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Abstract
In this work, we consider a general conductance-based neuron model with the
inclusion of the acetycholine sensitive, M-current. We study bifurcations in the
parameter space consisting of the applied current Iapp, the maximal conductance of
the M-current gM and the conductance of the leak current gL. We give precise
conditions for the model that ensure the existence of a Bogdanov–Takens (BT) point
and show that such a point can occur by varying Iapp and gM. We discuss the case
when the BT point becomes a Bogdanov–Takens–cusp (BTC) point and show that
such a point can occur in the three-dimensional parameter space. The results of the
bifurcation analysis are applied to different neuronal models and are verified and
supplemented by numerical bifurcation diagrams generated using the package
MATCONT. We conclude that there is a transition in the neuronal excitability type
organised by the BT point and the neuron switches from Class-I to Class-II as
conductance of the M-current increases.

Keywords: Conductance-based models; Bogdanov–Takens bifurcation; Neuronal
excitability; M-current

1 Introduction
Neuromodulators are chemicals released by neurons that can alter the behaviour of indi-
vidual neurons and large populations of neurons. Examples include dopamine, seratonin
and acetylcholine. These chemicals occur widely in the brain and can affect many types of
neurons. The effect of neuromodulators ranges from altering the membrane properties of
individual neurons to altering synaptic transmission.

The M-current is a voltage-dependent, non-inactivating potassium current, which has
been shown to occur in many neural types including excitatory neurons in the cortex [1]
and inhibitory neurons in the hippocampus [2]. Its name arises from the fact that this
current is down-regulated by the presence of the neuromodulator acetylcholine through
its action on the muscarinic receptor. At the simplest level, this current reduces firing
activity since it is a potassium current [2, 3]. However, this current has been implicated in
many aspects of both individual cell and network activity.
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Before reviewing the literature on the M-current, we first recall some terminology. Neu-
rons and neural models are often classified by their membrane excitability class. As de-
scribed by Hodgkin [4], neurons with the Class-I excitability have a continuous frequency-
current (F/I) curve because they begin repetitive firing with zero frequency from the rest-
ing state. On the other hand, the frequency-current curve of Class-II neurons is discon-
tinuous because they start firing with non-zero frequency from the resting state [5]. The
phase resetting curve (PRC) describes the effect of stimulation on the phase of an oscilla-
tor as a function of the phase at which the stimulus is delivered. At phases where the PRC
is positive the phase is advanced, meaning the period of the oscillator is increased by the
perturbation. At phases where the PRC is negative the phase is delayed, corresponding to
a decrease in the period of the oscillator [6, 7]. As introduced by Hansel [8], a Type-I PRC
is one where an excitatory stimulus produces only phase advances, while in a Type-II PRC
either phase advance or phase delay can occur, depending on the phase of the stimulus. For
two oscillators with reciprocal excitatory coupling, a Type-I PRC means the coupling can-
not synchronise the oscillators, while a Type-I PRC means that the coupling can synchro-
nise the oscillators. For inhibitory coupling, the opposite occurs [6, 7]. Another important
classification of neurons is whether or not they exhibit subthreshold oscillations. Neurons
that do exhibit subthreshold oscillations are called resonators, while neurons that do not
are called integrators.

At the single cell level, the M-current has been shown to affect the neuronal excitabil-
ity [1, 9] and resonant properties [10–12]. For example, in [1], the authors recorded
from layer II/III pyramidal neurons and determined PRCs. Stiefel et al. [1] found that
down-regulation of slow voltage-dependent potassium currents such as the M-current
can switch the PRC from Type-II to Type-I, thus changing the expected synchronisation
of pairs of coupled neurons. In a follow-up paper [1], they showed for that the M-current
could produce the same effect in several different neural models. The work of [13] showed
that these differences in PRC type due to M-current modulation translate into differences
in synchronisation properties in networks of model neurons. The experimental work of
[11, 12] showed that increased membrane conductance (shunting) could switch a hip-
pocampal pyramidal neuron from an integrator to a resonator. Using a simple model, they
attributed this change to the combined effect of shunting (modelled as a leak current) and
the M-current. Interpreting the shunt as representing the effect of background synaptic
on a neuron, Prescott et al. [12] concluded that neurons that present as integrators in vitro
may act as resonators in vivo. At the network level the M-current has also been implicated
in the organisation of rhythms in striatal microcircuits. In [14], the authors studied an in-
hibitory neuron model with M-current under forcing from gamma pulses and a sinusoidal
current of theta frequency. They found that the M-current expands the phase-locking fre-
quency range of the network, counteracts the slow theta forcing and admits bistability in
some parameter range. In [15], the effects of the M-correct on β oscillations was studied.

In all the studies cited above, the effect of acetylcholine, through the M-current, was ex-
plored in models for specific cells. While this is important for understanding the behaviour
of specific cells and brain networks, it can be difficult to extract the essential effects of the
M-current from its interplay with other specific currents in the models. Here we take a dif-
ferent approach and consider the effect of the M-current in a general conductance-based
model. We study the bifurcations of the model in the parameter space of two parame-
ters common to any conductance-based model with an M-current: the applied current
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and the maximal conductance of the M-current. We derive necessary and sufficient con-
ditions for the existence of two codimension two bifurcations of the resting equilibrium
point: the Bogdanov–Takens (BT) bifurcation and the cusp (CP) bifurcation.

The Bogdanov–Takens (BT) bifurcation is associated with an equilibrium point that has
a zero eigenvalue with algebraic multiplicity two and geometric multiplicity one. The cusp
bifurcation occurs when three equilibrium points coalesce into one, and can be thought
of as the simultaneous occurrence of two fold bifurcations. When an equilibrium point
simultaneously undergoes BT and cusp bifurcations, a Bogdanov–Takens–cusp (BTC)
occurs, which is a codimension three bifurcation. We show that variation of a third pa-
rameter, the leak conductance, can lead to a BTC bifurcation point.

In the literature, there are many instances where the presence of the BT, cusp and to a
lesser extent the BTC, bifurcations has been shown to occur in particular conductance-
based models. For example, the presence of BT and cusp bifurcations [16] and BTC bifur-
cation [17] has been shown in the Hodgkin–Huxley model. In [18], the author showed the
existence of BT and cusp bifurcations in Morris–Lecar model [19]. While in [7] the BT
and cusp bifurcations were shown in the Wang–Buzsáki interneuron model [20]. The ma-
jority of these studies used numerical bifurcation analysis to show that these bifurcations
occur as particular parameters are varied with all other parameters fixed at some specific,
biologically relevant values. The prevalence of these codimension two bifurcations in par-
ticular studies would seem to indicate that these bifurcations are associated with some
underlying structure in conductance-based models in general. Indeed, two recent papers
give support to this hypothesis. The authors in [21] considered a general conductance-
based neuron model and studied the existence of the BTC point in the parameter space
of the applied current, leak conductance and capacitance. In [22], the authors give gen-
eral conditions for the existence of the BT bifurcation in any conductance-based model.
Our work builds on these latter two papers and extends them to the situation where an
M-current is present in the model.

To understand the implications of the codimension two bifurcations, we related them
to the neural behaviours described above. The resonance property of neural models is
quite simply related to the bifurcation that causes the loss of stability of the resting state
when the applied current is increased. If this bifurcation is a Hopf bifurcation the model
is a resonator, otherwise it is an integrator. As pointed out by Izhikevich, a Bogdanov–
Takens bifurcation can switch the resonator type of a neuron [5]. Class I/II excitability
was first linked to bifurcations in neural models by Rinzel and Ermentrout [23]. Rinzel
and Ermentrout showed that neuronal models where the onset of repetitive firing occurs
via a saddle-node bifurcation on an invariant circle are Class-I, while models where the
onset occurs via a subcritical Andronov–Hopf bifurcations are Class-II. This link can be
extended to other types of bifurcations by studying the associated F/I curves. The ex-
citability class of individual neurons has been linked to the synchronisation properties
of the neuron in a network through the phase resetting curve (PRC). In particular, it has
been shown in certain circumstances that Class-I neurons have Type-I PRCs [24]. No con-
clusive link between Class-II neurons and a particular PRC type was found in that paper.
More recently, Izhikevich has made a subtly different classification of excitability based on
ramped current inputs as opposed to step current inputs. Izhikevich defines Class I/II ex-
citability based on the bifurcation that causes the loss of stability of the resting state when
the current is increased. Further, Izhikevich defines Class I/II spiking by the bifurcation
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that destroys the stable oscillations as the current is decreased [5]. A focus for this paper
will be on how the presence of a BT point is linked to the emergence of a Hopf bifurcation
and thus could be associated with a change of oscillation class for a conductance-based
neural model.

The paper is organised as follows. In the next section, we provide a general conductance-
based neuron model with the inclusion of the M-current and study the existence of the
steady-state solutions. In Sects. 3 and 4, we give a complete characterisation of the BT
bifurcation, provide a condition for the cusp bifurcation and discuss the existence of
Bogdanov–Takens–cusp (BTC) bifurcation. In Sect. 5, we consider three example mod-
els and show that all three models exhibit the BT, CP and BTC bifurcation points. We
construct bifurcation diagrams using MATCONT to explain possible behaviour of each ex-
ample and use the numerical solution of each model to construct the frequency-current
curves. In Sect. 6, we use numerical simulations to study the influence of varying of gM

on the neurons synchronisation in two coupled neurons model with synaptic coupling. In
Sect. 7, we discuss our results.

2 General model
In non-dimensional variables, a general conductance-based neuron model with the inclu-
sion of the M-current can be written as follows:

Cm
dV
dt

= Iapp – gL(V – VL) – gMw(V – VK ) + Iion(V , a),

dw
dt

=
1

r(V )
(
w∞(V ) – w

)
,

da
dt

= τ–1(V )
(
a∞(V ) – a

)
,

(1)

where a = (a3, . . . , aN )T ,

a∞(V ) =
(
a3,∞(V ), . . . , aN ,∞(V )

)T , τ–1(V ) = diag

(
1

τ3(V )
, . . . ,

1
τN (V )

)

and

Iion(V , a) =
N∑

i=3

gi(Vi – V )
∏

j∈φi

apj
j ,

where Iapp is the applied current and φi is the set of indexes that represents the identities
of the gating variables present in a given ionic current. In the rest of the manuscript, we
assume that all conductances gj are positive, and the steady state activations w∞ and aj,∞,
j = 3, . . . , N , are non-negative bounded functions (0 ≤ f (V ) ≤ 1), monotonic C3(R,R) and
become sufficiently flat in the limits V → ±∞.

2.1 Equilibria
By applying the scaling t → t

Cm
, system (1) can be written as

dV
dt

= Iapp – gL(V – VL) – gMw(V – VK ) + Iion(V , a) := f1(V , w, a),
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dw
dt

=
CM

r(V )
(
w∞(V ) – w

)
:= f2(V , w), (2)

da
dt

= CMτ–1(V )
(
a∞(V ) – a

)
:= f3(V , a),

where f3(V , a) = (f33(V , a3), . . . , f3N (V , aN ))T . Assume that (2) has an equilibrium point E∗ =
(V ∗, w∗, a∗

0). From the equations above it follows that

w∞
(
V ∗) = w∗ and a∞

(
V ∗) = a∗,

where V ∗ satisfies

I∞
(
V ∗) = 0. (3)

Here, I∞ is the steady-state I – V curve [5, 23] defined by

I∞(V ) = Iapp – gL(V – VL) – gMw∞(V )(V – VK ) + Iion,∞(V ), (4)

where Iion,∞(V ) = Iion(V , a∞(V )) is the stationary ionic current. Notice that (3) can be writ-
ten as

Iapp = gL
(
V ∗ – VL

)
+ gMw∞

(
V ∗)(V ∗ – VK

)
– Iion

(
V ∗, a∞

(
V ∗)) := U

(
V ∗).

Now, we write U(V ∗) in the form

U
(
V ∗) =

(
gL + gMw∞

(
V ∗) + h2

(
V ∗))V ∗ –

(
gMm∞

(
V ∗) + h1

(
V ∗)) – gLVL,

where h1 and h2 are polynomials in the variables aj,∞(V ), and hence

lim
V∗→±∞

U
(
V ∗) = ±∞

because all maximal conductances and activation variables are positive and bounded.
Thus, equation (3) has at least one solution.

3 Bogdanov–Takens bifurcation
In the following we discuss Bogdanov–Takens point (BT point) of codimension two in
(Iapp, gM)-plane, when all other parameters in the model are fixed.

Assume that V ∗ is a solution of (3), then there exist parameters (I∗
app, g∗

M) such that

I∗
app = gL

(
V ∗ – VL

)
+ g∗

Mw∞
(
V ∗)(V ∗ – VK

)
– Iion

(
V ∗, a∞

(
V ∗)). (5)

It is well known [25–27] that the equilibrium point V ∗ is a BT point if the zero eigenvalue
has algebraic multiplicity two and geometric multiplicity one. Using an approach similar
to [21, 22], we obtain the following.

Theorem 3.1 Let V ∗ be a solution of (3) at (I∗
app, g∗

M) and define

∂ f1
a =

(
∂f1

∂a3
, . . . ,

∂f1

∂aN

)T

, ∂
f3
V =

(
∂f33

∂V
, . . . ,

∂f3N

∂V

)T

.
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Assume

d
dV

I∞(V )
∣
∣∣
∣
V∗

= 0, (6)

1 +
r2

C2
M

∂f1

∂w

∣
∣∣
∣
E∗

∂f2

∂V

∣
∣∣
∣
E∗

+
1

C2
M

(
∂

f T
1

a
∣∣
E∗

)
τ 2(∂ f3

V
∣∣
E∗

)
= 0. (7)

Then E∗ is an ordinary BT point of codimension two.

Proof Let F = (f1, f2, f3)T . Then the Jacobian of (2) is

DF(V , w, a) =

⎛

⎜⎜
⎝

∂f1
∂V

∂f1
∂w ∂

f T
1

a
∂f2
∂V –CMr–1 0

∂
f3
V 0 –CMτ–1

⎞

⎟⎟
⎠ ,

where r–1 = 1
r(V ) , τ–1 = diag( 1

τ3(V ) , . . . , 1
τN (V ) ).

When B1 ∈ R
n×n, B2 ∈ R

n×m, B3 ∈R
m×n, B4 ∈R

m×m, we have (see [28])

det

(
B1 B2

B3 B4

)

= (det B4) det
(
B1 – B2B–1

4 B3
)
.

Let A = DF(V ∗, m∗, a∗). Then, by taking B1 = ( ∂f1
∂V – λ), B2 = ( ∂f1

∂w ∂
f1
a

T
), B3 = ( ∂f2

∂V ∂
f3
V )T and

B4 = diag(–CMr–1 – λ, –CMτ–1 – λI), we have

det(A – λI) := �(λ) = �1(λ)�2(λ),

where

�1(λ) = (–1)N–1(λ + CMr–1)
N∏

j=3

(
λ + CMτ–1

j
)

and

�2(λ) =
∂f1

∂V
– λ +

(
λ + CMr–1)–1 ∂f1

∂w
∂f2

∂V
+ ∂

f T
1

a
(
λI + CMτ–1)–1

∂
f3
V .

Consequently, we have

�(0) = �1(0)�2(0) = �1(0)
(

∂f1

∂V
+ CMr

∂f1

∂w
∂f2

∂V
+ CM∂

f T
1

a τ∂
f3
V

)
.

Notice that

∂f2

∂V

∣
∣∣
∣
E∗

= CMr–1(V ∗)
(

d
dV

w∞(V )
∣
∣∣
∣
V∗

)
, ∂

f3
V

∣∣
E∗ = CMτ–1(V ∗)∂a∞

V
∣∣
V∗ . (8)

Thus, at E∗, we have that the equation

∂f1

∂V
+

r
CM

∂f1

∂w
∂f2

∂V
+

1
CM

∂
f T
1

a τ∂
f3
V = 0 (9)

is equivalent to d
dV I∞(V )|V∗ = 0. Thus, �(0) = 0 when (6) holds.
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It easy to check that

�′(0) = �1(0)�′
2(0) + �′

1(0)�2(0)

= –�1(0)
(

1 +
r2

C2
M

∂f1

∂w
∂f2

∂V
+

1
C2

M
∂

f T
1

a τ 2∂
f3
V

)

+ �′
1(0)

(
∂f1

∂V
+ CMr

∂f1

∂w
∂f2

∂V
+ CM∂

f T
1

a τ∂
f3
V

)
.

Thus, at E∗, �′(0) = 0 when (6) and (7) hold. Hence, λ = 0 is a double root.
Now, we show that a Jordan block arises when λ = 0 is a double multiplicity root. In other

words, when (6) and (7) hold, we demand the existence of four generalised eigenvectors
q0, q1, p0, p1 of A such that

Aq0 = 0, Aq1 = q0, AT p1 = 0, AT p0 = p1.

Let qi = (qi1, . . . , qiN )T and pi = (pi1, . . . , piN )T for i ∈ {0, 1}. Then we obtain from Aq0 = 0
the following equations:

q01
∂f1

∂V
+ q02

∂f1

∂w
+ ∂

f T
1

a (q03, . . . , q0N )T = 0, (10)

q01
∂f2

∂V
– q02CMr–1 = 0, (11)

q01
∂f3j

∂V
– τ–1

j q0j = 0, j = 3, . . . , N . (12)

From (11) and (12), we have

q02 = q01
r

CM

∂f2

∂V
and q0j = q01

τj

CM

∂f3j

∂V
, j = 3, . . . , N ,

respectively. Hence,

q0 = q01

⎛

⎜
⎜
⎝

1
r

CM
∂f2
∂V

τ
CM

∂
f3
V

⎞

⎟
⎟
⎠ ,

and it follows from (10) that

q01

(
∂f1

∂V
+

r
CM

∂f1

∂w
∂f2

∂V
+

1
CM

∂
f T
1

a τ∂
f3
V

)
= 0. (13)

Similarly, from Aq0 = q1, AT p1 = 0 and AT p1 = p0, we have

q1 =

⎛

⎜⎜
⎝

q11

(q11 – q01
r

CM
) r

CM
∂f2
∂V

(q11IN–3 – q01
τ

CM
) τ

CM
∂

f3
V

⎞

⎟⎟
⎠ , p1 = p11

⎛

⎜⎜
⎝

1
r

CM
∂f1
∂w

τ
CM

∂
f1
a

⎞

⎟⎟
⎠ ,
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p0 =

⎛

⎜
⎜
⎝

p01

(p01 – p11
r

CM
) r

CM
∂f1
∂w

(p01IN–3 – p11
τ

CM
) τ

CM
∂

f1
a

⎞

⎟
⎟
⎠ ,

where IN–3 is the identity matrix of size N – 3, and

q11

(
∂f1

∂V
+

r
CM

∂f1

∂w
∂f2

∂V
+

1
CM

∂
f T
1

a τ∂
f3
V

)

– q01

(
1 +

r2

C2
M

∂f1

∂w
∂f2

∂V
+

1
C2

M
∂

f T
1

a τ 2∂
f3
V

)
= 0, (14)

p11

(
∂f1

∂V
+

r
CM

∂f1

∂w
∂f2

∂V
+

1
CM

∂
f T
3

V τ∂ f1
a

)
= 0, (15)

p01

(
∂f1

∂V
+

r
CM

∂f1

∂w
∂f2

∂V
+

1
CM

∂
f T
3

V τ∂ f1
a

)

– p11

(
1 +

r2

C2
M

∂f1

∂w
∂f2

∂V
+

1
C2

M
∂

f T
3

V τ 2∂ f1
a

)
= 0. (16)

As the generalised eigenvectors must be non-zero, we let q01 and p11 be non-zero arbitrary
constants. Thus, when (6) and (7) hold, equations (13)–(16) hold. Thus, four generalised
eigenvectors exist. Hence, V ∗ is an ordinary Bogdanov–Takens point. �

Remark 3.1 With the additional condition

pT
i qj =

⎧
⎨

⎩
1 if i = j,

0 if i �= j,

we can guarantee the uniqueness of the generalised eigenvectors q0, q1, p0, p1 of A.

When V ∗ is a BT point, system (2) has a two-dimensional centre manifold, with normal
form given by (see, e.g. [25–27, 29, 30])

dξ0

dt
= ξ1,

dξ1

dt
= α2ξ

2
0 + β2ξ0ξ1 + O

(∥∥(ξ0, ξ1)
∥∥3),

(17)

where

α2 =
1
2

pT
1 G(q0, q0),

β2 = pT
1 G(q0, q1) – pT

1 h20,
(18)

where h20 is the solution of the equation

Ah20 = 2α2q1 – G(q0, q0), (19)
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and the function G is defined as

G(z1, z2) :=

⎛

⎜
⎝

zT
1 D2f1(V ∗)z2

zT
1 D2f2(V ∗)z2

zT
1 D2f3(V ∗)z2

⎞

⎟
⎠ .

Here, D2f = ( ∂2f
∂xi∂xj

)1≤i,j≤N is the Hessian matrix of a quadratic form at V ∗.

3.1 Bogdanov–Takens–cusp bifurcation
The steady state V ∗ becomes a degenerate Bogdanov–Takens point (or “Bogdanov–
Takens–cusp point”-BTC point) when a BT point combines with a cusp. A BTC occurs
if either: Case 1: α2 = 0 and β2 �= 0; or Case 2: α2 �= 0 and β2 = 0, see, e.g. [26]. Consider-
ing Case 1 and applying an approach similar to [21] with the results of [26], we have the
following.

Theorem 3.2 Assume that V ∗ is an ordinary BT point. If

d2

dV 2 I∞(V )
∣
∣∣
∣
V∗

= 0, (20)

then α2 = 0 and β2 �= 0, that is, V ∗ becomes a cusp.

Proof From fm and fa, we have

∂f2

∂w
=

–CM

r
⇒ ∂2f1

∂w2 = 0 and ∂ f3
a = –CMτ–1 ⇒ ∂ f3

aa = 0.

Hence, the components of G are

1
q2

01
qT

0 D2f1
(
V ∗)q0 =

∂2f1

∂V 2 +
2r
CM

∂2f1

∂V∂w
∂f2

∂V
+

r2

C2
M

∂2f1

∂w2

(
∂f2

∂V

)2

+
2

CM
∂

f T
1

Va τ∂
f3
V +

1
C2

M
∂

f T
3

V τ∂ f1
aaτ∂

f3
V ,

1
q2

01
qT

0 D2f2
(
V ∗)q0 =

∂2f2

∂V 2 +
2C2

M
r2

dr
dV

∂f2

∂V
,

1
q2

01
qT

0 D2f3
(
V ∗)q0 = ∂

f3
VV + 2C2

Mτ–2∂τ
V τ∂

f3
V ,

where ∂
f1
aa = diag(∂ f1

a3a3 , . . . , ∂ f1
aN aN ). Consequently,

1
p11q2

01
α2 =

∂2f1

∂V 2 +
2r
CM

∂2f1

∂V∂w
∂f2

∂V
+

r2

C2
M

∂2f1

∂w2

(
∂f2

∂V

)2

+
2

CM
∂

f T
1

Va τ∂
f3
V

+
1

C2
M

∂
f T
3

V τ∂ f1
aaτ∂

f3
V +

r
CM

∂f1

∂w
∂2f2

∂V 2 +
2CM

r
∂f1

∂w
dr
dV

∂f2

∂V

+
1

CM
∂

f T
1

a τ∂ f3
uu + 2CM∂

f T
1

a τ–1∂τ
V τ∂

f3
V .
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Recall that all of these derivatives are calculated at V ∗. It follows from (8) that

∂2f2

∂V 2

∣∣∣
∣
E∗

= CMr–1(V ∗)
(

d2

dV 2 w∞(V )
∣∣∣
∣
V∗

)

– 2C2
Mr–2

(
d

dV
r(V )

∣
∣∣
∣
V∗

)(
d

dV
w∞(V )

∣
∣∣
∣
V∗

)
,

∂
f3
VV

∣∣
E∗ = CMτ–1(V ∗)∂a∞

VV
∣∣
V∗ – 2C2

Mτ–2(V ∗)∂τ
V ∂

a∞
V

∣∣
V∗ .

At V = V ∗, we have ∂f2
∂V = CMr–1 dw∞

dV and ∂
f3
V = CMτ–1∂

a∞
V . Hence,

1
p11q2

01
α2 =

∂2f1

∂V 2 + 2
∂2f1

∂V∂w
dw∞
dV

+
∂2f1

∂w2

(
dw∞
dV

)2

+
∂f1

∂w
d2w∞
dV 2 + 2∂

f T
1

Va ∂
a∞
V + ∂

aT∞
V ∂ f1

aa∂
a∞
V + ∂

f T
1

a ∂
a∞
VV

=
d2

dV 2 I∞(V )
∣
∣∣
∣
V∗

.

Thus, α2 = 0 if and only if

d2

dV 2 I∞(V )
∣∣
∣∣
V∗

= 0.

Consequently, from (19), we have Ah20 = –G(q0, q0), which has infinite solutions. This
system is consistent due to the Fredholm solvability condition [26]. Hence, h20 can be
chosen such that β2 �= 0 in (18). This completes the proof. �

4 Existence of bifurcations
Theorems 3.1 and 3.2 imply three bifurcations: BT, CP and BTC which are characterised
by equations (5)–(7) and (20). In the following we discuss the solution of these equations.
Recall that equation (5) relates the equilibrium point voltage value V ∗ to Iapp and the other
parameters.

Rearranging (6), we obtain

–gMX1
(
V ∗) + X2

(
V ∗) = gL, (21)

where

X1
(
V ∗) = w∗ +

(
d

dV
w∞(V )

∣∣
∣∣
V∗

)(
V ∗ – VK

)
,

X2
(
V ∗) =

d
dV

Iion,∞(V )
∣∣
∣∣
V∗

.

Similarly, (7) leads to

–gMY1
(
V ∗) + Y2

(
V ∗) = –1, (22)
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where

Y1
(
V ∗) =

r(V ∗)
CM

(
V ∗ – VK

)
(

d
dV

w∞(V )
∣
∣∣
∣
V∗

)
,

Y2
(
V ∗) =

1
CM

∂ Iion
a

∣
∣∣
∣
E∗

τ
(
V ∗)∂a∞

V

∣
∣∣
∣
V∗

.

It is easy to check that the second derivative of I∞(V ) is

d2

dV 2 I∞(V )
∣
∣∣
∣
V∗

= –gM

[
2

dw∞
dV

∣
∣∣
∣
V∗

+
d2w∞
dV 2

∣
∣∣
∣
V∗

(
V ∗ – VK

)
]

+
d2

dV 2 Iion,∞(V )
∣
∣∣∣
V∗

.

Thus, (20) holds when

–gMZ1
(
V ∗) + Z2

(
V ∗) = 0. (23)

Bogdanov–Takens bifurcation Suppose that there is V ∗ that satisfies

[
gL – X2

(
V ∗)]Y1

(
V ∗) + X1

(
V ∗)(Y2

(
V ∗) + 1

)
= 0,

with at least one of X1(V ∗), Y1(V ∗) non-zero. Then there is an equilibrium E∗ = (V ∗, w∗, a∗)
that undergoes a Bogdanov–Takens bifurcation at (Iapp, gM) = (I∗

app, g∗
M), where

g∗
M =

X2(V ∗) – gL

X1(V ∗)
=

Y2(V ∗) + 1
Y1(V ∗)

(24)

and I∗
app is given by (5).

Cusp bifurcation Suppose that there is V ∗ that satisfies

[
gL – X2

(
V ∗)]Z1

(
V ∗) + X1

(
V ∗)Z2

(
V ∗) = 0

with at least one of X1(V ∗), Z1(V ∗) non-zero. Then there is an equilibrium E∗ = (V ∗, w∗, a∗)
that undergoes a cusp bifurcation at (Iapp, gM) = (I∗

app, g∗
M), where

g∗
M =

X2(V ∗) – gL

X1(V ∗)
=

Z2(V ∗)
Z1(V ∗)

(25)

and I∗
app is given by (5).

Bogdanov–Takens–cusp bifurcation Suppose that there is V ∗ that satisfies

[
Y2

(
V ∗) + 1

]
Z1

(
V ∗) – Y1

(
V ∗)Z2

(
V ∗) = 0

with at least one of Y1(V ∗), Z1(V ∗) non-zero. Then there is an equilibrium E∗ = (V ∗, w∗, a∗)
that undergoes a BTC bifurcation at (Iapp, gM, gL) = (I∗

app, g∗
M, g∗

L), where

g∗
M =

Y2(V ∗) + 1
Y1(V ∗)

=
Z2(V ∗)
Z1(V ∗)

,
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g∗
L = X2

(
V ∗) – g∗

MX1
(
V ∗)

and I∗
app is given by (5).

Remark 4.1 We have explicitly included the leak current in our formulation. The leak cur-
rent is not necessary for the occurrence of the BT and CP bifurcations. If gL = 0, then
equation (21) becomes

–gMX1
(
V ∗) + X2

(
V ∗) = 0

and the solution will go through as above. However, for the BTC bifurcation to occur, we
must have another parameter to vary. We have shown that this third parameter can be the
leak conductance gL. Solving the equations in a different way shows that the capacitance
CM could also be used.

4.1 Implications
In the previous section we gave conditions which guarantee that a BT bifurcation can be
induced by the variation of two parameters found in our general model: the applied current
Iapp and the maximal conductance of the M-current gM . Further, if the conditions are met,
we gave explicit expressions for the bifurcation point in terms of gM and Iapp. Near this
bifurcation point the behaviour of the system will be described by the unfolding of the
normal form (17) in terms of two parameters. The normal form and unfolding were first
studied by [29, 30]. The details can also be found in [25, 27]. A key point for our work is
that emanating out of the BT point are three codimension one bifurcation curves: Hopf
bifurcation, saddle homoclinic bifurcation and saddle node (fold) of equilibria. A periodic
orbit exists between the Hopf and homoclinic bifurcation curves, the stability of which
depends on the sign of the coefficients α2, β2 in (17). Thus the emergence of periodic
solutions via a Hopf bifurcation can be linked to the presence of the BT point.

In the previous section, we also gave conditions which guarantee that a BTC bifurca-
tion can be induced by Iapp, gM and the conductance of the leak current gL. The normal
form and unfolding for the case considered in Theorem 3.2 was first studied in [31]; see
also [21, 26]. There are various possibilities for the bifurcations in the unfolding which
are determined by the higher order terms in the normal form. The key results for our
analysis are that in the three-dimensional parameter space there are two curves of cusp
bifurcations and two curves of BT bifurcations with a surface of Hopf bifurcation starting
at one BT curve and ending at the other. Near one BT bifurcation the Hopf bifurcation is
supercritical (produces an asymptotically stable periodic orbit), while at the other it is sub-
critical. There is a saddle-node (fold) of limit cycles bifurcation associated with the change
in criticality of the Hopf bifurcation. Fixing the value of one parameter (such as the leak
conductance gL) amounts to taking a two-dimensional slice in the three-dimensional pa-
rameter space. Thus, in general one should expect to see some subset of the bifurcations
we have just described.

5 Numerical examples
In this section, we implement three examples with different ranges of gM corresponding to
the range between the BT and cusp points. We apply our theoretical results and compare
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Table 1 Labels used to mark bifurcation points in one- and two-parameter bifurcation diagrams

Label Bifurcation

LP limit point (fold/saddle-node) of equilibria
red/black H super/subcritical Andronov–Hopf
LPC limit point (fold) of cycles

BT Bogdanov–Takens
CP cusp
GH generalised Hopf (Bautin)

them with computations carried out with MATCONT [32]. We also construct bifurcation
diagrams using MATCONT to explain the possible behaviour of each example. The labels
used in these bifurcation diagrams are summarised in Table 1. Furthermore, we use the
numerical solution of the model in each example to measure the frequency-current (F/I)
curves which illustrate the neuronal excitability class.

Example 1 In [20], Wang and Buzśaki proposed a model to study the fast neuronal os-
cillations in the neocortex and hippocampus during behavioural arousal. The model is
based on an inhibitory basket cell in rat hippocampus. The model with the inclusion of
the M-current can be written as

Cm
dV
dt

= Iapp – gL(V – VL) – gMw(V – VK ) – gNam3
∞(V )h(V – VNa)

– gK n4(V – VK ),

dw
dt

=
1

τw(V )
(
w∞(V ) – w

)
,

dσ

dt
=

φ

τσ (V )
(
σ∞(V ) – σ

)
, σ ∈ {h, n},

(26)

supplemented by the dynamics for the gating variables h and n as in (1). Parameter values
and other details of the model are given in the Appendix.

Figure 1 shows the contour plot of equations (6), (7) and (20). In Fig. 1a, there are
two intersections of equations (6) and (7) at gM = –0.0368 and gM = 0.1455. Con-
sequently, there are two BT points: (V ∗, I∗

app, g∗
M) = (–40.9926, –6.7925, –0.0368) and

(–59.6978, 0.2000, 0.1455). The bio-physically permissible point is the latter one where
gM > 0. Moreover, there is one intersection of (7) and (20) implying the cusp point is
(V̂ ,̂ Iapp, ĝM) = (–51.5531, 1.2382, 2.3316), see Fig. 1a.

The analysis of Sect. 4 shows that of the three curves, only the one defined by equation
(6) depends on gL. Further, the representation (21) of this equation and the properties of
the M-current show that increasing gL will move this curve downward. Given the shape
of the curves in Fig. 1a, it is clear that increasing gL will move the BT and CP points closer
together, and for sufficiently large gL we should obtain a single intersection point of all
three curves corresponding to a BTC point. Figure 1b confirms that when we increase gL

to 0.7507, we find the (approximate) BTC point (–46.6416, 7.75907, –0.0166046).
We use the MATLAB numerical continuation package MATCONT [32] to verify the the-

oretical results and supplement them with numerical bifurcation diagrams. From MAT-
CONT, we find two BT points (V ∗, I∗

app, g∗
M) = (–59.698, 0.2, 0.146) and (–40.992, –6.792,

–0.036) (we omit this point) and one cusp point (V̂ ,̂ Iapp, ĝM) = (–51.553, 1.238, 2.332) with
parameter values in Table 3. This is consistent with our results in Fig. 1.
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Figure 1 Existence of codimension two and three bifurcation points in Wang–Buzśaki model (26) with the
parameter values given in Table 3. (a) The conditions given by equations (6), (7) and (20) are plotted in the V ,
gM space. The two intersection points (red dots) of the conditions in Theorem 3.1 show that there are two BT
points in the model. The one intersection point (green dot) of the conditions in Theorem 3.2 show the
existence of one cusp point; (b) The three conditions are plotted when the leak conductance is increased to
gL = 0.7507. The intersection point (green dot) corresponds to the BTC point

Figure 2 Bifurcation diagram in the Iapp , gM parameter space for Wang–Buzśaki model (26). Green curves are
limit point (fold/saddle-node) bifurcations of equilibria, blue are Andronov–Hopf bifurcations, magenta are
homoclinic bifurcations and red are limit point (fold) bifurcations of limit cycles. Codimension two bifurcation
point labels are described in Table 1

Now, we discuss the switch in the model neuronal excitability class as gM increases. We
plot a bifurcation diagram in the Iapp, gM parameter space for Wang–Buzśaki model (26)
in Fig. 2. As expected from the normal form analysis, there is a curve of homoclinic bifur-
cations, a curve of Hopf bifurcation and a curve of saddle-node of equilibria emanating
from the BT point. The Hopf is subcritical and thus an unstable periodic orbit exists for
any parameters between the homoclinic and Hopf curves. See Fig. 2b. These curves are
associated with the transition in the neuronal excitability class and show three cases.

• gM < g∗
M : In Fig. 3a, when gM = 0 and Iapp < 0.16, there exists a stable equilibrium point

that determines the resting state and two unstable equilibria. As the applied current
increases, the stable and one unstable fixed points collide in a saddle-node bifurcation
point (“LP”). Consequently, a limit cycle is born simultaneously and emanates from
the LP, that is, the limit cycle is created via a saddle-node on invariant circle



Al-Darabsah and Campbell Journal of Mathematical Neuroscience            (2021) 11:5 Page 15 of 26

Figure 3 One-parameter bifurcation diagrams for Wang–Buzśaki model (26), showing the change in
bifurcation structure as gM is varied. (a) gM < g∗

M (the value at the BT point); (b) g∗
M < gM < ĝM ; (c) gM > ĝM (the

value at the CP point). Green/blue curves show stable/unstable equilibria. Pink curves show maxima/minima
of periodic orbits. Codimension one bifurcation point labels are described in Table 1

Figure 4 F/I curves of Wang–Buzśaki model (26) corresponding to Fig. 3. (a) gM < g∗
M (the value at the BT

point); (b) g∗
M < gM < ĝM ; (c) gM > ĝM (the value at the CP point)

bifurcation (“SNIC”). As expected, the oscillations on the limit cycle appear with
arbitrarily slow frequency (see Fig. 4a), indicating Class-I excitability [5, 23].

• gM > ĝM : For large enough gM , a different sequence of bifurcations is observed. In
Fig. 3c, when gM = 3, at Iapp = 1, a limit point bifurcation of cycles “LPC” occurs giving
rise to one unstable and one stable periodic orbit. Then, at Iapp = 1.1416, the unstable
periodic orbit disappears in a subcritical Hopf bifurcation (subHopf ) of the lone
equilibrium point, destabilising it. Consequently, firing with a positive frequency
appears via LPC, and hence neuronal excitability Class-II occurs [5, 23]. See
Figs. 3c–4c;

• g∗
M < gM < ĝM : In this case, both subHopf and LP exist. The stable equilibrium point

disappears by subHopf, and the LP occurs when two unstable equilibria collide. The
model dynamics exhibits two different patterns, which are only distinguished by the
bifurcations of the unstable periodic orbit(s). (i) When g∗

M < gM < 2.1, see Figs. 5a–5c
and in Fig. 3b, an unstable limit cycle is created via a homoclinic bifurcation (the
magenta curve in Fig. 2b) and disappears in the subHopf. In this case, the stable limit
cycle appears via an LPC with a different unstable limit cycle which disappears via
homoclinic orbit bifurcation (not shown in Fig. 2b). (ii) When 2.1 � gM < ĝM , the
sequence of bifurcations is very similar to that for gM > ĝM . An LPC bifurcation
creates both unstable and stable periodic orbits. The former is lost in the subHopf, see
Fig. 5c. For all gM ∈ (g∗

M, ĝM), there is a region of bistability between a stable limit cycle
and a stable equilibrium point, between the LPC and subHopf bifurcations.
Consequently, when g∗

M < gM < ĝM , a neuronal excitability Class-II occurs [5, 23].
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Figure 5 Top row/middle row: Details of the change in the bifurcation structure of Wang–Buzśaki model (26)
when gM is varied between the BT point and the cusp point. Green/blue curves show stable/unstable
equilibria. Pink curves show maxima/minima of periodic orbits. Codimension one bifurcation point labels are
described in Table 1. Bottom row: corresponding F/I curves

Therefore, the model neuronal excitability type switches from Class-I to Class-II when the
conductance of the M-current gM passes through the BT point.

Now let us consider the effect of the leak conductance gL. As shown above, increasing
gL monotonically decreases the gM value at the bio-physically permissible BT point. This
means that the range of values of gM where the model has Class-I excitability will be de-
creased. Equivalently, smaller changes of gM are needed to switch the model from Class I
to Class II. If gL is increased enough, then g∗

M may become negative, in which case the
model will exhibit Class-II excitability regardless of the value of gM .

Example 2 In [33], Stiefel et al. proposed a single-compartmental neuron model that in-
cluded biophysically realistic mechanisms for neuronal spiking based on Hodgkin and
Huxley ionic currents. The single-compartment Stiefel model can be written as follows:

Cm
dV
dt

= Iapp – gL(V – VL) – gMw(V – VK ) – gNam3
∞(V )h(V – VNa)

– gK n4(V – VK ),

dσ

dt
=

φσ

τσ (V )
(
σ∞(V ) – σ

)
, σ ∈ {w, h, n}.

(27)

Parameter values and other details can be found in the Appendix.
Solving equations (6), (7) and (20) leads to the BT point (V ∗, I∗

app, g∗
M) = (–59.9344,

–0.0707, 0.1482) and the cusp point (V̂ ,̂ Iapp, ĝM) = (–53.4754, 0.0216, 0.2724), see Figs. 6a.
A second BT point occurs for gM < 0. These results are consistent with those found
in MATCONT. Applying the analysis of Sect. 4 to this model also shows that increasing
gL should lead to a BTC point. This is confirmed in Fig. 6b. We find the BTC point
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Figure 6 Existence of codimension two and three bifurcation points in Stiefel model (27) with the parameter
values given in Table 4. (a) The conditions given by equations (6), (7) and (20) are plotted in the V , gM space.
The two intersection points (red dots) of the conditions in Theorem 3.1 show that there are two BT points in
the model. The one intersection point (green dot) of the conditions in Theorem 3.2 shows the existence of
one cusp point; (b) The three conditions are plotted when the leak conductance is increased to gL = 0.3785.
The intersection point (green dot) corresponds to the BTC point

Figure 7 Bifurcation diagram in the Iapp , gM parameter space for Stiefel model (27). Green curves are limit
point (fold/saddle-node) bifurcations of equilibria, blue are Andronov–Hopf bifurcations, magenta are
homoclinic bifurcations and red are limit point (fold) bifurcations of limit cycles (LPC). Codimension two
bifurcation point labels are described in Table 1

(–43.1385, 2.9461, 0.0008) when we increase gL to 0.3785. As in the previous example, the
neuronal excitability type switches from Class I to II as the conductances of the M-current
increase, Class I when gM < g∗

M and Class II otherwise, see Figs. 7, 8 and 9. Although the
range (g∗

M, ĝM) is much smaller than for Example 1, model (27) exhibits a similar behaviour
in this range, see Fig. 5.

Example 3 The reduced Traub–Miles (RTM) model is a substantial simplification of a
model of a pyramidal excitatory cell in rat hippocampus due to Traub and Miles [34]. The
RTM model with the M-current can be written as [35]

Cm
dV
dt

= Iapp – gL(V – VL) – gMw(V – VK ) – gNam3h(V – VNa)

– gK n4(V – VK ), (28)
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Figure 8 One-parameter bifurcation diagrams for Stiefel model (27), showing the change in the bifurcation
structure as gM is varied. (a) gM < g∗

M (the value at the BT point); (b) g∗
M < gM < ĝM ; (c) gM > ĝM (the value at the

CP point). Green/blue curves show stable/unstable equilibria. Pink curves show maxima/minima of periodic
orbits. Codimension one bifurcation point labels are described in Table 1

Figure 9 F/I curves of Stiefel model (27) corresponding to Fig. 8. (a) gM < g∗
M (the value at the BT point);

(b) g∗
M < gM < ĝM ; (c) gM > ĝM (the value at the CP point)

dσ

dt
=

1
τσ (V )

(
σ∞(V ) – σ

)
, σ ∈ {w, h, n, m}.

Parameter values and other details are given in the Appendix.
Both the analytical results and MATCONT give the bio-physically permissible BT point

(V ∗, I∗
app, g∗

M) = (–63.7386, 0.2449, 0.0659) and the cusp point (V̂ ,̂ Iapp, ĝM) = (–50.8204,
71.9395, 14.5123), see Fig. 10a. Applying the analysis of Sect. 4 again shows that increas-
ing gL should lead to a BTC point. This is confirmed in Fig. 10b. When we increase gL to
13.79, the BT and CP points collide producing the BTC point (–49.8762, 166.25, –0.6745).
In this example, we notice that the range (g∗

M, ĝM) is bigger than those in Example 1 and 2,
but the transition in the neuronal excitability type is consistent with previous examples:
Class I when gM < g∗

M and Class II otherwise, see Figs. 11 and 12.

6 Implications for synchronisation
In Sect. 4 we showed that the M-current will give rise to a BT bifurcation in any
conductance-based neural model, when certain conditions are met. In Sect. 5 we showed
in three examples that these conditions are met and a BT bifurcation occurs. Further, we
showed that this BT bifurcation induces a transition from Class-II to Class-I excitability
in these models as the conductance of the M-current is decreased (as would be the case
in the presence of acetylcholine). In this section we explore one implication of this tran-
sition. There are many studies in the literature describing the relationship between the
synchronisation of coupled neurons and their neuronal excitability type, see, e.g. [8, 24].
The classic result is that the in-phase solution of a pair of weakly coupled Class-I oscillators
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Figure 10 Existence of codimension two and three bifurcation points in Wang–Buzśaki model (28) with the
parameter values given in Table 5. (a) The conditions given by equations (6), (7) and (20) are plotted in the V ,
gM space. The two intersection points (red dots) of the conditions in Theorem 3.1 show that there are two BT
points in the model. The one intersection point (green dot) of the conditions in Theorem 3.2 shows the
existence of one cusp point; (b) The three conditions are plotted when the leak conductance is increased to
gL = 13.79. The intersection point (green dot) corresponds to the BTC point

Figure 11 Bifurcation diagram in the Iapp , gM parameter space for RTM model (28). Green curves are limit
point (fold/saddle-node) bifurcations of equilibria, blue are Andronov–Hopf bifurcations, magenta are
homoclinic bifurcations and red are limit point (fold) bifurcations of limit cycles (LPC). Codimension two
bifurcation point labels are described in Table 1

Figure 12 One-parameter bifurcation diagrams for RTM model (28), showing the change in the bifurcation
structure as gM is varied. (a) gM < g∗

M (the value at the BT point); (b) g∗
M < gM < ĝM ; (c) gM > ĝM (the value at the

CP point). Green/blue curves show stable/unstable equilibria. Pink curves show maxima/minima of periodic
orbits. Codimension one bifurcation point labels are described in Table 1
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model with synaptic coupling is stable when there are inhibitory coupling and unstable for
excitatory coupling, while the anti-phase solution exhibits the opposite stability [24]. The
synchronisation of Class-II oscillators is less clear, and other factors such as the synaptic
time constants and firing frequency may affect these conclusions [24, 33]. By in-phase
solution, we mean both oscillators reach their highest peak at the same time, whereas an
anti-phase solution means one oscillator reaches its highest peak one half-period after the
other oscillator.

To study the stability of phase-locked solutions and the correspondence with the neu-
ronal excitability type as gM varies, we write two coupled neurons with synaptic coupling
as follows:

Cm
dVi

dt
= Iapp – gL(Vi – VL) – gMw(Vi – VK ) – Iion(V ) – gsynsj(Vi – Vsyn)),

dw
dt

=
1

τw(V )
(
w∞(Vi) – w

)
, (29)

dsi

dt
= ae0 ae(V )(1 – si) –

si

τs

for i, j = 1, 2 such that i �= j, where Iion are ionic currents in Examples 1–3. The synaptic
coupling function and parameters are given in Table 2.

To determine the stable phase-locked solution(s), first we solve (29) numerically with ten
random initial conditions at each step of gM , then we calculate the period of the oscillators
(T1 and T2) in the numerical solution. Finally, we approximate the phase shift as

ϕ = 2π

(
τ

T –
⌊

τ

T

⌋)
, (30)

where 
·� is the floor function, T = (T1 + T2)/2 and τ is the argument shift satisfying
V1(t) = V2(t +τ ) for all t. Figure 13 shows bifurcation diagrams for (29) with excitatory and
inhibitory synaptic coupling in Examples 1–3. For instance, for coupled Wang–Buzsaki
model (Example 1), we notice in Fig. 13a that when gM < g∗

M (Class-I dynamics in (26)),
the in-phase solution is unstable and the anti-phase solution is stable with excitatory cou-
pling Vsyn = 0. The reverse is true for inhibitory coupling Vsyn = –75. This is consistent with
[24]. When there is an excitatory synaptic connection, as the M-current reaches gM ≈ 0.5,
the anti-phase solution loses its stability and two stable out-of-phase solutions (neither
in-phase nor anti-phase) appear. As the conductance of the M-current is increased any
further, a stable in-phase solution appears. Hence, there is a transition from stable anti-
phase solution to stable in-phase solution via stable out-of-phase solutions. The transition
also occurs at gM ≈ 0.5 when there is the coupling is inhibitory. We observe a similar dy-
namical behaviour in Examples 2 and 3, see Fig. 13b–13c, although the transition is not as

Table 2 Synaptic coupling function and parameters in (29)

ae0 τs ae(V) Reference

Example 1: Vsyn = 0, –75 6.25 5 (1 + exp( –V2 ))
–1

[36]

Example 2: Vsyn = 0, –80 4 8 (1 + exp( –V5 ))
–1

[1]
Example 3: Vsyn = 0 5 2 (1 + tanh(V/4)) [35]
Example 3: Vsyn = –80 2 10 (1 + tanh(V/4)) [35]
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Figure 13 Bifurcation diagrams showing the change of synchronisation of two identical, synaptically coupled
neurons as gM is varied. For all examples with gM < g∗

M (the BT point) excitatory coupling leads to
phase-locking in anti-phase (phase difference π ), while inhibitory coupling leads to in-phase (phase
difference 0). In all cases gM has to be increased significantly past the BT value before the solution switches to
in-phase for excitatory coupling and anti-phase for inhibitory coupling

clear in all cases. Although the relationship of the transition point to the codimension two
bifurcations varies with the different models, in all cases it occurs at some gM ∈ (g∗

M, ĝM),
that is, when the model has Class-II dynamics.

As indicated above, other factors may affect the synchronisation of neurons. We focus
here on the firing frequency of the neuron. In [33] it was shown that increasing the fir-
ing frequency by increasing the applied current could switch the PRC of a model neuron
with an M-current from Type-II to closer to Type-I. In [13], the authors reproduced this
result for other neural models and studied how changing the firing frequency modulates
the synchronisation properties induced by the M-current. They found that synchrony in
excitatory networks of neurons with a Type I PRC (low gM) was largely unaffected by fre-
quency modulation, whereas networks of Type II PRC neurons (high gM) synchronised
much better at lower frequencies. In [7], the authors studied how the stability of in-phase
and anti-phase phase-locked solutions in Wang–Buzśaki model (with no M-current) var-
ied with firing frequency. At low frequencies with inhibitory coupling, they showed that
both in-phase and anti-phase phase-locked solutions were stable. However, at higher fre-
quencies only the in-phase solution was stable. In contrast, with excitatory coupling, they
showed that the in-phase solution was unstable for both high and low frequencies. Recall-
ing that the Wang–Buzśaki model is a Class-I oscillator, this latter result is consistent with
that of [13].

To consider if firing frequency has an effect in our results, we determined the variation
of firing frequency with the conductance of the M-current gM for our example models,
see Fig. 14. In all cases the firing frequency decreases rapidly as gM increases. When the
models are in the Class-I excitability regime (below the BT point), the frequency change
does not affect the synchronisation properties. This is consistent with the results described
above [13, 33], given that neurons with Class-I excitability typically have Type-I PRCs [24].
Recalling that the main switch in synchronisation behaviour in all cases occurs within the
Class-II regime, we conclude that this switch is likely due to the decrease in the frequency
as gM increases.
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Figure 14 F/gM curve of the models in Examples 1–3. For each model neuron, the applied current was fixed
at a value which yielded stable periodic solutions for all gM in the given range, then the frequency of the
periodic solution was plotted against gM . The blue dashed lines show the gM values corresponding to the BT
and CP points. The green dashed line shows the gM value where the change in synchronisation occurs for the
coupled neurons in Fig. 13

In summary, while the excitability class of the model changes exactly at the BT point,
the synchronisation property of the models switches at gM value larger than the BT point,
when the frequency of the intrinsic oscillations is small enough.

7 Discussion
In this paper, we studied Bogdanov–Takens (BT) bifurcation in a general conductance-
based neuron model with the inclusion of the M-current. We started by showing the exis-
tence of equilibrium points. Then we derived the necessary and sufficient conditions for
the equilibrium point to become a BT point. A degenerate Bogdanov–Takens (BTC) point
appears when BT and cusp points merge. To discuss the occurrence of such a point, we
provided the condition for a cusp bifurcation. We then showed that the conditions for the
BT and cusp bifurcation may be satisfied by varying the applied current and the maxi-
mal conductance of the M-current and that for the BTC point by additionally varying the
conductance of the leak current.

As previously noted, our theoretical work was inspired by two recent papers. In [21]
they show that the BTC point can occur in any conductance-based model in the param-
eter space of the applied current, leak conductance and capacitance. They use this to
study the effect of the leak current on the excitability properties of models for single neu-
rons and synchronisation properties for networks of neurons. In [22] they study a general
conductance-based neural model. They show that if the model has an equilibrium point
with a double zero eigenvalue for some parameter values, then it is a BT point. Further,
they give conditions on the gating variables and time constants for a BT bifurcation to
occur. They propose the BT normal form as a generic minimal model for a single neuron.

Numerically, we applied our analytical results to three examples and compared them
with the computations of MATCONT, a numerical bifurcation analysis toolbox in Matlab.
Furthermore, we constructed bifurcation diagrams using MATCONT to explain the possible
behaviour of each example and discuss the switches in the neuronal excitability class with
respect to the M-current gM . As predicted by normal form theory [25, 27, 29, 30] in all
examples a curve of homoclinic bifurcation, a curve of Hopf bifurcation and a curve of
saddle-node of equilibria emanate from the BT point. These latter two curves particularly
affect the neuronal excitability class. We found that a transition is determined by the BT
point which occurs at (gM, Iapp) = (g∗

M, I∗
app). The model is a Class-I oscillator when gM < g∗

M

and Class-II when gM > g∗
M . More precisely, when gM < g∗

M as Iapp is increased, oscillations
with arbitrarily slow frequency appear via a saddle-node on invariant circle bifurcation,
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while when gM > g∗
M oscillations with a positive frequency appear via a fold bifurcation of

cycles, followed by a subcritical Hopf bifurcation.
Using systems of two synaptically coupled cells, we explored how the change in excitabil-

ity class with the variation of gM affects synchronisation in the example models. We found
that while the excitability class of the model changes exactly at the BT point, the syn-
chronisation property of all the models switches at gM value larger than the BT point. We
attributed this change to the fact that the M-current also affects the frequency of the in-
trinsic oscillations and that the synchronisation of Class-II oscillators has been shown to
be sensitive to intrinsic frequency. Thus the necessary condition for the switch of syn-
chronisation, we observed, is that the system be Class-II and the frequency be sufficiently
small.

We also considered the effect of the leak conductance gL showing that, in the examples
we considered, increasing gL decreases the gM value of the BT point. This means that the
range of values of gM where the model has Class-I excitability will be decreased. Equiva-
lently, smaller changes of gM are needed to switch the model from Class I to Class II. If
gL is increased enough, then g∗

M may become negative, in which case the model will ex-
hibit Class II excitability regardless of the value of gM . Since the switch of synchronisation
occurs at a higher value of gM than the BT point, this does not necessarily mean that the
system will not exhibit changes in synchronisation associated with a change in gM , it just
means that smaller changes in gM are needed to switch the synchronisation property. We
note that Prescott et al. [11, 12] represented the increase in membrane conductance due
to background synaptic input using a leak current with a reversal potential near rest in a
Morris–Lecar model with an M-current. The one-parameter bifurcation diagrams in [12]
are consistent with what we have seen in our analysis.

Our analysis of the effect of gL on the BT point relies on understanding how the intersec-
tion points of two curves vary with gL. Only one curve depends on gL, and we can show in
general (i.e. for any model) that the curve will move downward as gL increases. This effect
depends on two aspects of the M-current: the reversal potential is a large negative value
(since it is a potassium current) and the current is non-inactivating, see equation (24).

The implications of these results for the action of acetylcholine are as follows. If the
neuron is of Class-II in the absence of acetylcholine (corresponding to high gM), then the
presence of acetylcholine may push the system past the BT bifurcation point and change
the neural excitability type to Class-I. The expected synchronisation in the presence of
sufficient acetylcholine is then clear: neurons with excitable coupling will likely desyn-
chronise, while those with inhibitory coupling will synchronise. This is consistent with
the changes to the PRCs induced by acetylcholine observed in [1]. Whether or not acetyl-
choline induces a change in synchronisation may depend on intrinsic firing frequencies
of cells. Expanding on the idea of Prescott et al. [11, 12], an increase in membrane input
conductance would make the system more sensitive to the effects of acetylcholine, so that
switches of synchronisation could occur more easily.

These conclusions, of course, assume that the only effect of acetylcholine is to down-
regulate the M-current. However, acetycholine has been observed to have other effects,
including down-regulating an afterhyperpolarization current IAHP [3, 37] and the leak cur-
rent [1]. As indicated above, our work indicates that decreasing gL will increase the value
of g∗

M . Thus the simultaneous down-regulation of the leak and M-currents would cause
the switch of excitability class at higher values of gM . The net effect would be to increase
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the sensitivity of the model to acetylcholine. We leave the exploration of the effect of the
IAHP current for future work.

The effect of acetylcholine, through the M-current, on the synchronisation of cells has
been explored using numerical simulations and phase response curves [1, 7, 13, 33]. We
have linked these effects to a particular bifurcation structure of conductance-based mod-
els with an M-current and given conditions for this to occur in any conductance-based
model. This approach allows us to generalise previous results and to easily explore the
effect of multiple parameters in these models.

Appendix: Parameters, units and functions used in Sect. 5
• Example 1: Wang–Buzśaki model. The infinity and τσ , σ ∈ {m, h, n}, functions are

m∞(V ) =
αm(V )

αm(V ) + βm(V )
, h∞(V ) =

αh(V )
αh(V ) + βh(V )

,

n∞(V ) =
αn(V )

αn(V ) + βn(V )
, w∞(V ) =

1

e– V +27
7 + 1

,

τw(V ) =
1

0.003(e
V +63

15 + e
–(V +63)

15 )
, τh(V ) =

1
αh(V ) + βh(V )

,

τn(V ) =
1

αn(V ) + βn(V )
,

where the rate constants ασ and βσ are:

αm(V ) = –
0.1(V + 35)

e–0.1(V +35) – 1
, αh(V ) = 0.07e– V +58

20 ,

αn(V ) = –
0.01(V + 34)
e–0.1(V +34) – 1

, βn(V ) = 0.125e– V +44
80 ,

βm(V ) = 4e– V +60
18 , βh(V ) =

1
e–0.1(V +28) + 1

.

Parameter values are listed in Table 3.
• Example 2: Stiefel model. The functions are:

m∞(V ) =
1

e
–(V +30)

9.5 + 1
, w∞(V ) =

1

e
–(V +39)

5 + 1
,

h∞(V ) =
1

e V +53
7 + 1

, τw(V ) = 75,

n∞(V ) =
1

e
–(V +30)

10 + 1
, τh(V ) = 0.37 +

2.78

e
V +40.5

6 + 1
,

τn(V ) = 0.37 +
1.85

e
V +27

15 + 1
.

Table 3 Parameter values for Example 1: Wang–Buzśaki model (26)

Conductance (mS/cm2) Reversal potential (mV) Capacitance (μF/cm) Others

gL = 0.1 VL = –65 CM = 1 φ = 5
gNa = 35 VNa = 55
gK = 9 VK = –90
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Table 4 Parameter values for Example 2: Stiefel model

Conductance (mS/cm2) Reversal potential (mV) Capacitance (μF/cm) Others

gL = 0.02 VL = –60 CM = 1 φw = 1
gNa = 24 VNa = 55 φh = 1
gK = 3 VK = –90 φn = 1

Table 5 Parameter values for Example 3: RTM model (28)

Conductance (mS/cm2) Reversal potential (mV) Capacitance (μF/cm)

gL = 0.1 VL = –67 CM = 1
gNa = 100 VNa = 50
gK = 80 VK = –100

• Example 3: Reduced Traub–Miles model. The infinity and τσ , σ ∈ {m, h, n, w},
functions are:

m∞(V ) =
αm(V )

αm(V ) + βm(V )
, h∞(V ) =

αh(V )
αh(V ) + βh(V )

,

n∞(V ) =
αn(V )

αn(V ) + βn(V )
, w∞(V ) =

1

e
–(V +35)

10 + 1
,

τw(V ) =
400

3.3e V +35
20 + e

–(V +35)
20

, τn(V ) =
1

αn(V ) + βn(V )
,

τm(V ) =
1

αm(V ) + βm(V )
, τh(V ) =

1
αh(V ) + βh(V )

,

where the rate constants ασ and βσ are:

αm(V ) =
0.32(V + 54)

1 – e– V +54
4

, αh(V ) = 0.128e– V +50
18 ,

αn(V ) =
0.032(V + 52)

1 – e– V +52
5

, βn(V ) = 0.5e– V +5
40 ,

βm(V ) =
0.28(V + 27)

e
V +27

5 – 1
, βh(V ) =

4

e– V +27
5 + 1

.
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