates and invertebrates have been shown to be robust at various brightness and
contrast levels [13–15].
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Early visual circuits, such as the photoreceptor/amacrine cell layer of the fruit fly brain,
are believed to perform spatio-temporal intensity and contrast gain control for dynamic
adaptation to visual stimuli whose intensity and contrast levels vary orders of magnitude
both in space and time. The mechanism underlying temporal and spatio-temporal con-
trast gain control in the vertebrate retina [16–20] has often been characterized as a change
of the receptive fields in response to changing stimulus statistics [21]. However, while lin-
ear receptive fields can be estimated at each transition between different gain values, char-
acterizing the full dynamics of contrast gain control received little attention. Current the-
oretical methods for describing spatio-temporal gain control lack a systematic framework
for characterizing its dynamics, and identification algorithms to estimate circuit compo-
nents are generally not available.

One exception is the use of theory of dynamical systems for modeling nonlinear gain
control. Examples include the Volterra series expansion [22, 23] and the nonlinear au-
toregressive moving average model with exogenous inputs (NARMAX) [24, 25]. Both for-
malisms exhibit extensive rigorous tools of functional identification. However, the former
typically requires high-order Volterra kernels to model the highly nonlinear gain con-
trol, and its identification suffers from the curse of dimensionality. In practice, using the
second- or third-order Volterra kernels is computationally not tractable with commodity
hardware, while at the same time not fully capturing the dynamics of gain control. For the
latter, an extension to the spatio-temporal domain is often out of reach.

Divisive normalization provides an alternative nonlinear operator to model gain control.
Divisive normalization [26] has been proposed as a canonical circuit model of computa-
tion for many sensory processing circuits underlying adaptation and attention [4, 27–31].
Divisive normalization models in sensory systems are often associated with a population
of neurons where each receives inputs from the pool [26, 32]. Recent studies have shown
that divisive normalization is a suitable candidate for describing the contrast gain control
and its dynamics [33].

Existing modeling studies of divisive normalization in sensory systems mostly focus on
establishing a connection between gain control and the statistical properties of natural
sensory stimuli [28, 34–36]. There is a lack of general mathematical framework for iden-
tifying divisive normalization circuits from recorded data.

Early models of divisive normalization [27] and their derivatives [26, 28, 29, 37–40] only
consider feedforward divisive normalization circuits. The modeled neural circuits often
exhibit, however, extensive feedback circuits [22, 41].

In this paper, we address the above issues by modeling the photoreceptor/amacrine cells
layer of the fruit fly as a multi-input multi-output (MIMO) feedforward and feedback tem-
poral and spatio-temporal divisive normalization processor (DNP). The MIMO DNPs are
built upon temporal and spatio-temporal feedforward and feedback of divisive normal-
ization operators constructed from low-dimensional Volterra operators. Combining with
sparse identification methods [42], we provide efficient algorithms for identifying all the
components of the temporal as well as spatio-temporal divisive normalization processors.

This manuscript is organized as follows. In Sect. 2 the overall architecture of the divisive
normalization processor (DNP) is introduced and its power of modeling contrast gain con-
trol is demonstrated. We first describe in Sect. 2.1 the biological model of photoreceptor-
amacrine cell layer. In Sect. 2.2, we introduce a general model for divisive normalization
in the time domain. The temporal DNP consists of the ratio of two nonlinear functionals
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acting on the input stimulus. In Sect. 2.3 we then extend the model to space-time domain
to include models of lateral feedback from amacrine cells and demonstrate its processing
power. In Sects. 3 and 4, we provide identification algorithms and show that the tempo-
ral and spatio-temporal DNPs can be efficiently identified. We demonstrate the effective-
ness of the algorithms with several examples. We conclude the paper with a discussion in
Sect. 5.

2 The architecture of divisive normalization processors
In Sect. 2.1 we start by motivating the present work. We then introduce the architecture of
divisive normalization processors in the time domain (Sect. 2.2) and space-time domain
(Sect. 2.3). Finally, in Appendix 1 we provide examples that characterize the I/O mapping
of the class of temporal and spatio-temporal divisive normalization processors previously
described.

2.1 Modeling the photoreceptors and amacrine cells layer
In what follows, we anchor the model description around the photoreceptor-amacrine
cell layer of the fruit fly. The fly retina consists of ∼800 ommatidia, each of which hosts
photoreceptors whose axons terminate in a secondary neuropil called lamina. There, they
provide inputs to columnar large monopolar cells (LMCs) that project to the third visual
neuropil, and to amacrine cells [43]. Amacrine cells are interneurons that innervate axon
terminals of multiple photoreceptors. The photoreceptors, in turn, receive lateral feedback
from the amacrine cells as well as feedback from LMCs such as L2 neurons [41, 44, 45].

A circuit diagram of the photoreceptor-amacrine cell layer is shown in Fig. 1. For the
sake of clarity, we assume here that an ommatidium consists of a single photoreceptor. It
has been shown that the outputs of photoreceptors exhibit rapid gain control through both
the phototransduction process and the interaction with such feedback loops [25, 46–49].

In what follows we propose a model comprising nonlinear transformations combined
with divisive normalization that can model such gain control and can account for diverse
dynamics. We will also show that the model we propose can be systematically identified
from observed input output pairs.

2.2 Divisive normalization processors in the time domain
In this section we present the modeling of temporal stimuli in 2.2.1 and introduce a class
of temporal divisive normalization processors for modeling photoreceptors in Sect. 2.2.2.

Figure 1 A schematic diagram of interaction between Amacrine cells and photoreceptors in multiple
cartridges
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2.2.1 Modeling temporal stimuli
We model the temporal varying stimuli u1 = u1(t), t ∈ D ⊆ R, to be real-valued elements
of the space of trigonometric polynomials [50]. The choice of the space of the trigono-
metric polynomials has, as we will see, substantial computational advantages. A temporal
stimulus models the visual field arising at the input of a single photoreceptor.

Definition 1 The space of trigonometric polynomials H1 is the Hilbert space of complex-
valued functions

u(t) =
L∑

l=–L

al · el(t), (1)

over the domain D = [0, S], where

el(t) =
1√
S

exp

(
jlΩ
L

t
)

. (2)

Here, Ω denotes the bandwidth and L the order of the space. Stimuli u1 ∈H1 are extended
to be periodic over R with period S = 2πL

Ω
.

H1 is a reproducing kernel Hilbert space (RKHS) [51] with reproducing kernel (RK)

K1
(
t; t′) =

L∑

l=–L

el
(
t – t′). (3)

RKHSs have been previously employed for modeling neural encoding of temporal, audi-
tory, and visual stimuli [52–55].

We denote the dimension of H1 by dim(H1) and dim(H1) = 2L + 1.

Definition 2 The tensor product space H2 = H1 ⊗H1 is an RKHS with reproducing ker-
nel

K2
(
t1, t2; t′

1, t′
2
)

=
L∑

l1=–L

L∑

l2=–L

el1
(
t1 – t′

1
) · el2

(
t2 – t′

2
)
. (4)

Note that dim(H2) = dim(H1)2 = (2L + 1)2.

2.2.2 Temporal divisive normalization processors
We first consider single photoreceptors without feedback from the amacrine cells shown
in Fig. 1. A schematic of the temporal divisive normalization processor (DNP) model-
ing the photoreceptor is shown in Fig. 2. For notational simplicity, we consider a sin-
gle photoreceptor here. The input visual stimulus to the photoreceptor is denoted by
u = u(t), t ∈D, and the output electric current by v = v(t), t ∈D.

Remark 1 Note that, in a single photoreceptor, photons are first absorbed by a large num-
ber of microvilli [47] (not shown). Microvilli generate “quantum bumps” in response to
photons; the photoreceptor aggregates the bumps and in the process creates the transduc-
tion current. Calcium ion influx and calcium diffusion into the photoreceptor cell body
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Figure 2 Schematic diagram of a temporal divisive normalization processor

may change the sensitivity of the transduction cascade. A high concentration of calcium
(buffer) can result in a photon to be ineffective and may also affect the duration and the
magnitude of quantum bumps [56].

The DNP consists of (1) a feedforward Volterra processor (VP) T 1, (2) a feedforward
normalization VP T 2, and (3) a feedback normalization VP T 3. The output of the pho-
toreceptor amounts to

vn =
T 1un

T 2un + T 3vn , n = 1, 2, . . . , N , (5)

where

(
T lun)(t) = bl +

∫

D

hl
1(s)un(t – s) ds

+
∫

D2
hl

2(s1, s2)un(t – s1)un(t – s2) ds1 ds2, l = 1, 2, (6)

and

(
T 3vn)(t) = b3 +

∫

D

h3
1(s)vn(t – s) ds +

∫

D2
h3

2(s1, s2)vn(t – s1)vn(t – s2) ds1 ds2. (7)

Here, bl , l = 1, 2, 3, are the zeroth-order Volterra kernels (constants), hl
1(t), l = 1, 2, 3, are

first-order Volterra kernels (impulse responses of linear filters), and hl
2(t, s), l = 1, 2, 3, are

second-order Volterra kernels. As before, D denotes the domain of the input space, and
D

2 = D×D.

Remark 2 For the sake of tractability, we limit each nonlinear functional in (6) and (7) to
be composed of only first- and second-order Volterra kernels. The division in (5) allows
us, however, to model nonlinear processing of much higher orders.

We note that v in (5) is invariant under scaling by the same factor of the numerator and
denominator. Hence, without loss of generality, we will assume b2 + b3 = 1. We will also
assume that the DNP is bounded-input bounded-output [57].

2.2.3 Modeling temporal DNP feedback filters
Here, we define the filter kernels in equations (6) and (7).

Definition 3 Let hl
p ∈ L

1(Dp), l = 1, 2, p = 1, 2, where L
1 denotes the space of Lebesgue

integrable functions. The operator P1 : L1(D) →H1 given by

(
P1hl

1
)
(t) =

∫

D

hl
1
(
t′)K1

(
t; t′)dt′ (8)
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is called the projection operator from L
1(D) to H1. Similarly, the operator P2 : L1(D2) →

H2 given by

(
P2hl

2
)
(t1; t2) =

∫

D2
hl

2
(
t′
1; t′

2
)
K2
(
t1, t2; t′

1, t′
2
)

dt′
1 dt′

2 (9)

is called the projection operator from L
1(D2) to H2.

Note that, for un ∈H1,P1un = un. Moreover, with un
2(t1, t2) = un(t1)un(t2),P2un

2 = un
2 . Thus,

(
T lun)(t) = bl +

∫

D

(
P1hl

1
)
(s)un(t – s) ds

+
∫

D2

(
P2hl

2
)
(s1, s2)un(t – s1)un(t – s2) ds1 ds2, l = 1, 2, (10)

and by assuming that hl
1 ∈H1, l = 1, 2, and hl

2 ∈H2 we recover the simple form of equation
(6).

We model the output waveforms vo = vo(t), t ∈D ⊆R, to be real-valued elements of the
space of trigonometric polynomials [50].

Definition 4 The space of trigonometric polynomials Ho
1 is the Hilbert space of complex-

valued functions

vo(t) =
Lo∑

l=–Lo

ao
l · eo

l (t), (11)

over the domain D = [0, S], where

eo
l (t) =

1√
So

exp

(
jlΩo

Lo t
)

. (12)

Here, Ωo denotes the bandwidth and Lo the order of the space. The output waveforms
vo ∈Ho

1 are extended to be periodic over R with period So = 2πLo

Ωo .

Ho
1 is a reproducing kernel Hilbert space (RKHS) [51] with reproducing kernel (RK)

Ko
1
(
t; t′) =

Lo∑

l=–Lo

eo
l
(
t – t′). (13)

We denote the dimension of Ho
1 by dim(Ho

1) and dim(Ho
1) = 2Lo + 1.

Definition 5 The tensor product space Ho
2 = Ho

1 ⊗Ho
1 is an RKHS with reproducing ker-

nel

Ko
2
(
t1, t2; t′

1, t′
2
)

=
Lo∑

l1=–Lo

Lo∑

l2=–Lo

eo
l1

(
t1 – t′

1
) · eo

l2

(
t2 – t′

2
)
. (14)

Note that dim(Ho
2) = dim(Ho

1)2 = (2Lo + 1)2.
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Definition 6 Let h3
p ∈ L

1(Dp), p = 1, 2, where L1 denotes the space of Lebesgue integrable
functions. The operator Po

1 : L1(D) →Ho
1 given by

(
Po

1 h3
1
)
(t) =

∫

D

h3
1
(
t′)Ko

1
(
t; t′)dt′ (15)

is called the projection operator from L
1(D) to H1. Similarly, the operator Po

2 : L1(D2) →
Ho

2 given by

(
Po

2 h3
2
)
(t1; t2) =

∫

D2
h3

2
(
t′
1; t′

2
)
Ko

2
(
t1, t2; t′

1, t′
2
)

dt′
1 dt′

2 (16)

is called the projection operator from L
1(D2) to Ho

2.

We note that

(
T 3vn)(t) = b3 +

∫

D

(
Po

1 h3
1
)
(s)vn(t – s) ds

+
∫

D2

(
Po

2 h3
2
)
(s1, s2)vn(t – s1)vn(t – s2) ds1 ds2. (17)

If we now assume that h3
1 ∈ Ho

1 and h3
2 ∈ Ho

2, then Po
1 h3

1 = h3
1 and Po

2 h3
2 = h3

2, respectively,
and the above equation is identical with equation (7) above.

2.3 Divisive normalization processors in the space-time domain
In Sect. 2.2, we described a temporal divisive normalization processor model. The nor-
malization term was the sum of a processed version of the input and the output. However,
many biological circuits are thought to exhibit lateral inhibition and gain control [26, 58–
61]. An example is provided by the photoreceptor-amacrine cell layer shown in Fig. 1. In
Fig. 3, we provide a model of the schematic in Fig. 1. This model is a ‘circuit’ extension
of the one shown in Fig. 2 and accounts explicitly for lateral inhibition. We anchor the
extension in the visual system where the input domain is spatio-temporal.

In Sect. 2.3.1 we model spatio-temporal stimuli and in Sect. 2.3.2 the spatio-temporal
divisive normalization processors.

2.3.1 Modeling spatio-temporal stimuli
In this section we provide a model of the interaction between a group of photorecep-
tors and an amacrine cell. In each photoreceptor, the phototransduction process converts
light into current and excites the membrane of the photoreceptor. The voltage signal is
then propagated through its axon to the lamina. While photoreceptors provide inputs to
amacrine cells, their axon terminals also receive amacrine cell input. Since an amacrine
cell innervates multiple lamina cartridges, it provides spatial feedback to several photore-
ceptors in a small neighborhood.

We extend the temporal divisive normalization processor depicted in Fig. 2 to process
spatio-temporal stimuli as shown in Fig. 3. Each spatially sampled point, or pixel, denoted
as ui(t), i = 1, 2, . . . , N , is first processed by a temporal DNP. For simplicity rather than pick-
ing different Volterra kernels for each branch, T 1,T 2, and T 3 are shared across branches.
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Figure 3 Schematic block diagram of the spatio-temporal divisive normalization processor

In addition, we introduce a multi-input Volterra processor (MVP) to model the spatio-
temporal feedback due to the amacrine cell. Each of the branches in Fig. 3, without the
input of the MVP block, is equivalent to the model in Fig. 2.

2.3.2 Spatio-temporal divisive normalization processors
As shown in Fig. 3(b), MVPs are comprised of second-order filters acting on DNP output
pairs in addition to linear filters independently acting on each DNP output. Thus, the
inputs to the MVP are the DNP outputs vi(t), i = 1, 2, . . . , N , and the MVP output amounts
to

(
L4v

)
(t) = b4 +

N∑

i=1

(∫

D

hi4
1 (s)vi(t – s) ds

)

+
N∑

i=1

N∑

j=1

(∫

D2
hij4

2 (s1, s2)vi(t – s1)vj(t – s2) ds1 ds2

)
, (18)

where

v(t) =
[
v1(t), v2(t), . . . , vN (t)

]T , (19)

b4 is the zeros-th-order Volterra kernel (constant). Furthermore, hi4
1 ∈ Ho

1, i = 1, 2, . . . , N ,
are the first-order Volterra kernels whose inputs are vi, i = 1, 2, . . . , N , respectively, and
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hij4
2 ∈Ho

2, i, j = 1, 2, . . . , N , are the second-order Volterra kernels whose inputs are the pairs
(vi, vj), i, j = 1, 2, . . . , N , respectively.

The full model in Fig. 3 thus consists of parallel channels as depicted in Fig. 2 with the
added cross-channel feedback normalization/gain control provided by the MVP block.

The overall output of the spatio-temporal DNP can be expressed as

vn(t) =
T 1un

T 2un + T 3vn + L4v
, n = 1, 2, . . . , N . (20)

W.L.O.G., we assume that b2 + b3 + b4 = 1.

2.3.3 Spatio-temporal DNPs and contrast gain control
The relationship and some intuition behind the modeling power of spatio-temporal DNPs
are provided in several examples in Appendix 1. The I/O of three simple spatio-temporal
DNPs stimulated with different inputs is briefly mentioned here. In the first example, we
evaluated the response of a DNP with four photoreceptors under different background
light intensity levels. In Fig. 9 one of the photoreceptors is subjected to an additional flash
of different light intensity, while the inputs of the other three are kept at the same back-
ground level. The steady state response of the photoreceptor that receives the additional
flash is shifted as a function of the background-intensity level. In the second example,
contrast gain control exerted by the amacrine cells is demonstrated for the same DNP in
Fig. 10. The effect of the MVP block on the RMS contrast can be clearly seen in Fig. 10
and is quantitatively evaluated in Fig. 11. Finally, an example of steady state I/O visualiza-
tion of a natural image with resolution of 1536 × 1024 pixels at low, medium, and high
luminance values is shown in Fig. 13. The image was divided into 16 × 16 spatio-temporal
DNP blocks with a four-pixel overlap in each direction.

3 Sparse identification of temporal DNPs
In what follows we derive sparse identification algorithms for the components of spatio-
temporal DNPs depicted in Fig. 2 and formally defined in equation (5). In what follows, we
assume that during experimental trials, the single isolated photoreceptor n is presented
with M test stimuli unm = unm(t), m = 1, 2, . . . , M, and for each trial the outputs vnm = vnm(t),
m = 1, 2, . . . , M, are recorded. The objective is to identify the model components b1, hl

1, hl
2,

l = 1, 2, 3, from the knowledge of the inputs and outputs.

3.1 Deriving the sparse identification algorithm for temporal DNPs
Lemma 1 With M input stimuli presented to a temporal DNP, let the inputs unm(t) and
the outputs vnm(t) be sampled at times (tk), k = 1, 2, . . . , T . Then

b1 +
〈
h1

1,φnmk
11

〉
H1

+
〈
h2

1,φnmk
12

〉
H1

+
〈
h3

1,φnmk
13

〉
Ho

1

+
〈
h1

2,φnmk
21

〉
H2

+
〈
h2

2,φnmk
22

〉
H2

+
〈
h3

2,φnmk
23

〉
Ho

2
= qnmk , (21)
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where the sampling functions φnmk
11 ∈ H1, φnmk

12 ∈ H1, φnmk
13 ∈ Ho

1, φnmk
21 ∈ H2, φnmk

22 ∈ H2,
and φnmk

23 ∈Ho
2 are given by

φnmk
11 (t) = unm(tk – t),

φnmk
12 (t) = –qnm(tk)unm(tk – t),

φnmk
13 (t) = –qnm(tk)

(
Po

1 vnm)(tk – t),

φnmk
21 (t, s) = unm(tk – t)unm(tk – s),

φnmk
22 (t, s) = –qnm(tk)unm(tk – t)unm(tk – s),

φnmk
23 (t, s) = –qnm(tk)

(
Po

1 vnm)(tk – t)
(
Po

1 vnm
1
)
(tk – s),

(22)

and qnmk = vnm(tk) for all m = 1, 2, . . . , M and k = 1, 2, . . . , T .

Proof See Appendix 2. �

Remark 3 From (21), it can be seen that the identification of the divisive normalization
processor has been reformulated as a generalized sampling problem [62] inR⊕H1 ⊕H1 ⊕
Ho

1 ⊕H2 ⊕H2 ⊕Ho
2. Subsequently, the divisive normalization model can be identified by

solving a system of linear equations.

In order to solve the system of linear equations in (21), we rewrite them first in matrix
form.

Lemma 2 Equation (21) can be expressed in matrix form as follows:

cT
1Φ

nmk + Tr
(
CH

2 Ξnmk) = qnmk (23)

for all m = 1, 2, . . . , M and k = 1, 2, . . . , T , where Tr(·) denotes the trace operator, and

Measurements ← qnmk , (scalar) (24)

Unknowns ←

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c1 =
[
b1 (h1

1)T (h2
1)T (h3

1)T
]T

(4L+2Lo+4)×1
,

C2 =

⎡

⎢⎢⎣

H1
2 0(2L+1)×(2Lo+1)

H2
2 0(2L+1)×(2Lo+1)

0(2Lo+1)×(2L+1) H3
2

⎤

⎥⎥⎦

(4L+2Lo+3)×(2L+2Lo+2)

,
(25)

Sampling vectors

←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φnmk =

⎡

⎢⎢⎢⎢⎢⎣

1

unmk

–qnmkunmk

–qnmkvnmk

⎤

⎥⎥⎥⎥⎥⎦

(4L+2Lo+4)×1

,

Ξnmk =

⎡

⎢⎢⎣

Unmk
2 0(2L+1)×(2Lo+1)

–qnmkUnmk
2 0(2L+1)×(2Lo+1)

0(2Lo+1)×(2L+1) –qnmkVnmk
2

⎤

⎥⎥⎦

(4L+2Lo+3)×(2L+2Lo+2)

.

(26)
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Proof See Appendix 3 for more notation and detailed proof. �

A necessary condition on the number of trials and the number of measurements re-
quired for identifying the divisive normalization processor for solving the system of equa-
tions in Theorem 1 is that the number of trials M ≥ 3 + 2 · dim(H1) and the number of
total samples TM ≥ 1 + 2 · dim(H1) + 2 · dim(H1)2.

It is easy to see that solving the system of equations above suffers from the curse of
dimensionality. As the dimension of H1 increases, the number of samples needed to iden-
tify components increases quadratically. Note that the second-order Volterra kernels hl

2,
l = 1, 2, 3, have unique symmetric forms with orthogonal expansions as follows [57]:

hl
2(t1, t2) =

∑

k∈N
λklgkl

1 (t1)gkl
1 (t2),

∥∥gkl
1
∥∥ = 1, (27)

where gkl
1 ∈ H1, k ∈ N, are orthogonal to each other. In what follows, we assume that the

second-order Volterra kernels are sparse, i.e., λkl = 0 for k > rl , where rl � dim(H1). Sparse
kernels often arise in modeling sensory processing, e.g., in complex cells in the primary vi-
sual cortex [42]. By exploiting the sparse structure of the second-order kernels, the iden-
tification problem can be made tractable.

The sparsity of the kernels can be translated into a low-rank condition on the matrix
representation of hl

2, l = 1, 2, 3 (see also Appendix 3). Ideally, the optimization problem
would be a rank minimization problem. But rank minimization being NP-hard, we use
the surrogate of nuclear norm minimization instead, which is the convex envelope of the
rank operator [63].

To perform sparse identification of the divisive normalization processor, we devised Al-
gorithm 1. By optimizing over c1 and C2 and subsequently assigning the corresponding
block entries according to (25), Algorithm 1 identifies b1, hi

1, i = 1, 2, 3, and Hi
2, i = 1, 2, 3.

As a surrogate of rank minimization, Algorithm 1 minimizes a linear combination of
the nuclear norm of C2 and the Euclidean norm of c1. The optimization constraints cor-
respond (i) in (29) to the generalized sampling problem allowing certain amount of error,
(ii) in (30) to zero mean slack variables, (iii) in (31) to the zeros in the two blocks in the
top-right of C2, (iv) in (32) to the zeros in the block in the lower-left of C2, and (v) in (33),
(34), and (35), respectively, H1

2, H2
2, and H3

2 are Hermitian.

Algorithm 1 ĉ1 and Ĉ2 are the solution to the following optimization problem:

minimize
c1,C2,ε

‖C2‖∗ + λ1‖c1‖2 + λ2‖ε‖2 (28)

s.t. cT
1Φ

nmk + Tr
(
CH

2 Ξnmk) = qnmk + ε(m–1)∗T+k ,

m = 1, . . . , M, k = 1, . . . , T , (29)

1Tε = 0 (30)

[
I2 dim(H1) 0

]
C2

[
0

Idim(Ho
1)

]
= 0, (31)

[
0 Idim(H0

1)

]
C2

[
Idim(H1)

0

]
= 0, (32)
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[
Idim(H1) 0

]
C2

[
Idim(H1)

0

]
=

[
Idim(H1)

0

]T

C2
H
[

Idim(H1) 0
]T

, (33)

[
0dim(H1) Idim(H1) 0

]
C2

[
Idim(H1)

0

]

=

[
Idim(H1)

0

]T

C2
H
[

0dim(H1) Idim(H1) 0
]T

, (34)

[
0 Idim(Ho

1)

]
C2

[
0

Idim(Ho
1)

]
=

[
0

Idim(Ho
1)

]T

C2
H
[

0 Idim(Ho
1)

]T
, (35)

where ‖ · ‖∗ denotes the nuclear norm defined as ‖C2‖∗ = Tr((CH
2 C2) 1

2 ), λ1,λ2 are appro-
priately chosen hyperparameters, εi ∈R, i = 1, 2, . . . , MT , represent slack variables, 1 rep-
resents a vector of all ones, Ip represents a p × p identity matrix, 0p represents a p × p
matrix of all zeros, 0p×q represents a p × q matrix of all zeros, and 0 represents a matrix
of all zeros with dimensions that make the equation consistent.

Theorem 1 The filters of the DNP are identified as b̂1 = b̂1 and

ĥ1
1(t) =

L∑

l=–L

[
ĥ1

1
]

l+L+1 · el(t), (36)

ĥ1
2(t1, t2) =

L∑

l1=–L

L∑

l2=–L

[
Ĥ1

2
]

l1+L+1,L+1–l2
· el1 (t1)el2 (t2), (37)

ĥ2
1(t) =

L∑

l=–L

[
ĥ2

1
]

l+L+1 · el(t), (38)

ĥ2
2(t1, t2) =

L∑

l1=–L

L∑

l2=–L

[
Ĥ2

2
]

l1+L+1,L+1–l2
· el1 (t1)el2 (t2), (39)

ĥ3
1(t) =

Lo∑

l=–Lo

[
ĥ3

1
]

l+L+1 · eo
l (t), (40)

ĥ3
2(t1, t2) =

Lo∑

l1=–Lo

Lo∑

l2=–Lo

[
Ĥ3

2
]

l1+Lo+1,Lo+1–l2
· eo

l1 (t1)eo
l2 (t2), (41)

where

[
b̂1 ĥ1

1
T

ĥ2
1

T
ĥ3

1
T
]T

= ĉ1 and

⎡

⎢⎣
Ĥ1

2 –
Ĥ2

2 –
– Ĥ3

2

⎤

⎥⎦ = Ĉ2. (42)

Remark 4 By exploiting the structure of low-rank second-order Volterra kernels, Algo-
rithm 1 provides a tractable solution to the identification of the components of the divisive
normalization processor.

3.2 Examples of sparse identification of temporal DNPs
We provide here identification examples solved using Algorithm 1.
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Example 1 Here, we identify a temporal divisive normalization processor in Fig. 2, where

h1
1(t) = 2.472 × 1010t3e–100π t cos(36π t),

h2
1(t) = 3.117 × 108t3e–100π t cos(20π t),

h3
1(t) = 4.753 × 108t3e–100π t cos(52π t),

h1
2(t, s) = 9.038 × 1019t3s3e–100π (t+s) cos(52π t) cos(52πs)

+ 5.3467 × 1014t3s3e–100π (t+s) cos(100π t) cos(100πs),

h2
2(t, s) = 1.533 × 1019t3s3e–100π (t+s) cos(68π t) cos(68πs)

+ 5.970 × 1014t3s3e–100π (t+s) cos(84π t) cos(84πs),

h3
2(t, s) = 6.771 × 1019t3s3e–100π (t+s) cos(100π t) cos(100πs)

+ 5.970 × 1016t3s3e–100π (t+s) cos(84π t) cos(84πs).

We choose the input space H1 to have L = 10,Ω = 100π . Thus S = 0.2s , dim(H1) = 21, and
dim(H2) = 441. Note that all three second-order Volterra kernels exhibit low-rank struc-
ture. We presented the model with 25 stimuli from H1, whose coefficients were chosen to
be i.i.d Gaussian variables. Then, a total of 425 measurements were used from the input
and the observed output pairs to solve the identification problem using Algorithm 1. The
results of the identification are shown in Fig. 4. As can be seen from the figure, Algorithm 1
was able to identify the model with high precision using only 425 measurements, much
less than the 1387 measurements that would have been required to solve the generalized
sampling problem directly. The factor of reduction in the required measurements is crit-
ical when the model needs to be identified in a much larger space, for example, a space of
spatio-temporal stimuli as shown in the next example.

Example 2 Here, we identify a detailed biophysical model of Drosophila photoreceptors
as a DNP with feedforward only (see Fig. 2). The detailed biophysical model consists of
30,000 microvilli [5, 64]. The photon absorption in each microvillus is described by a Pois-
son process whose rate is proportional to the number of photons per microvillus incident
on the ommatidium. Photon absorption leads to a transduction process governed by a
cascade of chemical reactions. The entire transduction process is described by 13 suc-
cessive differential equations and is given in [64]. The total number of equations of the
photoreceptor model is 390, 000.

For identifying the DNP, we used natural images from the van Hateren database [65]
and simulated movements of a fly superimposed on the natural scenes. Each visual scene
was captured by a previously developed retina model [64], endowed with realistic optics
and the geometry of the fly retina. A 200-second stimulus was generated. We then divided
the stimulus into several segments, each of which scaled to a different level of mean light
intensity. The resulting stimulus is shown in Fig. 5(a). The bandwidth of the DNP input
and output spaces was limited to 50 Hz.

The visual input was presented to the DNP photoreceptor model. We used 10 seconds
of the stimulus for identifying the DNP filters. The identified filters are depicted in Fig. 6.
The output of the photoreceptor DNP model when stimulated by the other 190 seconds of
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Figure 4 Example of identification of a divisive normalization model. (a) Ph11 (blue) and P̂h11 (red, SNR

60.56 [dB]), (b) Ph21 (blue) and P̂h21 (red, SNR 60.48 [dB]), (c) Ph31 (blue) and P̂h31 (red, SNR 49.56 [dB]),

(d) Ph12, (e) Ph22, (f) Ph32, (g) P̂h12 (SNR 60.59 [dB]), (h) P̂h22 (SNR 60.54 [dB]), (i) P̂h32 (SNR 60.61 [dB])

the input stimulus is shown in Fig. 5(b). We evaluated the identified photoreceptor DNP
model by computing the SNR between the output of the detailed biophysical model and
that of the identified DNP model. The SNR was 26.14 [dB].

We additionally trained a model without normalization (i.e., with only T 1). As shown
in Fig. 5(b) the identified model without normalization does not match the output well
across different light intensities. Compared with the output of the DNP model, the SNR
was only 14.48 [dB].

The DNP filters were identified using naturalistic stimuli. To test if the identified filters
can also match the output of other types of stimuli, we presented a Gaussian noise stimulus
with a bandwidth of 50 Hz to the photoreceptor model. The resulting output was com-
pared with the output of the detailed biophysical model. As shown in Fig. 7, the output of
the DNP model closely follows the actual photoreceptor output, and the SNR was 15.04
[dB]. We note that since the input space is defined as an RKHS, the statistics of the input
stimuli do not affect the quality of the DNP output. We also evaluated in Fig. 7 the iden-
tification model without normalization. The SNR of the output is 4.55 [dB], a significant
decrease from the output of the DNP model.

4 Sparse identification of spatio-temporal DNPs
In what follows we derive sparse identification algorithms for the components of spatio-
temporal DNPs.
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Figure 5 Output of the identified DNP model of the photoreceptor. (a) The stimulus presented to the
photoreceptor; 5% of the stimulus was used for identification. (b) Comparison of the output of the detailed
biophysical photoreceptor model (blue) with the output of the DNP model (red) and the output of the model
without normalization, i.e., with T1 only (yellow)

Figure 6 Identified filters of the DNP model of the photoreceptor given in Example 2. (a) P̂h11, (b) P̂h21,

(c) P̂h12, (d) P̂h22

Given the spatio-temporal divisive normalization processor depicted in Fig. 3, we are
interested in identifying all the filters from input and output observations. We formulate
an optimization problem, which achieves such identification, with high fidelity and with a
relatively small number of measurements.
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Figure 7 Evaluation of the DNP model of the photoreceptor. (a) Gaussian noise stimulus with a bandwidth of
50 Hz. (b) Output of the photoreceptor model (blue) and of the identified DNP model (red, SNR 15.04 [dB]).
The output of the identified model without normalization is shown in yellow (SNR 4.55 [dB])

4.1 Deriving the sparse identification algorithm for spatio-temporal DNPs
Here, we make the assumption that the filters hi4(t), i = 1, 2, . . . , N , and hij4

2 (t1, t2), i, j =
1, 2, . . . , N , are followed by the LPF with bandwidth Ωo and that the output is sampled
at a rate of 2fmax, where fmax = Ω

2π
is the maximum of the bandwidth of the filters hi4(t)

and hij4
2 (t1, t2). By abuse of notation, we will use vi(t) to denote the low-passed version of

the actual output. Note that, based upon the assumptions on the bandlimited nature of
the feedback filters acting on the output, the responses of these filters to the low-passed
outputs will be the same as the responses to the actual outputs.

We present M trials where input stimuli unm are chosen to be elements of the space
of trigonometric polynomials H1 for n = 1, . . . , N , m = 1, . . . , M. We project the outputs
vnm(t) on the Hilbert space of trigonometric polynomials Ho

1, i.e., Po
1 vnm(s). Note that

Po
1 vnm(s) is approximately vnm(s) for large values of Ωo [66]. Further we assume that

vnm, h1
1, h2

1, h3
1, hi4

1 ∈ L
2(D), i = 1, 2, . . . , N , the space of square integrable functions over do-

main D and h1
2, h2

2, h3
2, hij4

2 ∈ L
2(D2), i, j = 1, 2, . . . , N , the space of square integrable func-

tions over domain D
2.

We consider here the identification of the entire DNP circuit at once for two reasons.
First, as all channels are connected in the spatial domain through the MVP, the inputs to
the MVP are the outputs of the entire DNP circuit. Therefore, all outputs are required to
identify the MVP. Second, since hi

1, hi
2, i = 1, 2, 3, are shared across all channels, fewer trials

are needed to identify these filters. We present the following.

Lemma 3 With M trials presented to the spatio-temporal DNP, let the inputs unm(t) and
the outputs vnm(t) be sampled at times (tk), k = 1, . . . , T . Then, for i, j = 1, 2, . . . , N , we have



Lazar et al. Journal of Mathematical Neuroscience            (2020) 10:3 Page 17 of 35

the following equations:

b1 +
〈
h1

1,φnmk
11

〉
H1

+
〈
h2

1,φnmk
12

〉
H1

+
〈
h3

1,φnmk
13

〉
Ho

1
+

N∑

i=1

〈
hi4

1 ,φinmk
14

〉
Ho

1

+
〈
h1

2,φnmk
21

〉
H2

+
〈
h2

2,φnmk
22

〉
H2

+
〈
h3

2,φnmk
23

〉
Ho

2
+

N∑

i=1

N∑

j=1

〈
hij4

2 ,φijnmk
24

〉
Ho

2

= qnmk , (43)

where the sampling functions φnmk
11 ∈ H1, φnmk

12 ∈ H1, φnmk
13 ∈ Ho

1, φinmk
14 ∈ Ho

1, φnmk
21 ∈ H2,

φnmk
22 ∈H2, φnmk

23 ∈Ho
2, and φ

ijnmk
24 ∈Ho

2 are given by

φnmk
11 (t) = unm(tk – t),

φnmk
12 (t) = –qnm(tk)unm(tk – t),

φnmk
13 (t) = –qnm(tk)

(
Po

1 vnm)(tk – t),

φinmk
14 (t) = –qnm(tk)

(
Po

1 vim)(tk – t),

φnmk
21 (t, s) = unm(tk – t)unm(tk – s),

φnmk
22 (t, s) = –qnm(tk)unm(tk – t)unm(tk – s),

φnmk
23 (t, s) = –qnm(tk)

(
Po

1 vnm)(tk – t)
(
Po

1 vnm)(tk – s),

φ
ijnmk
24 (t, s) = –qnm(tk)

(
Po

1 vim)(tk – t)
(
Po

1 vjm)(tk – s),

(44)

and qnm
k = vnm(tk) for all m = 1, 2, . . . , M, k = 1, 2, . . . , T , and i, j, n = 1, 2, . . . , N .

Proof See Appendix 4. �

Remark 5 Theorem 3 suggests that identifying the lateral divisive normalization model
is equivalent to solving a generalized sampling problem with noisy measurements. It also
suggests that the output needs to be sampled at a high enough rate, and that the choice of
the Hilbert space used to reconstruct the feedback filters is critical since incorrect choices
for these parameters can negatively affect the identification by introducing ‘noise’ in the
measurements.

We now present the following algorithm to identify the model that exploits the low-rank
constraints imposed on the quadratic filters.

Lemma 4 Equation (43) can be expressed in matrix form as follows:

cT
1Φ

nmk + Tr
(
CH

2 Ξnmk) = qnmk , (45)

for all n = 1, 2, . . . , N , m = 1, 2, . . . , M, and k = 1, 2, . . . , T , where

Measurements ← qmk(scalar) (46)
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Unknowns

←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 =
[
b1 (h1

1)T (h2
1)T (h3

1)T

(h14
1 )T (h24

1 )T · · · (hN4
1 )T

]T

1×(4L+2(N+1)Lo+N+4))
,

C2 =

⎡

⎣(H1
2)T (H2

2)T 0 0

0 0 (H3
2)T (H114

2 )T

0 · · · 0

(H124
2 )T · · · (HNN4

2 )T

⎤

⎦
T

(2L+2Lo+2)×(4L+2(N2+1)Lo+N2+3))

,

(47)

Sampling matrices

←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φnmk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

unmk

–qnmkunmk

–qnmkvnmk

–qnmkv1mk

–qnmkv2mk

...

–qnmkvNmk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4L+2(N+1)Lo+N+4))×1

,

Ξnmk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Unmk
2 0

–qnmkUnmk
2 0

0 –qnmkVnnmk
2

0 –qnmkV11mk
2

0 –qnmkV12mk
2

...
...

0 –qnmkVNNmk
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4L+2(N2+1)Lo+N2+3))×(2L+2Lo+2)

.

(48)

We provide the following algorithm to identify b1, hi
1, i = 1, 2, 3, hi4

1 , i = 1, 2, . . . , N , Hi
2,

i = 1, 2, 3, and Hij4
2 , i, j = 1, 2, . . . , N .

Again, we assume that all the second-order filters have sparse structures akin to (27).

Algorithm 2 Let ĉ1 and Ĉ2 be the solution to the following optimization problem:

min
c1 ,C2 ,ε

‖C2‖∗ + λ1‖c1‖2 + λ2‖ε‖2 (49)

s.t cT
1Φ

nmk + Tr
(
CH

2 Ξnmk) = qnmk + ε(n–1)TM+(m–1)T+k ,

n = 1, . . . , N , m = 1, . . . , M, k = 1, . . . , T , (50)

1Tε = 0 (51)

[
I2 dim(H1) 0

]
C2

[
0

Idim(Ho
1)

]
= 0, (52)
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[
0 Idim(H0

1)

]
C2

[
Idim(H1)

0

]
= 0, (53)

[
Idim(H1) 0

]
C2

[
Idim(H1)

0

]
=

[
Idim(H1)

0

]T

C2
H
[

Idim(H1) 0
]T

, (54)

[
0dim(H1) Idim(H1) 0

]
C2

[
Idim(H1)

0

]

=

[
Idim(H1)

0

]T

C2
H
[

0dim(H1) Idim(H1) 0
]T

, (55)

[
0 Idim(Ho

1)

]
C2

[
0

Idim(Ho
1)

]
=

[
0

Idim(Ho
1)

]T

C2
H
[

0 Idim(Ho
1)

]T
, (56)

where λ1,λ2 are appropriately chosen hyperparameters and εi ∈ R, i = 1, 2, . . . , MTN , rep-
resent slack variables.

The constraints in Algorithm 2 are similar to those in Algorithm 1. Note that Hij4 are not
constrained to be Hermitian. This follows from the assumption that the MVP block may
perform asymmetric processing on any pair of inputs to the block.

Theorem 2 The identified spatio-temporal divisive normalization is specified as b̂1 = b̂1

and

ĥ1
1(t) =

L∑

l=–L

[
ĥ1

1
]

l+L+1 · el(t), ĥ2
1(t) =

L∑

l=–L

[
ĥ2

1
]

l+L+1 · el(t), (57)

ĥ3
1(t) =

Lo∑

l=–Lo

[
ĥ3

1
]

l+L+1 · eo
l (t), ĥi4

1 (t) =
Lo∑

l=–Lo

[
ĥi4

1
]

l+L+1 · eo
l (t), (58)

ĥ1
2(t1, t2) =

L∑

l1=–L

L∑

l2=–L

[
Ĥ1

2
]

l1+L+1,L+1–l2
· el1 (t1)el2 (t2), (59)

ĥ2
2(t1, t2) =

L∑

l1=–L

L∑

l2=–L

[
Ĥ2

2
]

l1+L+1,L+1–l2
· el1 (t1)el2 (t2), (60)

ĥ3
2(t1, t2) =

Lo∑

l1=–Lo

Lo∑

l2=–Lo

[
Ĥ3

2
]

l1+Lo+1,Lo+1–l2
· eo

l1 (t1)eo
l2 (t2), (61)

ĥij4
2 (t1, t2) =

Lo∑

l1=–Lo

Lo∑

l2=–Lo

[
Ĥij4

2
]

l1+Lo+1,Lo+1–l2
· eo

l1 (t1)eo
l2 (t2),

i, j = 1, 2, . . . , N , (62)

where

[
b̂1 ĥ1

1
T

ĥ2
1

T
ĥ3

1
T

ĥ14
1

T
ĥ24

1
T · · · ĥN4

1
T
]T

= ĉ1 (63)
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and

⎡

⎣Ĥ1
2

T
Ĥ2

2
T

– – – · · · –

– – Ĥ3
2

T
Ĥ114

2
T

Ĥ124
2

T · · · ̂HNN4
2

T

⎤

⎦
T

= Ĉ2. (64)

Remark 6 Assuming that all the second-order kernels in the lateral divisive normalization
model have rank r, the expected number of measurements for Algorithm 2 to identify the
model is of the order O(r · dim(H1) + N2r · dim(Ho

1)). When N is large, the N2 factor may
become prohibitive in identifying the model. Additional assumptions on hij4

2 may help
mitigate this and maintain tractability of solving the identification problem. For example,
with the assumption that hij4 = h14

1 if i = j and hij4
2 = h24

1 otherwise, the expected number
of measurements required will be O(r · dim(H1) + Nr · dim(Ho

1)).

4.2 An example of sparse identification of a spatio-temporal DNP
We now present an example of identification obtained by Algorithm 2. We demonstrate
here that, in addition to the identification of the Volterra kernels operating within each
channel, the MVP in the spatio-temporal DNP can be identified.

Example 3 Here, we choose the DNP in Fig. 3 with N = 4, and

h1
1(t) = 25te–25t , (65)

h2
1(t) = 25te–25t , (66)

hi4
1 (t) = e– 1

4 (i–2)2
(25 – 600t)e–25t , (67)

hij4
2 (t1, t2) = 5000e– 1

4 (i–2)2
e– 1

4 (j–2)2 · (25t1e–25t1
)(

25t2e–25t2
)
, (68)

and the other Volterra kernels are set to 0. Note that Yiyin, and h1
1, h2

1 are shared across
all channels. In addition, hij4 = hji4 in this case. We assumed knowledge of this symmet-
ric structure of the model and adapted the identification algorithm accordingly and only
identified six linear filters and ten quadratic filters.

We performed the identification in the Hilbert space of bandlimited functions with
Ω = Ωo = 40π , and we chose the same space for the input stimuli and for both the feed-
forward filters and the feedback ones. We solved for the filters truncated to a period of
0.4 s, and thus there were 17 coefficients to be identified for the linear filters and 17 × 17
coefficients to be identified for each of the quadratic filters. A total of 1116 measurements
(279 measurements from each cell) were used to perform the identification, and the re-
sults are depicted in Fig. 8. The average SNR of reconstruction across all filters was more
than 150 [dB]. Note that solving the generalized sampling problem directly for the same
problem would have required at least 3570 measurements.

5 Discussion
As already mentioned in the Introduction, the photoreceptor/amacrine cell layer of the
early vision system of the fruit fly rapidly adapts to visual stimuli whose intensity and
contrast vary orders of magnitude both in space and time.

In this paper we presented a spatio-temporal divisive normalization processor that mod-
els the transduction and the contrast gain control in the photoreceptor and amacrine cell
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Figure 8 Example of identification of the spatio-temporal DNP given in Example 3. (a)–(c) Identification of
the first-order filters (a) h11, (b) h

2
1, and (c) hi41 , i = 1, 2, 3, 4. (d) Identification of the second-order filters (from top

to bottom) hij42 with i ≤ j for i = 1, 2, 3, 4 and j = 1, 2, 3, 4

layer of the fruit fly. It incorporates processing blocks that explicitly model the feedforward
and the temporal feedback path of each photoreceptor and the spatio-temporal feedback
from amacrine cells to photoreceptors. We demonstrated that with some simple choice
of parameters, the DNP response maintains the contrast of the input visual field across a
large range of average spatial luminance values.

We characterized the I/O of the spatio-temporal DNP and highlighted the highly non-
linear behavior of the DNP in contrast gain control. Despite the divisive nonlinearity, we
provided an algorithm for the sparse identification of the entire DNP. We showed that the
identification of the DNP components can be interpreted as a generalized sampling prob-
lem. More importantly, the sparse identification algorithm does not suffer from the curse
of dimensionality that would otherwise require a large number of measurements that are
quadratically related to the dimension of the input and output spaces.

Neural circuits are often noisy. Although the I/O characterization of MIMO DNPs pro-
vided in Sect. 2 is noise free, it can be easily extended to account for noise [52–54]. The
identification of DNPs can be interpreted as a generalized sampling problem in an RKHS
with noisy measurements. The sparse identification algorithms we provided in this paper
include slack variables to account for these inaccurate measurements. Similar algorithms
have been shown to be robust to noise [42].

Contrast gain control is an intrinsically nonlinear problem. Early approaches to mod-
eling contrast gain control rely on analyzing the Volterra kernels, i.e., linear or nonlinear
receptive fields identified when stimuli of different statistics are presented [19, 20, 23]. The
objective of these studies is to observe and characterize the differences between the iden-
tified Volterra kernels. To fully capture the nonlinear effect in contrast gain control, these
approaches would rely on identifying higher-order Volterra kernels that are too costly to
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compute and are simply ignored. The contrast gain control model advanced in this paper,
however, results from the divisive normalization operation, albeit having Volterra kernels
modeling internal filters in the DNP. The division largely expands upon DNP’s ability to
model higher-order nonlinearities in contrast gain control.

Biologically, divisive normalization can take place in feedforward or feedback circuits, or
both [26]. Most divisive normalization models only consider the feedforward normaliza-
tion circuit. Although normalization can be achieved by a multiplicative feedback mech-
anism, it mainly serves as a transformation leading to an equivalent form of feedforward
divisive normalization when the input is a constant [27, 67]. The MIMO DNP models de-
scribed in this paper explicitly include divisive normalization with both feedforward and
feedback paths that can be more readily employed in modeling underlying neuronal circuit
mechanisms, such as those arising in the photoreceptor and amacrine cell layer.

Predictive coding often takes the form subtractive negative feedback [68]. The MIMO
DNP models described in this paper represent an alternative form of predictive coding. In-
deed, divisive input modulation has been proposed to implement predictive coding by cal-
culating the residual errors using division rather than subtraction [69]. In flies, it has been
suggested that inhibition in the lamina, where retina photoreceptors and amacrine cells
interact, leads to predictive coding [70]. Our study advances a spatio-temporal MIMO
model for predictive coding and provides an algorithm to identify the components of the
MIMO DNP.

The MIMO DNP model opens a new avenue for exploring and quantifying the highly
nonlinear nature of sensory processing. The MIMO DNP in Fig. 3 can be further ex-
tended to allow the different transformations T i, i = 1, 2, 3, to incorporate spatio-temporal
Volterra kernels, thereby making it more versatile for modeling other types of sensory pro-
cessing, including (i) interactions between cones and horizontal cells in vertebrate retinas
[58], (ii) channels/glomeruli in olfactory circuits and interactions between them through
local neurons [9, 71], and (iii) cross-suppression and gain control in the auditory [12, 72],
and visual cortices [73–75]. The sparse identification algorithms advanced here can be
easily extended to identify the MIMO DNPs of these systems as well.

Appendix 1: Spatio-temporal DNPs and contrast gain control
Here, we characterize the I/O of simple DNPs stimulated with three different inputs. In the
first example, we evaluate the response of a 1 × 4 DNP under different background light
intensity levels. In the second example, contrast gain control exerted by the amacrine cells
is demonstrated with the same DNP. In the third example, a DNP consisting of 16 × 16
DNPs tiling a 1536 × 1024 visual field is stimulated with a natural image taken at low,
medium, and high luminance values. The DNP output is evaluated with and without the
MVP block.

Example 4 Here, we consider a simple 1 × 4 DNP consisting of four photoreceptors and a
single amacrine cell receiving inputs from and providing feedback to all four photorecep-
tors. The choices of the component filters of the DNP are as follows:

b2 + b3 + b4 = 1, (69)
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for the transformations T 1 and T 2, the kernels are

h1
1(t) = h2

1(t) =
t

0.1
exp

(
–

t
0.1

)
, (70)

h1
2(t1, t2) = h2

2(t1, t2) = 0.0001h1
1(t1)h1

1(t2), (71)

for the transformation T 3, the kernels are

h3
1(t) = 0, (72)

h3
2(t1, t2) = 0, (73)

and for the transformation L4, the kernels are

hi4
1 (t) = 10,000

t
0.8

exp

(
–

t
0.2

)
, i = 1, 2, 3, 4, (74)

hij4
2 (t1, t2) =

⎧
⎨

⎩
12,500 t1t2

0.04 exp(– t1+t2
0.2 ), i = j,

0, i �= j,
i, j = 1, 2, 3, 4. (75)

Here, the bandwidth of Ho
1 was chosen to be Ωo = 10 · 2π rad/s. The I/O of the fly’s in-

dividual photoreceptors in steady state is described by a saturating nonlinearity similar
in appearance to a sigmoid when plotted on a logarithmic scale [1]. Photoreceptors can
deal with the orders of magnitude of the input stimuli while maintaining their output in
a suitable range. In addition, the photoreceptors exhibit adaptation so that the sigmoidal
curves shift to adjust to the mean local luminance value [26].

We examine here the steady state response of the above DNP under four different back-
ground light intensity levels. At the start of each trial, all four photoreceptors are first
adapted to the same background light intensity level. One of the photoreceptors is then
subjected to an additional flash of different light intensity with a duration of two seconds,
while the inputs to the other three are kept at the same background level. We observe the
value of the steady state response of the photoreceptor that receives the additional flash.
Figure 9 depicts the relationship between the observed steady state response and the light
intensity of the flash at the four background intensity levels. It demonstrates that the re-
sponse of the DNP is background-dependent, and the overall slope and range are similar
across different background levels. With the MVP block, the spatio-temporal DNP can
reproduce responses of photoreceptors observed in experimental settings [26, 46].

Since all the photoreceptors exhibit a sigmoid like nonlinearity, the output of the retina
will be constrained in a suitable current range that can be processed by postsynaptic neu-
rons in the lamina. However, without adaptation to mean local luminance, the saturating
nature of the nonlinearities leads to a loss of spatial contrast. The spatial contrast is pre-
served by spatial gain control or adaptation modeled here with the MVP block.

Example 5 Here, the I/O of DNPs with and without the MVP block is evaluated. Using
the same DNP as in the example above, we stimulated the DNP with 25 “images” with a
resolution of 1 × 4 pixels. Each image has a different average luminance and root mean
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Figure 9 The spatio-temporal DNP model can exhibit adaptation to local luminance. A DNP with four
photoreceptors and an amacrine cell (see Example 1 for details) is adapted to a background intensity level at
the beginning of each trial. One of the photoreceptors is then provided a two-second long flash of light, while
the inputs to the other photoreceptors are kept at the background level. The relationship between the steady
state response of the photoreceptor and the light intensity of the flash is shown for each of the background
levels

square (RMS) contrast. The RMS contrast is defined as the standard deviation of pixel
intensities normalized by the mean, i.e.,

Crms =

√
1
N
∑N

i=1(ui – u)2

u
, (76)

where

u =
1
N

N∑

i=1

ui (77)

and N = 4. These images are shown in the “input” block in Fig. 10, with each bar repre-
senting the input intensity to one photoreceptor. Note that the pixels are extended along
the y-axis for a quick visual examination.

In the “Photoreceptors” block in Fig. 10, the steady state responses of the DNP without
the MVP block to the respective inputs are shown. Here, pure black and white represent
a response of 0 and 1, respectively. This can be interpreted as a circuit in which the recip-
rocal connections between photoreceptors and amacrine cells are blocked.

In the “Photoreceptors + Am” block in Fig. 10, the steady state responses of the full DNP
to their respective inputs are shown. Comparing the “Photoreceptors” and “Photorecep-
tors + Am” blocks, the responses of the DNP without feedback are washed out, or exhibit
low contrast, particularly at three of the four corners of the 5 × 5 image array, i.e., when
either the luminance or contrast is too high or too low. By contrast, the individual bars in
the response of the full DNP model are more readily discernible across several orders of
magnitude of luminance.
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Figure 10 Steady State I/O visualization for the DNP considered in Example 1. (a) Input stimuli comprising
bar gratings at various luminances and RMS contrasts. (b) Responses of the DNP without the MVP block.
(c) Responses of the DNP with the MVP block

Figure 11 RMS contrast of the input images in Figure 10 are plotted against the RMS contrasts of the
responses (a) without and (b) with the MVP block

We note that a saturating nonlinearity can maintain its output in a constrained range
even when the input varies by orders of magnitude. However, the nonlinearity may lead
to a loss of spatial contrast. In contrast, the DNP constrains its output to a suitable range
while maintaining the spatial contrast. This is demonstrated in Fig. 11, where the RMS
contrast of the input images in Fig. 10 is plotted against the RMS contrasts of the responses
for both cases—with and without MVP in the DNP. Spatial contrast, arguably, is an im-
portant feature of the image that should be preserved or even enhanced for subsequent
stages of extraction of ethologically relevant information from the visual stimulus.

Example 6 Here, we apply a full-scale DNP model to a natural image. The image is taken
in raw format so that its pixel values are proportional to the light intensity each pixel is
exposed to [65]. The resolution of the image is 1536 × 1024. The image is first divided
into 16 × 16 blocks with a four-pixel overlap in each direction. A DNP is assigned to each
block, and the filters in the DNP are designed as follows:

b2 + b3 + b4 = 1, (78)
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for the transformations T 1 and T 2, the kernels are

h1
1(t) = h2

1(t) =
t

0.04
exp

(
–

t
0.04

)
, (79)

h1
2(t1, t2) = h2

2(t1, t2) = 0.0001h1
1(t1)h1

1(t2), (80)

for the transformation T 3, the kernels are

h3
1(t) = 0, (81)

h3
2(t1, t2) = 0, (82)

and for the transformation L4, the kernels are

hi4
1 (t) = 20

t
0.04

exp

(
–

t
0.04

)
· 1√

2π · 16
exp

(
–

(xi – x0)2 + (yi – y0)2

32

)
,

i = 1, 2, . . . , 256, (83)

hij4
2 (t1, t2) =

⎧
⎨

⎩
100 t1t2

0.042 exp(– t1+t2
0.04 ) ·

√
1√

2π ·16
exp(– (xi–x0)2+(yi–y0)2

32 ), i = j,

0, i �= j,

i, j = 1, 2, . . . , 256,

(84)

where (xi, yi) is the coordinate of pixel i, and (x0, y0) is the coordinate of the center pixel in
the 16 × 16 block. Here, the bandwidth of Ho

1 was chosen to be Ωo = 40 · 2π rad/s.
Figure 12 provides a graphical visualization of the feedback processing of the DNP. We

note that the RHS of both equalities (83) and (84) can be separated into a temporal term
and a spatial term. The temporal terms correspond to temporal Volterra kernels pro-
cessing the output at each pixel (see cylinders in Fig. 12). The feedback term is then the
weighted sum with a weight according to the spatial term. Each weight is the value of
a Gaussian function evaluated at the distance between the location of the pixel and the
center of the block. Due to the overlaps between blocks, there are pixels that belong to

Figure 12 Graphical visualization of the feedback processor of the DNP used in Example 6. The value of the
feedback is obtained by a weighted sum of the outputs at each pixel of a 16× 16 block (only five pixels are
shown in each direction) processed by a temporal Volterra operator (represented by a cylinder). Each weight
is the value of a Gaussian function evaluated at the distance between the location of the pixel and the center
of the block
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Figure 13 Steady state I/O visualization of the spatio-temporal DNP for natural images. Top Row—Input
images. Second Row—Input images visualized on a logarithmic scale. Third Row—Responses without the
MVP block. Fourth Row—Responses with the MVP block. Left Column—Stimuli presented at low luminance,
Middle Column—Medium luminance, Right Column—High luminance

multiple blocks. The feedback term for such a pixel is the average of the feedback terms
from all the blocks the pixel belongs to.

We tested the DNP using low, medium, and high luminance (1×, 10×, and 100×) of the
original image measured in the number of photons and represented by arbitrary units.
They are shown on the top row of Fig. 13. The logarithms of the inputs are shown on the
second row. On the third row, we show the response of the DNP without the MVP block,
i.e., each photoreceptor processes independently a single pixel. The responses of the full
DNP model are shown on the bottom row.

As can be seen from Fig. 13, the response of the DNP with MVP is robust across the
different levels of luminance, showing the best quality for all three luminance levels. By
contrast, the response of the DNP without MVP is either too dark for low contrast or
saturated at high luminance. The contrast within each response is also significantly worse.
It is also not ideal to use only a logarithmic nonlinearity to process the images (second
row), as the contrast of the images is not sharp enough.

To conclude we note that, with a simple choice of filters, the spatio-temporal DNP pro-
posed in Sect. 2.3 operates in a range of luminance values spanning several orders of mag-
nitude, much like the photoreceptor-amacrine cell layer. The contrast of the output of the
DNP is not compromised while its range remains strongly bounded.
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Appendix 2: Proof of Lemma 1
For the mth trial and the kth time sample, multiplying out the denominator in (5), we get

vnm(tk)
(

1 +
∫

D

h2
1(s)unm(tk – s) ds +

∫

D2
h2

2(s1, s2)unm
2 (tk – s1, tk – s2) ds1 ds2

)

+ vnm(tk)
(∫

D

h3
1(s)

(
Po

1 vnm)(tk – s) ds

+
∫

D2
h3

2(s1, s2)
(
Po

2 vnm
2
)
(tk – s1, tk – s2) ds1 ds2

)

= b1 +
∫

D

h1
1(s)unm(tk – s) ds +

∫

D2
h1

2(s1, s2)unm
2 (tk – s1, tk – s2) ds1 ds2, (85)

where unm
2 (t1, t2) ∈H2 and unm

2 (t1, t2) = unm(t1)unm(t2).
With the notation in (22) and after rearranging terms in equation (85) above, we obtain

vnm(tk) = b1 +
∫

D

h1
1(s)φnmk

11 ds +
∫

D

h2
1(s)φnmk

12 ds +
∫

D

h3
1(s)φnmk

13 ds

+
∫

D2
h1

2(s1, s2)φnmk
21 ds1 ds2 +

∫

D2
h2

2(s1, s2)φnmk
22 ds1 ds2

+
∫

D2
h3

2(s1, s2)φnmk
23 ds1 ds2. (86)

With qnmk = vnm(tk), equation (86) becomes

b1 +
〈
h1

1,φnmk
11

〉
H1

+
〈
h2

1,φnmk
12

〉
H1

+
〈
h3

1,φnmk
13

〉
Ho

1

+
〈
h1

2,φnmk
21

〉
H2

+
〈
h2

2,φnmk
22

〉
H2

+
〈
h3

2,φnmk
23

〉
Ho

2
= qnmk

for all m = 1, 2, . . . , M and k = 1, 2, . . . , T .

Appendix 3: Proof of Lemma 2
Let

h1
1(t) =

L∑

l=–L

h1
1l · el(t), h1

2(t) =
L∑

l1=–L

L∑

l2=–L

h1
2l1l2 · el1 (t1) · el2 (t2), (87)

h2
1(t) =

L∑

l=–L

h2
1l · el(t), h2

2(t) =
L∑

l1=–L

L∑

l2=–L

h2
2l1l2 · el1 (t1) · el2 (t2), (88)

h3
1(t) =

Lo∑

l=–Lo

h3
1l · eo

l (t), h3
2(t) =

Lo∑

l1=–Lo

Lo∑

l2=–Lo

h3
2l1l2 · eo

l1 (t1) · eo
l2 (t2), (89)

and the (2L + 1) × 1 vectors

h1
1 =

⎡

⎢⎢⎢⎢⎣

h1
1,–L

h1
1,–L+1

...
h1

1,L

⎤

⎥⎥⎥⎥⎦
, h2

1 =

⎡

⎢⎢⎢⎢⎣

h2
1,–L

h2
1,–L+1

...
h2

1,L

⎤

⎥⎥⎥⎥⎦
, (90)
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the (2Lo + 1) × 1 vector

h3
1 =

⎡

⎢⎢⎢⎢⎣

h3
1,–Lo

h3
1,–Lo+1

...
h3

1,Lo

⎤

⎥⎥⎥⎥⎦
, (91)

the (2L + 1) × (2L + 1) Hermitian matrices

H1
2 =

⎡

⎢⎢⎣

h1
2,–L,L · · · h1

2,L,L
...

. . .
...

h1
2,–L,–L · · · h1

2,L,–L

⎤

⎥⎥⎦ , (92)

H2
2 =

⎡

⎢⎢⎣

h2
2,–L,L · · · h2

2,L,L
...

. . .
...

h2
2,–L,–L · · · h2

2,L,–L

⎤

⎥⎥⎦ , (93)

and the (2Lo + 1) × (2Lo + 1) Hermitian matrix

H3
2 =

⎡

⎢⎢⎣

h3
2,–Lo ,Lo · · · h3

2,Lo ,Lo

...
. . .

...
h3

2,–Lo ,–Lo · · · h3
2,Lo ,–Lo

⎤

⎥⎥⎦ . (94)

Further, let

unmk =
√

S

⎡

⎢⎢⎢⎢⎣

anm
–L · e–L(tk)

anm
–L+1 · e–L+1(tk)

...
anm

L · eL(tk)

⎤

⎥⎥⎥⎥⎦
, Unmk

2 = unmk(unmk)H, (95)

where anm
l represents the coefficient of unm(t) w.r.t. basis element el in H1 such that unm =∑L

l=–L anm
l el , and (·)H represents conjugate transpose, and let

vnmk =
√

So

⎡

⎢⎢⎢⎢⎣

dnm
–Lo · eo

–Lo (tk)
dnm

–Lo+1 · eo
–Lo+1(tk)
...

dnm
Lo · eo

Lo (tk)

⎤

⎥⎥⎥⎥⎦
, Vnmk

2 = vnmk(vnmk)H, (96)

where dnm
l represents the coefficient of (Po

1 vnm) w.r.t. basis element eo
l in Ho

1 such that
(Po

1 vnm) =
∑Lo

l=–Lo dnm
l eo

l .
Finally, we define the (4L + 2Lo + 4) × 1 vector

Φnmk =

⎡

⎢⎢⎢⎣

1
unmk

–qnmkunmk

–qnmkvnmk

⎤

⎥⎥⎥⎦ (97)
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and (4L + 2Lo + 3) × (2L + 2Lo + 2) matrix

Ξnmk =

⎡

⎢⎣
Unmk

2 0(2L+1)×(2Lo+1)

–qnmkUnmk
2 0(2L+1)×(2Lo+1)

0(2Lo+1)×(2L+1) –qnmkVnmk
2

⎤

⎥⎦ . (98)

Finally, we define the (4L + 2Lo + 4) × 1 vector

c1 =
[

b1 (h1
1)T (h2

1)T (h3
1)T

]T
(99)

and the (4L + 2Lo + 3) × (2L + 2Lo + 2) matrix

C2 =

⎡

⎢⎣
H1

2 0(2L+1)×(2Lo+1)

H2
2 0(2L+1)×(2Lo+1)

0(2Lo+1)×(2L+1) H3
2

⎤

⎥⎦ . (100)

The proof is based on two simple observations. First,

〈
h1

1,φnmk
11

〉
H1

=

〈 L∑

l=–L

h1
1l · el(t),

L∑

l=–L

anm
l · el(tk – t)

〉

H1

=
L∑

l=–L

h1
1la

nm
l · √Sel(tk) =

(
h1

1
)Tunmk , (101)

and therefore

b1 +
〈
h1

1,φnmk
11

〉
H1

+
〈
h2

1,φnmk
12

〉
H1

+
〈
h3

1,φnmk
13

〉
Ho

1
= cT

1Φ
nmk .

Second,
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21

〉
H2

=

〈 L∑
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L∑

l2=–L

h1
2l1l2 · el1 (t) · el2 (s),

L∑
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anm
l1 el1 (tk – t)

L∑

l2=–L

anm
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〉
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=
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h1
2l1l2 anm

l1 anm
l2 · el1 (tk) · el2 (tk) = Tr

((
H1

2
)HUnmk

2
)

(102)

and, therefore,

〈
h1

2,φnmk
21

〉
H2

+
〈
h2

2,φnmk
22

〉
H2

+
〈
h3

2,φnmk
23

〉
Ho

2
= Tr

(
CH

2 Ξnmk). (103)

Appendix 4: Proof of Lemma 3
For the mth trial, the output of the nth channel, by multiplying by the denominator of (20)
with vnm sampled at times tk , we obtain

vnm(tk)

(
1 +

∫

D

h2
1(s)unm(tk – s) ds +

∫

D2
h2

2(s1, s2)unm(tk – s1)unm(tk – s2) ds1 ds2

+
∫

D

h3
1(s)

(
Po

1 vnm)(tk – s) ds
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+
∫

D2
h3

2(s1, s2)
(
Po

1 vnm)(tk – s1)
(
Po

1 vnm)(tk – s2) ds1 ds2

+
N∑

i=1

∫

D

hi4
1 (s)

(
Po

1 vim)(tk – s) ds

+
N∑

i=1

N∑

j=1

∫

D2
hij4

2 (s1, s2)
(
Po

1 vim)(tk – s1)
(
Po

1 vjm)(tk – s2) ds1 ds2

)

= b1 +
∫

D

h1
1(s)unm(tk – s) ds +

∫

D2
h1

2(s1, s2)unm(tk – s1)unm(tk – s2) ds1 ds2. (104)

Finally, with vnm(tk) = qnmk and the notation in (44), we get

qnmk = b1 +
∫

D

h1
1(s)φnmk

11 (s) ds +
∫

D2
h1

2(s1, s2)φnmk
21 (s1, s2) ds1 ds2

+
∫

D

h2
1(s)φnmk

12 (s) ds +
∫

D2
h2

2(s1, s2)φnmk
22 (s1, s2) ds1 ds2

+
∫

D

h3
1(s)φnmk

13 (s) ds +
∫

D2
h3

2(s1, s2)φnmk
23 (s1, s2) ds1 ds2

+
N∑

i=1

∫

D

hi4
1 (s)φinmk

14 (s) ds +
N∑

i=1

N∑

j=1

∫

D2
hij4

2 (s1, s2)φijnmk
24 (s1, s2) ds1 ds2, (105)

and, therefore,

b1 +
〈
h1

1,φnmk
11

〉
H1

+
〈
h2

1,φnmk
12

〉
H1

+
〈
h3

1,φnmk
13

〉
Ho

1
+

N∑

i=1

〈
hi4

1 ,φinmk
14

〉
Ho

1

+
〈
h1

2,φnmk
21

〉
H2

+
〈
h2

2,φnmk
22

〉
H2

+
〈
h3

2,φnmk
23

〉
Ho

2
+

N∑

i=1

N∑

j=1

〈
hij4

2 ,φijnmk
24

〉
Ho

2
= qnm

k (106)

for all m = 1, 2, . . . , M, k + 1, 2, . . . , T , and i, j, n = 1, 2, . . . , N .

Appendix 5: Proof of Lemma 4
In addition to (87)–(94), let

hi4
1 (t) =

Lo∑

l=–Lo

hi4
1le

o
l (t), i = 1, 2, . . . , N , (107)

hij4
2 (t) =

Lo∑

l1=–Lo

Lo∑

l2=–Lo

hij4
2l1l2 eo

l1 (t1)eo
l2 (t2), i, j = 1, 2, . . . , N , (108)

and the (2Lo + 1) × 1 vector

hi4
1 =

⎡

⎢⎢⎢⎢⎣

hi4
1,–Lo

hi4
1,–Lo+1

...
hi4

1,Lo

⎤

⎥⎥⎥⎥⎦
, i = 1, 2, . . . , N , (109)
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and the (2Lo + 1) × (2Lo + 1) matrix

Hij4
2 =

⎡

⎢⎢⎣

hij4
2,–Lo ,Lo · · · hij4

2,Lo ,Lo

...
. . .

...
hij4

2,–Lo ,–Lo · · · hij4
2,Lo ,–Lo

⎤

⎥⎥⎦ , i, j = 1, 2, . . . , N . (110)

Note that Hij4
2 , i, j = 1, 2, . . . , N , are not necessarily Hermitian matrices. Further, by abuse

of notation, let the (2L + 1) × 1 vector

unmk =
√

S

⎡

⎢⎢⎢⎢⎣

anm
–L · e–L(tk)

anm
–L+1 · e–L+1(tk)

...
anm

L · eL(tk)

⎤

⎥⎥⎥⎥⎦
, Unmk

2 = unmk(unmk)H, (111)

where anm
l represents the coefficient of unm(t) w.r.t. basis element el in H1 such that

unm(t) =
∑L

l=–L anm
l el , and let the (2Lo + 1) × 1 vector

vnmk =
√

So

⎡

⎢⎢⎢⎢⎣

dnm
–Lo · eo

–Lo (tk)
dnm

–Lo+1 · eo
–Lo+1(tk)
...

dnm
Lo · eo

Lo (tk)

⎤

⎥⎥⎥⎥⎦
, Vn1n2mk

2 = vn2mk(vn1mk)H, (112)

where dnm
l represents the coefficient of (Po

1 vnm) w.r.t. basis element eo
l in Ho

1 such that
(Po

1 vnm) =
∑Lo

l=–Lo dnm
l eo

l .
Additionally, we define the (1 + 2(2L + 1) + (N + 1)(2Lo + 1)) × 1 vector

Φnmk

=
[
1,
(
unmk)T, –qnmk(unmk)T, –qnmk(vnmk)T, –qnmk(v1mk)T,

– qnmk(v2mk)T, · · · , –qnmk(vNmk)T]T, (113)

and the (2(2L + 1) + (N2 + 1)(2Lo + 1)) × (2L + 1 + 2Lo + 1) matrix

Ξnmk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Unmk
2 0

–qnmkUnmk
2 0

0 –qnmkVnnmk
2

0 –qnmkV11mk
2

0 –qnmkV12mk
2

...
...

0 –qnmkVNNmk
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (114)

Finally, we define the (1 + 2(2L + 1) + (N + 1)(2Lo + 1)) × 1 vector

c1 =
[

b1 (h1
1)T (h2

1)T (h3
1)T (h14

1 )T (h24
1 )T · · · (hN4

1 )T
]T

, (115)
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and the (2(2L + 1) + (N2 + 1)(2Lo + 1)) × (2L + 1 + 2Lo + 1) matrix

C2 =

[
(H1

2)T (H2
2)T 0 0 0 · · · 0

0 0 (H3
2)T (H114

2 )T (H124
2 )T · · · (HNN4

2 )T

]T

. (116)

With the notation above, the proof follows the same steps as the proof of Lemma 2.
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