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Abstract In this paper, we consider neural field equations with space-dependent de-
lays. Neural fields are continuous assemblies of mesoscopic models arising when
modeling macroscopic parts of the brain. They are modeled by nonlinear integro-
differential equations. We rigorously prove, for the first time to our knowledge, suf-
ficient conditions for the stability of their stationary solutions. We use two methods
1) the computation of the eigenvalues of the linear operator defined by the linearized
equations and 2) the formulation of the problem as a fixed point problem. The first
method involves tools of functional analysis and yields a new estimate of the semi-
group of the previous linear operator using the eigenvalues of its infinitesimal genera-
tor. It yields a sufficient condition for stability which is independent of the character-
istics of the delays. The second method allows us to find new sufficient conditions for
the stability of stationary solutions which depend upon the values of the delays. These
conditions are very easy to evaluate numerically. We illustrate the conservativeness
of the bounds with a comparison with numerical simulation.

1 Introduction

Neural fields equations first appeared as a spatial-continuous extension of Hopfield
networks with the seminal works of Wilson and Cowan, Amari [1, 2]. These networks
describe the mean activity of neural populations by nonlinear integral equations and
play an important role in the modeling of various cortical areas including the vi-
sual cortex. They have been modified to take into account several relevant biological
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mechanisms like spike-frequency adaptation [3, 4], the tuning properties of some
populations [5] or the spatial organization of the populations of neurons [6]. In this
work we focus on the role of the delays coming from the finite-velocity of signals in
axons, dendrites or the time of synaptic transmission [7, 8]. It turns out that delayed
neural fields equations feature some interesting mathematical difficulties. The main
question we address in the sequel is that of determining, once the stationary states
of a non-delayed neural field equation are well-understood, what changes, if any, are
caused by the introduction of propagation delays? We think this question is impor-
tant since non-delayed neural field equations are pretty well understood by now, at
least in terms of their stationary solutions, but the same is not true for their delayed
versions which in many cases are better models closer to experimental findings. A lot
of work has been done concerning the role of delays in waves propagation or in the
linear stability of stationary states but except in [9] the method used reduces to the
computation of the eigenvalues (which we call characteristic values) of the linearized
equation in some analytically convenient cases (see [10]). Some results are known in
the case of a finite number of neurons [11, 12] and in the case of a few number of
distinct delays [13, 14]: the dynamical portrait is highly intricated even in the case of
two neurons with delayed connections.

The purpose of this article is to propose a solid mathematical framework to char-
acterize the dynamical properties of neural field systems with propagation delays and
to show that it allows us to find sufficient delay-dependent bounds for the linear sta-
bility of the stationary states. This is a step in the direction of answering the question
of how much delays can be introduced in a neural field model without destabiliza-
tion. As a consequence one can infer in some cases without much extra work, from
the analysis of a neural field model without propagation delays, the changes caused
by the finite propagation times of signals. This framework also allows us to prove a
linear stability principle to study the bifurcations of the solutions when varying the
nonlinear gain and the propagation times.

The paper is organized as follows: in Section 2 we describe our model of delayed
neural field, state our assumptions and prove that the resulting equations are well-
posed and enjoy a unique bounded solution for all times. In Section 3 we give two
different methods for expressing the linear stability of stationary cortical states, that
is, of the time independent solutions of these equations. The first one, Section 3.1, is
computationally intensive but accurate. The second one, Section 3.2, is much lighter
in terms of computation but unfortunately leads to somewhat coarse approximations.
Readers not interested in the theoretical and analytical developments can go directly
to the summary of this section. We illustrate these abstract results in Section 4 by
applying them to a detailed study of a simple but illuminating example.

2 The model

We consider the following neural field equations defined over an open bounded piece
of cortex and/or feature space � ⊂ Rd . They describe the dynamics of the mean
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membrane potential of each of p neural populations.⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

d

dt
+ li

)
Vi(t, r) =

p∑
j=1

∫
�

Jij (r, r̄)S
[
σj

(
Vj

(
t − τij (r, r̄), r̄

)− hj

)]
d r̄

+ I exti (r, t), t ≥ 0,1 ≤ i ≤ p,

Vi(t, r) = φi(t, r), t ∈ [−T ,0].

(1)

We give an interpretation of the various parameters and functions that appear in (1).
� is a finite piece of cortex and/or feature space and is represented as an open

bounded set of Rd . The vectors r and r̄ represent points in �.
The function S : R → (0,1) is the normalized sigmoid function:

S(z) = 1

1+ e−z
. (2)

It describes the relation between the firing rate νi of population i as a function of
the membrane potential, for example, Vi : νi = S[σi(Vi − hi)]. We note V the p-
dimensional vector (V1, . . . , Vp).

The p functions φi , i = 1, . . . , p, represent the initial conditions, see below. We
note φ the p-dimensional vector (φ1, . . . , φp).

The p functions I exti , i = 1, . . . , p, represent external currents from other cortical
areas. We note Iext the p-dimensional vector (I ext1 , . . . , I extp ).

The p × p matrix of functions J = {Jij }i,j=1,...,p represents the connectivity be-
tween populations i and j , see below.

The p real values hi , i = 1, . . . , p, determine the threshold of activity for each
population, that is, the value of the membrane potential corresponding to 50% of the
maximal activity.

The p real positive values σi , i = 1, . . . , p, determine the slopes of the sigmoids
at the origin.

Finally the p real positive values li , i = 1, . . . , p, determine the speed at which
each membrane potential decreases exponentially toward its rest value.

We also introduce the function S : Rp → Rp , defined by S(x) = [S(σ1(x1 −
h1)), . . . , S(σp(xp − hp))], and the diagonal p × p matrix L0 = diag(l1, . . . , lp).

A difference with other studies is the intrinsic dynamics of the population given by
the linear response of chemical synapses. In [9, 15], ( d

dt
+ li ) is replaced by ( d

dt
+ li )

2

to use the alpha function synaptic response. We use ( d
dt

+ li ) for simplicity although
our analysis applies to more general intrinsic dynamics, see Proposition 3.10 in Sec-
tion 3.1.3.

For the sake of generality, the propagation delays are not assumed to be identi-
cal for all populations, hence they are described by a matrix τ (r, r̄) whose element
τij (r, r̄) is the propagation delay between population j at r̄ and population i at r. The
reason for this assumption is that it is still unclear from physiology if propagation
delays are independent of the populations. We assume for technical reasons that τ is

continuous, that is, τ ∈ C0(�
2
,Rp×p

+ ). Moreover biological data indicate that τ is
not a symmetric function (that is, τij (r, r̄) �= τji(r̄, r)), thus no assumption is made
about this symmetry unless otherwise stated.
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In order to compute the righthand side of (1), we need to know the voltage V on
some interval [−T ,0]. The value of T is obtained by considering the maximal delay:

τm = max
i,j,(r,r̄)∈�×�

τij (r, r̄).

Hence we choose T = τm.

2.1 The propagation-delay function

What are the possible choices for the propagation-delay function τ (r, r̄)? There are
few papers dealing with this subject. Our analysis is built upon [16]. The authors of
this paper study, inter alia, the relationship between the path length along axons from
soma to synaptic buttons versus the Euclidean distance to the soma. They observe a
linear relationship with a slope close to one. If we neglect the dendritic arbor, this
means that if a neuron located at r is connected to another neuron located at r̄, the
path length of this connection is very close to ‖r − r̄‖, in other words, axons are
straight lines. According to this, we will choose in the following:

τ(r, r̄) = c‖r− r̄‖2,
where c is the inverse of the propagation speed.

2.2 Mathematical framework

A convenient functional setting for the non-delayed neural field equations (see [17–
19]) is to use the space F = L2(�,Rp) which is a Hilbert space endowed with the
usual inner product:

〈V,U〉F ≡
p∑

i=1

∫
�

Vi(r)Ui(r) dr.

To give a meaning to (1), we define the history space C = C0([−τm,0], F ) with
‖φ‖C = supt∈[−τm,0] ‖φ(t)‖F , which is the Banach phase space associated with equa-
tion (3) below. Using the notation Vt (θ) = V(t + θ), θ ∈ [−τm,0], we write (1) as:{

V̇(t) = −L0V(t) +L1S(Vt ) + Iext(t),
V0 = φ ∈ C,

(3)

where ⎧⎨⎩L1 : C −→ F ,

φ →
∫

�

J(·, r̄)φ(r̄,−τ (·, r̄))d r̄
is the linear continuous operator satisfying (the notation ‖| · ‖| is defined in Defini-
tion A.2 of Appendix A) ‖|L1‖| ≤ ‖J‖L2(�2,Rp×p). Notice that most of the papers on
this subject assume � infinite, hence requiring τm = ∞. This raises difficult mathe-
matical questions which we do not have to worry about, unlike [9, 15, 20–24].

We first recall the following proposition whose proof appears in [25].
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Proposition 2.1 If the following assumptions are satisfied:

1. J ∈ L2(�2,R
p×p),

2. the external current Iext ∈ C0(R, F ),
3. τ ∈ C0(�2,Rp×p

+ ), sup�2 τ ≤ τm.

Then for any φ ∈ C, there exists a unique solution V ∈ C1([0,∞), F ) ∩ C0([−τm,

∞), F ) to (3).

Notice that this result gives existence on R+, finite-time explosion is impossible
for this delayed differential equation. Nevertheless, a particular solution could grow
indefinitely, we now prove that this cannot happen.

2.3 Boundedness of solutions

A valid model of neural networks should only feature bounded membrane potentials.
We find a bounded attracting set in the spirit of our previous work with non-delayed
neural mass equations. The proof is almost the same as in [19] but some care has to
be taken because of the delays.

Theorem 2.2 All the trajectories of the equation (3) are ultimately bounded by the
same constant R (see the proof) if I ≡ maxt∈R+ ‖Iext(t)‖F < ∞.

Proof Let us define f : R × C → R
+ as

f (t,Vt )
def= 〈−L0Vt (0) +L1S(Vt ) + Iext(t),V(t)

〉
F = 1

2

d‖V‖2F
dt

.

We note l = mini=1,...,p li and from Lemma B.2 (see Appendix B.1):

f (t,Vt ) ≤ −l
∥∥V(t)

∥∥2
F + (√

p|�|‖|J‖|F + I
)∥∥V(t)

∥∥
F .

Thus, if ‖V(t)‖F ≥ 2
√

p|�|·‖|J‖|F +I
l

def= R, f (t,Vt ) ≤ − lR2

2
def= −δ < 0.

Let us show that the open ball of F of center 0 and radius R, BR , is stable under
the dynamics of equation (3). We know that V(t) is defined for all t ≥ 0s and that
f < 0 on ∂BR , the boundary of BR . We consider three cases for the initial condition
V0.

If ‖V0‖C < R and set T = sup{t |∀s ∈ [0, t],V(s) ∈ BR}. Suppose that T ∈ R, then
V(T ) is defined and belongs to BR , the closure of BR , because BR is closed, in effect
to ∂BR . We also have d

dt
‖V‖2F |t=T = f (T ,VT ) ≤ −δ < 0 because V(T ) ∈ ∂BR .

Thus we deduce that for ε > 0 and small enough, V(T + ε) ∈ BR which contradicts
the definition of T . Thus T /∈R and BR is stable.

Because f < 0 on ∂BR , V(0) ∈ ∂BR implies that ∀t > 0, V(t) ∈ BR .
Finally we consider the case V0 ∈ �BR . Suppose that ∀t > 0, V(t) /∈ B̄R , then

∀t > 0, d
dt

‖V‖2F ≤ −2δ, thus ‖V(t)‖F is monotonically decreasing and reaches the
value of R in finite time when V(t) reaches ∂BR . This contradicts our assumption.
Thus ∃T > 0 |V(T ) ∈ BR . �
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3 Stability results

When studying a dynamical system, a good starting point is to look for invariant sets.
Theorem 2.2 provides such an invariant set but it is a very large one, not sufficient to
convey a good understanding of the system. Other invariant sets (included in the pre-
vious one) are stationary points. Notice that delayed and non-delayed equations share
exactly the same stationary solutions, also called persistent states. We can therefore
make good use of the harvest of results that are available about these persistent states
which we note Vf . Note that in most papers dealing with persistent states, the authors
compute one of them and are satisfied with the study of the local dynamics around
this particular stationary solution. Very few authors (we are aware only of [19, 26])
address the problem of the computation of the whole set of persistent states. Despite
these efforts they have yet been unable to get a complete grasp of the global dynam-
ics. To summarize, in order to understand the impact of the propagation delays on
the solutions of the neural field equations, it is necessary to know all their stationary
solutions and the dynamics in the region where these stationary solutions lie. Unfor-
tunately such knowledge is currently not available. Hence we must be content with
studying the local dynamics around each persistent state (computed, for example,
with the tools of [19]) with and without propagation delays. This is already, we think,
a significant step forward toward understanding delayed neural field equations.

From now on we note Vf a persistent state of (3) and study its stability.
We can identify at least three ways to do this:

1. to derive a Lyapunov functional,
2. to use a fixed point approach,
3. to determine the spectrum of the infinitesimal generator associated to the lin-

earized equation.

Previous results concerning stability bounds in delayed neural mass equations are
‘absolute’ results that do not involve the delays: they provide a sufficient condition,
independent of the delays, for the stability of the fixed point (see [15, 20–22]). The
bound they find is similar to our second bound in Proposition 3.13. They ‘proved’
it by showing that if the condition was satisfied, the eigenvalues of the infinitesimal
generator of the semi-group of the linearized equation had negative real parts. This
is not sufficient because a more complete analysis of the spectrum (for example, the
essential part) is necessary as shown below in order to proof that the semi-group is
exponentially bounded. In our case we prove this assertion in the case of a bounded
cortex (see Section 3.1). To our knowledge it is still unknown whether this is true in
the case of an infinite cortex.

These authors also provide a delay-dependent sufficient condition to guarantee
that no oscillatory instabilities can appear, that is, they give a condition that forbids
the existence of solutions of the form ei(k·r+ωt). However, this result does not give
any information regarding stability of the stationary solution.

We use the second method cited above, the fixed point method, to prove a more
general result which takes into account the delay terms. We also use both the sec-
ond and the third method above, the spectral method, to prove the delay-independent
bound from [15, 20–22]. We then evaluate the conservativeness of these two suffi-
cient conditions. Note that the delay-independent bound has been correctly derived
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in [25] using the first method, the Lyapunov method. It might be of interest to explore
its potential to derive a delay-dependent bound.

We write the linearized version of (3) as follows. We choose a persistent state Vf

and perform the change of variable U= V−Vf . The linearized equation writes⎧⎨⎩
d

dt
U(t) = −L0U(t) + L̃1Ut ≡ LUt ,

U0 = φ ∈ C,
(4)

where the linear operator L̃1 is given by⎧⎨⎩L̃1 : C −→ F ,

φ →
∫

�

J(·, r̄)DS
(
Vf (r̄)

)
φ
(
r̄,−τ (·, r̄))d r̄.

It is also convenient to define the following operator:⎧⎪⎨⎪⎩
J̃
def≡ J · DS

(
Vf

) : F −→ F ,

U →
∫

�

J(·, r̄)DS
(
Vf (r̄)

)
U(r̄) d r̄.

3.1 Principle of linear stability analysis via characteristic values

We derive the stability of the persistent state Vf (see [19]) for the equation (1) or
equivalently (3) using the spectral properties of the infinitesimal generator. We prove
that if the eigenvalues of the infinitesimal generator of the righthand side of (4) are
in the left part of the complex plane, the stationary state U = 0 is asymptotically
stable for equation (4). This result is difficult to prove because the spectrum (the
main definitions for the spectrum of a linear operator are recalled in Appendix A) of
the infinitesimal generator neither reduces to the point spectrum (set of eigenvalues
of finite multiplicity) nor is contained in a cone of the complex plane C (such an
operator is said to be sectorial). The ‘principle of linear stability’ is the fact that the
linear stability of U is inherited by the state Vf for the nonlinear equations (1) or (3).
This result is stated in the Corollaries 3.7 and 3.8.

Following [27–31], we note (T(t))t≥0 the strongly continuous semigroup of (4) on
C (see Definition A.3 in Appendix A) and A its infinitesimal generator. By definition,
if U is the solution of (4) we have Ut = T(t)φ. In order to prove the linear stability,
we need to find a condition on the spectrum �(A) of A which ensures that T(t) → 0
as t → ∞.

Such a ‘principle’ of linear stability was derived in [29, 30]. Their assumptions
implied that �(A) was a pure point spectrum (it contained only eigenvalues) with the
effect of simplifying the study of the linear stability because, in this case, one can
link estimates of the semigroup T to the spectrum of A. This is not the case here (see
Proposition 3.4).

When the spectrum of the infinitesimal generator does not only contain eigenval-
ues, we can use the result in [27, Chapter 4, Theorem 3.10 and Corollary 3.12] for
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eventually norm continuous semigroups (see Definition A.4 in Appendix A) which
links the growth bound of the semigroup to the spectrum of A:

inf
{
w ∈ R : ∃Mw ≥ 1 such that

∥∥∣∣T(t)
∥∥∣∣≤ Mwewt ,∀t ≥ 0

}= sup��(A). (5)

Thus, U is uniformly exponentially stable for (4) if and only if

sup��(A) < 0.

We prove in Lemma 3.6 (see below) that (T(t))t≥0 is eventually norm continuous.
Let us start by computing the spectrum of A.

3.1.1 Computation of the spectrum of A

In this section we use L1 for L̃1 for simplicity.

Definition 3.1 We define Lλ ∈ L(F ) for λ ∈ C by:

LλU ≡ L
(
eλθU

)≡ −L0U+L1
(
eλθU

)= −L0U+ J(λ)U, θ → eλθU ∈ C,

where J(λ) is the compact (it is a Hilbert-Schmidt operator, see [32, Chapter X.2])
operator

J(λ) : U →
∫

�

J(·, r̄)DS
(
Vf (r̄)

)
e−λτ (·,r̄)U(r̄) d r̄.

We now apply results from the theory of delay equations in Banach spaces
(see [27, 28, 31]) which give the expression of the infinitesimal generator Aφ = φ̇

as well as its domain of definition

Dom(A) = {
φ ∈ C | φ̇ ∈ C and φ̇(0−) = −L0φ(0) +L1φ

}
.

The spectrum �(A) consists of those λ ∈ C such that the operator �(λ) of L(F )

defined by �(λ) = λId+L0−J(λ) is non-invertible. We use the following definition:

Definition 3.2 (Characteristic values (CV)) The characteristic values of A are the λs
such that �(λ) has a kernel which is not reduced to 0, that is, is not injective.

It is easy to see that the CV are the eigenvalues of A.
There are various ways to compute the spectrum of an operator in infinite dimen-

sions. They are related to how the spectrum is partitioned (for example, continuous
spectrum, point spectrum. . .). In the case of operators which are compact perturba-
tions of the identity such as Fredholm operators, which is the case here, there is no
continuous spectrum. Hence the most convenient way for us is to compute the point
spectrum and the essential spectrum (see Appendix A). This is what we achieve next.

Remark 1 In finite dimension (that is, dim F < ∞), the spectrum of A consists only
of CV. We show that this is not the case here.
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Notice that most papers dealing with delayed neural field equations only compute
the CV and numerically assess the linear stability (see [9, 24, 33]).

We now show that we can link the spectral properties ofA to the spectral properties
of Lλ. This is important since the latter operator is easier to handle because it acts on
a Hilbert space. We start with the following lemma (see [34] for similar results in a
different setting).

Lemma 3.3 λ ∈ �ess(A) ⇔ λ ∈ �ess(Lλ).

Proof Let us define the following operator. If λ ∈ C, we define Tλ ∈ L(C, F ) by
Tλ(φ) = φ(0) + L(

∫ 0
· eλ(·−s)φ(s) ds), φ ∈ C. From [28, Lemma 34], Tλ is surjec-

tive and it is easy to check that φ ∈ R(λId − A) iif Tλ(φ) ∈ R(λId − Lλ), see [28,
Lemma 35]. Moreover R(λId − A) is closed in C iff R(λId − Lλ) is closed in F ,
see [28, Lemma 36].

Let us now prove the lemma. We already know that R(λId − A) is closed in C if
R(λId−Lλ) is closed in F . Also, we have N (λId−A) = {θ → eθλU,U ∈ N (λId−
Lλ)}, hence dim N (λId − A) < ∞ iif dim N (λId − Lλ) < ∞. It remains to check
that codim R(λId−A) < ∞ iif codim R(λId−Lλ) < ∞.

Suppose that codim R(λId − A) < ∞. There exist φ1, . . . , φN ∈ C such that C =
Span(φi) + R(λId − A). Consider Ui ≡ Tλ(φi) ∈ F . Because Tλ is surjective, for
all U ∈ F , there exists ψ ∈ C satisfying U = Tλ(ψ). We write ψ = ∑N

i=1 xiφi + f ,
f ∈ R(λId − A). Then U = ∑N

i=1 xiUi + Tλ(f ) where Tλ(f ) ∈ R(λId − Lλ), that
is, codim R(λId−Lλ) < ∞.

Suppose that codim R(λId − Lλ) < ∞. There exist U1, . . . ,UN ∈ F such that
F = Span(Ui ) + R(λId − Lλ). As Tλ is surjective for all i = 1, . . . ,N there exists
φi ∈ C such that Ui = Tλ(φi). Now consider ψ ∈ C. Tλ(ψ) can be written Tλ(ψ) =∑N

i=1 xiUi + Ũ where Ũ ∈ R(λId−Lλ). But ψ −∑N
i=1 xiφi ∈ R(λId−A) because

Tλ(ψ −∑N
i=1 xiφi) = Ũ ∈ R(λId−Lλ). It follows that codim R(λId−A) < ∞. �

Lemma 3.3 is the key to obtain �(A). Note that it is true regardless of the form
of L and could be applied to other types of delays in neural field equations. We now
prove the important following proposition.

Proposition 3.4 A satisfies the following properties:

1. �ess(A) = �(−L0).
2. �(A) is at most countable.
3. �(A) = �(−L0) ∪ CV .
4. For λ ∈ �(A) \ �(−L0), the generalized eigenspace

⋃
k N (λI − A)k is finite

dimensional and ∃k ∈ N, C = N ((λI −A)k) ⊕ R((λI −A)k).

Proof

1. λ ∈ �ess(A) ⇔ λ ∈ �ess(Lλ) = �ess(−L0 + J(λ)). We apply [35, Theo-
rem IV.5.26]. It shows that the essential spectrum does not change under com-
pact perturbation. As J(λ) ∈ L(F ) is compact, we find �ess(−L0 + J(λ)) =
�ess(−L0).
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Let us show that �ess(−L0) = �(−L0). The assertion ‘⊂’ is trivial. Now if
λ ∈ �(−L0), for example, λ = −l1, then λId+L0 = diag(0,−l1 + l2, . . .).

Then R(λId + L0) is closed but L2(�,R) × {0} × · · · × {0} ⊂ N (λId + L0).
Hence dim N (λId + L0) = ∞. Also R(λId + L0) = {0} × L2(�,R

p−1), hence
codim R(λId+L0) = ∞. Hence, according to Definition A.7, λ ∈ �ess(−L0).

2. We apply [35, Theorem IV.5.33] stating (in its first part) that if �ess(A) is at most
countable, so is �(A).

3. We apply again [35, Theorem IV.5.33] stating that if �ess(A) is at most countable,
any point in �(A) \ �ess(A) is an isolated eigenvalue with finite multiplicity.

4. Because �ess(A) ⊂ �ess,Arino(A), we can apply [28, Theorem 2] which precisely
states this property. �

As an example, Figure 1 shows the first 200 eigenvalues computed for a very
simple model one-dimensional model. We notice that they accumulate at λ = −1
which is the essential spectrum. These eigenvalues have been computed using
TraceDDE, [36], a very efficient method for computing the CVs.

Last but not least, we can prove that the CVs are almost all, that is, except for
possibly a finite number of them, located on the left part of the complex plane. This
indicates that the unstable manifold is always finite dimensional for the models we
are considering here.

Corollary 3.5 Card�(A) ∩ {λ ∈ C,�λ > −l} < ∞ where l = mini li .

Proof If λ = ρ + iω ∈ �(A) and ρ > −l, then λ is a CV, that is, N (Id − (λId +
L0)

−1J(λ)) �= ∅ stating that 1 ∈ �P ((λId+L0)
−1J(λ)) (�P denotes the point spec-

trum).
But ‖|(λId + L0)

−1J(λ)‖|F ≤ ‖|(λId + L0)
−1‖|F · ‖|J(λ)‖|F ≤ 1√

ω2+(ρ+l)2
×

‖|J(λ)‖|F ≤ 1
2 for λ big enough since ‖|J(λ)‖|F is bounded.

Fig. 1 Plot of the first 200 eigenvalues of A in the scalar case (p = 1, d = 1) and L0 = Id,
J (x) = −1+ 1.5cos(2x). The delay function τ(x) is the π periodic saw-like function shown in Figure 2.
Notice that the eigenvalues accumulate at λ = −1.
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Hence, for λ large enough 1 /∈ �P ((λId + L0)
−1J(λ)), which holds by the spec-

tral radius inequality. This relationship states that the CVs λ satisfying �λ > −l are
located in a bounded set of the right part of C; given that the CV are isolated, there is
a finite number of them. �

3.1.2 Stability results from the characteristic values

We start with a lemma stating regularity for (T(t))t≥0:

Lemma 3.6 The semigroup (T(t))t≥0 of (4) is norm continuous on C for t > τm.

Proof We first notice that −L0 generates a norm continuous semigroup (in fact a
group) S(t) = e−tL0 on F and that L̃1 is continuous from C to F . The lemma follows
directly from [27, Theorem VI.6.6]. �

Using the spectrum computed in Proposition 3.4, the previous lemma and the for-
mula (5), we can state the asymptotic stability of the linear equation (4). Notice that
because of Corollary 3.5, the supremum in (5) is in fact a max.

Corollary 3.7 (Linear stability) Zero is asymptotically stable for (4) if and only if
max��p(A) < 0.

We conclude by showing that the computation of the characteristic values of A is
enough to state the stability of the stationary solution Vf .

Corollary 3.8 If max��p(A) < 0, then the persistent solution Vf of (3) is asymp-
totically stable.

Proof Using U = V − Vf , we write (3) as U̇(t) = −LUt + G(Ut ). The function
G is C2 and satisfies G(0) = 0, DG(0) = 0 and ‖G(Ut )‖C = O(‖Ut‖2C ). We next
apply a variation of constant formula. In the case of delayed equations, this formula
is difficult to handle because the semigroup T should act on non-continuous functions
as shown by the formula Ut = T(t)φ + ∫ t

0 T(t − s)[X0G(Us)]ds, where X0(θ) = 0
if θ < 0 and X0(0) = 1. Note that the function θ → X0(θ)G(Us) is not continuous at
θ = 0.

It is however possible (note that a regularity condition has to be verified but this
is done easily in our case) to extend (see [34]) the semigroup T(t) to the space
F × L2([−τm,0], F ). We note T̃(t) this extension which has the same spectrum
as T(t). Indeed, we can consider integral solutions of (4) with initial condition U0
in L2([−τm,0], F ). However, as L0U0(0) has no meaning because φ → φ(0) is not
continuous in L2([−τm,0], F ), the linear problem (4) is not well-posed in this space.
This is why we have to extend the state space in order to make the linear operator in
(4) continuous. Hence the correct state space is F × L2([−τm,0], F ) and any func-
tion φ ∈ C is represented by the vector (φ(0),φ). The variation of constant formula
becomes:

Ut = T(t)φ +
∫ t

0
π2
(
T̃(t − s)

(
G(Us),0

))
ds,
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where π2 is the projector on the second component.
Now we choose ω = −max��p(A)/2 > 0 and the spectral mapping theorem

implies that there exists M > 0 such that ‖|T(t)‖|C ≤ Me−ωt and
‖|T̃(t)‖|F ×L2([−τm,0],F ) ≤ Me−ωt . It follows that ‖Ut‖C ≤ Me−ωt (‖U0‖C +∫ t

0 e−ωs‖G(Us)‖F ds) and from Theorem 2.2, ‖G(Ut )‖C = O(1), which yields
‖Ut‖C = O(e−ωt ) and concludes the proof. �

Finally, we can use the CVs to derive a sufficient stability result.

Proposition 3.9 If ‖J ·DS(Vf )‖L2(�2,Rp×p) < mini li then Vf is asymptotically sta-
ble for (3).

Proof Suppose that a CV λ of positive real part exists, this gives a vector in the Kernel
of �(λ). Using straightforward estimates, it implies that mini li ≤ ‖J · DS(Vf )‖F ,
a contradiction. �

3.1.3 Generalization of the model

In the description of our model, we have pointed out a possible generalization. It
concerns the linear response of the chemical synapses, that is, the lefthand side ( d

dt
+

li ) of (1). It can be replaced by a polynomial in d
dt
, namely Pi(

d
dt

), where the zeros of
the polynomials Pi have negative real parts. Indeed, in this case, when J is small, the
network is stable. We obtain a diagonal matrix P( d

dt
) such that P(0) = L0 and change

the initial condition (as in the theory of ODEs) while the history space becomes
Cds ([−τm,0], F ) where ds + 1 = maxi degPi . Having all this in mind equation (1)
writes ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pi

(
d

dt

)
Vi(t, r) =

p∑
j=1

∫
�

Jij (r, r̄)S
[
σjVj

(
t − τij (r, r̄), r̄

)− θj

]
d r̄

+ I exti (r, t), t ≥ 0,1 ≤ i ≤ p

V
(k)
i (t, r) = φi,k(t, r) ∈ C, t ∈ [−t0,0], k = 0, . . . , ds .

(6)

Introducing the classical variable V (t) ≡ [V(t),V′(t), . . . ,V(ds )(t)], we rewrite (6)
as

V̇ (t) = −L0V (t) + L1S(Vt ) + Iext, (7)

where −L0 is the Vandermonde (we put a minus sign in order to have a formulation
very close to 1) matrix associated to P and (L1)k,l=1,...,ds = (δk=ds ,l=1L1)k,l=1,...,ds ,
Iext = [0, . . . , Iext], S(V ) = [S(V(t)), . . . ,S(V(ds ))]. It appears that equation (7) has
the same structure as (1): L0, L1, are bounded linear operators; we can conclude that
there is a unique solution to (6). The linearized equation around a persistent states
yields a strongly continuous semigroup T (t) which is eventually continuous. Hence
the stability is given by the sign of max��(A) where A is the infinitesimal generator
of T (t). It is then routine to show that

λ ∈ �(A) ⇔ �(λ) ≡ P(λ) − J(λ) non-invertible.
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This indicates that the essential spectrum�ess(A) of A is equal to
⋃

i Root(Pi)which
is located in the left side of the complex plane. Thus the point spectrum is enough to
characterize the linear stability:

Proposition 3.10 If max��p(A) < 0 the persistent solution Vf of (6) is asymptot-
ically stable.

Using the same proof as in [20], one can prove that max��(A) < 0 provided that
‖J · DS(Vf )‖L2(�2,Rp×p) < mink∈N,ω∈R |Pk(iω)|.

Proposition 3.11 If ‖J · DS(Vf )‖L2(�2,Rp×p) < mink∈N,ω∈R |Pk(iω)| then Vf is
asymptotically stable.

3.2 Principle of linear stability analysis via fixed point theory

The idea behind this method (see [37]) is to write (4) as an integral equation. This
integral equation is then interpreted as a fixed point problem. We already know that
this problem has a unique solution in C0. However, by looking at the definition of
the (Lyapunov) stability, we can express the stability as the existence of a solution
of the fixed point problem in a smaller space S ⊂ C0. The existence of a solution
in S gives the unique solution in C0. Hence, the method is to provide conditions for
the fixed point problem to have a solution in S ; in the two cases presented below,
we use the Picard fixed point theorem to obtain these conditions. Usually this method
gives conditions on the averaged quantities arising in (4) whereas a Lyapunov method
would give conditions on the sign of the same quantities. There is no method to be
preferred, rather both of them should be applied to obtain the best bounds.

In order to be able to derive our bounds we make the further assumption that there
exists a β > 0 such that:

‖τ−β‖L2(�2,Rp×p) < ∞.

Note that the notation τ−β represents the matrix of elements 1/τβ
ij .

Remark 2 For example, in the 2D one-population case for τ(r, r̄) = c‖r − r̄‖, we
have 0 ≤ β < 1.

We rewrite (4) in two different integral forms to which we apply the fixed point
method. The first integral form is obtained by a straightforward use the variation-of-
parameters formula. It reads⎧⎨⎩

(P1U)(t) = φ(t), t ∈ [−τm,0],
(P1U)(t) = e−L0t φ(0) +

∫ t

0
e−L0(t−s)(L̃1Us) ds, t ≥ 0.

(8)

The second integral form is less obvious. Let us define

Z(r, t) =
∫

�

d r̄ J̃(r, r̄)
∫ t

t−τ (r,r̄)
dsU(r̄, s).
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Note the slight abuse of notation, namely (J̃(r, r̄)
∫ t

t−τ (r,r̄) dsU(r̄, s))i = ∑
j J̃ij (r,

r̄)
∫ t

t−τ ij (r,r̄) dsUj (r̄, s).

Lemma B.3 in Appendix B.2 yields the upperbound ‖Z(t)‖F ≤ τm
3
2+β ×

‖ J̃
τβ ‖L2(�2,Rp×p) sups∈[t−τm,t] ‖U(s)‖F . This shows that ∀t , Z(t) ∈ F .
Hence we propose the second integral form:⎧⎪⎪⎨⎪⎪⎩

(P2U)(t) = φ(t), t ∈ [−τm,0],
(P2U)(t) = e(J̃−L0)tU(0) −Z(t) + e(J̃−L0)tZ(0)

−
∫ t

0
ds (J̃−L0)e

(J̃−L0)(t−s)Z(s), t ≥ 0.

(9)

We have the following lemma.

Lemma 3.12 The formulation (9) is equivalent to (4).

Proof The idea is to write the linearized equation as:⎧⎨⎩
d

dt
U = (−L0 + J̃)U− d

dt
Z(t),

U0 = φ.
(10)

By the variation-of-parameters formula we have:

U(t) = e(J̃−L0)tU(0) −
∫ t

0
e(J̃−L0)(t−s) d

ds
Z(s) ds.

We then use an integration by parts:∫ t

0
e(J̃−L0)(t−s) d

ds
Z(s) ds = Z(t) − e(J̃−L0)tZ(0) +

∫ t

0
(J̃−L0)e

(J̃−L0)(t−s)Z(s) ds

which allows us to conclude. �

Using the two integral formulations of (4) we obtain sufficient conditions of sta-
bility, as stated in the following proposition:

Proposition 3.13 If one of the following two conditions is satisfied:

1. max��(J̃−L0) < 0 and there exist α < 1, β > 0 such that

τ
3
2+β
m

∥∥∥∥ J̃
τβ

∥∥∥∥
L2(�2,Rp×p)

(
1+ sup

t≥0

∫ t

0
ds

∥∥∣∣(J̃−L0)e
(J̃−L0)(t−s)

∥∥∣∣
F

)
≤ α,

where J̃
τβ represents the matrix of elements

J̃ij

τ
β
ij

,

2. ‖J̃‖L2(�2,Rp×p) < mini li ,

then Vf is asymptotically stable for (3).
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Proof We start with the first condition.
The problem (4) is equivalent to solving the fixed point equation U = P2U for

an initial condition φ ∈ C0. Let us define B = C0([−τm,∞), F ) with the supremum
norm written ‖ · ‖∞,F , as well as

Sφ = {
ψ ∈ B,ψ |[−τm,0] = φ and ψ → 0 as t → ∞}

.

We define P2 on Sφ .
For all ψ ∈ Sφ we have P2ψ ∈ B and (P2ψ)(0) = φ(0). We want to show that

P2Sφ ⊂ Sφ . We prove two properties.
1. P2ψ tends to zero at infinity.

Choose ψ ∈ Sφ .
Using Corollary B.3, we have Z(t) → 0 as t → ∞.
Let 0< T < t , we also have∥∥∥∥∫ t

0
(J̃−L0)e

(J̃−L0)(t−s)Z(s)

∥∥∥∥
F

≤
∥∥∥∥∫ T

0
(J̃−L0)e

(J̃−L0)(t−s)Z(s) ds

∥∥∥∥
F

+
∥∥∥∥∫ t

T

(J̃−L0)e
(J̃−L0)(t−s)Z(s) ds

∥∥∥∥
F

.

For the first term we write:∥∥∥∥∫ T

0
(J̃−L0)e

(J̃−L0)(t−s)Z(s) ds

∥∥∥∥
F

≤
∫ T

0

∥∥∥∥(J̃−L0)e
(J̃−L0)(t−s)Z(s)

∥∥∥∥
F

ds

≤ ∥∥∣∣e(J̃−L0)(t−T )
∥∥∣∣

F ·
∫ T

0

∥∥∣∣(J̃−L0)e
(J̃−L0)(T −s)

∥∥∣∣
F · ∥∥Z(s)

∥∥
F ds

≤ τm

3
2+β

∥∥∥∥ J̃
τβ

∥∥∥∥
L2(�2,Rp×p)

· ∥∥∣∣e(J̃−L0)(t−T )
∥∥∣∣

F

·
∫ T

0

∥∥∣∣(J̃−L0)e
(J̃−L0)(T −s)

∥∥∣∣
F ds · ‖ψ‖∞,F

≤ α
∥∥∣∣e(J̃−L0)(t−T )

∥∥∣∣
F · ‖ψ‖∞,F .

Similarly, for the second term we write∥∥∥∥∫ t

T

(J̃−L0)e
(J̃−L0)(t−s)Z(s) ds

∥∥∥∥
F

≤ τm

3
2+β

∥∥∥∥ J̃
τβ

∥∥∥∥
L2(�2,Rp×p)

·
∫ t

T

∥∥∣∣(J̃−L0)e
(J̃−L0)(t−s)

∥∥∣∣
F ds · sup

s∈[T −τm,∞)

∥∥ψ(s)
∥∥

F
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≤ α sup
s∈[T −τm,∞)

∥∥ψ(s)
∥∥

F .

Now for a given ε > 0 we choose T large enough so that α sups∈[T −τm,∞) ‖ψ(s)‖F <

ε/2. For such a T we choose t∗ large enough so that α‖|e(J̃−L0)(t−T )‖|F · ‖ψ‖∞,F <

ε/2 for t > t∗. Putting all this together, for all t > t∗:∥∥∥∥∫ t

0
(J̃−L0)e

(J̃−L0)(t−s)Z(s) ds

∥∥∥∥
F

≤ ε.

From (9), it follows that P2ψ → 0 when t → ∞.
Since P2ψ is continuous and has a limit when t → ∞ it is bounded and therefore

P2 : Sφ → Sφ .
2. P2 is contracting on Sφ .

Using (9) for all ψ1,ψ2 ∈ Sφ we have∥∥(P2ψ1)(t) − (P2ψ2)(t)
∥∥

F

≤ ∥∥Z1(t) −Z2(t)
∥∥

F +
∥∥∥∥∫ t

0
ds (J̃−L0)e

(J̃−L0)(t−s)
(
Z1(s) −Z2(s)

)∥∥∥∥
F

≤ τm

3
2+β

∥∥∥∥ J̃
τβ

∥∥∥∥
L2(�2,Rp×p)

‖ψ1 − ψ2‖∞,F

+ τm

3
2+β

∥∥∥∥ J̃
τβ

∥∥∥∥
L2(�2,Rp×p)

‖ψ1 − ψ2‖∞,F

∫ t

0
ds

∥∥∣∣(J̃−L0)e
(J̃−L0)(s−t)

∥∥∣∣
F

≤ α‖ψ1 − ψ2‖∞,F .

We conclude from Picard theorem that the operator P2 has a unique fixed point in Sφ .
There remains to link this fixed point to the definition of stability and first show

that

∀ε > 0 ∃δ such that ‖φ‖C < δ implies ‖U(t, φ)‖C < ε, t ≥ 0,

where U(t, φ) is the solution of (4).
Let us choose ε > 0 and M ≥ 1 such that ‖|e(J̃−L0)t‖|F ≤ M . M exists because,

by hypothesis, max��(J̃−L0) < 0. We then choose δ satisfying

M

(
1+ τm

3
2+β

∥∥∥∥ J̃
τβ

∥∥∥∥
L2(�2,Rp×p)

)
δ < ε(1− α), (11)

and φ ∈ C such that ‖φ‖C ≤ δ. Next define

Sφ,ε = {
ψ ∈ B,‖ψ‖∞,F ≤ ε,ψ |[−τm,0] = φ and ψ → 0 as t → ∞}⊂ Sφ.

We already know that P2 is a contraction on Sφ,ε (which is a complete space).
The last thing to check is P2Sφ,ε ⊂ Sφ,ε , that is ∀ψ ∈ Sφ,ε , ‖P2ψ‖∞,F < ε. Using
Lemma B.3 in Appendix B.2:
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∥∥

F

≤ Mδ + ∥∥Z(t)
∥∥

F + ∥∥e(J̃−L0)tZ(0)
∥∥

F +
∥∥∥∥∫ t

0
(J̃−L0)e

(J̃−L0)(t−s)Z(s) ds

∥∥∥∥
F

≤ Mδ + ∥∥Z(t)
∥∥

F + M
∥∥Z(0)

∥∥
F + ‖Z‖∞,F

∫ t

0

∥∥∣∣(J̃−L0)e
(J̃−L0)(t−s)

∥∥∣∣
F ds

≤ Mδ + τm

3
2+β

∥∥∥∥ J̃
τβ

∥∥∥∥
L2(�2,Rp×p)

‖ψt‖C + Mτm

3
2+β

∥∥∥∥ J̃
τβ

∥∥∥∥
L2(�2,Rp×p)

δ

+ sup
s∈(0,t)

‖ψs‖C

∫ t

0

∥∥∣∣(J̃−L0)e
(J̃−L0)(t−s)

∥∥∣∣
F ds

≤ Mδ + αε + Mτm

3
2+β

∥∥∥∥ J̃
τβ

∥∥∥∥
L2(�2,Rp×p)

δ

= M

(
1+ τm

3
2+β

∥∥∥∥ J̃
τβ

∥∥∥∥
L2(�2,Rp×p)

)
δ + αε < ε.

Thus P2 has a unique fixed point Uφ,ε in Sφ,ε ∀φ, ε which is the solution of the
linear delayed differential equation, that is,

∀ε,∃δ < ε (from (11)), |∀φ ∈ C,‖φ‖ ≤ δ

⇒ ∀t > 0,‖Uφ,ε
t ‖C ≤ ε and Uφ,ε(t) → 0 in F .

As Uφ,ε(t) → 0 in F implies Uφ,ε
t → 0 in C, we have proved the asymptotic

stability for the linearized equation.
The proof of the second property is straightforward. If 0 is asymptotically stable

for (4) all the CV are negative and Corollary 3.8 indicates that Vf is asymptotically
stable for (3).

The second condition says that P1ψ = e−L0t φ(0) + ∫ t

0 e−L0(t−s)(L̃1ψ)(s) ds is a

contraction because ‖(P1ψ1)(t) − (P1ψ2)(t)‖F ≤ ‖|J̃‖|F
mini li

‖ψ1 − ψ2‖∞,F .
The asymptotic stability follows using the same arguments as in the case of P2. �

We next simplify the first condition of the previous proposition to make it more
amenable to numerics.

Corollary 3.14 Suppose that ∀t ≥ 0, ‖|e(J̃−L0)t‖|F ≤ Mεe
−tε with ε > 0.

If there exist α < 1, β > 0 such that τ
3
2+β
m ‖ J̃

τβ ‖L2(�2,Rp×p)(1 + Mε

ε
‖J̃ −

L0‖L2(�2,Rp×p)) ≤ α, then Vf is asymptotically stable.

Proof This corollary follows immediately from the following upperbound of the inte-

gral
∫ t

0 ‖|e(J̃−L0)(t−s)‖|F ds ≤ Mε
1−e−εt

ε
≤ Mε

ε
. Then if there exists α < 1, β > 0 such

that τ
3
2+β
m ‖ J̃

τβ ‖L2(�2,Rp×p)(1 + Mε

ε
‖J̃ − L0‖L2(�2,Rp×p)) ≤ α, it implies that condi-
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tion 1 in Proposition 3.13 is satisfied, from which the asymptotic stability of Vf

follows. �

Notice that ε > 0 is equivalent to max��(−L0 + J̃) < 0. The previous corollary
is useful in at least the following cases:

• If J̃ − L0 is diagonalizable, with associated eigenvalues/eigenvectors: λn ∈
C, en ∈ F , then J̃ − L0 = ∑

n eλnt en ⊗ en and ‖|e(J̃−L0)t‖|F ≤ e−t maxn λn =
et max��(−L0+J̃).

• If L0 = l0Id and the range of J̃ is finite dimensional: J̃(r, r′) =∑N
k,l=1 Jklek(r) ⊗

el(r′) where (ek)k∈N is an orthonormal basis of F , then e(J̃−L0)t = e−l0·Id·t eJ̃t
and ‖|e(J̃−L0)t‖|F ≤ e−l0t‖|eJ̃t‖|F . Let us write J = (Jkl)k,l=1,...,N the matrix

associated to J̃ (see above). Then eJ̃t is also a compact operator with finite

range and ‖|eJ̃t‖|F ≤ ‖eJ̃t‖L2(�2,Rp×p) =
√
Tr(e(J̃+J̃∗)t ) = (

∑
λ∈�(J̃+J̃∗) e

λt )1/2 ≤√
Nemax��(J̃)t . Finally, it gives ‖|e(J̃−L0)t‖|F ≤ √

Net max��(−L0+J̃).
• If J̃ − L0 is self-adjoint, then it is diagonalizable and we can chose ε =

max��(−L0 + J̃), Mε = 1.

Remark 3 If we suppose that we have higher order time derivatives as in Sec-
tion 3.1.3, we can write the linearized equation as

U̇ (t) = −L0U (t) + L̃1Ut . (12)

Suppose that L0 is diagonalizable then ‖|e−L0t‖|(F )ds ≤ e−min��(L0)t where

‖U ‖(F )ds ≡ ∑ds

k=1 ‖Uk‖F and −min��(L0) = maxk �Root(Pk). Also notice that

J̃ = L̃1|F , ‖|L1‖|(C)ds ≤ ‖|L1‖|C . Then using the same functionals as in the proof of
Proposition 3.13, we can find two bounds for the stability of a stationary state Vf :

• Suppose thatmax��(J̃ − L0) < 0, that is, Vf is stable for the non-delayed equa-
tion where (J̃ )k,l=1,...,ds = (δk=ds ,l=1J̃)k,l=1,...,ds . If there exist α < 1, β > 0 such

that τ
3
2+β
m ‖ J̃

τβ ‖L2(�2,Rp×p)(1+ supt≥0

∫ t

0 ds ‖|(L0 + J̃ )e(L0+J̃ )(t−s)‖|(F )ds ) ≤ α.

• ‖J̃‖L2(�2,Rp×p) < maxk �Root(Pk).

To conclude, we have found an easy-to-compute formula for the stability of the
persistent state Vf . It can indeed be cumbersome to compute the CVs of neural field
equations for different parameters in order to find the region of stability whereas the
evaluation of the conditions in Corollary 3.14 is very easy numerically.

The conditions in Proposition 3.13 and Corollary 3.14 define a set of parameters
for which Vf is stable. Notice that these conditions are only sufficient conditions: if
they are violated, Vf may still remain stable. In order to find out whether the persis-
tent state is destabilized we have to look at the characteristic values. Condition 1 in
Proposition 3.13 indicates that if Vf is a stable point for the non-delayed equation
(see [18]) it is also stable for the delayed-equation. Thus, according to this condi-
tion, it is not possible to destabilize a stable persistent state by the introduction of
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small delays, which is indeed meaningful from the biological viewpoint. Moreover
this condition gives an indication of the amount of delay one can introduce without
changing the stability.

Condition 2 is not very useful as it is independent of the delays: no matter what
they are, the stable point Vf will remain stable. Also, if this condition is satisfied
there is a unique stationary solution (see [18]) and the dynamics is trivial, that is,
converging to the unique stationary point.

3.3 Summary of the different bounds and conclusion

The next proposition summarizes the results we have obtained in Proposition 3.13
and Corollary 3.14 for the stability of a stationary solution.

Proposition 3.15 If one of the following conditions is satisfied:

1. There exist ε > 0 such that ‖|e−(J̃−L0)t‖|F ≤ Mεe
−εt and α < 1, β > 0 such that

τ
3
2+β
m ‖ J̃

τβ ‖L2(�2,Rp×p)(1+ Mε

ε
‖J̃−L0‖L2(�2,Rp×p)) ≤ α,

2. ‖J̃‖L2(�2,Rp×p) < mini li

then Vf is asymptotically stable for (3).

The only general results known so far for the stability of the stationary solutions
are those of Atay and Hutt (see, for example, [20]): they found a bound similar to
condition 2 in Proposition 3.15 by using the CVs, but no proof of stability was given.
Their condition involves the L1-norm of the connectivity function J and it was de-
rived using the CVs in the same way as we did in the previous section. Thus our
contribution with respect to condition 2 is that, once it is satisfied, the stationary so-
lution is asymptotically stable: up until now this was numerically inferred on the basis
of the CVs. We have proved it in two ways, first by using the CVs, and second by
using the fixed point method which has the advantage of making the proof essentially
trivial.

Condition 1 is of interest, because it allows one to find the minimal propagation
delay that does not destabilize. Notice that this bound, though very easy to compute,
overestimates the minimal speed. As mentioned above, the bounds in condition 1 are
sufficient conditions for the stability of the stationary stateVf . In order to evaluate the
conservativeness of these bounds, we need to compare them to the stability predicted
by the CVs. This is done in the next section.

4 Numerical application: neural fields on a ring

In order to evaluate the conservativeness of the bounds derived above we compute
the CVs in a numerical example. This can be done in two ways:

• Solve numerically the nonlinear equation satisfied by the CVs. This is possible
when one has an explicit expression for the eigenvectors and periodic boundary
conditions. It is the method used in [9].
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• Discretize the history space C in order to obtain a matrix version AN of the linear
operator A: the CVs are approximated by the eigenvalues of AN . Following the
scheme of [36], it can be shown that the convergence of the eigenvalues of AN

to the CVs is in O( 1
NN ) for a suitable discretization of C. One drawback of this

method is the size of AN which can be very large in the case of several neuron
populations in a two-dimensional cortex. A recent improvement (see [38]), based
on a clever factorization of AN , allows a much faster computation of the CVs: this
is the scheme we have been using.

The Matlab program used to compute the righthand side of (1) uses a Cpp code
that can be run on multiprocessors (with the OpenMP library) to speed up compu-
tations. It uses a trapezoidal rule to compute the integral. The time stepper dde23 of
Matlab is also used.

In order to make the computation of the eigenvectors very straightforward, we
study a network on a ring, but notice that all the tools (analytical/numerical) presented
here also apply to a generic cortex. We reduce our study to scalar neural fields � ⊂ R

and one neuronal population, p = 1. With this in mind the connectivity is chosen to
be homogeneous J (x, y) = J (x − y) with J even. To respect topology, we assume
the same for the propagation delay function τ(x, y).

We therefore consider the scalar equation with axonal delays defined on � =
(−π

2 , π
2 ) with periodic boundary conditions. Hence F = L2

π (�,R) and J is also
π -periodic.⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
d

dt
+ 1

)
V (x, t)

=
∫

�

J (x − y)S0
[
σV

(
y, t − cτ(x − y)

)]
dy, t ≥ 0,

V (t) = φ(t), t ∈ [−τm,0], τm = cπ,

(13)

where the sigmoid S0 satisfies S0(0) = 0.
Remember that (13) has a Lyapunov functional when c = 0 and that all trajectories

are bounded. The trajectories of the non-delayed form of (13) are heteroclinic orbits
and no non-constant periodic orbit is possible.

We are looking at the local dynamics near the trivial solution V f = 0. Thus we
study how the CVs vary as functions of the nonlinear gain σ and the ‘maximum’
delay c. From the periodicity assumption, the eigenvectors of �(λ) are the functions
cos(nx), sin(nx) which leads to the characteristic equation for the eigenvalues λ:

∃?(n,λ)/λ + 1− σs1Ĵ (λ)(n) = 0, (14)

where Ĵ is the Fourier Transform of J and s1 ≡ S′
0(0). This nonlinear scalar equation

is solved with the Matlab Toolbox TraceDDE (see [36]). Recall that the eigenvectors
of A are given by the functions θ → eλθ cos(nx), θ → eλθ sin(nx) ∈ C where λ is a
solution of (14). A bifurcation point is a pair (c, σ ) for which equations (14) have a
solution with zero real part. Bifurcations are important because they signal a change
in stability, a set of parameters ensuring stability is enclosed (if bounded) by bifur-
cation curves. Notice that if σ0 is a bifurcation point in the case c = 0, it remains a
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bifurcation point for the delayed system ∀c, hence ∀c, σ = σ0, 0 ∈ �(A). This is why
there is a bifurcation line σ = σ0 in the bifurcation diagrams that are shown later.

The bifurcation diagram depends on the choice of the delay function τ . As ex-
plained in Section 2.1, we use τ(x, y) = |x − y|π , where the lower index π indicates
that it is a π -periodic function. The bifurcation diagram with respect to the parame-
ters (c, σ ) is shown in the righthand part of Figure 2 in the case when the connectivity
J is equal to J (x) = (−1 + 1.5cos(2x)) 2

π
. The two bounds derived in Section 3.3

are also shown. Note that the delay-dependent bound is computed using the fact that
J̃ ≡ DS(0)J = s1J is self-adjoint. They are clearly very conservative. The lefthand
part of the same figure shows the delay function τ .

The first bound gives the minimal velocity 1/c below which the stationary state
might be unstable, in this case, even for smaller speed, the state is stable as one can
see from the CV boundary. Notice that in the parameter domain defined by the 2
conditions bound.1. and bound.2., the dynamic is very simple: it is characterized by
a unique and asymptotically stable stationary state, V f = 0.

In Figure 3 we show the dynamics for different parameters corresponding to the
points labelled 1, 2 and 3 in the righthand part of Figure 2 for a random (in space) and
constant (in time) initial condition φ (see (1)). When the parameter values are below
the bound computed with the CV, the dynamics converge to the stable stationary
state V f = 0. Along the Pitchfork line labelled (P) in the righthand part of Figure 2,
there is a static bifurcation leading to the birth of new stable stationary states, this is
shown in the middle part of Figure 3. The Hopf curve labelled (H) in the righthand
part of Figure 2 indicates the transition to oscillatory behaviors as one can see in the
righthand part of Figure 3. Note that we have not proved that the Hopf curve was
indeed a Hopf bifurcation curve, we have just inferred numerically from the CVs that
the eigenvalues satisfy the usual conditions for the Hopf bifurcation.

Notice that the graph of the CVs shown in the righthand part of Figure 2 features
some interesting points, for example, the Fold-Hopf point at the intersection of the

Fig. 2 Left: Example of a periodic delay function, the saw-function. Right: plot of the CVs in the plane
(c, σ ), the line labelled P is the pitchfork line, the line labelled H is the Hopf curve. The two bounds of
Proposition 3.15 are also shown. Parameters are: L0 = Id, J (x) = s1(−1+1.5cos(2x)) 2π , β = 1

4 , s1 = 1
4 .

The labels 1, 2, 3, indicate approximate positions in the parameter space (c, σ ) at which the trajectories
shown in Figure 3 are computed.
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Fig. 3 Plot of the solution of (13) for different parameters corresponding to the points shown as 1, 2 and 3
in the righthand part of Figure 2 for a random (in space) and constant (in time) initial condition, see text.
The horizontal axis corresponds to space, the range is (−π

2 , π
2 ). The vertical axis represents time.

Pitchfork line and the Hopf curve. It is also possible that the multiplicity of the 0
eigenvalue could change on the Pitchfork line (P) to yield a Bogdanov-Takens point.

These numerical simulations reveal that the Lyapunov function derived in [39]
is likely to be incorrect. Indeed, if such a function existed, as its value decreases
along trajectories, it must be constant on any periodic orbit which is not possible.
However the third plot in Figure 3 strongly suggests that we have found an oscillatory
trajectory produced by a Hopf bifurcation (which we did not prove mathematically):
this oscillatory trajectory converges to a periodic orbit which contradicts the existence
of a Lyapunov functional such as the one proposed in [39].

Let us comment on the tightness of the delay-dependent bound: as shown in
Proposition 3.13, this bound involves the maximum delay value τm and the norm

‖ J̃
τβ ‖L2(�2,Rp×p), hence the specific shape of the delay function, that is, τ(r, r̄) =

c‖r− r̄‖2, is not completely taken into account in the bound. We can imagine many

different delay functions with the same values for τm and ‖ J̃
τβ ‖L2(�2,Rp×p) that will

cause possibly large changes to the dynamical portrait. For example, in the pre-
vious numerical application the singularity σ = σ0, corresponding to the fact that
0 ∈ �p(A), is independent of the details of the shape of the delay function: how-
ever for specific delay functions, the multiplicity of this 0-eigenvalue could change
as in the Bogdanov-Takens bifurcation which involves changes in the dynamical por-
trait compared to the pitchfork bifurcation. Similarly, an additional purely imagi-
nary eigenvalue could emerge (as for c ≈ 3.7 in the numerical example) leading to a
Fold-Hopf bifurcation. These instabilities depend on the expression of the delay func-
tion (and the connectivity function as well). These reasons explain why the bound in
Proposition 3.13 is not very tight.

This suggests another way to attack the problem of the stability of fixed points:
one could look for connectivity functions J̃ which have the following property: for
all delay function τ , the linearized equation (4) does not possess ‘unstable solutions’,
that is, for all delay function τ , ��p(A) < 0. In the literature (see [40, 41]), this
is termed as the all-delay stability or the delay-independent stability. These remain
questions for future work.
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5 Conclusion

We have developed a theoretical framework for the study of neural field equations
with propagation delays. This has allowed us to prove the existence, uniqueness, and
the boundedness of the solutions to these equations under fairly general hypotheses.

We have then studied the stability of the stationary solutions of these equations.
We have proved that the CVs are sufficient to characterize the linear stability of the
stationary states. This was done using the semigroups theory (see [27]).

By formulating the stability of the stationary solutions as a fixed point problem
we have found delay-dependent sufficient conditions. These conditions involve all
the parameters in the delayed neural field equations, the connectivity function, the
nonlinear gain and the delay function. Albeit seemingly very conservative they are
useful in order to avoid the numerically intensive computation of the CV.

From the numerical viewpoint we have used two algorithms [36, 38] to compute
the eigenvalues of the linearized problem in order to evaluate the conservativeness of
our conditions. A potential application is the study of the bifurcations of the delayed
neural field equations.

By providing easy-to-compute sufficient conditions to quantify the impact of the
delays on neural field equations we hope that our work will improve the study of
models of cortical areas in which the propagation delays have so far been somewhat
been neglected due to a partial lack of theory.

Appendix A: Operators and their spectra

We recall and gather in this appendix a number of definitions, results and hypotheses
that are used in the body of the article to make it more self-sufficient.

Definition A.1 An operator T ∈ L(E,F ), E, F being Banach spaces, is closed if its
graph is closed in the direct sum E ⊕ F .

Definition A.2 We note ‖|J‖|F the operator norm of a bounded operator J ∈
L(F , F ), that is,

sup
‖V‖F ≤1

‖J ·V‖F
‖V‖F

.

It is known, see, for example, [35], that

‖|J‖|F ≤ ‖J‖L2(�2,Rp×p).

Definition A.3 A semigroup (T(t))t≥0 on a Banach space E is strongly continuous
if ∀x ∈ E, t → T (t)x is continuous from R+ to E.

Definition A.4 A semigroup (T(t))t≥0 on a Banach space E is norm continuous if
t → T (t) is continuous from R+ to L(E). It is said eventually norm continuous if it
is norm continuous for t > t0 ≥ 0.
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Definition A.5 A closed operator T ∈ L(E) of a Banach space E is Fredholm if
dim N (T ) and codim R(T ) are finite and R(T ) is closed in E.

Definition A.6 A closed operator T ∈ L(E) of a Banach space E is semi-Fredholm
if dim N (T ) or codim R(T ) is finite and R(T ) is closed in E.

Definition A.7 If T ∈ L(E) is a closed operator of a Banach space E the essential
spectrum �ess(T ) is the set of λs in C such that λId − T is not semi-Fredholm, that
is, either R(λId − T ) is not closed or R(λId − T ) is closed but dim N (λId − T ) =
codim R(λId− T ) = ∞.

Remark 4 [28] uses the definition: λ ∈ �ess,Arino(T ) if at least one of the following
holds: R(λI − T ) is not closed or

⋃∞
m=1 N (λI − T )m is infinite dimensional or λ is

a limit point of �(T ). Then

�ess(T ) ⊂ �ess,Arino(T ).

Appendix B: The Cauchy problem

B.1 Boundedness of solutions

We prove Lemma B.2 which is used in the proof of the boundedness of the solutions
to the delayed neural field equations (1) or (3).

Lemma B.1 We have L1 ∈ L(C, F ) and ‖|L1‖| ≤ ‖J‖L2(�2,Rp×p).

Proof

• We first check that L1 is well defined: if ψ ∈ C then ψ is measurable (it is �-
measurable by definition and [0, τ ]-measurable by continuity) on � × [−τm,0]
so that the integral in the definition of L1 is meaningful. As τ is continuous,
it follows that ψd : (r, r̄) → ψ(r̄,−τ (r, r̄)) is measurable on �2. Furthermore
(ψd)2 ∈ L1(�2,R

p×p).
• We now show that J · ψd ∈ F . We have for ψ ∈ C, ‖L1ψ‖2F =∫

�
dr

∑
i (
∑

j

∫
�

d r̄ Jij (r, r̄)ψd
j (r, r̄))2. With Cauchy-Schwartz:∣∣∣∣∑

j

∫
�

d r̄ Jij (r, r̄)ψd
j (r, r̄)

∣∣∣∣
≤
∑
j

∫
�

d r̄
∣∣Jij (r, r̄)ψd

j (r, r̄)
∣∣ (15)

≤
∑
j

√∫
�

d r̄ Jij (r, r̄)2

√∫
�

d r̄ψd
j (r, r̄)2
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≤
√√√√∑

j

∫
�

d r̄ Jij (r, r̄)2

√√√√∑
j

∫
�

d r̄ψd
j (r, r̄)2.

Noting that
√∑

j

∫
�

d r̄ψd
j (r, r̄)2 ≤ supr∈�̄ it

√∑
j

∫
�

d r̄ψd
j (r, r̄)2 =

sups∈[0,τm]
√∑

j

∫
�

d r̄ψj (r̄, s)2 = ‖ψ‖C , we obtain

‖L1ψ‖F ≤ ‖J‖L2(�2,Rp×p)‖ψ‖C ,

and L1 is continuous.
�

Lemma B.2 We have |〈L1S(Vt ),V(t)〉F | ≤ √
p|�|‖J‖F ‖V(t)‖F .

Proof By the Cauchy-Schwarz inequality and Lemma B.1: |〈L1S(Vt ),V(t)〉F | ≤
‖L1S(Vt )‖F ‖V(t)‖F ≤ √

p|�|‖J‖F ‖V(t)‖F because S is bounded by 1. �

B.2 Stability

In this section we prove Lemma B.3 which is central in establishing the first sufficient
condition in Proposition 3.13.

Lemma B.3 Let β > 0 be such that τ−β ∈ L2(�2,R
p×p)). Then we have the fol-

lowing bound:

∥∥Z(t)
∥∥

F ≤ τm

3
2+β‖Ut‖C

√√√√∑
i,j

∫
L2(�2,Rp×p)

Jij (r, r̄)2/τj (r, r̄)2β

≡ τm

3
2+β

∥∥∥∥ J
τβ

∥∥∥∥
L2(�2,Rp×p)

‖Ut‖C .

Proof
We have:∥∥∥∥∫

�

d r̄ J(·, r̄)
∫ t

t−τ (·,r̄)
U(r̄, s) ds

∥∥∥∥2
F

=
∫

�

dr
∑

i

[∑
j

∫
�

d r̄ Jij (r, r̄)
∫ t

t−τij (r,r̄)
Uj (r̄, s) ds

]2 (16)

and if we set yi(r) = ∑
j

∫
�

d r̄ Jij (r, r̄)
∫ t

t−τij (r,r̄)Uj (r̄, s) ds, we have: |yi(r)| ≤∑
j | ∫

�
d r̄ Jij (r, r̄)

∫ t

t−τij (r,r̄) Uj (r̄, s) ds| and from the Cauchy-Schwartz inequality:∫
�

d r̄ Jij (r, r̄)
∫ t

t−τij (r,r̄)
Uj (r̄, s) ds
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≤
√∫

�

d r̄
Jij (r, r̄)2

τij (r, r̄)2β

√√√√∫
�

d r̄ τij (r, r̄)2β
{∫ t

t−τij (r,r̄)
Uj (r̄, s) ds

}2

.

Again, from the Cauchy-Schwartz inequality applied to {∫ t

t−τij (r,r̄) Uj (r̄, s) ds}2:
∫

�

d r̄ τij (r, r̄)2β
{∫ t

t−τij (r,r̄)
Uj (r̄, s) ds

}2

≤
∫

�

d r̄ τij (r, r̄)2β+2
∫ t

t−τm

Uj (r̄, s)2 ds

≤ τ 2β+2
m

∫
�

d r̄
∫ t

t−τm

Uj (r̄, s)2 ds = τ 2β+2
m

∫ t

t−τm

∫
�

d r̄Uj (r̄, s)2 ds.

(17)

Then, from the discrete Cauchy-Schwartz inequality:

∣∣yi(r)
∣∣≤ τβ+1

m

∑
j

√∫ t

t−τm

ds

∫
�

d r̄Uj (r̄, s)2

√∫
�

d r̄ Jij (r, r̄)2/τij (r, r̄)2β

≤ τβ+1
m

√√√√∑
j

∫ t

t−τm

ds

∫
�

d r̄Uj (r̄, s)2

√√√√∑
j

∫
�

d r̄ Jij (r, r̄)2/τij (r, r̄)2β

= τβ+1
m

√∫ t

t−τm

ds
∥∥U(s)

∥∥2
F

√√√√∑
j

∫
�

d r̄ Jij (r, r̄)2/τij (r, r̄)2β

≤ τ
β+ 3

2
m ‖Ut‖C

√√√√∑
j

∫
�

d r̄ Jij (r, r̄)2/τij (r, r̄)2β

which gives as stated:∑
i

∫
�

yj (r)2 dr≤ τ 2β+3
m ‖Ut‖2C

∑
i

∑
j

∫
�

d r̄ Jij (r, r̄)2/τij (r, r̄)2β

and allows us to conclude. �
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