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Abstract
We study pattern formation in a 2-population homogenized neural field model of the
Hopfield type in one spatial dimension with periodic microstructure. The connectivity
functions are periodically modulated in both the synaptic footprint and in the spatial
scale. It is shown that the nonlocal synaptic interactions promote a finite band width
instability. The stability method relies on a sequence of wave-number dependent
invariants of 2× 2-stability matrices representing the sequence of
Fourier-transformed linearized evolution equations for the perturbation imposed on
the homogeneous background. The generic picture of the instability structure
consists of a finite set of well-separated gain bands. In the shallow firing rate regime
the nonlinear development of the instability is determined by means of the
translational invariant model with connectivity kernels replaced with the
corresponding period averaged connectivity functions. In the steep firing rate regime
the pattern formation process depends sensitively on the spatial localization of the
connectivity kernels: For strongly localized kernels this process is determined by the
translational invariant model with period averaged connectivity kernels, whereas in
the complementary regime of weak and moderate localization requires the
homogenized model as a starting point for the analysis. We follow the development
of the instability numerically into the nonlinear regime for both steep and shallow
firing rate functions when the connectivity kernels are modeled by means of an
exponentially decaying function. We also study the pattern forming process
numerically as a function of the heterogeneity parameters in four different regimes
ranging from the weakly modulated case to the strongly heterogeneous case. For the
weakly modulated regime, we observe that stable spatial oscillations are formed in
the steep firing rate regime, whereas we get spatiotemporal oscillations in the
shallow regime of the firing rate functions.

Keywords: Neural field models; Homogenization theory; Turing type of instability;
Pattern formation

1 Introduction
It is common to investigate large-scale activity of neural tissue by means of nonlocal mod-
els. Since the seminal works of Amari [1, 2] and Wilson and Cowan [3, 4] such models have
been subject to a vast number of investigations, e.g., [5] and the references therein. 1- and
2-population neural field models have been used to understand spatiotemporal dynamics
of the cortex of the brain. Stationary spatially-extended patterns are related to visual hal-
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lucinations [6–8], while stationary localized structures (bumps) are related to short term
memory [9–11]. Traveling waves (fronts, pulses, target waves and spirals) are connected
to information processing [12, 13].

The 2-population neural field model of the Hopfield type

∂

∂t
ue = –ue + ωee ⊗ Pe(ue – θe) – ωie ⊗ Pi(ui – θi),

τ
∂

∂t
ui = –ui + ωei ⊗ Pe(ue – θe) – ωii ⊗ Pi(ui – θi),

(1)

was proposed by Blomquist et al. [14]. Here ωqp ⊗ Pq is the convolution of ωqp and Pq

(r, s = e, i) is defined by

(
ωqp ⊗ Pq(uq – θq)

)
(x, t) ≡

∫

RN
ωqp

(
x – x′)Pq

(
uq

(
x′, t

)
– θq

)
dx′. (2)

This model describes the interaction between populations of excitatory and inhibitory
neurons. ue and ui denote the membrane potentials of excitatory and inhibitory neurons,
respectively, at the spatial point x and time t > 0. The functions ωqp (q, p = e, i) evaluated
at the difference x – x′ measure the connectivity strengths between neurons located at
position x and x′, whereas Pq (q = e, i) are the firing rate functions. θe and θi are threshold
values for firing of the excitatory and the inhibitory neurons, respectively. Notice here that
we allow for the situation where θe �= θi. The parameter τ is the relative inhibition time,
i.e., τ = τi/τe where τe (τi) is the excitatory (inhibitory) time constant.

In [14] the existence and stability of single bumps with firing rate functions in the Heav-
iside limit have been studied. In Wyller et al. [15] pattern formation of the Turing type
within the framework of (1) in one spatial dimension as a function of the steepness of
the firing rate function was investigated. In particular, formation of stationary periodic
patterns and spatiotemporal oscillations were considered.

However, the modeling framework (1) assumes that the cortical medium is homoge-
neous and isotropic. Thus, the heterogeneity in the cortical structure is not taken into
account. Therefore, this modeling approach represents a simplification of the actual sit-
uation. One way to take into account the microstructure of the brain media is by using
the so-called homogenization techniques [16, 17]. The connection between periodic mi-
crostructure of the cortex and nonlocal mean field description has been explored in the
works [13, 18–23]. It turns out that the microstructure has an impact on the existence and
stability of traveling fronts and pulses, such as slowing down and failure of traveling wave
propagation. In homogenization techniques for neural field models it is usually assumed
that the connectivity functions are represented as ωε

qp(x) = ωqp(x, x/ε) and have periodicity
in the second variable y = x/ε, where the microstructure of heterogeneity is parameterized
by ε > 0, see, e.g., [24–26]. Thus, a possible extension of (1) taking this type of heterogene-
ity into account reads

∂

∂t
uε

e = –uε
e + ωε

ee ⊗ Pe
(
uε

e – θe
)

– ωε
ie ⊗ Pi

(
uε

i – θi
)
,

τ
∂

∂t
uε

i = –uε
i + ωε

ei ⊗ Pe
(
uε

e – θe
)

– ωε
ii ⊗ Pi

(
uε

i – θi
)
.

(3)
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The two-scale convergence method described in [27–29] has been applied by Svanstedt et
al. [25] to a one-population neural field model with spatial microstructure. By employing
the same arguments as in [25], one can show that (3) two-scale converges weakly as ε → 0
to the system

∂

∂t
ue = –ue + ωee ⊗ ⊗Pe(ue – θe) – ωie ⊗ ⊗Pi(ui – θi),

τ
∂

∂t
ui = –ui + ωei ⊗ ⊗Pe(ue – θe) – ωii ⊗ ⊗Pi(ui – θi)

(4)

of coupled nonlinear integro-differential equations of the Hopfield type. Here ωqp ⊗
⊗Pq(uq – θq) is the double convolution of ωqp and Pq (q, p = e, i) is defined by

(
ωqp ⊗ ⊗Pq(uq – θq)

)
(x, y, t)

≡
∫

RN

∫

Y
ωqp

(
x – x′, y – y′)Pq

(
uq

(
x′, y′, t

)
– θq

)
dy′ dx′, (5)

where x ∈ R
N , y ∈ Y , and t > 0. Here Y = [0, 1]N ⊂R

N is a period cell in R
N . Following [28]

we identify Y -periodic functions with functions defined on the N-torus TN = R
N /ZN .

In the papers [24–26, 30–32] the existence and stability of 1-bumps and 2-bumps within
the framework of a homogenized 1-population neural field model have been studied. Here
one considers the periodic microstructure variation in both the synaptic footprint and the
spatial scale of the connectivity strength. We notice, however, that most investigations in
inhomogeneous media use 1-population models as modeling frameworks, while it is not
common with studies of 2-population nonlocal neural field models with inhomogeneities.
We are not aware of any studies of the microstructure effects on the pattern formation
mechanism within such modeling frameworks either. In Kolodina et al. [33] the existence
and stability of y-independent single bumps in the homogenized 2-population model (4)
in one spatial dimension (N = 1) were investigated, with the firing rate functions modeled
by means of the Heaviside function.

This serves as a background for the present paper. Our goal is to explore pattern for-
mation within the framework of the homogenized 2-population model (4) in the 1-
dimensional spatial setting. Thus, we study the effect of the periodic microstructure on
the pattern forming process in this modeling framework. We proceed in a way analogous
to Wyller et al. [15] for the pattern formation in the translational invariant model (1). We
study this process in a scenario with steep firing rate functions and in a scenario represent-
ing a shallow firing rate regime. The nonlinear development of the instability is detailed
by means of numerical simulations demonstrating spatially and spatiotemporally periodic
patterns. The numerical scheme is realized in MATLAB© with the build-in functions conv2
and ode45. Just as in Wyller et al. [15] for the translational invariant case (1), we detect nu-
merically in the steep firing rate regime and in the weakly heterogeneous case that the final
stage of the pattern forming process consists of stable spatial oscillations where the shape
of each oscillation matches remarkably well with the shape of the 1-bumps found in Kolo-
dina et al. [33]. We conjecture that these oscillations are y-independent, 1-bump periodic
solutions of (4) in the steep firing rate regime. This type of solutions is a natural exten-
sion of the 1-bump periodic solutions defined in Kolodina et al. [34] for the 1-population
Amari model.
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The present investigation complements the papers [14, 15], and [33] as well as the works
[25, 30, 31], and [24].

The paper is organized as follows: In Sect. 2 we specify the properties of the input func-
tions of model (4). We also formulate a comparison result between the solutions of (4)
and the solutions of (1) with ωqp(x) replaced with the mean value 〈ωqp〉(x) =

∫ 1
0 ωqp(x, y) dy.

This comparison result is expressed in terms of the separation distance between these so-
lutions (Theorem 1). In Sect. 3 we list the input data used in the numerical simulations.
Section 4 is devoted to the methodology for the linear stability of constant solutions of the
homogenized 2-population model. Section 5 is devoted to a numerical study of the non-
linear stage of the instability, whereas Sect. 6 contains the conclusions and an outlook. In
Appendix A we prove Theorem 1. In Appendix B we show that the gain band structure
is of the finite bandwidth type and consists of a finite set of well separated gain bands.
Moreover, we show that for localized connectivity kernels, the gain band structure can be
extracted from the stability analysis for (1) with ωqp replaced with the mean value 〈ωqp〉.
In Appendix C we develop the theory for excitation of a gain band through a Turing–Hopf
bifurcation.

2 Model
Let us first specify the input data for models (3) and (4):

The firing rate functions Pq, q = e, i, which are expressed in terms of a scaling function
S and parameterized by means of the steepness parameter βq satisfy the following prop-
erties:

Pq(u) = S(βqu),

Pq(u) → H(u) pointwise as βq → ∞,

S : R→ [0, 1],

S′ ∈ BC(R), S′(u) ≥ 0.

(6)

Here BC(R) is the space of bounded continuous functions, whereas H is the Heaviside
function. This means that there is S′

max > 0 such that

∣∣S(u) – S(v)
∣∣ ≤ S′

max|u – v| for all u, v ∈R. (7)

The connectivity kernels ωqp are expressed in terms of the scaling function � and the
synaptic footprint functions σqp, q, sp = e, i as

ωqp(x, y;αqp) =
1

σqp(y;αqp)
�

(
x

σqp(y;αqp)

)
,

σqp(y;αqp) > 0, sqp ≡
∫

Y
σqp(y;αqp) dy = σqp(y;αqp = 0), (8)

σqp(y;αqp) → sqp as αqp → 0 uniformly in y ∈ Y

just as in [25, 30, 31, 33], and [24]. Here σqp and its derivatives up to order r are 1-periodic,
continuous, and bounded functions in y. Here r is a natural number, r ≥ 1, whereas
sqp, q, p = e, i play the roles as the averaged synaptic footprints. The parameters αqp ≥ 0,
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q, p = e, i are referred to as the heterogeneity parameters. Notice that the translational in-
variant case is recovered when αqp = 0. The connectivity kernels are thus assumed to be
periodically modulated in both the spatial scales and the synaptic footprints.

The scaling function � is assumed to satisfy the following conditions:

�(ξ ) = �(–ξ ), �(ξ ) ≥ 0,
∫

R

�(ξ ) dξ = 1. (9)

Moreover, we also impose the extra condition

∫

R

ξ r�(ξ ) dξ < ∞, r ∈N. (10)

Notice the role of the parameter r: The parameter r measures both the degree of localiza-
tion of the connectivity kernels ωqp and the degree of regularity of the synaptic footprint
functions σqp. Condition (10) will ensure that the growth and decay rate curves detected
in Sect. 4 are smooth functions of the wave number. Notice that we will make use of this
property in Appendix B (Theorem 2, Theorem 3, Corollary 1, Theorem 4, and Theorem 5)
and in Appendix C (Theorem 6).

The normalization condition imposed on the scaling function � implies that the con-
nectivity functions are normalized, i.e.,

∫

R

∫

Y
ωqp(x, y;αqp) dy dx =

∫

R

�(ξ ) dξ = 1. (11)

Following [28], we let T = R/Z denote the 1-torus and identify the 1-periodic functions
by those ones which are defined on T. Then introduce the Banach space B ≡ BC(R× T)
of bounded and continuous functions on R×T, equipped with the norm

‖f ‖B ≡ sup
(x,y)∈R×T

∣
∣f (x, y)

∣
∣. (12)

Now, by proceeding in a way analogous to Potthast et al. [35], one can prove that the
initial value problem of (4) with the connectivity kernels ωqp and the firing rate functions
Pq specified as (6) and (8)–(10), respectively, is globally well-posed in the Banach space
B ×B equipped with the norm

∥∥(f , g)
∥∥
B×B ≡ ‖f ‖B + ‖g‖B , (f , g) ∈ B ×B. (13)

Next, let us summarize the boundedness property of system (4): Introduce τq defined by

τq ≡
⎧
⎨

⎩
1, q = e,

τ , q = i,

and let u(0)
q , q = e, i denote the components of the solution of (4) with all the nonlocal terms

omitted. We readily find that

u(0)
q (x, y, t) = Uq(x, y) exp

[
–

t
τq

]
, q = e, i,
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where Uq ∈ B, q = e, i are the components of the initial condition of (4). Now, by using
(6)–(11), we find the uniform bounds

0 ≤ (
ωqp ⊗ ⊗Pq(uq – θq)

)
(x, y, t) ≤ 1, (x, y, t) ∈R× Y ×R

+
0

for q, p = e, i, from which it follows that each component of the solution of (4) satisfies the
comparison property

∥∥uq – u(0)
q

∥∥
B(t) ≤ 1 – exp

[
–

t
τq

]
, q = e, i. (14)

Hence we arrive at the following result: If |Uq(x, y)| ≤ 1 for all (x, y) ∈ R × T, then
|uq(x, y, t)| ≤ 1 for all (x, y, t) ∈R×T×R

+
0 . This means that the subset A = {uq; |uq| ≤ 1} of

the phase space is a global attractor for the evolution prescribed by model (4). By appealing
to property (14), we also conclude that the nonlinear stage of any instabilities leading to
pattern formation will eventually be saturated within the present modeling framework.
This property is indeed important to bear in mind in the forthcoming sections of the
present paper. Notice that these results are exactly the same as the attractor and bound-
edness results deduced in the translational invariant case [15]. Last but not least, these
results also hold true in the multidimensional situation, i.e., when N > 1.

We finally compare the solution of model (4) with the solution of the translational in-
variant model (1) for the case when the connectivity kernels are given by the mean values
〈ωqp〉 defined by

〈ωqp〉(x) =
∫

T

ωqp(x, y) dy. (15)

Let U〈〉 = (φe,φi) denote the solution of (1) with the mean values 〈ωqp〉 of the connectivity
kernels ωqp in (4) as connectivity kernels and U = (ue, ui) the solution of (4). Introduce the
L1-norm of the difference between ωqp and 〈ωqp〉, i.e.,


Kqp ≡ ∥∥ωqp – 〈ωqp〉
∥∥

1

≡
∫

R

∫

T

∣
∣ωqp

(
x′, y′) – 〈ωqp〉

(
x′)∣∣dx′ dy′, q, p = e, i. (16)

We then define the separation distance D(t) between the solution U and U〈〉 at the time t
in terms of norm (13) on the Banach space B ×B, i.e.,

D(t) ≡ ‖U – U〈〉‖B×B(t)

=
∥∥(ue – φe, ui – φi)

∥∥
B×B(t) =

[‖ue – φe‖B + ‖ui – φi‖B
]
(t). (17)

The following theorem guarantees the continuous dependence of the solutions to (4) on
the connectivity kernels:

Theorem 1 Let T < ∞ be a fixed finite time. For conditions (6) and (8)–(10) imposed on
the firing rate functions and the connectivity kernels, respectively, we find the bounding
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inequality

D(T) ≤ M(T) exp

[(
1 +

1
τ

)
βmaxS′

maxT
]

(18)

for the separation distance between the solution U and U〈〉 at the fixed time T . Here M is
the linear function of T defined by

M(T) ≡ D(0) +
[

Kee + 
Kie +

1
τ

(
Kei + 
Kii)
]

T (19)

with βmax ≡ max{βe,βi}.

The proof of this theorem is relegated to Appendix A. A generalization of Theorem 1 to
neural field models expressed in terms of Volterra equations can be found in Burlakov et
al. [36].

We notice that 
Kqp is a continuous function of αqp where 
Kqp → 0+ as αqp → 0+. Let
us choose the heterogeneity parameters αqp in such a way that 
Kqp is less than a given
tolerance δqp. For the shallow firing rate regime ((1 + 1

τ
)βmaxSmax � 1), we find by using

Theorem 1 that the error in approximation of U with U〈〉 satisfies the bounding inequality

D(T) ≤ D(0) +
[
δee + δie +

1
τ

(δei + δii)
]

T .

In the regime of steep firing rate functions, we have to take into account the exponential
factor on the right-hand side of inequality (18) in the error estimation. In order to keep the
error of estimation below a certain threshold, we must reduce 
Kqp as compared with the
shallow firing rate regime. In view of the dependence of 
Kqp on αqp, one way of achieving
this is to reduce the values of αqp.

3 Preliminaries: constant solutions. Input data for the numerical simulations
Just as in the translational invariant case, the constant solutions of (4) satisfy the system

ue = ui ≡ v0,

F(v0) = 0, –1 < v0 < 1, (20)

F(v0) ≡ v0 + Pi(v0 – θi) – Pe(v0 – θe).

In Wyller et al. [15] it is shown that equation (20) possesses at least one solution which
means that the 2-population model (4) has at least one constant solution. Moreover, the
maximal number of constant solutions is five.

In the numerical simulations to be presented, we let the scaling function � of the con-
nectivity kernels ωqp be given as the exponentially decaying function

�(ξ ) =
1
2

exp
(
–|ξ |), (21)

whereas the scaling function S of the firing rate functions Pq, q = e, i is given as

S(u) =
1
2
(
1 + tanh(u)

)
. (22)
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Table 1 The single equilibrium points U0 = (v0, v0) are determined by (20) for the listed parameters
βq and θq (q = e, i), P′

e and P′
i are defined by (23), whereas τH and τ± (with F′(v0) > 0) are given by (24)

and (25), respectively

Parameters βe βi θe θi v0 P′
e P′

i τH τ– τ+

Set A 20 30 0.10 0.12 0.129 7.26 13.94 2.39 1.36 4.20
Set B 5 10 0.05 0.10 0.106 2.31 4.98 4.56 1.27 16.35

Table 2 Sets of heterogeneity parameters αqp . Set 1 represents the weakly modulated case
0 < αqp � 1, Set 2 and Set 3 represent scenarios of the medium heterogeneity parameter, whereas
Set 4 is an example on a scenario with strong heterogeneity

Parameters αee αie αei αii

Set 1 0.01 0.025 0.01 0.025
Set 2 0.35 0.4 0.4 0.35
Set 3 0.6 0.55 0.5 0.65
Set 4 0.9 0.85 0.85 0.9

By (6) and (22) we obtain

P′
q ≡ dPq

du
(u = v0 – θq) =

1
2
βq cosh–2(βq(v0 – θq)

)
, q = e, i. (23)

Just as in Wyller et al. [15] we will make use of τH (Hopf-time) and τ± defined by

τH ≡ P′
i + 1

P′
e – 1

(24)

and

τ± ≡ (
√

F ′(v0) ± √
P′

iP′
e)2

(P′
e – 1)2 , F ′(v0) ≡ dF

du
(u = v0) = 1 + P′

e – P′
i. (25)

In definition (25) we tacitly assume that F ′(v0) > 0. We will clarify the role of τH and τ± in
Sect. 4. The input parameters used in the forthcoming simulations are given as Set A and
Set B in Table 1. Set A represents a scenario with steep firing rate functions, whereas Set B
gives an example of shallow firing rate functions. Both sets of input parameters guarantee
that system (4) has one and only one equilibrium point. Notice also that these sets of input
parameters were used in Wyller et al. [15].

In the numerical computations we assume that the synaptic footprint functions σqp are
given by

σqp(y;αqp) =
(
1 + αqp cos(2πy)

)
sqp, sqp > 0, 0 ≤ αqp < 1. (26)

Moreover, we fix the averaged synaptic footprints sqp to be given as

see = 0.35, sei = 0.48, sie = 0.60 and sii = 0.69. (27)

We have chosen four different sets of heterogeneity parameters in the forthcoming nu-
merical computations. These sets are given in Table 2.
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4 Linear stability analysis
In this section we develop the methodology for studying the linear stability of the constant
solutions of (4). This analysis is based on the same technique as in Kolodina et al. [33].
However, as we consider a different type of solutions and smooth firing rate functions, the
operators involved have slightly different expressions, which in turn modify the analysis.
Moreover, this analysis presents a generalization of the method presented in Wyller et al.
[15].

Introduce U = (ue, ui)T . We conveniently rewrite the homogenized system (4) on the
compact form

T–1 ∂U
∂t

= –U + FU , F : B ×B → B ×B (28)

with

T =

(
1 0
0 1/τ

)

and FU =

(
Feeue – Fieui

Feiue – Fiiui

)

, (29)

where Fqp, q, p ∈ {e, i} are the Hammerstein operators defined as

(Fqpuq)(x, y) =
∫

R

∫

T

ωqp
(
x′ – x, y′ – y

)
Pq

(
uq

(
x′, y′) – θq

)
dy′ dx′. (30)

Let U0 = (v0, v0)T denote a constant solution to (28)–(30). Then the linearization of the
evolution equation (28) about U0 is

T–1∂tV = –V + F ′
U0 V , V = (Ve, Vi)T . (31)

Here F ′
U0

: B ×B → B ×B is the Frechét derivative of the operator F at U0

F ′
U0 V =

(
LeeVe – LieVi

LeiVe – LiiVi

)

, (32)

where

(LqpVq)(x, y) = P′
q(v0 – θq)(ωqp ⊗ ⊗Vq)

≡ P′
q(v0 – θq)

∫

R

dx′
∫

T

dy′ωqp
(
x′ – x, y′ – y

)
Vq

(
x′, y′)dx′.

In order to analyze the system of linearized equations (31) further, we must introduce
several assumptions on the perturbation

V (·, ·, t) = (Ve(·, ·, t), Vi(·, ·, t))T at a fixed time t. In particular, we assume that the compo-
nent functions Vq (q = e, i) belong to the subspace D of B for which the elements f satisfy
the following properties:

(i) ‖f ‖1(y) < ∞ and ‖f̃ ‖1(y) < ∞ for all y ∈ T. Here f̃ denotes the Fourier transform of f
with respect to the global coordinate x.

(ii) f (x, ·) : T→ R is piecewise smooth for all x ∈R.
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As ‖f ‖1(y) ≡ ∫
R

|f (x, y)|dx < ∞ by assumption, f̃ exists. The other conditions in (i) guar-
antee that the function f can be reconstructed from f̃ for all y ∈ T.

From the properties of ωqp and Pq, we conclude that the Frechét derivative F ′
U0

maps
D ×D onto D ×D. Thus we can compute the eigenvalues of –T + TF ′

U0
by applying the

Fourier transformation technique. Let

Ṽq(k, y) =
∫

R

Vq(x, y)e–i2πxk dx, Vq(x, y) =
∫

R

Ṽq(k, y)ei2πxk dk,

ω̃qp(k, y) =
∫

R

ωqp(x, y)e–i2πxk dx, ωqp(x, y) =
∫

R

ω̃qp(k, y)ei2πxk dk.
(33)

In particular, from (8) we conclude that the Fourier-transformations ω̃qp exist and are
given as

ω̃qp(k, y) = �̃
(
kσqp(y)

)
, �̃(k) =

∫

R

�(ξ )e–i2πξk dξ . (34)

Moreover, since the connectivity kernels ωqp for each y ∈ T are even and real functions of
x, ω̃qp are even and real functions of k.

By the convolution theorem, the Fourier transform of (–T + TF ′
U0

)V with respect to x
is given by (–T + TF̃ ′U0 )Ṽ , where

F̃ ′U0 Ṽ =

(
L̃eeṼe – L̃ieṼi

L̃eiṼe – L̃iiṼi

)

, Ṽ = (Ṽe, Ṽi)T

with

(L̃qpṼq)(k, y) = P′
q(v0 – θq)

∫

T

ω̃qp
(
k, y′ – y

)
Ṽq

(
k, y′)dy′.

Next, we introduce the Fourier series

Ṽq(k, y) =
∑

n∈Z
V̂ (n)

q (k) exp(i2πny), (35)

ω̃qp(k, y) =
∑

n∈Z
ω̂(n)

qp (k) exp(i2πny), (36)

where

V̂ (n)
q (k) =

∫

T

Ṽq(k, y) exp(–i2πny) dy, (37)

ω̂(n)
qp (k) =

∫

T

ω̃mn(k, y) exp(–i2πny) dy. (38)

These Fourier-decompositions also exist due to the assumptions imposed on ωqp and
Vq. Notice that since ω̃qp is a real, even in k, and 1-periodic function of y, the Fourier-
coefficients ω̂

(n)
qp (k) are real. Moreover, since ω̃qp(k, y) = ω̃qp(–k, y) for all y, we have ω̂

(n)
qp (k) =

ω̂
(n)
qp (–k). Hence ω̂

(n)
qp is a well-defined, real-valued function of η = k2: ω̂(n)

qp = ω̂
(n)
qp (η). Finally,

we have ω̂
(n)
qp (k) = ω̂

(–n)
qp (k) from which it follows that we can let n ∈N0 = {0, 1, 2, 3, . . .} with-

out loss of generality.
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Finally, we apply the Fourier transform in the local variable y to (–T + TF̃ ′U0 )Ṽ and ob-
tain An(η)V̂n, where An(η), n ∈ N0, η ∈R

+
0 are operators acting on the Fourier coefficients

V̂n = (V̂ (n)
e , V̂ (n)

i )T . It is easy to see that

An(η) ≡ T
(
–I + Cn(η)

)
,

where {Cn}n∈N0 is the sequence of 2 × 2-matrices defined by

Cn(η) =

(
P′

eω̂
(n)
ee (η) –P′

iω̂
(n)
ie (η)

P′
eω̂

(n)
ei (η) –P′

iω̂
(n)
ii (η)

)

.

Here the parameters P′
q (q = e, i) are given as

P′
q ≡ dPq

du
(v0 – θq), q = e, i. (39)

Simple computation reveals that

An(η) =

(
–1 + P′

eω̂
(n)
ee (η) –P′

iω̂
(n)
ie (η)

1
τ

P′
eω̂

(n)
ei (η) – 1

τ
(1 + P′

iω̂
(n)
ii (η))

)

. (40)

Obviously, the eigenvalues of the operator –T + TF ′
U0

: D ×D →D ×D are given by the
eigenvalues of the matrices An(η), n ∈ N0, η ∈ R

+
0 . The linear stability problem thus boils

down to a study of

∂tV̂n = An(η)V̂n, n ∈N0,η = k2 (41)

for the Fourier coefficients V̂n.
We notice the following property of the stability matrix A0 ≡ An=0: By replacing ωqp

with the mean value 〈ωqp〉 defined by (15) in the translational invariant model (1) and
proceeding with the linear stability analysis of the constant solution U0 = (v0, v0)T as in
Wyller et al. [15], we end up with A0 given by

A0(η) =

(
–1 + P′

e〈ω̃ee〉(η) –P′
i〈ω̃ie〉(η)

1
τ

P′
e〈ω̃ei〉(η) – 1

τ
(1 + P′

i〈ω̃ii〉(η))

)

(42)

as the stability matrix for the problem. Here

〈ω̃qp〉(η) ≡
∫ 1

0
ω̃qp(k, y) dy, η = k2, q, p = e, i

is the mean value of the Fourier transform ω̃qp (independent of y). A detailed proof of this
fact is presented in Appendix B (Theorem 4). This clearly sheds light on the role of A0 in
the present stability methodology.

The ODE system (41) can be studied in a way analogous to Wyller et al. [15] for the
translation invariant case. The eigenvalues λ±

n of the coefficient matrix An are expressed
in terms of the determinant and trace of the matrix An, i.e.,

λ±
n (η) =

1
2
(
ϕn(η) ±

√(
ϕn(η)

)2 – 4ψn(η)
)
, (43)
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where the sequences of functions {ϕn}∞n=0 and {ψn}∞n=0 are defined as

ϕn(η) ≡ (
tr(An)

)
(η) = P′

eω̂
(n)
ee (η) – 1 –

1
τ

(
1 + P′

iω̂
(n)
ii (η)

)
,

ψn(η) ≡ (
det(An)

)
(η) (44)

=
1
τ

[(
1 – P′

eω̂
(n)
ee (η)

)(
1 + P′

iω̂
(n)
ii (η)

)
+ P′

eP′
iω̂

(n)
ie (η)ω̂(n)

ei (η)
]
.

We introduce the sequence of parameterized curves �n : R+
0 →R

2, n ∈ N0 defined as

�n(η) =
(
ϕn(η),ψn(η)

)
, η = k2 ≥ 0, (45)

in the invariant plane. Each point on this curve represents a Fourier component in the
perturbation imposed on the constant background. Thus, the stability problem boils down
to the study of the sequence of composite maps

η
�n�−→ (

ϕn(η),ψn(η)
) λ±

n�−→ λ±
n (η), n ∈N0. (46)

Notice that the effect of the microstructure on the linear stability properties is taken care
of by a sequence of parameterized curves in the invariant plane and not a single curve as
in the translation invariant case. Based on the sequence of composite maps (46), we thus
arrive at the following conclusion: U0 is stable if all the parameterized curves {�n}n∈N0

remain in the second quadrant of the invariant plane for all η, whereas we get instability
if at least one curve �n visits at least one of the other quadrants for some η-interval.

Let us investigate the initial points of the curves {�n}n∈N0 defined by (44)–(45). First, we
observe that

ω̃qp(0, y) =
∫

R

ωqp(x, y) dx =
∫

R

�(ξ ) dξ = 1.

Hence the Fourier coefficients ω̂
(n)
qp at η = 0 are given as

ω̂(n)
qp (0) =

⎧
⎨

⎩
1, n = 0,

0, n > 0,

from which it follows that the sequence of matrices {Cn}n∈N0 evaluated at η = 0 is given by

C0(η = 0) =

(
P′

e –P′
i

P′
e –P′

i

)

and Cn(η = 0) =

(
0 0
0 0

)

, n �= 0.

The corresponding sequence of matrices {An}n∈N0 evaluated at η = 0 is given as

A0(η = 0) =

(
–1 + P′

e –P′
i

1
τ

P′
e – 1

τ
(1 + P′

i)

)

and An(η = 0) =

(
–1 0
0 – 1

τ

)

, n �= 0.

Notice the role of the matrix A0: The local dynamical counterpart of (28)–(29) is given by

∂U
∂t

= –TU + TF0U , (47)
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with

T =

(
1 0
0 1/τ

)

and F0U =

(
Pe(ue – θe) – Pi(ui – θi)
Pe(ue – θe) – Pi(ui – θi)

)

. (48)

Thus we conclude that the matrix A0 is the Jacobian of the vector field –TU + TF0U
evaluated at the equilibrium point U0 = (v0, v0).

We readily find that the initial points of {�n}n∈N0 have the following properties:

�n(0) =
(

–1 –
1
τ

,
1
τ

)
for n > 0,

�0(0) =
(

–1 + P′
e –

1
τ

(
1 + P′

i
)
,

1
τ

(
1 + P′

i – P′
e
))

.
(49)

Hence all the parameterized curves {�n}n>0 start in the second quadrant in the invariant
plane. Just as in Wyller et al. [15], the initial point of the curve �0 is in the second quadrant
if

– 1 + P′
e –

1
τ

(
1 + P′

i
)

< 0, (50)

1 + P′
i – P′

e > 0. (51)

According to (25), we have F ′(v0) = 1 + P′
i – P′

e, where the function F is defined by (20). In
the present analysis we assume that F ′(v0) > 0 so that condition (51) is fulfilled. For P′

e ≤ 1,
condition (50) is satisfied for all τ > 0, whereas in the complementary regime P′

e > 1, we
must have 0 < τ < τH , where τH is defined by (24) in order to ensure (50) to be satisfied.
The threshold value τH for the relative inhibition time τ with the constraint 1 < P′

e < 1 + P′
i

yields

ϕ0(η = 0, τ = τH ) = 0,

dϕ0

dτ
(η = 0, τ = τH ) =

1
τ 2

H

(
1 + P′

i
)

> 0,

ψ0(η = 0, τ = τH ) =
1
τH

(
1 + P′

i – P′
e
)

> 0

for the trace function ϕ0 and the determinant function ψ0 given by (44) with n = 0. In the
corresponding local dynamics this point corresponds to a Hopf bifurcation. Therefore τH

is referred to as the Hopf point in this local description. For τ < τH with P′
e > 1, the equilib-

rium point U0 is asymptotically stable. Introduce τ± defined by (25). In accordance with
[15], U0 will in this case be a node if 0 ≤ τ ≤ τ– or τ ≥ τ+ (P′

e �= 1). In the complementary
regime it will be a focus within the same local dynamical framework.

Next, let us recover the translational invariant limit of the stability problem. This means
that all the heterogeneity parameters are equal to zero, αqp = 0. In that case

Cn(η) =

(
0 0
0 0

)

, n �= 0,
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and hence An(η) = –T for n �= 0. Thus the stability is determined by A0, which in this case
is equal to the stability matrix of the translational invariant case, i.e.,

A0(η) =

(
–1 + P′

eω̃ee(η) –P′
iω̃ie(η)

1
τ

P′
eω̃ei(η) – 1

τ
(1 + P′

iω̃ii(η))

)

, (52)

where ω̃qp ≡ ω̃qp(η) (independent of y). See Theorem 4 in Appendix B.
Let us consider the situation where the heterogeneity parameters αqp satisfy 0 < αqp � 1.

This case is referred to as the weakly modulated case.
The scaling function � of the connectivity kernels is absolute integrable. Consequently,

the Fourier transform �̃ is a uniformly continuous function of its argument, see for exam-
ple Kolmogorov et al. [37]. The assumption that σqp(y;αqp) → sqp as αqp → 0 uniformly in
y ∈ T and the uniform continuity of �̃ allow us to interchange the limit operation αqp → 0
and the integration with respect to y in the integrals defining the Fourier coefficients ω̂

(n)
qp .

Hence we get

ω̂(n)
qp (η;αqp) →

⎧
⎨

⎩
ω̃ei(η), n = 0,

0, n �= 0,
(53)

as αqp → 0 uniformly in η. Assume that n �= 0. In this case ϕn and ψn defined by (44)
satisfy the property ϕn(η) → –1 – τ–1 and ψn(η) → τ–1 as αqp → 0 uniformly in η. This
means that the sequence of curves {�}n>0 contracts to one single point (–1 – τ–1, τ–1) in
the invariant plane in this limit. Hence by the expression for λ±

n given by (43), we find
that λ±

n (k) → 1
2 (–1 – τ–1 ± |1 – τ–1|) in this limit. We conclude that λ+

n(k) → max(1, τ–1)
and λ–

n(k) → min(1, τ–1) as αqp → 0 uniformly in η. For the case n = 0, we make use of
(43), (44), and (53) to conclude that the eigenvalues λ±

0 (η) approach the eigenvalues of
the matrix A0 given by (52). We conclude that only the n = 0-mode in the perturbation V
about the equilibrium U0 will have an impact on the linear instability, and hence on the
pattern formation when αqp = 0.

Since σqp by assumption is a continuous function of αqp and the Fourier-transform �̃ is
a uniformly continuous function of its argument (as a consequence of � being absolute
integrable), the mapping

αqp �→ �̃
(
kσqp(y;αqp)

)
, αqp ∈ [0, 1)

is a continuous function for each k ∈ R and y ∈ T. The Fourier coefficients ω̂
(n)
qp defined

by (38) are therefore continuous functions of αqp. Hence the trace and the determinant
functions ϕn and ψn defined by (44) also depend continuously on αqp. This continuity
property carries over to λ±

n defined by (43). We therefore conclude that the gain band
structure in the weakly modulated case emerges as a homotopic deformation of the in-
stability structure detected in the translational invariant case. Thus, we have to search
beyond the weakly modulated regime to find significant qualitative changes in the gain
band structure as compared with the translational invariant case.

The detailed analysis of the gain band structure is summarized in Theorem 2, Theo-
rem 3, Theorem 4, and Theorem 5 in Appendix B:
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1. Theorem 2 implies that all the curves {�n}n>0 defined by (45) are closed curves: They
start and terminate at the same point (–1 – 1/τ , 1/τ ) in the second quadrant in the
invariant plane. Moreover, the closed curves {�n}n>0 contract to the point
(–1 – 1/τ , 1/τ ) as n → ∞. Theorem 2 also implies that the curve �0 also approaches
the point (–1 – 1/τ , 1/τ ) as η → ∞, but in accordance with (49) it starts at a different
point.

2. Theorem 3 implies that the curves {�}n∈N0 remain in the second quadrant for all
η ≥ 0 when n exceeds a certain threshold, say n0. The sequence of curves {�n}0≤n≤n0

will cross the positive ψn-axis and the negative φn-axis before returning to the
second quadrant in the invariant plane. The latter result simply means that the
instability structure is of a finite band width type.

3. By appealing to Theorem 5 we conclude that {�n}n≤n0 forms a sequence of smooth
curves in the invariant plane when the scaling function � of the connectivity
functions ωqp satisfy the localization property (10) with r ≥ 1. Moreover, in the
generic case these curves exhibit a finite number of transversal crossings with the
positive determinant axis and the negative trace axis in this plane. Thus the generic
picture of the instability structure consists of a finite set of well-separated smooth
gain bands, just as in the translational invariant case.

4. By taking Theorem 3 and Theorem 4 into account, we conclude that the linear
stability problem (and consequently also the pattern formation problem) for the
homogenized 2-population model can be resolved by using model (1) with the mean
values 〈ωqp〉 if the scaling function � of the connectivity kernels ωqp satisfies the
localization property (10) for the exponent r exceeding a threshold value.

Let us illustrate the present analysis with numerical examples where the input data are as
given in Sect. 3. We first notice that the Fourier transform �̃ of the exponentially decaying
scaling function (21) is given by

�̃(k) =
1

(2πk)2 + 1
,

from which it follows that

ω̃qp(k, y) = �̃
(
σqp(y)k

)
=

1
(2πσqp(y))2η + 1

, η = k2,

where σqp(y) is given by (26). The corresponding Fourier coefficients ω̂
(n)
qp are given by

means of the integrals

ω̂(n)
qp (η) =

∫

Y

1
(2πσqp(y))2η + 1

exp(–i2πny) dy, η = k2. (54)

In the forthcoming numerical simulations (i.e., the computations underlying Fig. 1–
Fig. 12) we proceed in the same way as in Wyller et al. [15] by imposing the bound

τ– < τ < τH < τ+ (55)

on the relative inhibition time τ . Here τH and τ± are defined by (24) and (25), respectively.
The condition τ < τH guarantees that the initial point of the curve �0 is located in the
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Figure 1 Examples of single gain band structure as a function of the heterogeneity for the Fourier
component corresponding to n = 0. The connectivity functions are given by (8) with (21), the averaged
synaptic footprints are fixed as (27). In (a) the parameterized curves �0 in the invariant plane defined by
means of (44) and (45) are shown for τ = 2 and parameter Set A (cf. Table 1). In (c) the corresponding growth
rates (Re{λ±

0 } in (43)) are shown as a function of the wave number k. In (b) the curves �0 are shown for
τ = 4.4 and parameter Set B (cf. Table 1). The corresponding growth rates are shown in (d). The black bullet
points • in (a) and (b) are the initial points of the curves �0, η = k2 = 0. The heterogeneity parameters
producing the black, red, green, and blue curves are Set 1, Set 2, Set 3, and Set 4 in Table 2, respectively

second quadrant of the trace-determinant plane. According to the analysis of the dynam-
ical system (47)–(48), inequality (55) implies that the equilibrium point U0 = (v0, v0) is an
asymptotically stable focus within the framework of this system.

Figure 1 shows the curves �0 in the invariant plane together with the corresponding
growth rate curves for the parameter sets in Table 1 and Table 2. For the weakly mod-
ulated case (0 < αqp � 1), represented by Set 1 in Table 2, we observe that the curve �0

and the corresponding growth rate curve appear in accordance with (53) as a slight de-
formation of the corresponding curves produced in the translational invariant case. By
adjusting the heterogeneity parameter beyond the weakly modulated case, the following
features are notable in the case of steep firing rate functions: Except for Set 3 in Table 2, the
maximal growth rate of the instability decreases with the heterogeneity parameter. This
property is accompanied by a broadening of the single gain band. In the shallow firing rate
regime, we readily observe that the gain band structure is suppressed when increasing the
heterogeneity parameter.

In Fig. 2 the curves �1 in the invariant plane are displayed together with the correspond-
ing growth and decay rate curves for the parameter sets in Table 1 and Table 2. We first
notice that the curves �1 are closed in agreement with the general theory elaborated in
Sect. 4. For the weakly modulated case, represented by Set 1 in Table 2, we show a zoomed
version of the parameterized curve in a separate figure (Fig. 4). This figure clearly demon-
strates the closed orbit structure of the curve �1 in the vicinity of the point (–1 – 1/τ , 1/τ ),
indicated by the black bullet point •, in the invariant plane, consistent with the analysis
presented in Appendix B: The closed curve �1 deforms continuously to the single point
• as the heterogeneity parameters tend to zero. Next, for the shallow firing rate regime,
the curves are for all the sets of heterogeneity located in total in the second quadrant of



Kolodina et al. Journal of Mathematical Neuroscience            (2021) 11:9 Page 17 of 38

Figure 2 Examples of single gain band structure as a function of the heterogeneity for the Fourier
component corresponding to n = 1. The connectivity functions are given by (8) with (21), the averaged
synaptic footprints are fixed as (27). In (a) the parameterized curves �1 in the invariant plane defined by
means of (44) and (45) are shown for τ = 2 and Set A (cf. Table 1). In (c) the corresponding growth rates
(Re{λ±

1 } in (43)) are shown as a function of the wave number k. In (b) the curves �1 are shown for τ = 4.4 and
Set B (cf. Table 1). The corresponding growth rates are shown in (d). The black bullet points • in (a) and (b) are
the initial points of the curves �1, η = k2 = 0. The heterogeneity parameters producing the red, green, and
blue curves are Set 2, Set 3, and Set 4 in Table 2, respectively. Zoomed black curves corresponding to Set 1 are
presented in the separate figure, see (a) and (b) of Fig. 4

the invariant plane, thus showing that the corresponding Fourier component does not
contribute to the instability. Interestingly, the curves �1 visit the third quadrant in the in-
variant plane before returning to the second quadrant in the case of medium-to-strong
heterogeneity parameter (represented by Sets 3 and Set 4 in Table 2 in the steep firing
rate regime represented by Set A in Table 1). In this case the heterogeneity contributes to
the linear instability. It is indeed of interest to explore the impact of this instability on the
pattern formation process. Here one should notice that it must compete with the contri-
bution from the Fourier mode with n = 0, and as we will see, it will only have an impact on
the initial phase of the pattern forming process and not on the final stage of the pattern
forming process.

We have also investigated the parameterized curves �2 given by (44)–(45), see Fig. 3.
The outcome of this investigation is summarized in Fig. 3. We find that all these curves are
located in the second quadrant of the invariant plane, from which it follows that only the
lowest order Fourier components have an impact on the gain band structure, consistent
with Theorem 3 in Appendix B. We have depicted separately the parameterized curves
�2 for the weakly modulated case, represented by Set 1 in Table 2 in Fig. 4. This figure
clearly demonstrates the closed orbit structure of the curve �2 in the vicinity of the bullet
point • in the invariant plane, consistent with the previous findings: Just as the curve �1,
the closed curve �2 deforms continuously to the single bullet point • as the heterogeneity
parameters tend to zero. This is also in agreement with the theoretical results summarized
in Appendix B.

We finally detect the generation and coalescence of gain bands by viewing such phenom-
ena as bifurcation processes. Just as in Wyller et al. [15], we get two types of bifurcations,



Kolodina et al. Journal of Mathematical Neuroscience            (2021) 11:9 Page 18 of 38

Figure 3 The parameterized curves �2 defined by means of (44) and (45). The connectivity functions are
given by (8) with (21), the averaged synaptic footprints are fixed as (27). In (a) τ = 2 for the firing rate function
corresponding to Set A (cf. Table 1). In (b) the curve �2 is shown for τ = 4.4 and Set B (cf. Table 1). The black
bullet points • in (a) and (b) are the initial points of the curves �2, η = k2 = 0. The heterogeneity parameters
producing the black, red, green, and blue curves are Set 1, Set 2, Set 3, and Set 4 in Table 2, respectively. The
decay rates corresponding to (a) and (b) are plotted in (c) and (d), respectively. Zoomed black curves
corresponding to Set 1 are presented in (c) and (d) of Fig. 4

Figure 4 Zoomed versions of the curves �1 and �2 in Fig. 2 and Fig. 3 representing the weakly modulated
case, i.e., Set 1 in Table 2, show the closed orbit structure. The connectivity functions are given by (8) with (21),
the averaged synaptic footprints are fixed as (27). In (a) and (c) the parameterized curves �1 and �2 in the
invariant plane defined by means of (44) and (45) are shown for τ = 2 and Set A (cf. Table 1). In (b) and (d) the
curves �1 and �2 are shown for τ = 4.4 and Set B (cf. Table 1). The black bullet points • in (a) and (b) are the
initial points of the curves �1, η = k2 = 0

a continuous version of the static codimension one bifurcation and a continuous version
of the Hopf type of bifurcation. The former one is referred to as the Turing bifurcation,
whereas the latter one is called theTuring–Hopf bifurcation. Paying attention to the fact
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that we have four heterogeneity parameters which can be varied independently of each
other, we can expect a rich plethora of local bifurcation phenomena to take place. In the
present study we only give simple examples on these two types of bifurcations. We pro-
ceed in the following way: Fix n ∈ N0 and assemble three of the heterogeneity parameters
into a single constant parameter vector which we denote by â. The remaining heterogene-
ity parameter, which is denoted by α̂, is varied. We notice that â ∈ [0, 1)3 and α̂ ∈ [0, 1)
for case (26). By assumption both ϕn and ψn are smooth functions of α̂. Moreover, due
to (10) (with r ≥ 2), the same functions are at least two times continuously differentiable
with respect to η. We will make use of these properties when describing the Turing and
the Turing–Hopf bifurcation.

(a) Turing type bifurcation. In this case the bifurcation point (ηc, α̂c) (where ηc = k2
c ) is

determined by means of the non-transversality condition

ψn(ηc, τ , α̂c) = 0,
∂

∂η
ψn(ηc, τ , α̂c) = 0, τ ∈ �c, (56)

where

�c =
{
τ ∈R+;ϕ(ηc, τ , α̂c) < 0

}
. (57)

By using (43), condition (56), and the fact that
√

ϕ2
n = –φn (since φn < 0 by

assumption, cf. condition (57)), we find that

∂

∂α̂
λ+

n(ηc, τ , α̂c) = ϕ–1
n (ηc, τ , α̂c)

∂

∂α̂
ψn(ηc, τ , α̂c), τ ∈ �c

with respect to the control parameter α̂. Hence, in order to ensure that the
bifurcation point (ηc, α̂c) is isolated (and not an accumulation point for a sequence of
bifurcation points), we impose the transversality condition

∂

∂α̂
ψn(ηc, τ , α̂c) �= 0, τ ∈ �c.

This means that the corresponding eigenvalue λ+
n changes sign as we pass the

bifurcation point. Notice that due to the conditions imposed on the connectivity
kernels make ∂

∂α̂
λ+

n(ηc, τ , α̂c) finite. We readily find that

∂2

∂η2 λ+
n(ηc, τ , α̂c) = ϕ–1

n (ηc, τ , α̂c)
∂2

∂η2 ψn(ηc, τ , α̂c), τ ∈ �c.

In the process of deriving this result, we have made use of expression (43), the
standard rules for differentiation, and thereafter condition (56) (where we take into
account that

√
ϕ2

n = –φn since φn < 0 by assumption, cf. condition (57)). A notable
outcome of this computation is that the terms containing the first and the second
derivatives of φn with respect to η will not be present in the expression for the
second derivative of the eigenvalue λ+

n with respect to η.
This means that λ+

n has local maximum at the bifurcation point if

∂2

∂η2 ψn(ηc, τ , α̂c) > 0, τ ∈ �c,
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Figure 5 Example of a Turing type of bifurcation (56) for the Fourier component corresponding to n = 1. The
connectivity functions are given by (8) and (21), the averaged synaptic footprints are fixed as (27). The
parameterized curves �1 defined by means of (44) and (45) are shown for τ = 2 for Set A (cf. Table 1). The
black point • denotes the initial point of �1. The input heterogeneity parameter vector â is given as
â = (0.1, 0.1, 0.1) and α̂ = αii . The red and the blue curve corresponds to αii = 0.29 and αii = 0.31, respectively.
For α̂c = 0.3009 (corresponding to the black curve), we have a Turing type of bifurcation

which signals that an excitation of a gain band takes place in this case. λ+
n has local

minimum at the bifurcation point if

∂2

∂η2 ψn(ηc, τ , α̂c) < 0, τ ∈ �c,

which means that there is an open η-interval about ηc for which λ+
n is strictly

positive, thus signalling a coalescence of gain bands to take place at the bifurcation
point. Figure 2 clearly indicates that a gain band is generated in the steep firing rate
function regime when the heterogeneity parameter exceeds a certain threshold. We
can analyze the generation mechanism as a Turing type of bifurcation phenomenon,
i.e., by means of the non-transversality condition (56). In Fig. 5 we have
demonstrated this phenomenon by plotting the closed parameterized curve �1 for
three different sets of heterogeneity parameters. Here we have fixed all the
heterogeneity parameters except αii, i.e., we let α̂ = αii.

(b) Turing–Hopf type bifurcation. In this case the bifurcation points (ηc, τc) satisfy the
non-transversality condition

ϕn(ηc, τc, α̂) = 0,
∂

∂η
ϕn(ηc, τc, α̂) = 0, α̂ ∈ Jc. (58)

Here

Jc =
{
α̂ ∈R0;ψn(ηc, τc, α̂) > 0

}
. (59)

We notice that the eigenvalues λ±
n are complex conjugate in the vicinity of the

bifurcation points with the real part given as

Re
{
λ±

n (η, τ , α̂)
}

=
1
2

· ϕn(η, τ , α̂), α̂ ∈ Jc.



Kolodina et al. Journal of Mathematical Neuroscience            (2021) 11:9 Page 21 of 38

We impose the transversality condition

∂

∂τ
ϕn(ηc, τc, α̂) �= 0, α̂ ∈ Jc

with respect to the control parameter τ in order to ensure that the bifurcation point
is an isolated point (and not an accumulation point for a sequence of bifurcation
points). In this problem the control parameter τ depends on the heterogeneity
parameters α̂. Since the real part of the corresponding eigenvalues λ±

n changes sign
at this bifurcation point, the condition

∂2

∂η2 ϕn(ηc, τc, α̂) < 0, α̂ ∈ Jc

means that we have a local maximum of the function ϕn (or equivalently the real
part of λ±

n ) as a function of η at the bifurcation point. When passing through the
bifurcation point, a portion of the curve �n will be contained in the first quadrant in
the φn,ψn-plane for some η-interval about ηc. This means that a gain band is excited
at the bifurcation point. For the case

∂2

∂η2 ϕn(ηc, τc, α̂) > 0, α̂ ∈ Jc,

the function ϕn (or equivalently the real part of λ±
n ) has a local minimum as a

function of η at the bifurcation point. This means that there is an open interval Ic

about ηc for which we will have ϕn(η, τ , α̂) > 0 when η ∈ Ic,η �= ηc. This is signaling
that a coalescence of gain bands takes place as we pass through the bifurcation point.

In the translational invariant case the Turing–Hopf bifurcation has been
demonstrated numerically in Wyller et al. [15], using the relative inhibition time τ as
a control parameter. The numerical example explored in [15] is based on the
exponentially decaying connectivity kernels (i.e., (8) and (26) with � given as (21))
with Set B in Table 1 as input data. In this case we find by appealing to the implicit
function theorem that the bifurcation condition (58) for n = 0 and αqp = 0; q, p = e, i
is fulfilled for τ = τc = 4.09. In Appendix C we prove that this bifurcation is
continuously deformed to a Turing–Hopf bifurcation for the weakly modulated case
(Theorem 6). We use this result to detect regions in the α̂, τ -parameter plane for
which ϕ0(η, τ , α̂) > 0 for some η and regions for which ϕ0(η, τ , α̂) < 0 for all η. The
former subset of the τ , α̂-parameter plane corresponds to an excitation of a gain
band, whereas as the latter subset produces no such excitation. We have
summarized these findings in the color plots in Fig. 6. In the computations
underlying these figures, we let the input heterogeneity parameter vector â be given
as â = 0. Interestingly, Fig. 6 shows that the critical relative inhibition time τc for the
onset of spatio-temporal oscillations remains almost constant in cases (b) and (c).

Notice that the present bifurcation analysis implies that even though we have no bifur-
cation point for n = 0 of types (a) and (b), it might happen that at some n = n∗ for which
0 < n∗ ≤ n0 we will have a bifurcation point of types (a) and (b). This is caused by the pres-
ence of the periodic microstructure in the modeling framework and has no counterpart
in the translational invariant limit.
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Figure 6 Color plot illustrating the parameter regimes for existence and non-existence of a gain band as a
function of the heterogeneity parameter αqp ; (q,p = e, i) and the relative inhibition time τ . Blue (transparent)
shaded regions correspond to existence (non-existence) of a gain band. The separatrix curve (black) depicts
the graph of the critical relative inhibition time τc as a function of α̂ : τc = τc(α̂), α̂ ∈ [0, 1). The connectivity
functions are given by (8) and (21) and the synaptic footprint functions as (26) with the averaged synaptic
footprints fixed as (27). Input parameters are given by Set B in Table 1. (a); q = p = e, â = (αie ,αei ,αii) = 0,
α̂ = αee , in (b): q = i,p = e, â = (αee ,αei ,αii) = 0, α̂ = αie , in (c): q = e,p = i, â = (αee ,αie ,αii) = 0, α̂ = αei , and in
(d): q = p = i, â = (αee ,αie ,αei) = 0, α̂ = αii

Finally, notice the choice of bifurcation parameters in the Turing and the Turing–Hopf
problem: In the Turing–Hopf bifurcation problem (58) we let the relative inhibition time τc

play the role as the bifurcation parameter. This parameter and ηc) are smooth functions of
α̂. In the analysis of the Turing bifurcation, it is natural to use the heterogeneity parameter
α̂c as the bifurcation parameter. The reason for this is that in accordance with (44) the
solution of bifurcation equations (56) is independent of τ .

5 Pattern formation
Finally, we carry out numerical simulations of (4) in order to illustrate the effect of the peri-
odic microstructure on the pattern forming process. We do this by exploring the nonlinear
stage of the instability as a function of the heterogeneity parameter αqp. The equations are
first discretized in x and y and then solved using the build-in functions conv2 and ode45 in
MATLAB© with the time step 
t = 0.1. In the numerical simulations we consider a finite
spatial domain x ∈ [–L, L] with L = 5 as an example. We use equidistant grid of the size
Nx = 201 in x-variables and Ny = 11 in y-variables. The convolutions are approximated
with the Riemann sums. To avoid an accumulation of errors towards the boundaries of
[–L, L], at each time step the convolutions are calculated on [–2L, 2L] in x assuming that
the solution is 2L-periodic in x. This assumption on solutions can be justified if the initial
conditions are 2L periodic as well.

In the numerical simulations to be presented it is assumed that the initial condition for
(4) consists of a homogeneous solution v0 (given by Table 1) with a small perturbation on
the form of a narrow centered rectangular box superimposed, i.e.,

U(x, y) =

⎧
⎨

⎩
0.2, if x ∈ [–0.5, 0.5], y ∈ [–0.5, 0.5],

v0, if x ∈ [–L, L] \ [–0.5, 0.5], y ∈ [–0.5, 0.5].
(60)
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Figure 7 Projection of the numerical solutions of (4) onto the y = 1/2-plane for parameter Set A in Table 1
with τ = 2. (a) represents the excitatory activity level ue and (b) the inhibitory activity level ui in the
translational invariant case. (c) represents the excitatory activity level ue and (d) the inhibitory activity level ui
for Set 1 in Table 2. The initial condition is given by (60)

We project the numerical solutions onto the y = 1/2-plane for four different sets of the het-
erogeneity parameters αqp given in Table 2. Here we divide investigations into two subsec-
tions corresponding to steep firing rate regime, i.e., Set A in Table 1 (Sect. 5.1), and shallow
firing rate regime, i.e., Set B in Table 1 (Sect. 5.2).

5.1 Steep firing rate regime (set A)
The outcome of the numerical study of the pattern formation in the steep firing rate regime
(represented by Set A) and in the weakly modulated case (represented by Set 1 in Table 2)
is stable x-dependent spatial oscillations. See Fig. 7. For the sake of completeness we have
compared the outcome in the weakly modulated case with the outcome the translational
invariant case, thus confirming the expectation that the dynamical evolution in the weakly
modulated case appears as a continuous deformation of the translational invariant case.

The shape of each oscillation is remarkably similar to the shape of the 1-bump studied
in Kolodina et al. [33] for the Heaviside limit of the firing rate functions. This is illustrated
by means of the plots in Fig. 8: In (a) and (b) we show the excitatory and the inhibitory
component of the stable single bump in the Heaviside limit of the firing rate functions,
whereas in (c) and (d) we plot the corresponding components of the spatially oscillating
pattern restricted to one period when using heterogeneity parameter Set 1 in Table 2 as
input parameters. The wave number of these oscillations is approximately equal to the
wave number maximizing λ+

0 . The procedure for estimating this wave number goes as
follows: The starting point is the sample of wave numbers S = {k1, . . ., kN } underlying the
numerical computations leading to the growth rate curves in Fig. 1. The estimate for the
wave number which we denote by kmax is selected from the sample S in such a way that
λ+

0 (kmax) > λ+
0 (ki) for ki ∈ S, kmax �= ki. For the input parameters given by Set A and Set 1,

we find that kmax ≈ 2.31 in this way. The corresponding wavelength is defined by �max =
2π/kmax.

The result summarized in Fig. 8 gives rise to the conjecture that one possible final stage
of the pattern forming process in the steep firing rate regime consists of a stable 1-bump
periodic solution. Here we recall what is meant by this notion. The precise definition of
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Figure 8 Comparison between stationary broad bump with the Heaviside firing rate function, where (a) and
(b) correspond to the excitatory and the inhibitory components, respectively, with the stationary oscillations
(c) and (d) restricted to one period for Set A in Table 1 and Set 1 in Table 2

1-bump periodic solutions can be found in Kolodina et al. [34] when the modeling frame-
work is the one-population Amari model and the firing rate function is approximated
with the Heaviside function. This definition can indeed be extended to our case with
a 2-population model: If the firing rate functions are modeled by means of a Heaviside
function H , the 1-bump U(x) = (Ue(x), Ui(x)) can be defined as a stationary solution of (4)
for which the support of H(Uq – θq); q = e, i (from now on denoted by supp(H(Uq – θq)))
is a compact, connected set, just as in Amari [2] in the one spatial dimension case and
in Burlakov et al. [38] in the two spatial dimensions case. A 1-bump periodic solution
is a stationary periodic solution U(x) = (Ue(x), Ui(x)) to (4) for which the restriction of
supp(H(Uq – θq)); q = e, i on the period interval [a, a + T̂] is a connected, compact set.

Notice that the notions of an N-bump and an N-bump periodic solution of (4) represent
natural extensions of the 1-bump and 1-periodic solution in the Heaviside limit of the
firing rate function: U(x) = (Ue(x), Ui(x)) is an N-bump if and only if supp(H(Uq – θq)); q =
e, i is a union of N compact connected disjoint sets, whereas U(x) = (Ue(x), Ui(x)) is an
N-bump periodic solution with a period T̂ if and only if U is T̂-periodic and there exists
an interval [a, a + T̂] such that H(Uq(a) – θq) = 0; q = e, i and the restriction of supp(H(Uq –
θq)); q = e, i on [a, a + T̂] is a union of N connected compact disjoint sets. We are not aware
of any definition of N-bumps and N-bump periodic solutions for general smooth firing
rate functions. However, as the firing rate functions Pq; q = e, i are sigmoidal functions
which approach the Heaviside function H as the steepness parameter βq → ∞, the N-
bump and N-bump periodic solutions for steep firing rate functions could be defined as
solutions whose limits are their respective counterparts in the Heaviside limit, in a way
analogous to Oleynik et al. [39], Oleynik et al. [40], and Burlakov et al. [38]. We do not
exclude the possibility that an outcome of the pattern forming process could be structures
like N-bump periodic solutions.

When increasing the heterogeneity parameters beyond the weakly modulated regime, a
rich plethora of phenomena take place. See Fig. 9–Fig. 11. A common and prominent fea-
ture in these patterns consists of stabilized spatial oscillatory behavior both in the x- and
y-direction, with the y-dependence being as expected more pronounced when increasing
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the heterogeneity parameter. Again the wavelength in x-direction is approximately equal
to the wavelength of the linearly most unstable mode, whereas the 1-periodicity in the
y-direction is retained. The numerical results indicate that the transient phase of the dy-
namical evolution increases when increasing the heterogeneity parameter to a medium
level (Set 2 and Set 3 in Table 2), except for the notable case of strong heterogeneity, rep-
resented by Set 4.

Figure 1(c) and Fig. 2(c) show the gain band structure in the steep firing rate regime,
i.e., when using Set A as input parameters for the computations. Figure 1(c) demonstrates
the finite gain band structure for the n = 0-case, with one unstable band. Interestingly,
Fig. 2(a), (c) clearly displays that we get positive growth rates for the linear stage of the
n = 1-instability only for Set 3 and Set 4. Notice that these two sets represent scenarios
which model situations well beyond the regimes of weakly modulated case 0 < αqp � 1
(represented by Set 1) and the regime of moderate heterogeneity parameter (represented
by Set 2). These results are consistent with the comparison result summarized in The-
orem 1, the role of the stability matrix A0, and the properties of the gain band structure
summarized in Sect. 4: Pattern formation in the regimes of low and moderate heterogene-
ity parameter is described by means of the translational invariant model with the mean
values 〈ωqp〉 as connectivity kernels. When comparing the growth rate curves in Fig. 1(c)
with the growth rate curve in Fig. 2(c) for the input parameter Set 3 (green curves), we es-
timate the maximal growth rate for the n = 0-scenario to be more than six times the maxi-
mal growth rate for the n = 1-scenario. The comparison for the outcome with Set 4 which
models the regime of strong heterogeneity, the maximal growth rate in the n = 0-scenario
(depicted by the blue curve in Fig. 1(a), (c)) is only three times the maximal growth rate
in the corresponding growth rate curve in the n = 1-scenario demonstrated in Fig. 2(a),
(c). This result indicates that the deviation from the dynamics predicted by the translation
invariant model (1) with the mean values 〈ωqp〉 as connectivity kernels could eventually
show up in the regime of steep firing rate functions-strong heterogeneity. This result is
consistent with the comparison result in Theorem 1 and the general properties of the gain
band structure summarized in the points 1.–4. in Sect. 4.

Figure 1(b), (d) and Fig. 2(b), (d) show that the shallow firing rate regime corresponding
to Set B produces a gain band structure only in the n = 0-case (and not for the n = 1-
case) for Set 1–Set 4 of the heterogeneity parameters. Also this result is consistent with
the comparison result stated in Theorem 1 and the role of the stability matrix A0: In this
regime the dynamical evolution is basically approximated by means of the translational
invariant model (1) with the mean values 〈ωqp〉 as connectivity kernels for all values of the
heterogeneity parameters αqp.

Interestingly, we numerically detect two characteristic times t1 and t2 (with t2 > t1) when
using Set 2 and Set 3 in Table 2 as input parameters in the simulations. See Fig. 9 and
Fig. 10. The patterns which emerge at the time t1 consists of a two-band structure. This
structure remains unchanged for the intermediate time interval (t1, t2). At the time t2 each
of these two bands divides into two new bands. The final stage of the pattern forming
process thus consists of four stable bands. Notice also that the splitting time t2 for the
scenario with input data given by Set 2 is greater than t2 for Set 3.

5.2 Shallow firing rate regime (set B)
For the shallow firing rate functions case (Set B in Table 1) the instability develops into
spatiotemporal oscillations. This is consistent with the transient phase described by two
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Figure 9 Projection of the numerical solutions of (4) onto the y = 1/2-plane for parameter Set A in Table 1
and Set 2 in Table 2 with τ = 2. The projections of the excitatory activity level ue and the inhibitory activity
level ui are shown in (a) and (b), respectively. The initial condition is given by (60)

Figure 10 Projection of the numerical solutions of (4) onto the y = 1/2-plane for parameter Set A in Table 1
and Set 3 in Table 2 with τ = 2. The projections of the excitatory activity level ue and the inhibitory activity
level ui are shown in (a) and (b), respectively. The initial condition is given by (60)

complex conjugate eigenvalues of the matrix A0, where the imaginary part determines
the frequency of the oscillations. The wavelength of the emerging spatiotemporal oscilla-
tions is approximately given by the wavelength corresponding to the maximal growth rate
kmax, whereas the frequency is given by the imaginary part of the eigenvalues evaluated at
k = kmax. This is also consistent with the findings in the translational invariant case. Thus,
the numerical runs show that the nonlinear stage of the instability in the weakly modulated
regime appears as a continuous deformation of the nonlinear stage in the translational
invariant case. A notable feature is, however, that the stabilization on spatiotemporal os-
cillations is slow compared with the emergence of stable spatial oscillations for the steep
firing rate case, Set A. This is indeed consistent with the findings in the initial stage of
the pattern forming process which is described by means of the linearized dynamics as
summarized in terms of the gain bands visualized in Fig. 1: The maximal growth rate in
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Figure 11 Projection of the numerical solutions of (4) onto the y = 1/2-plane for parameter Set A in Table 1
and Set 4 in Table 2 with τ = 2. The projections of the excitatory activity level ue and the inhibitory activity
level ui are shown in (a) and (b), respectively. The initial condition is given by (60)

Figure 12 Projection of the numerical solutions of (4) onto the y = 1/2-plane for parameter Set B in Table 1
and Set 3 in Table 2 with τ = 4.4. The projections of the excitatory activity level ue and the inhibitory activity
level ui are shown in (a) and (b), respectively. The initial condition is given by (60)

the steep firing rate regime turns much greater than the maximal growth in the shallow
firing rate regime for the input heterogeneity parameters given by Set 3 in Table 2. This
pattern forming process is visualized in Fig. 12 in terms of the numerical solutions pro-
jected onto y = 1

2 -plane for the input parameters given by Set B in Table 1 and Set 3 in
Table 2 with τ = 4.4. For the other input parameter sets in Table 2, we will observe the
same type of features in the numerical simulations. A notable feature is that the increase
in the heterogeneity parameter decreases the growth rate of the fastest growing mode,
thus explaining the slowdown of the pattern forming process when increasing the hetero-
geneity parameter. We finally notice that the outcome of the linear stability analysis for
the shallow firing rate case and the simulation results summarized in Fig. 12 is consistent
with the predictions of Theorem 1 for shallow firing rate functions.
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6 Conclusions and outlook
In the present paper we have investigated the effect of periodic microstructure on the
pattern formation mechanism in a 2-population neural field model. This work presents
an extension of the previous paper by Wyller et al. [15] on Turing type of instability and
pattern formation within the framework of a 2-population neural field model with homo-
geneous and isotropic connectivity strengths.

The structure of the linear instability consists of a finite set of well-separated gain bands.
In the weakly modulated case the gain band structure emerges as a homotopic deforma-
tion of gain band structure in the translational invariant case, due to the continuous de-
pendence of the heterogeneity parameters. We have examples for which gain bands are
generated through a Turing type of bifurcation and a Turing–Hopf type of bifurcation.
Notice that the instability structure which we have detected for model (4) resembles the
gain band structure obtained for modulational instability (MI) in the nonlocal, nonlin-
ear Schrödinger equation [41] and for modulational instability in the nonlocal χ (2)-model
[42]. The existence of several coexisting gain bands thus seems to be a typical feature of
nonlocal models.

For the shallow parameter regime, Theorem 1 implies that the dynamical evolution pre-
scribed by the homogenized model can be approximated by the dynamical evolution of
the translational invariant case, with the connectivity kernels replaced by means of their
respective means values. For the complementary regime of steep firing rate equations,
we find that the dynamical evolution depends sensitively on the degree of localization of
the scaling function � of the connectivity kernels, measured by means of condition (10):
An increase in the exponent r will lead to stability matrices An, n > n0 where n0 → 1 for
which the corresponding �n-curves are totally located in the second quadrant of the trace-
determinant plane. See Appendix B. The outcome of the numerical simulations is indeed
consistent with this analysis: For the shallow firing rate case, exemplified with Set B in
Table 1), we find that the gain band structure is completely determined by means of the
stability matrix A0, whereas for the steep case illustrated by Set B in Table 1 the stability
matrix A1 contributes to the gain band structure, in addition to A0.

The development of the linear instability into the nonlinear regime has been detailed
numerically. We have considered examples with steep and shallow firing rate functions.
In order to compare with previously obtained results for the 2-population neural trans-
lational invariant model, we have projected the numerical solutions onto the y = 1

2 -plane
and for the same parameter sets for the steep and shallow regimes as in Wyller et al. [15].
We have presented the results of the pattern forming process for four specific sets of the
heterogeneity parameters αqp listed in Table 2. These sets represent scenarios with weak,
intermediate, and strong heterogeneity. We have divided the investigation into two sub-
sections corresponding to the outcomes in the steep firing rate regime and in the shal-
low regime. Here we emphasize that the actual choices of steepness parameters and the
heterogeneity parameters will of course not cover all possible outcomes, since all these
parameters can be varied independently of each other.

The results of these simulations can be summarized as follows:
In the steep firing rate regime (Set A) we get as expected spatial oscillations. In the

weakly modulated case (Set 1) the oscillations consist of periodically distributed bump-
like structures where the shape of the solution restricted to one period overlaps remark-
ably well with the shape of the bumps detected in Kolodina et al. [33] for the firing rate
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functions modeled by means of the Heaviside function. This gives rise to the conjecture
that the final outcome of the pattern formation process in the steep firing rate regime is
1-bump periodic solutions. The wavelength of these oscillations is as expected approx-
imately equal to the wave length of the linearly most unstable mode. In the process of
running numerical simulations, we have observed that it takes a relatively longer time to
form the stabilized stationary patterns than in the translational invariant case. This is in-
deed expected since the growth rate of the linearly most unstable mode in this case is less
than the corresponding growth rate in the translational invariant case. Beyond the weakly
modulated case the numerical examples indicate a further slowdown of the pattern form-
ing process for Set 2 and Set 3. Interestingly, the maximal growth rate produced when
using Set 3 as input parameters is greater than the maximal growth rate for Set 1, see
Fig. 1. In Set 4 the maximal growth rate is the smallest one, but the patterns form faster
than in the case with Set 1 as input parameters. This shows that the parametric complex-
ity of the present model can produce a rich plethora of phenomena, in particular in the
regime beyond the weakly modulated case.

In the shallow firing rate regime (Set B) we obtain spatiotemporal oscillations. In the
weakly modulated case (Set 1) spatiotemporal oscillations appear as homotopic deforma-
tion of the spatiotemporal oscillations of the translational invariant case. This is consis-
tent with the fact that the stability matrix for the linearly most unstable mode are complex
conjugate eigenvalues. In this case the increase in the heterogeneity parameter decreases
the growth rate of the fastest growing mode, thus explaining the slowdown of the pattern
forming process when increasing the heterogeneity parameter. We have also observed that
the pattern forming process in the shallow firing rate regime takes a longer time than in
the steep regime. This result can easily be understood as a consequence of the magnitude
of order difference between the maximal growth rate in the steep firing rate regime ver-
sus the shallow firing rate regime. A numerical example shows that the relative inhibition
time for the excitation of a gain band through a Turing–Hopf bifurcation increases with
the heterogeneity parameter.

In the example with strong heterogeneity (Set 4), the effect of 1-periodicity in y-variable
is visible in the numerical simulation results both in the steep firing rate regime (Set A)
and in the shallow firing rate regime (Set B).

We conjecture that stable 1-bump periodic solutions (or their extension to N-bump
periodic solutions) of homogenized model (4) can be constructed in a way analogous to
Kolodina et al. [34]. It is a topic for future research to find out whether or not this type
of solutions appears as the final outcome in a pattern forming process in the steep firing
rate regime. In line with that it will be of interest to find out if this emerging structure
can be approximated by means of periodically distributed stable single bumps of the type
detected in Kolodina et al. [33]. This will shed light on the role of these single bumps. A
natural extension of the present work consists of studying pattern formation within the
modeling framework (4) when N = 2. This means that a 2-population model with a pe-
riodic microstructure built into the connectivity kernels is defined on a two-dimensional
domain. This extension can be viewed as a step towards a more realistic description of the
actual situation in the cortical tissue. Other realistic effects which could be included in the
present homogenized modeling framework (and its generalizations to Volterra type mod-
els) is finite axonal and dendritic delays effect. Here we will follow the line of thought as in
Venkov et al. [43] and Faye et al. [44]. Finally, possible modifications of the present model
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consist of assuming other types of microstructure effects and then investigating existence
and stability of coherent structures as well as pattern formation within the framework of
the corresponding homogenized problems.

Appendix A
The proof of Theorem 1 relies on the following bounding estimate for the nonlocal effects
in the modeling framework.

Lemma 1 Let the firing rate functions Pq and the connectivity kernels ωqp be specified as in
(6)–(11) and (15). Moreover, let θq; q = e, i be the threshold values in model (3), 
Kqp; q, p =
e, i the L1-norm differences between ωqp and the mean values 〈ωqp〉 defined by (16), and
‖ · ‖B the norm defined by (12). Then we have the estimate

∣
∣ωqp ⊗ ⊗Pq(uq – θq) – 〈ωqp〉 ⊗ Pq(φq – θq)

∣
∣

≤ 
Kqp + βqS′
max‖uq – φq‖B .

Proof Straightforward estimation yields

∣∣ωqp ⊗ ⊗Pq(uq – θq) – 〈ωqp〉 ⊗ Pq(φq – θq)
∣∣

≤ ∣∣(ωqp – 〈ωqp〉
) ⊗ ⊗Pq(uq – θq)

∣∣ +
∣∣〈ωqp〉 ⊗ ⊗(

Pq(uq – θq) – Pq(φq – θq)
)∣∣

≤ sup
(x,y)∈R×T

{∫

R

(∫

T

∣
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)
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)

dx′
}
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)
dx′

}
βqS′

max‖uq – φq‖B

=
∫

R

{∫

T

∣∣ωqp
(
x′, y′) – 〈ωqp〉

(
x′)∣∣dy′

}
dx′ +

{∫

R

〈ωqp〉
(
x′)dx′

}
βqS′

max‖uq – φq‖B

=
∫

R

{∫

T

∣
∣ωqp

(
x′, y′) – 〈ωqp〉

(
x′)∣∣dy′

}
dx′ + βqS′

max‖uq – φq‖B

= 
Kqp + βqS′
max‖uq – φq‖B

by exploiting the suspension trick a – b = a – c + c – b, the triangle inequality and the
conditions imposed on the firing rate functions and the connectivity kernels. �

We are now in a position to prove Theorem 1.

Proof Introduce the temporal kernels

α1(t) = exp[–t], ατ (t) =
1
τ

exp[–t/τ ].
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Let U〈〉 = (φe,φi) denote the solution of (1) with the mean values 〈ωqp〉 of the connectivity
kernels ωqp as connectivity kernels. We get the fixed point problems

φe(x, T) = φe(x, 0)α1(T)

+
∫ T

0
α1(T – t)

(〈ωee〉 ⊗ Pe(φe – θe) – 〈ωie〉 ⊗ Pi(φi – θi)
)
(x, t) dt,

φi(x, T) = φi(x, 0)τατ (T)

+
∫ T

0
ατ (T – t)

(〈ωei〉 ⊗ Pe(φe – θe) – 〈ωii〉 ⊗ Pi(φi – θi)
)
(x, t) dt

(A.1)

t from 0 to T . Formal integration of (4) with respect to time t from 0 to T yields the fixed
point problems

ue(x, y, T) = ue(x, y, 0)α1(T)

+
∫ T

0
α1(T – t)

(
ωee ⊗ ⊗Pe(ue – θe) – ωie ⊗ ⊗Pi(ui – θi)

)
(x, y, t) dt,

ui(x, y, T) = ui(x, y, 0)τατ (T)

+
∫ T

0
ατ (T – t)

(
ωei ⊗ ⊗Pe(ue – θe) – ωii ⊗ ⊗Pi(φi – θi)

)
(x, y, t) dt

(A.2)

for the component functions ue and ui of the solution U = (ue, ui). We then get the in-
equalities

|ue – φe|(x, y, T)

≤ |ue – φe|(x, y, 0)

+
∫ T

0

∣
∣(ωee ⊗ ⊗Pe(ue – θe) – 〈ωee〉 ⊗ Pe(φe – θe)

)
(x, y, t)

∣
∣dt

+
∫ T

0

∣
∣(ωie ⊗ ⊗Pi(ui – θi) – 〈ωie〉 ⊗ Pi(φi – θi)

)
(x, y, t)

∣
∣dt,

|ui – φi|(x, y, T)

≤ |ui – φi|(x, y, 0)

+
1
τ

[∫ T

0

∣
∣(ωei ⊗ ⊗Pe(ue – θe) – 〈ωei〉 ⊗ Pe(φe – θe)

)
(x, y, t)

∣
∣dt

+
∫ T

0

∣∣(ωii ⊗ ⊗Pi(ui – θi) – 〈ωii〉 ⊗ Pi(φi – θi)
)
(x, y, t)

∣∣dt
]

(A.3)

by using (A.1) and (A.2). In the process of deriving these inequalities, we have also made
use of the fact that

0 < α1(t) ≤ 1, 0 < τατ (t) ≤ 1.

By combining Lemma 1, (16), and (A.3), we readily find that

‖ue – φe‖B(T)
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≤ ‖ue – φe‖B(0) + (
Kee + 
Kie)T + βeS′
max

∫ T

0
‖ue – φe‖B(t) dt

+ βiS′
max

∫ T

0
‖ui – φi‖B(t) dt,

‖ui – φi‖B(T)

≤ ‖ui – φi‖B(0) +
1
τ

[
(
Kei + 
Kii)T + βeS′

max

∫ T

0
‖ue – φe‖B(t) dt

+ βiS′
max

∫ T

0
‖ui – φi‖B(t) dt

]
,

from which it follows that

D(T) ≤ D(0) +
[

Kee + 
Kie +

1
τ

(
Kei + 
Kii)
]

T

+
(

1 +
1
τ

)
βmaxS′

max

∫ T

0
D(t) dt,

where βmax ≡ max(βe,βi). Here we have made use of definition (17) of the separation dis-
tance D between the solutions U = (ue, ui) and U〈〉 = (φe,φi). Noticing that D is a contin-
uous function of t on the interval [0, +∞) and the linear function M defined by (19) is
nondecreasing, we end up with inequality (18) by appealing to the integral form of Grön-
wall’s lemma [45]. �

Appendix B
Here we show that the gain band structure is of the finite bandwidth type when the scal-
ing function � of the connectivity kernels ωqp defined by (8) is satisfying the localization
property (10) in addition to (9). This conclusion is based on the following theorems and
corollary.

Theorem 2 The Fourier coefficients ω̂
(n)
qp , n = 0, 1, 2, . . . , defined by (36) are continuous

functions of k satisfying the bounding inequality

ω̂(n)
qp (k) → 0 as |k| → ∞ for all n ∈N0. (B.1)

Proof According to (9), the scaling function � of the connectivity kernels ωqp defined by
(8) is absolute integrable. This implies that the Fourier transform �̃ of � is a uniformly
continuous function of k. See, for example, Kolmogorov et al. [37] for further details.
Hence, by (34), the composite mapping �̃ ◦ S(k)

qp : T→ R defined by

y
S(k)

qp�−→ kσqp(y)
�̃�−→ �̃

(
kσqp(y)

)
= ω̃qp(k, y) (B.2)

is a continuous function of y ∈ T for all k ∈R. Here S(k)
qp (y) ≡ kσqp(y). Hence, Fourier coef-

ficients {ω̂(n)
qp }∞n=0 are continuous functions of k. Moreover, we find according to Riemann–

Lebesque’s lemma that �̃(k) → 0 as |k| → ∞. By (34), we find that ω̃qp(k, y) → 0 as
|k| → ∞ uniformly in y ∈ T from which (B.1) follows. �
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Theorem 3 Assume that the scaling function � satisfies the localization property (10) for
some natural number r ≥ 1. Then the Fourier coefficients ω̂

(n)
qp , n = 0, 1, 2, . . . , defined by (36)

are r times continuously differentiable functions of k and satisfy the bounds

∣∣ω̂(n)
qp (k)

∣∣ ≤ Aqp(k)
nr , k ∈ R, (B.3)

where Aqp(k) are strictly positive constants which are independent of n.

Proof Let �̃ denote the Fourier transform of �. The localization property (10) implies
that �̃, d

dk �̃,. . . , dr

dkr �̃ are uniformly continuous functions of k. Here we again make use
of general results for Fourier transforms, see Kolmogorov et al. [37]. Again, we study the
composite function �̃ ◦ S(k)

qp : T → R defined by (B.2). We readily conclude that the func-
tions �̃ ◦ S(k)

qp , ∂
∂k (�̃ ◦ S(k)

qp ),. . . , ∂r

∂kr (�̃ ◦ S(k)
qp ) are uniformly continuous functions of y ∈ T for

all k ∈ R from which it follows that the Fourier coefficients {ω̂(n)
qp }∞n=0 are r times continu-

ously differentiable with respect to k with

dl

dkl ω̂
(n)
qp (k) =

∫

T

∂ l

∂kl

(
�̃

(
kσqp(y)

))
exp[–i2πny] dy, l = 0, 1, . . . , r.

Next, since S(k)
qp (y) ≡ kσqp(y), d

dy S(k)
qp ,. . . , dr

dyr S(k)
qp are continuous and 1-periodic for all k,

the functions �̃ ◦ S(k)
qp , d

dy (�̃ ◦ S(k)
qp ),. . . , dr

dyr (�̃ ◦ S(k)
qp ) are also continuous and 1-periodic in

y for each k. Therefore, by successive partial integrations and the bounding inequality
| ∫

T
g(y) dy| ≤ maxy∈T |g(y)| for any continuous function g : T →C, we find that the Fourier

coefficients ω̂
(n)
qp , n ∈N0 defined by (36) satisfy the bounds (B.3) with

Aqp(k) =
1

(2π )r max
y∈T

∣∣
∣∣

dr

dyr

(
�̃

(
kσqp(y)

))
∣∣
∣∣. �

We immediately get the following corollary from Theorem 3.

Corollary 1 If (10) is satisfied for r ≥ 1, then the Fourier coefficients ω̂
(n
qp, n = 0, 1, 2, . . . , are

smooth functions of k and satisfy the

ω̂(n)
qp (k) → 0 as n → ∞ uniformly in k.

Next, let us investigate the role of the stability matrix A0 defined by means of (40) (with
n = 0).

Theorem 4 Let 〈ωqp〉 denote the mean value of the connectivity kernel ωqp defined by
means of (15). Then the stability matrix emerging in the linear stability analysis of the
equilibrium U0 = (v0, v0) is given by means of matrix (42).

Proof This result follows directly from the computation of the Fourier transform 〈̃ωqp〉 of
the mean value of ωqp:

〈̃ωqp〉(k) =
∫

R

〈ωqp〉(x) exp(–i2πxk) dx
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=
∫

R

(∫

T

ωqp(x, y) dy
)

exp(–i2πxk) dx

=
∫

T

(∫

R

dxωqp(x, y) exp(–i2πxk) dx
)

dy

=
∫

T

ω̃qp(k, y) dy = 〈ω̃mn〉(k) = ω̂(0)
qp (k).

Here we have made use of Fubini’s theorem for the interchange of the order of integra-
tion. �

The conclusion regarding the gain band structure is based on the following theorem.

Theorem 5 Assume that the scaling function � satisfies the localization property (10) for
some r ≥ 1. Then the functions ϕn or ψn given as (44) are smooth functions of η. More-
over, the number of transversal crossings of the curves �n = (ϕn,ψn), n = 1, 2, . . . , n0, with
the positive ψn-axis and the negative ϕn-axis is finite.

Proof By Corollary 1 and definition (44), the trace and determinant functions ϕn and ψn

are smooth functions of η. The transversal crossings of �n = (ϕn,ψn), n = 1, 2, . . . , n0, with
the positive ψn-axis and the negative ϕn-axis take place for values η satisfying

ϕn(η) = 0,
∂

∂η
ϕn(η) �= 0, ψn(η) > 0 (B.4)

and

ψn(η) = 0,
∂

∂η
ψn(η) �= 0, ϕn(η) < 0. (B.5)

We first prove that the zeros of ϕn or ψn are isolated and distinct by means of a contra-
diction argument. Let {ηm}∞m=1 be a convergent sequence of zeros of fn = ϕn,ψn, i.e., that
limm→∞ ηm = η∗. Then, by the continuity of fn = ϕn,ψn, we find that

0 = lim
m→∞ fn(ηm) = fn

(
lim

m→∞ηm

)
= fn

(
η∗),

which means that the accumulation point η∗ is a zero of fn. Thus any open interval about
η∗ contains at least one zero ηm. But the transversality condition ∂

∂η
fn(η∗) �= 0 implies that

there is an open interval I = (η∗ – 
η,η∗ + 
η) such that fn(η) �= 0 for η ∈ I and η �= η∗.
Therefore no zero of fn can be an accumulation point of some sequence of zeros of fn.
Hence the zeros of fn must be isolated and distinct. Next, let us prove that the number of
zeros of fn must be finite. The continuity of fn and the fact that the curve �n terminates
in the second quadrant in the (ϕn,ψn)-plane imply that there is a zero denoted by ηmax of
either ϕn or ψn such that the curve �n remains in the second quadrant for η > ηmax. This
means that all the zeros of fn = ϕn,�n satisfying (B.4) and (B.5) are located in the half-open
interval (0,ηmax]. This result together with the fact that the zeros are isolated and distinct
leads to the conclusion that the number of zeros is finite. Hence we can only have a finite
number of transversal crossings of �n of types (B.4) and (B.5). �
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Remark 1 The proof of Theorem 5 proceeds in a way analogous to the proof of Theorem
1 in the appendix in Wyller et al. [41]. For the sake of completeness, we have included this
theorem and its corresponding proof in the present paper.

We notice that the exponentially decaying function � defined by (21) satisfies the local-
ization property (10) for all r ∈N0. The numerical findings in Sect. 4 are indeed consistent
with both Theorem 1, Theorem 2, Theorem 3, and Theorem 5.

Appendix C
Let us assemble three of the heterogeneity parameters into a single parameter vector which
we denote by â. The remaining heterogeneity parameter is denoted by α̂. We fix a. The
following result serves as a basis for the Turing–Hopf theory developed in Section.

Theorem 6 Assume that condition (10) is fulfilled for r ≥ 2. Assume that system (58) is
fulfilled for n = 0 and α̂ = 0, i.e., that there is a point (ηc,0, τc,0) such that

ϕ0(ηc,0, τc,0, 0) = 0,
∂ϕ0

∂η
(ηc,0, τc,0, 0) = 0,

ψ0(ηc,0, τc,0, 0) > 0,
∂2ϕ0

∂η2 (ηc,0, τc,0, 0) �= 0,
∂ϕ0

∂τ
(ηc,0, τc,0, 0) �= 0.

(C.1)

Then there is a unique and smooth solution (η, τ ) = (ηc(α̂), τc(α̂)) for α̂ ∈ [0, ε) (with 0 ≤ ε <
1) of system (58) for which the conditions

ψ0
(
ηc(α̂), τc(α̂); α̂

)
> 0,

∂2

∂η2 ϕ0
(
ηc(α̂), τc(α̂); α̂

) �= 0 (C.2)

are fulfilled for α̂ in some interval about α̂ = 0.

Proof According to Theorem 3 in Appendix B, condition (10) for r ≥ 2 implies that the
function ϕ0 defined by means of (44) is at least two times continuously differentiable with
respect to η. Let � and I be the set

� =
{

(η, τ ) ∈R
2;η ≥ 0, τ > 0

}
, I = [0, 1)

and introduce the smooth vector-valued function G0 : � × I →R
2 defined by

G0(η, τ , α̂) ≡
[

ϕ0(η, τ , α̂)
∂ϕ0
∂η

(η, τ , α̂)

]

,

where (η, τ ) ∈ �, α̂ ∈ I . According to the assumption (ηc,0, τc,0, 0) is a solution of the system
G0(η, τ , α̂) = 0 when α̂ = 0. We readily find that the Jacobian D(η,τ )G0 of G0 evaluated at the
point (ηc,0, τc,0, 0) is given as

D(η,τ )G0(ηc,0, τc,0, 0) =

(
0 ∂ϕ0

∂τ
(ηc,0, τc,0, 0)

∂2ϕ0
∂η2 (ηc,0, τc,0, 0) ∂2ϕ0

∂η∂τ
(ηc,0, τc,0, 0)

)

,
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from which it follows that

det
{

D(η,τ )G0(ηc,0, τc,0, 0)
}

= –
∂ϕ0

∂τ
(ηc,0, τc,0, 0) · ∂2ϕ0

∂η2 (ηc,0, τc,0, 0).

Assumption (C.2) implies that

det
{

D(η,τ )G0(ηc,0, τc,0, 0)
} �= 0,

from which it follows that D(η,τ )G0(ηc,0, τc,0, 0) is non-singular. The implicit function the-
orem then implies that there is a unique smooth parametrization C : (η, τ ) = (ηc(α̂), τc(α̂)),
where α̂ ∈ [0, ε) for some ε such that 0 ≤ ε < 1 for which G0(ηc(α̂), τc(α̂), α̂) = 0. The con-
tinuity of the functions ψ0 and ∂2

∂η2 ϕ0 implies that conditions (C.2) are fulfilled for some
open interval about α̂ = 0. �

Example The exponentially decaying scaling function � defined by (21) satisfies condi-
tion (10) for all r ≥ 0. Assume that a = 0. According to Wyller et al. [15], system (C.1) has
a unique solution for the relative inhibition time τc,0 satisfying the bound

τ∗ < τc,0 < τH

when P′
e > 1 and sii > see. Here τH is defined by (24) and τ∗ by

τ∗ ≡
P′

i + 1 + s2
ii

s2
ee

(P′
e – 1) s2

ii
s2
ee

– 1
.

Let ηc,0 = k2
c,0. We readily find that

∂ϕ0

∂τ
(ηc,0, τc,0, 0) = 1 + P′

i�̃ii(siikc,0) = 1 + P′
i

1
4π2s2

iiηc,0 + 1
> 0

and

∂2ϕ0

∂η2 (ηc,0, τc,0, 0) = –
32π4(1 + τ–1

c,0 )s2
ees2

ii

(4π2s2
iiηc,0 + 1)(4π2s2

eeηc,0 + 1)
< 0.

Moreover, we get

ψ0(ηc,0, τc,0, 0) = τ–1 H4(ηc,0)
(1 + 4π2s2

eeη)(1 + 4π2s2
iiηc,0)(1 + 4π2s2

eiηc,0)(1 + 4π2s2
ieηc,0)

,

where H4 is a quartic polynomial in η derived in [15]. Due to the complexity of the an-
alytical expression for H4, it is not possible to infer simple analytical predictions regard-
ing the sign of ψ0. We thus rely on numerical computations to resolve this issue. Notice,
however, that for the numerical example demonstrated in Sect. 4, it is shown in [15] that
H4(ηc,0) > 0. Hence ψ0(ηc,0, τc,0, 0) > 0 in the present example. Theorem 6 then implies that
there is a unique smooth solution (η, τ ) = (ηc(α̂), τc(α̂)) of system (C.1) with ηc(0) = ηc,0 and
τc(0) = τc,0 for which condition (C.2) is satisfied in the weakly modulated case (0 < α̂ � 1).
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Moreover, since ∂2ϕ0
∂η2 (ηc,0, τc,0, 0) < 0, an excitation of a gain band is expected to take place

in the weakly modulated case (0 < α̂ � 1). This analytically based prediction is supported
by the findings summarized in Fig. 6 in Sect. 4.
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