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Abstract We introduce a test for robustness of heteroclinic cycles that appear in
neural microcircuits modeled as coupled dynamical cells. Robust heteroclinic cycles
(RHCs) can appear as robust attractors in Lotka-Volterra-type winnerless competition
(WLC) models as well as in more general coupled and/or symmetric systems. It has
been previously suggested that RHCs may be relevant to a range of neural activities,
from encoding and binding to spatio-temporal sequence generation.

The robustness or otherwise of such cycles depends both on the coupling structure
and the internal structure of the neurons. We verify that robust heteroclinic cycles
can appear in systems of three identical cells, but only if we require perturbations to
preserve some invariant subspaces for the individual cells. On the other hand, hete-
roclinic attractors can appear robustly in systems of four or more identical cells for
some symmetric coupling patterns, without restriction on the internal dynamics of
the cells.

1 Introduction

For some time, it has been recognized that robust heteroclinic cycles (RHCs) can be
attractors in dynamical systems [1], and that RHCs can provide useful models for
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the dynamics in certain biological systems. Examples include Lotka-Volterra pop-
ulation models [2] in ecology and game dynamics [3]. Similar dynamics has been
used to describe various neuronal microcircuits, in particular winnerless competition
(WLC) dynamics [4] has been the subject of intense recent study. For example, [5]
find conditions on the connectivity scheme of the generalised Lotka-Volterra model
to guarantee the existence and structural robustness of a heteroclinic cycle in the sys-
tem, [6] consider generalised “heteroclinic channels”, [7] use them as a model for
sequential memory and [8] suggest that they may be used to describe binding prob-
lems. One question raised by these studies is whether Lotka-Volterra type dynamics
is necessary to give robust heteroclinic cycles as attractors and how these cycles re-
late to those found in other models [9, 10]. The purpose of this paper is to show that
attracting heteroclinic cycles may be robust for a variety of reasons and appear in a
variety of dynamical systems that model neural microcircuits. In doing so, we give a
practical test for robustness of heteroclinic cycles within any particular context and
demonstrate it in practice for several examples.

This paper was motivated by a recent paper on three synaptically coupled
Hodgkin-Huxley type neurons in a ring that reported robust winnerless competition
between neurons [11] without an explicit Lotka-Volterra type structure. This mani-
fested as a cyclic progression between states where only one neuron is active (spik-
ing) for a period of time. During this activity, the currently active neuron inhibits the
activity of the next neuron in the ring while the third neuron recovers from previous
inhibition.

One of the main observations of this paper is that the coupling structure and sym-
metries in this system are not sufficient to guarantee robustness of the heteroclinic
behaviour observed in [11], but robustness can be demonstrated if we consider con-
straints in the system. For this case it is natural to investigate the invariance of a set
of affine subspaces of the system’s phase space related to the type of synaptic cou-
pling considered. More generally, we discuss cases of heteroclinic attractors that are
robust, based purely on the coupling structure and the assumption that the cells are
identical.

The paper is organized as follows: In Section 2 we consider the general problem
of robustness of a heteroclinic cycle. We investigate a class of dynamical systems
that have affine invariant subspaces and give a necessary and sufficient condition on
the dimensionality of the invariant affine subspaces for the robustness of HCs in this
class of systems. We translate these conditions into appropriate conditions for cou-
pled systems. Section 3.1 reviews a simple example of winnerless competition and
demonstrates robustness for Lotka-Volterra systems, while Section 3.2 discusses the
three-cell problem of Nowotny et al. [11]. We demonstrate how the general results
from Section 2 can be applied to show that the observed HC in the system (i) is not
robust with respect to perturbations that only preserve its Zz symmetry, but (ii) is
robust with respect to perturbations that respect a specific set of invariant affine sub-
spaces. Section 3.3 illustrates an example of a four-cell network of Hodgkin-Huxley
type neurons where the coupling structure alone is sufficient for the robustness of
HCs. We finish with a brief discussion in Section 4.
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2 Robustness of heteroclinic cycles

Suppose we have a dynamical system given by a system of first order differential
equations

dx

=1 1)
where x € R" and f € X, the set of C! vector fields on R” with bounded global
attractors. We say an invariant set X is a heteroclinic cycle (HC) if it consists of a
union of hyperbolic equilibria {x; : i =1, ..., p} and connecting orbits s; C W*(x;) N
W*(xi41).> We say that a heteroclinic cycle ¥ is robust to perturbations in Y C
X if f € Y and there is a C!-neighbourhood of f such that all g € ) within this
neighbourhood have a heteroclinic cycle that is close to X.

Let us suppose that f € X has a HC X between equilibria x;. As the connec-
tion s; is contained within W*(x;) N W¥(x;41), this implies that dim(W*(x;) N
W¥(x;+1)) > 1. In order for the connection from x; to x;+; to be robust with re-
spect to arbitrary C! perturbations it is necessary that the intersection is transverse
[12], meaning that

dim(W" (x;)) + dim(W*(x;41)) > n + L. 2)
Using the fact that dim(W*(x;)) + dim(W*(x;)) = n for any hyperbolic equilibrium
and adding these for all equilibria along the cycle, we find that

p
> [dim(W* (x)) + dim(W* (x;.1))] = pn. 3

i=1

This implies that it is not possible for Equation 2 to be satisfied for all connections.
Hence our first statement is the following (which can be thought of a special case of
the Kupka-Smale Theorem [12], see also [13]).

Proposition 1 A heteroclinic cycle between p > 0 hyperbolic equilibria is never ro-
bust to general C' perturbations in X .

The heteroclinic cycle may however be robust to a constrained set of perturbations.
We explore this in the following sections.

2.1 Conditions for robustness of heteroclinic cycles with constraints

A subset I C R” is an affine subspace if it can be written as [ := {x e R" : Ax = b}
for some real-valued n x n matrix A and vector b € R” (this is a linear subspace if b

IWe work within the class of continuously differentiable vector fields (€1 to ensure, by the Hartman
Grobman theorem [12], that hyperbolic equilibria are robust - this is a minimal requirement to discuss
robustness of heteroclinic cycles.

2We take the subscripts modulo p.
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can be chosen to be zero). For a given phase space R”, suppose that we have a (finite)
set of non-empty affine subspaces

I={I,..., 14} “

that are closed under intersection; i.e. the intersection /; N I of any two subspaces
I, Iy € T is an element of 7 unless it is empty. We include /; = R", which is trivially
invariant, so Z is always non-empty. For a given Z, we define the set of vector fields
(in X ) respecting T to be

Xr:={feX:fd)cIforalll €I} (&)

and call the subspaces in Z invariant subspaces in the phase space of the dynamical
systems described by f € X7.

A set of invariant affine subspaces Z may arise from a variety of modelling as-
sumptions; for example,

e If f is a Lotka-Volterra type population model that leaves some subspaces corre-
sponding to the absence of one or more “species” invariant then f € X7 where 7
is the set of the invariant subspaces forced by the absence of these species.

e If f is symmetric (equivariant) for some group action G and Z is the set of fixed
point subspaces of G then f € X7 because fixed point subspaces are invariant un-
der the dynamics of equivariant systems [14, Theorem 1.17]. Note that for an or-
thogonal group action, the fixed point subspaces are linear subspaces. It is known
that symmetries impose further constraints on the dynamics such as repeated eigen-
values or missing terms in Taylor expansions [14] but we focus here only on the
invariant subspaces.

e If f is arealization of a particular coupled cell system with a given coupling struc-
ture then f € A7 where Z corresponds to the set of possible cluster states (also
called synchrony subspaces or polydiagonals in the literature [15-17]).

Note that X7 inherits a subset topology from X’; for a discussion of homoclinic and
heteroclinic phenomena in general and their associated bifurcations in particular, we
refer to the review [13].

Suppose that for a vector field f € X7 we have a heteroclinic cycle ¥ between

hyperbolic equilibria {x;} (i = 1,..., p) with connections s; from x; to x;;+1. We
define
IL‘(i) = m IC (6)
{cisicl €T}

i.e. the smallest subspace in Z that contains s;. The invariant set I.(; is clearly well
defined because Z is closed under intersections. We define the connection scheme of
the heteroclinic cycle to be the sequence

Iy e ep)
X1 — X2 —> -+ — X]. (7)

The following theorem gives necessary and sufficient conditions for such a hetero-
clinic cycle to be robust to perturbations in X7, depending on its connection scheme
(we will require robustness to preserve the connection scheme). More precisely it
depends on the following equation being satisfied:

dim(W“ (x;)N IC(,')) + dll’l’l(VVY xiy) N IC(,')) > dim(Ic(,-)) +1 (8)

@ Springer



Journal of Mathematical Neuroscience (2011) 1:13 Page 5 of 18

for each i. Note that there is a slight complication for the sufficient condition - it
may be necessary to perturb the system slightly within A7 to unfold the intersec-
tion to general position and remove a tangency between W (x;) and W*(x;41). This
complication has the benefit that it allows us to make statements about particular
connections without needing to verify that the intersection of manifolds is transverse.

Theorem 1 Let X be a heteroclinic cycle for f € X7 between hyperbolic equilibria
{xj:i=1,..., p} with connection scheme Equation 7.

1. If the cycle X is robust to perturbations in X7 then Equation 8§ is satisfied for
i=1,...,p.

2. Conversely, if Equation 8 is satisfied for i =1, ..., p then there is a nearby f €
X7 (with f arbitrarily close to f) such that X is a heteroclinic cycle for f that is
robust to perturbations in Xz.

Proof We will abbreviate I, := I.(;). Because s; is a connection from x; to x; 1, there
is a non-trivial intersection of W*(x;) N W*(x;41) within /.. As I, is the smallest
invariant subspace containing s;, typical points y € s; will have a neighbourhood in
I that contain no points in any other /;. In a neighbourhood of this y, perturbations
of f in A7 have no restriction other than they should leave I, invariant.

The stability of the intersection of the unstable and stable manifolds depends on
the dimension of the unstable manifolds (also called the Morse index [13]) for these
equilibria for the vector field restricted to /.. Pick any codimension one section P C
I, transverse to the connection at y. We have

dim(P) =dim(l,) — 1 )
and within P, the invariant manifolds have dimensions

dim(W(x;) N P) = dim(W"(x;) N 1) — 1,

(10)
dim(W* (xi41) N P) = dim(W* (xi11) N 1) — 1.

The intersection of these invariant manifolds may not be transverse within P, but it
will be for a dense set of nearby vector fields. In particular, if

dim(W*(x;) N P) 4+ dim(W* (x;4+1) N P) < dim(P) an

then there will be an open dense set of perturbations of f that remove the intersection,
giving lack of robustness of s; and hence we obtain a proof for case 1. On the other
hand, if Equation 11 is not satisfied, we can choose a vector field f that is identical to
f except on a small neighbourhood of y - there it is chosen to preserve the connection
but to perturb the manifolds so that the intersection is transverse. Transversality of
the intersection then implies robustness of the connection and hence we obtain a proof
for case 2. g

Note that caution is necessary in interpreting this result for a number of reasons:

1. Just because a given heteroclinic connection is not robust due to this result does
not necessarily imply that there is no robust connection from x; to x;4; at all.
Indeed, it may be [18] that there are several connections from x; to x; 1 and that
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perturbations will break some but not all of them. In this sense, it may be that at
the same time, one heteroclinic cycle is not robust, but another heteroclinic cycle
between the same equilibria is robust.

2. We consider robustness to perturbations that preserve the connection scheme -
there are situations where a typical perturbation may break a connection but pre-
serve a nearby connection in a larger invariant subspace. This situation will typi-
cally only occur in exceptional cases.

3. The structure of general robust heteroclinic cycles may be very complex even if
we only examine cases forced by symmetries - they easily form networks with
multiple cycles. There may be multiple or even a continuum of connections be-
tween two equilibria, and they may be embedded in more general “heteroclinic
networks” where there may be connections to “heteroclinic subcycles” [16, 19,
20].

4. Theorem 1 does not consider any dynamical stability (attraction) properties of the
heteroclinic cycles.

5. In what follows, we slightly abuse notation by saying that a heteroclinic cycle is
robust if the cycle for an arbitrarily small perturbation of the vector field is robust.

If W"(x;) is not contained in W*(x;4) then the heteroclinic cycle ¥ cannot be
asymptotically stable. We say that an invariant set X is a regular heteroclinic cycle
if it consists of a union of equilibria and a set of connecting orbits s5; C W (x;) with
W¥(x;) C W¥(x;+1). The following result is stated in [13] for the case of symmetric
systems.

Theorem 2 Suppose that ¥ is a regular heteroclinic cycle for f € X1 between hy-
perbolic equilibria {x; :i =1, ..., p}. Suppose that x;11 is a sink for the dynamics
reduced to I.(;), i.e.

dim(W* (xi41) N L)) = dim(Legi) (12)

for all i. Then the heteroclinic cycle is robust to perturbations within X7.

Proof Suppose that W* (x;1+1) D I.(;). Since W¥(x;) is contained in W* (x; 1) by reg-
ularity of the HC, and because I.;) 2 s; = W"(x;), we find dim(W"(x;) N 1)) +
dim(W?* (x;41) N Iey) = dim(W"(x;)) + dim(l¢y) > dim(/.;)) + 1. Hence, Equa-
tion 8 follows and we could apply Theorem 1 case 2. In fact this is a simpler case
in that because dim(W? (x;11) N I.;)) = dim(/.;)) the intersection must already be
transverse - one does not need to consider any perturbations to force transversality of
the intersection. 0

2.2 Cluster states for coupled systems

RHCs may appear in coupled systems due to a variety of constraints from the cou-
pling structure - these are associated with cluster states (also called synchrony sub-
spaces [15] or polydiagonals for the network [21]). Consider a network of N systems
each with phase space R? and coupled to each other to give a set of differential equa-
tions on R”, with n = Nd, of the form

dx;

L= i) (13)
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for x; e R4, i =1,...,N. We write f:RN? - RN? with f(x) = (fix),...,
fn(x)). We define a cluster state for a class of ODEs to be a partition P; of {1, ..., N}
such that the linear subspace

Ii :=={(x1,...,xN) : xj =x; & {J, k} are in the same part of P; }

is dynamically invariant for all ODEs in that class. For a given symmetry or cou-
pling structure, we identify a list of possible cluster states and use these to test for
robustness of any given heteroclinic cycle using Theorem 1.

We remark that the simplest (and indeed only, up to relabelling) coupling structure
for a network of three identical cells found by [15] to admit heteroclinic cycles can
be represented as a system of the form

X=f(x;y,2),
y=f(;x,2), (14)
2= f(z;y,x).

For an open set of choices of f(x, y, z), the heteroclinic cycle involves two saddles
within the subspace I; := {x = y = z} and connections that are contained within
I> := {x = y} in one direction and /3 := {x = z} in the other. This represents a system
of three identical units coupled in a specific way, where each unit has two different
input types; we refer to [15] for details. It can be quite difficult to find a suitable
function f that gives a robust heteroclinic cycle in this case. Nevertheless, once one
has found a heteroclinic cycle, it can be shown to be robust using Theorem 1 (case 2).

Other examples of robust heteroclinic cycles between equilibria for systems of
coupled phase oscillators are given in [22, 23]. For such systems the final state equa-
tions are obtained by reducing the dynamics to phase difference variables. In this
case, each equilibrium represents the oscillatory motion of oscillators with some fixed
phase difference.

2.3 Robust heteroclinic cycles between periodic orbits

In cases where a phase difference reduction is not possible, one may need to study
heteroclinic cycles between periodic orbits in order to explain heteroclinic behaviour.
Unlike heteroclinic cycles between equilibria, heteroclinic cycles between periodic
orbits can be robust under general perturbations since for a hyperbolic periodic orbit
p, dim(W*(p)) + dim(W*(p)) = n + 1. Hence, the condition Equation 2 can be
satisfied. For instance, consider a system on R3 with two hyperbolic periodic orbits
p and ¢ for which the stable and unstable manifolds W*(p), W*(p), W¥(g), and
W (q) are two-dimensional. In this case, W"(p) and W*(q) (and similarly, W"(q)
and W¥(p)) intersect transversely, and therefore, a heteroclinic cycle between p and
g can exist robustly. However, for this heteroclinic cycle only one orbit connects p
to g, whereas infinitely many orbits which are backward asymptotic to p move away
from the heteroclinic cycle. As a result, such a robust heteroclinic cycle cannot be
asymptotically stable.

To overcome this difficulty we assume that the connections of a heteroclinic cycle
between periodic orbits consist of unstable manifolds of periodic orbits and these are
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contained in the stable manifold of the next periodic orbit. Namely, we say an invari-
ant set X is a heteroclinic cycle that contains all unstable manifolds if it consists of
a union of periodic orbits and/or equilibria {x; :i =1, ..., p} and a set of connecting
manifolds S; = W¥(x;) with W¥(x;) C W¥(x;j+1).

Theorem 3 Suppose that ¥ is a heteroclinic cycle that contains all unstable mani-
folds for f € X1 between hyperbolic equilibria or periodic orbits {x; :i =1, ..., p}.

If there exists a finite sequence {I.(1, ..., Io(p)} of elements in T such that Iy D S;
and

dim(W* (xi1) N Iey) = dim(Zey) (15)
(in other words, x;y1 is a sink for the dynamics reduced to I.;y) foralli=1,...,p

then X is robust to perturbations within X7.

Proof Consider a unique orbit s; C S;. Since W*(x;41) contains a neighbourhood of
Xiy1 in Iy, s; is Tobust by the same reasoning as in the proof of Theorem 2. This
implies that the manifold of connections S; is robust for all i. g

Note that a heteroclinic cycle may contain all unstable manifolds but not be attract-
ing even in a very weak sense (essentially asymptotically stable [24]). Conversely,
a heteroclinic cycle may not contain all unstable manifolds but may be essentially
asymptotically stable.

3 Robust heteroclinic behaviour in neural models

We discuss three examples of cases where robust heteroclinic behaviour can be found
in simple neural microcircuits.

3.1 Winnerless competition in Lotka-Volterra rate models

The review [25] includes a discussion of winnerless competition and related phenom-
ena. This has focused on the dynamics of Lotka-Volterra type models for firing rates,
justified by an approximation of Fukai and Tanaka [26]. In their most general form,
these are written as

X; = x; F; (x) (16)

where x; fori =1, ..., N is the firing rate of some neuron (or neural assembly) and
F;i(x) is a nonlinear function that represents both the intrinsic firing and that due to
interaction with the other cells in the network. These systems have a very rich set of
invariant subspaces because of the invariance of all subspaces where x; = 0. More
precisely, given any subset S C {1, ..., N} there is an invariant subspace correspond-
ing to

Is:={x:x;=0ifi € S};

for example I 4y := {x : xp = x4 = 0}. This gives a total of 2N invariant subspaces
for the dynamics of Equation 16. Using these one can find a connection scheme in-
volving these I such that Theorem 1 can be applied to check robustness of a specific
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heteroclinic cycle to perturbations that preserve the form Equation 16. For example,
the following rate model for the pyloric CPG of the lobster stomatogastric ganglion
is discussed in [25]:

da; (t) al
- =a,~<t)(1 —;pg(snam) +5i (17)

with S; representing the stimulus and g;(¢) the firing rate of the ith neuron. In the
absence of stimulus S; = 0 this exhibits heteroclinic cycles for N = 3,

1 125 0
0(0) = <O.875 1 1.25)
X/80 0.625 1

and X > 160. These heteroclinic cycles connect three equilibria of Equation 17,
namely x; = (1,0,0) - x» = (0, 1,0) — x3 = (0, 0, 1). Calculating linearizations
of Equation 17 at these equilibria one can show that, for the equilibrium x;, three
linearly independent eigenvectors are contained in Iy; y, I; and Iy with eigenvalues
1 —2p;i, 1 — pji, 1 — pki, respectively, where i, j, k € {1, 2, 3} are different indices.
Hence, when p is chosen as above, it follows that

dim(W*(x1) N I3) + dim(W*(x) N I3) =3 >dim(/3) + 1 =3
dim(W*(x2) N I1) +dim(W* (x3) N I}) =3 >dim([;) + 1 =3
dim(W*(x3) N ) +dim(W*(x;) N I,) =3 > dim(/;) + 1 = 3.

Finally, from Theorem 1 case 2, we can conclude that the heteroclinic cycle between

saddle equilibria x| € /{2 3}, X2 € Ij1,3) and x3 € I{1 7} is robust for the robust connec-
tion scheme

Igy Iy Iy
X1 —> X2 —> X3 —> X].

3.2 Robustness of a heteroclinic cycle in a rate model with synaptic coupling

We now turn to the robustness of heteroclinic cycles in a specific model of N =3
coupled neurons derived from a Hodgkin-Huxley type model with synaptic coupling
[11], a case where we do not have the Lotka-Volterra structure Equation 16. If the
synaptic time scales are slow compared to the time scale of the individual spikes, then
the full conductance based model can be reduced systematically to an approximate
rate model [11, equations (13,14)]:

ds; Si ) Smax — i
T—=\rn-=|—-

dt 2 Siax

a )
Id—l—on(I—Zg,]s]> —ri,

where time variable ¢ is in ms. The unitless dynamical variables r; represent the frac-
tion of presynaptically released and s; the fraction of postsynaptically bound neuro-
transmitter for the ith neuron (i =1, ..., N), and

F(x) = exp(—¢€/x) (max(0, x))“
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Table 1 Numerical values of

parameters used for simulation Parameter Value
of the rate model (18); see [11]
for a discussion of the derivation T 50 ms
of the model and the meaning of I 0.145
the parameters.
g1 3
22 0.7
Smax 0.045
X0 2.57 x 1073 kHz
o 0.564

characterises the rate response of the neurons to input current. We have introduced
a smoothing factor exp(—e/x), with small € > 0 to ensure that F is C! without
affecting the overall structure of the model. We use parameters as in Table 1 and
couple N = 3 cells in a ring using different coupling strength in each direction:

821 = 832 = 813 = 81, 812 = 823 = 831 = 82;

(19)
g1 =g»n=g33=0.

A typical timeseries showing an attracting heteroclinic cycle for this system is shown
in Figure 1.

The heteroclinic cycle x; — x3 — x2 — x1 connects the saddle equilibria xi,
X2, x3 listed in Table 2, all of which have one-dimensional unstable manifolds (un-
stable eigenvalue 0.0062) and five-dimensional stable manifolds (stable eigenvalues

—0.0066, —0.01, —0.02, —0.02, —0.02). Adjusting any of these parameters appears
to preserve the heteroclinic attractor. This raises the question whether the symmetry

SN E

S:
o
o
S

0 1 2 3 4 5 6 7 8 9 10

5
time (ms) x10

Fig. 1 A trajectory approaching a heteroclinic cycle for the rate model (18) with € = 1073 and parame-
ters as in Table 1. Observe that the trajectory cycles between the neighbourhoods of three saddle equilibria
where two of the three s; are close to saturated at Smax = 0.045. The switching dynamics between equi-
libria continues to slow down indicating that the trajectory is approaching the actual heteroclinic orbit.
The bottom panel illustrates this further by showing that the s; continue to approach the equilibria over
the whole duration of the simulation. The simulation is performed using a numerical scheme that carefully
resolves the behaviour near the equilibria.
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Table 2 Equilibria of (18) involved in the heteroclinic cycle for € = 1073 and parameters as in Table 1.

r s1 r 52 r3 53 W contained in
x| 0 0 0.00866 Smax 0.03733 Smax 52 = Smax
X2 0.03733 Smax 0 0 0.00866 Smax §3 = Smax
X3 0.00866 Smax 0.03733 Smax 0 0 S1 = Smax

in the system is necessary or sufficient to ensure robustness of a heteroclinic cycle.
We investigate the robustness of this cycle in the light of Theorem 1 to show that
in fact the presence of this symmetry is neither necessary nor sufficient to ensure
robustness.

Theorem 4 There are heteroclinic cycles in the system Equation 18 with parameters
in Table 1. These cycles:

e are not robust to perturbations that preserve the Z3 symmetry of cyclic permutation
of the cells.
e are robust to perturbations that preserve the affine subspaces associated with

Si = Smax-

Proof (We do not rigorously prove that the heteroclinic cycles exists; this should in
principle be possible via rigorous methods with an error bounded integrator - see
for example [27].) To show the first part, note that the only invariant subspaces in
(r1, 81,12, 82, 13, s3) permitted by Z3 permutation symmetries are

I = RG, L :={({r,s,r,s,r,5):(r,s)€e Rz}.

Since c(i) = 1 in all cases, Theorem 1 case 1 implies that typical symmetry-
preserving perturbations of the system destroy the heteroclinic cycle.

To see the second part, let us consider the set of vector fields on R® that preserve
the property that s; = Spax is invariant: this means that we assume that the following
set of subspaces are invariant:

I = R6, I5 := {XGR()ZS] =52 = Smax}»

Li={xe€R%:s; =Smax},  Jo:={x €R®:52 =153 = Smax), 0,
L= {x € R%: 55 = Smax), I :={x € R®: 53 =51 = Smax),
Iy ={x e RS : 53 = Smax}» Ig:={xe€ RC: $1 =152 =53 = Smax}

Examining the equilibria in Table 2 we note that the x; are connected in the following
connection scheme:

Iz I Iy
X1 — X3 —> X2 — X].

For the particular choice of parameters in Table 1, there is a heteroclinic cycle be-
tween three equilibria x| € Ig, x2 € I7, x3 € Is. These equilibria have unstable/stable
manifolds that intersect to form a heteroclinic loop and satisfy
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dim(W*(x)) N 3) + dim(W¥(x3) N I3) =6 > dim(l3) + 1 =6
dim(W*(x3) N L) + dim(W¥(xp) N ) =6 > dim(l) + 1 =6
dim(W*(x2) N Iy) + dim(W*(x1) N Iy) =6 > dim(l4) + 1 =6.

Hence the criteria of Theorem 1 (case 2) are satisfied and the heteroclinic cycle is
robust with respect to C!-perturbations that preserve the subspaces Equation 20. [

3.3 Robustness of heteroclinic cycles for a delay-coupled Hodgkin-Huxley
type model

One might suspect that Theorem 4 can be generalized to show that internal constraints
might be needed to give robustness of HCs for larger numbers of cells, but this is not
the case as long as the cells are assumed identical. For example [28—30] find robust
cycles in systems of four or more identical, globally coupled phase oscillators with
no further constraints.

To illustrate this, we give an example of a robust heteroclinic attractor for a model
system of four synaptically coupled neurons. We use a modification of Rinzel’s neu-
ron model [31] presented by Rubin [32] with synaptic coupling [32]. Due to the
global coupling of the system, the invariant subspaces are all nontrivial cluster states.

Consider N all-to-all synaptically coupled neurons with delay coupling (using
units of mV for voltages, ms for time, mS/cm? for conductances, ,t,LA/cm2 for cur-
rents, and pF/cm? for capacitance):

cti(t) = I; — gL (vi (1) — vr) — gxn* (hi (1)) (vi (1) — vK)

— gNam 3, (Vi (D) i (1) (v (1) — VNa) (21)
— &syn Zsj(t)(vi @) — Usyn)
J#

T (V) hi (1) = hoo (vi (1)) — hi (1)
§i(t) = a(v;i(t — 1)) (1 — 5; (1)) — i (t)/Tsyn
fori =1,..., N, where
0.1(x +40)/(1 — e~ +40)/10y

0.1(x +40)/(1 — e~ +40)/10) 4 40— (x+65)/18
0.07¢—&+65)/20

0.07e=(+65/20 11 /(] 4 e—(x+35/10)
a(x)=2/(1+ e/ CIN=1))y

n(x) = max{0.801 — 1.03x, 0}

7 (x) = (0.07¢~OC+OD/20 1 /(] 4 o= +39/10)) =1,

Moo (X) =

hoo(x) =

We consider the parameters vN, = 50, vk = —77, v, = —54.4, gna = 120, gk = 36,
gL =0.3, c =1, I =10 and synaptic coupling parameters gsyn = 0.08, vgyn =0,
Tsyn = 20.
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Fig. 2 Oscillation of an T T T
uncoupled Hodgkin-Huxley type
neuron (21) in the (A, s)-plane. 091 i
The phase variable is estimated
with respect to the reference
point (Agef, sref) = (0.2, 0.85). 0.85- (href’sref) A0 N\ |
s
0.8 ]
0.75F .
0 0.1 0.2 0.3 0.4 0.5

The dynamics of this model is oscillatory for these parameter values. For the pur-
pose of visualizing the dynamics, we define an approximate phase using a projec-
tion of the oscillation signal onto the & — s plane (see Figure 2). A reference point
(hret, Sref) = (0.2, 0.85) is chosen and the approximate phase is given as

6 = arctan [ﬂ]
h _href

For two different neurons we use the synchronization index
ei9,‘ + ei@j
2
as a measure of their phase synchronization. The neurons i and j are completely

phase synchronized when p;; = 1.
For N = 4, a heteroclinic cycle exists as shown in Figure 3. This is a hetero-
clinic cycle between two saddle periodic orbits with the same clustering, that is

{{1, 2}, {3, 4}}. These saddle periodic orbits x; and x; form a heteroclinic cycle with
a scheme

<1

Pij =

I V63
X1 — X2 —> X1
where
Iy :={v3 =4, h3 = h4, 53 = 53}, I :={vi =v2, h1 =h3, 51 =52}

and x1, xp € I3 := I1 N I,. Theorem 3 implies that as long as (a) the periodic orbits x;
(resp. x3) are hyperbolic, and (b) they are sinks when considered within the subspaces
I (resp. I») then the connection is robust. Condition (a) is generically satisfied. We
have checked (b) using simulations by choosing different initial conditions for the
dynamics reduced to I} and I,.

Coupled phase oscillators are used as simplified models for weakly coupled limit
cycle oscillators, and one can find one-to-one correspondence between solutions if
the coupling is weak enough [33]. In particular, the heteroclinic cycle depicted in
Figure 3 corresponds in clustering type to a heteroclinic cycle found in [22] (see
Figure 4) for a system of four globally coupled phase oscillators. The two saddle
periodic orbits mentioned above correspond to the two saddle equilibria in Figure 4.
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Fig.3 A solution of (21) for N =4 and tq = 1.8 approaching to a heteroclinic cycle between two cluster
states with the same clustering {{1, 2}, {3, 4}} but a different effective phase difference. In the upper graph,
synchronization indices for neuron pairs (1, 2) and (3, 4) are plotted (after block averaging of size 1000),
whereas in the lower graph a shorter time series of membrane voltages shows transitions between different
synchronized clusters.

For N =5, more complex heteroclinic cycles can appear as seen in Figure 5. This
is a heteroclinic cycle that connects different cluster states of type (2,2, 1). Note that
the transition times between clusters are fixed but the duration of stay at each cluster
gets longer and longer - a feature of attracting heteroclinic cycles. In the case of noisy
systems, the dynamics switches from one cluster to another randomly around a graph
of connections between symmetric cluster states [10].

For globally coupled networks of N > 4 phase oscillators, robust heteroclinic cy-
cles between cluster states have been found in [22, 28, 30]. Such robust heteroclinic
cycles of coupled phase oscillators involve robust connections between saddle-type
cluster states, where the robustness of the connections relies on them being contained
within another nontrivial cluster state that corresponds to partially breaking the clus-
ters and reforming them in a different way.

4 Discussion
In this paper we have introduced a testable criterion for robustness for a given cycle
of heteroclinic connections within constrained settings - this test involves finding

the connection scheme and then applying Theorem 1. We have attempted to clarify
the similarity between winnerless competition dynamics in Lotka-Volterra systems
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Fig. 4 A robust heteroclinic
cycle for four all-to-all coupled
phase oscillator system
analogous to the cycle found in
Figure 3 for the
Hodgkin-Huxley type system.
The heteroclinic cycle consists
of two saddle equilibria x; and
xp and connections s1 and s, on
invariant subspaces. The
invariant subspaces are
embedded in a cube that
represents a unit cell for the
torus of phase difference space-
in this representation the
vertices represent in-phase
solutions where all oscillators
are synchronized. (Adapted
from [22].)

as a special case of robust heteroclinic dynamics that respect some set of invariant
subspaces in a connection scheme.

Winnerless competition has previously been used to describe the competition of
modes where at each mode a different neuron or neuron ensemble is active and other
neurons or neuron ensembles remain inactive [8, 34]. This type of competition relies
on a stable robust heteroclinic cycle where robustness is due to the constraints on
the individual dynamics of neurons. However, models where constraints are only on
the coupling structure can admit a general phenomenon, namely robust heteroclinic
cycles between cluster states. The model analyzed in Section 3.3 is an example with
RHCs between cluster states. This dynamics relies on a stable robust heteroclinic
cycle where robustness is due to the invariant subspaces forced by the coupling struc-
ture. In this case, the heteroclinic cycle connects saddle equilibria or saddle periodic
orbits that represent different cluster states.

We have not discussed the robustness of attraction properties of RHCs - mere exis-
tence of a RHC is not enough to guarantee that it will be an attractor, but we mention
that as attraction properties are determined by open conditions on eigenvalues of the
saddles (e.g. [1, 24, 35]), continuity of variation of the eigenvalues will guarantee that
attractivity is also a robust property.

For larger numbers of cells in symmetric or asymmetric arrays there may be very
many such invariant subspaces, giving a wide range of possible robust heteroclinic
cycles. Some of these are constructed in [15] for small numbers of coupled cells,
but up to now there does not seem to be an easy way to explore which cycles are
possible and which are not within any particular system. On the other hand, verifying
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Transitions B =06\, 9‘ 92‘ 8=06 \QEGS: g =6 ,62—93, g.=
between 1 72y7 1 72 4 73 2 73
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Fig. 5 A trajectory of the system of N =5 neural oscillators (21) for ry = 1.9 approaching to a hetero-
clinic cycle between two clusters. In the first five graphs, five synchronization indices are plotted (after
block averaging of size 1000) for different synchronized pairs, whereas in the last graph transitions be-
tween synchronized clusters are illustrated.

that a particular heteroclinic cycle is, or is not, robust is a more tractable question
that we address here. Note that which cycles exist may depend not just on having
a valid connection scheme for some constrained set of vector fields, but also on the
constraints not preventing the existence of the appropriate saddles or connections
between them.

Finally, we remark that there is evidence of metastable states in neural systems
(e.g. [36-38]) that are supportive of the presence of approximate robust heteroclinic
cycles. There are also suggestions that heteroclinic cycles may facilitate certain com-
putational properties of neural systems - see for example [7, 39, 40].
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