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Abstract We consider the constrained optimization of excitatory synaptic input pat-
terns to maximize spike generation in leaky integrate-and-fire (LIF) and theta model
neurons. In the case of discrete input kicks with a fixed total magnitude, optimal input
timings and strengths are identified for each model using phase plane arguments. In
both cases, optimal features relate to finding an input level at which the drop in input
between successive spikes is minimized. A bounded minimizing level always exists
in the theta model and may or may not exist in the LIF model, depending on pa-
rameter tuning. We also provide analytical formulas to estimate the number of spikes
resulting from a given input train. In a second case of continuous inputs of fixed total
magnitude, we analyze the tuning of an input shape parameter to maximize the num-
ber of spikes occurring in a fixed time interval. Results are obtained using numerical
solution of a variational boundary value problem that we derive, as well as analysis,
for the theta model and using a combination of simulation and analysis for the LIF
model. In particular, consistent with the discrete case, the number of spikes in the
theta model rises and then falls again as the input becomes more tightly peaked. Un-
der a similar variation in the LIF case, we numerically show that the number of spikes
increases monotonically up to some bound and we analytically constrain the times at
which spikes can occur and estimate the bound on the number of spikes fired.
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1 Introduction

A major component of theoretical neuroscience is the study of how various neuronal
models respond to synaptic inputs. Indeed, chemical synaptic transmission offers a
specific mechanism for the encoding of information that an organism senses from
the external environment, filtered by the internal state of the organism. The functions
performed by particular neurons and neuronal networks are in part determined by
the nature of the inputs that they receive and are in part a result of the responses
they generate to these inputs, due to their intrinsic properties. Thus, understanding
neuronal input-output transformations represents a centrally important scientific goal.

Although the framework for incorporating synaptic inputs into computational
models is well established, and the computational implications of such inputs have re-
ceived significant attention, optimization problems involving synaptic inputs are not
well represented in the literature. In this paper, we consider such a problem, namely
what is the optimal way to tailor synaptic inputs, subject to certain constraints, to
maximize the number of spikes that a neuron will fire?

In fact, we consider two variations on this problem, one based on maximizing
the total number of spikes fired and one focused on maximal firing within a pre-
scribed time interval. There are several reasons that maximizing numbers of spikes
may be a biologically relevant neuronal goal. Since neurons operate under conditions
in which efficient resource use could be evolutionarily advantageous, it could be use-
ful if, subject to some constraint on the amount of input that is available, the synaptic
input time course could be tailored to achieve the largest possible number of spikes.
Certainly, there are brain areas, including areas of visual cortex and somatosensory
cortex, where it appears that intensity of firing encodes stimulus information, with
neurons showing maximal firing under optimally preferred stimulus conditions [1–3].
Similarly, a sufficiently high firing rate within a given time window may be needed to
overcome inhibition or to outcompete activity of other neurons to influence a down-
stream readout neuron (for example, [4–6] and many more recent works). Which
input time courses yield maximal spiking will depend on the intrinsic properties of a
neuron or neuronal model, and characterizing optimal input time courses for models
may provide information about which neuronal coding functions they are well suited
to represent.

In an earlier paper, a calculus of variations approach was used to determine the
input current of minimal amplitude that causes a neuron to spike at a specified target
time [7]. That work considered a phase model for a spiking neuron, with the evolution
of phase x ∈ [0,2π) given by

dx/dt = f (x) + Z(x)I (t),

where the impact of the input current I (t) is modulated by the phase sensitivity func-
tion Z(x). Similarly, earlier work analyzed optimal weak inputs to start or stop repet-
itive spiking in a general biological oscillator, with dynamics expressed in polar co-
ordinates as

dr/dt = εI (t) sin(φ),

dφ/dt = 1+ εI (t) cos(φ)/r
(1)
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with ε small [8]. Particular biological systems with dynamics qualitatively equivalent
to those of (1) were also considered as examples to illustrate a calculus of varia-
tions approach to this problem, involving numerical solution of a system of ordinary
differential equations obtained through the introduction of Lagrange multipliers. To
our knowledge, ours is the first work to focus on the optimization of inputs, subject
to particular constraints, to maximize the number or rate of neuronal output spikes
fired.

To initiate research in this direction, we consider input optimization in two well-
known mathematical models for single neurons, the leaky integrate-and-fire (LIF)
model and the theta model [9–11], the mathematical formulations of which are given
in Section 2. Both of these are scalar models, which allows us to use certain analytical
approaches, rather than relying entirely on numerics, and we tune both models to
be silent in the absence of inputs. One approach that we follow is to treat synaptic
inputs as events with discrete onset times, which yields a phase plane representation
of the co-evolution of an intrinsic neuronal variable and a synaptic input variable, as
introduced previously for the LIF and theta models [12]. This approach would apply
equally well in parameter regimes for which the models are intrinsically oscillatory,
rather than silent, but we stick with the richer silent case. The LIF model was also
considered by Börgers and Kopell, who proved (1) if a collection of phase-shifted,
identical time-periodic inputs cause a spike in an LIF neuron, then the same inputs
will also cause a spike if they are synchronized, and (2) if a constant input of size
A causes a spike, then any time-periodic input with time average A will also cause
a spike [13]. Both of these results show that the power of inputs to induce spikes in
the LIF model increases as the input time course is made less uniform. Our results
represent an extension of this idea, providing information about specific time courses
that are optimal, not just for the generation of a single spike but for maximizing spike
outputs. While the LIF model is a reasonable representation for a passive neuron, the
theta model can be rigorously derived as a normal form for Type I spiking neurons [9–
11], which feature a transition from silence to oscillations through a SNIC bifurcation
[14]. Thus, consideration of the theta model allows us to explore how our results
extend to a case with additional biological relevance. Interestingly, although both
models can fire spikes at arbitrarily low frequencies, differences in their responses to
inputs have been noted in previous work [12], which further motivates us to continue
to compare them here.

In addition to discrete inputs, we also consider a continuous input formulated so
that a particular parameter shapes the input time course and ask how that parameter
should be tuned to achieve the maximal number of spikes within a given time win-
dow. The absence of a threshold and reset in the theta model is convenient for the
application of variational techniques in this case. For the LIF model, we do not ap-
ply such techniques, but we nonetheless derive some results about the influence of
the input shape parameter on the spike train that results from the input. We shall see
that certain properties of each model observed in the discrete case carry over to the
continuous case, yet there are some differences worth noting as well.

The remainder of the paper is organized as follows. In Section 2, we analyze the
LIF model with discrete synaptic kicks, the cumulative sizes of which are constrained.
We introduce phase plane structures that are useful for analysis of the resulting op-
timization problem and discuss some example strategies for controlling the timing
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of inputs before moving on to prove some results about these structures and optimal
strategies. In particular, we show that two different scenarios are possible, depending
on model parameters, and these yield different optimal input strategies. We also show
how analytical estimates for the number of spikes fired can be derived for any given
input time course. In Section 3, a somewhat similar analysis strategy is applied to the
theta model with discrete synaptic kicks. We find that the phase plane structures for
the theta model resemble one of the possible cases for the LIF model, with a cor-
responding similarity in optimal strategies. In Section 4, we turn to the analysis of
continuous input for the theta model, seeking a maximal number of spikes in a fixed
time window. We define the continuous input so that its shape can be modulated
by a parameter yet its integral over all positive time is independent of the value of
that parameter. Variational techniques yield a boundary value problem that we solve
numerically to find locally and globally optimal parameter values. In Section 5, we
consider the continuous input optimization problem for the LIF model, for which
the discontinuous reset prevents application of the same variational techniques. We
provide direct analysis showing that all spikes must be fired within a particular time
interval and characterize the behavior of this interval as the input parameter is varied.
Moreover, we prove that the number of spikes saturates as this parameter increases.
Some similar analysis for the theta model, showing that spiking is lost as this param-
eter increases, appears in the Appendix. We conclude with a discussion in Section 6,
where we summarize our results and discuss the novelty and relevance of our findings
in the neuroscience setting.

2 Integrate-and-fire (LIF) model with synaptic kicks

Model

We consider the dynamics of an LIF model neuron with excitatory synaptic inputs as
governed by the equations

v′ = I − v − g(v − E), (2)

g′ = −βg, (3)

together with the reset condition

v(t−) = vth ⇒ v(t+) = vr . (4)

Equation (2) can be derived from a conductance-based equation Cv′ = Iinput −∑
j gj (V −Ej)−gsyn(V −Esyn) with fixed intrinsic current conductances gj , but we

think of it as a nondimensionalized abstract model in which voltage intrinsically con-
verges to a baseline I and E is the reversal potential of a synaptic input with strength
g > 0. We assume vr < I < vth, such that no spikes are fired in the absence of in-
put, and E > vth, and we consider the invariant half-plane {g ≥ 0} within the (v, g)

phase plane, where (I,0) is the unique stable critical point. Further, we represent the
excitatory input by the equations

g(t−n ) = g(t+n ) + kn, (5)
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N∑
n=1

kn = G (6)

for kn ∈ (0,G], n = 1,2, . . . , with N ≥ 1 finite and G > 0 fixed in R. Equations (3)
and (5) show that each input kick can be chosen to arrive at any time and instanta-
neously updates the value of g when it arrives and that the synaptic conductance g

always decays exponentially between kicks. Equation (6) states that the sum of all
inputs, however they may be divided, is always equal to a fixed input allowance G.
In the subsequent subsections, we assume that I , E, vth, vr , and β are fixed and con-
sider how to partition and time the input G to yield the greatest number of threshold
crossings, or spikes. Without loss of generality, we take vr = 0. First, we discuss a
phase plane representation of this problem and consider some example strategies.

Phase plane structures and basic strategies

We illustrate some key structures in the phase plane for system (2), (3) in Figure 1.
The v-nullcline, based on equation (2), is the curve {g = (v−I )/(E−v)}. Denote the
trajectory through the point �+

0 := (vth, g
+
0 = (vth − I )/(E − vth)) on this curve by

�0, which is tangent to the line {v = vth}. �0 partitions the set {(v, g) : v < vth, g ≥
0} into a set of initial conditions that yield spikes, namely those above �0, and a
set of initial conditions that do not yield spikes, namely those below �0. Let �−

0
denote the intersection of �0 with {v = vr} and let g−

0 denote its g coordinate. The
point �+

1 := (vth, g
−
0 ) is on the threshold line, and there is a trajectory �1 that flows

through this point. The band between �0 and �1, with vr ≤ v ≤ vth, consists of the
set of initial conditions from which trajectories yield exactly one spike. Denote this
band by B1. Similarly, for each natural number n, we can define a curve �n, such that
each trajectory with an initial condition in the band Bn between �n−1 and �n yields n

spikes. Note that this band structure exists if parameters are altered such that I > vth,
although the minimal band is shifted to negative g values, and hence the methods that
we discuss easily generalize to this case.

Fig. 1 Key structures in the
phase plane for system (2), (3).
Note that G, vth, and I are
given parameters, while the
other structures depend on the
system dynamics.
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The band structure that characterizes sets of initial conditions that yield particular
numbers of spikes calls to mind several natural strategies for doling out input kicks
to maximize spike output:

Critical kicks

Once a trajectory is below �0, it approaches (I,0) asymptotically. Let γc denote the
g-coordinate of the intersection {v = I } ∩ �0. One possible strategy is to give an
initial input of size γc as well as subsequent inputs of size γc each time the trajectory
reaches a sufficiently small neighborhood of (I,0); see Figure 1. This critical kicks
strategy yields n spikes where nγc ≤ G < (n + 1)γc .

Big kick

A possible disadvantage of the critical kicks strategy is that the increment γc to
achieve a spike may exceed the width γn between bands �n and �n−1 for n ≥ 1.
To ensure that this increment is only encountered once, taking inspiration from the
power of synchronized inputs [12, 13], another reasonable strategy is to give a single
big kick of size G, all at once, to the resting cell (Figure 1).

Reset and kick

An input of size γc is sufficient to push the voltage across the threshold for single
spike initiation. In the big kick strategy, the additional available input G − γc is pro-
vided together with the γc. It is possible that this additional input could deliver more
spikes if it were delivered separately from the initial γc. We can define a strategy,
for example, in which an initial kick of size γc is given to elicit a spike. As soon as
this spike is fired, the cell is reset and the remaining input allowance G − γc is given.
Clearly, this reset and kick strategy would make sense if the bands Bn were narrowest
at v = 0.

Threshold kick

At the other extreme, the bands Bn might be narrowest at v = vth. In this case, a
possible optimal strategy would be the threshold kick strategy, defined by giving the
initial kick of size γc and following this with a kick of size G− γc just before thresh-
old crossing occurs (Figure 1).

Intuitively, it is reasonable to think that if β is large, such that inputs rapidly decay,
then it makes sense to dole out inputs in minimal pieces, such that something like the
critical kicks strategy may be optimal. Alternatively, if β is small, such that inputs
decay slowly, then it makes sense to make inputs available as early as possible, such
that one of other strategies is likely to be optimal. To analyze more carefully which
strategy is optimal, it will be helpful to define a band width δn(v) as the distance from
�n−1 to �n in the g-direction for each fixed v ∈ [0, vth]. With this definition in hand,
we note that δn+1(vth) = δn(vr) for n ≥ 1, and hence the reset and kick and threshold
kick strategies are effectively the same strategy, yielding the same number of spikes
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(Figure 1). We also let δ∞(v) = limn→∞ δn(v), v ∈ [0, vth], if this limit exists. Very
roughly speaking, the critical kicks strategy will yield approximately G/γc spikes
while the other strategies will induce about G/δ∞(v) spikes for some v, at least if
δn(v) converges to δ∞(v) quickly. Thus, comparison of γc and δ∞ can be used to
give an initial suggestion of what strategy to follow.

The value of γc can be observed numerically by backwards integration from
(vth, g

+
0 ) until v = I . Alternatively, it may be optimal to replace γc by the distance

γ̃c := g−
0 − g+

0 , as can be computed by backwards integration from (vth, g
+
0 ) up to

(vr , g
−
0 ), and give kicks of size γ̃c after each spike, after the initial kick of size γc;

we will still refer to this as a critical kicks strategy.
An approximate value of δ∞(v) can be derived as follows. From (2), (3), the slope

s of the vector field at any point in the phase plane is given by

s(v, g) = −βg

I − v − g(v − E)
. (7)

For v ∈ [vr , vth],

s∗(v) := lim
g→∞ s(v, g) = −β

E − v
< 0.

The magnitude of the change in g over one spike cycle is

δ∞ :=
∫ vr

vth

s∗
v dv

=
∫ vr

vth

−β

E − v
dv = β ln

∣∣∣∣ vr − E

vth − E

∣∣∣∣.
(8)

By construction, δ∞(vr ) = δ∞ as given by (8). But since the value of g at reset for
the trajectory forming the upper bound of one band is the value of g at threshold for
the trajectory forming its lower bound, and we have taken the limit as n → ∞, we
can also estimate δ∞(vth) using (8) and indeed, using similar translation arguments,
we estimate δ∞(v) = δ∞ for all v ∈ [vr , vth].

Comparison of γc (or γ̃c) and δ∞ suggests whether or not the critical kicks strategy
will elicit more spikes than the other strategies we have described. If not, then we need
additional arguments to assess the relative effectiveness of these alternative strategies.
In fact, regarding alternative strategies, we have the following result:

Proposition 1 The big kick strategy always yields at least as many spikes as the reset
and kick (and equivalently, the threshold kick) strategy.

Proof The reset and kick strategy yields m + 1 spikes, where m is the largest integer
such that

m∑
n=1

δn(vth) ≤ G − γc.
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Using equation (7), compute

ds

dg
= −β(I − v)

(I − v − g(v − E))2
. (9)

We can see from equation (9) that if v < I , then the slope s becomes more negative as
g is increased, and if v > I , then the slope s becomes less negative as g is increased.
Thus, the bands are narrowest at v = I ; that is, δn(I ) < min{δn(vr), δn(vth) =
δn+1(vr )}. Hence, the big kick strategy, which elicits mb + 1 spikes for the largest
integer mb such that

mb∑
n=1

δn(I ) ≤ G − γc,

always generates at least as many spikes as reset and kick. �

Band width estimation

In the previous subsection, we introduced a small number of intuitively reasonable
strategies for eliciting the maximum number of spikes from model (2), (3) using
a constrained input. We also used a phase plane approach to define a natural band
structure, along with a corresponding idea of a band width δn(v), which we used to
show that two of these, the reset and kick and threshold kick strategies, will never be
optimal. This structure can also be used to obtain an intuitive idea of which conditions
favor a big kick strategy and which conditions favor the critical kicks strategy of giv-
ing many small kicks of the same particular size. Next, we use some approximations
to derive additional quantitative information about δn that can be used to determine
more globally the optimal input strategy. Henceforth, in addition to assuming that
vr = 0, we for convenience set vth = 1, with 0 < I < 1 < E.

We can estimate the magnitude δ(g) of the change in g that occurs over one spike
cycle using the slope s(v, g) given in equation (7),

δ(g) =
∫ 0

1

−βg

I − v − g(v − E)
dv

≈ − βg

1+ g
ln

I + gE − 1− g

I + gE
,

(10)

where we have approximated g by a constant to estimate the integral. Note that
for each n, the band widths δn(0) = δn+1(1) from the previous subsection are ap-
proximately equal to δ(g) for certain corresponding choices of g; for example,
δ1(0) ≈ δ((g−

0 + g−
1 )/2), where �1 intersects {v = 0} at (0, g−

1 ). More generally,
it is not necessary to choose a g associated with the boundary of a band, as defined
from the previous subsection, in order to compute δ(g).

We can investigate the spikes of a cell by analyzing (10). This approach yields the
following result.
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Proposition 2 If E +I −2EI ≥ 0, then δ(g) is a monotone decreasing function of g.
If E + I − 2EI < 0, then δ(g) has a unique local minimum at a finite, positive value
g = g0.

Proof Calculating the derivative of δ(g) with respect to g, we have

dδ(g)

dg
= β

(1+ g)2
f (g),

where

f (g) := ln

(
I + gE

I + gE − 1− g

)
− g(E − I )(1+ g)

(I + gE − 1− g)(I + gE)
.

Furthermore,

df (g)

dg
= (E − I )(1+ g)(g(E + I − 2EI) + 2I (1− I ))

(I + gE − 1− g)2(I + gE)2
. (11)

Equation (11) shows that E + I − 2EI is indeed a key quantity.
Suppose now that E + I − 2EI ≥ 0. If E + I − 2EI ≥ 0, then df (g)/dg ≥ 0,

such that f (g) increases as g increases. Define

f1 ≡ lim inf
g→+∞f (g) = ln

E

E − 1
− E − I

E(E − 1)
.

Since
df1

dE
= E + I − 2EI

E2(E − 1)2
≥ 0, (12)

f1 increases as E increases. As

lim inf
E→+∞f1 = 0,

we have f1 ≤ 0. Therefore, f (g) ≤ 0 for all g and hence dδ(g)/dg < 0. In another
words, under the original approximation used to obtain (10), δ(g) decreases, and thus
there is less change in g across each cycle from reset to threshold, as g increases.

Next, suppose that E + I − 2EI < 0. Under this condition, df/dg changes
signs, with df/dg > 0 for g ∈ ( 1−I

E−1 ,
2I (1−I )

2EI−E−I
) and df (g)/dg < 0 for g ∈

(
2I (1−I )

2EI−E−I
,+∞). From expression (12), we have df1/dE ≤ 0 and lim infE→+∞ f1 =

0, such that f1 ≥ 0 for all E and f (g) ≥ 0 for g ∈ (
2I (1−I )

2EI−E−I
,+∞). Thus, there ex-

ists a unique point g0 such that f (g) ≤ 0 for all g ∈ ( 1−I
E−1 , g0) and f (g) ≥ 0 for all

g ∈ (g0,+∞). Correspondingly, δ(g) decreases when g ∈ ( 1−I
E−1 , g0) and increases

when g ∈ (g0,+∞), where g0 is the zero point of f (g) = 0, and the proof is com-
plete. �

In the case of E + I − 2EI ≥ 0, the monotonicity of δ(g) suggests that for a
trajectory evolving from an initial condition of (v, g) = (0, g(0)) to a final condi-
tion (v, g) = (1, g(t)), the drop g(0) − g(t) should be smaller for larger g(0). From
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Fig. 2 The red lines display the estimate of δ(g) for (2), (3) obtained by our calculations, while the blue
lines show δ(g) from direct simulation for E = 1.2, I = 0.7, and (a) β = 0.5, G = 10 or (b) β = 2,
G = 20.

Figure 2, we can see that, while the approximation used to derive equation (10) intro-
duces an error in relative to the actual change in g computed from direct simulation
of trajectories with E + I − 2EI ≥ 0, the error appears to be small and the mono-
tonicity of δ(g) appears to be correct. Similarly, a numerically computed example of
δ(g) for parameters that yield E + I − 2EI < 0 is shown in Figure 3.

Optimal strategies and spike counts

Based on the previous two subsections, we conclude that if E + I − 2EI ≥ 0, then
the loss of input with each spike, measured by δ(g), decreases as g increases and,
furthermore, an input of a fixed size will cross the most spiking bands if it is given at
v = I . Hence, of all possible strategies for eliciting spikes with an input of total size
G, the one that yields the most spikes is what we earlier called the big kick strategy,
unless γc (or γ̃c) is sufficiently small that avoiding the bands altogether by following
the critical kicks strategy is optimal. The optimal strategy when E + I − 2EI < 0 is
to provide a kick that puts g at approximately g0, the g value where the minimum of
δ(g) occurs, and then provide as many kicks as possible of size δ(g0), again assuming

Fig. 3 A numerically
calculated example of δ(g), with
a unique local minimum, for
parameter values E = 2,
I = 0.7, β = 0.05, G = 10, such
that E + I − 2EI < 0.
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that γc, γ̃c are above a certain size. We will next perform some additional calculations
that can provide estimates of numbers of spikes resulting from any strategy, which
can be used with a minimum of calculation to compare the results of particular input
sequences.

We first suppose thatE+I −2EI < 0 and consider a generalization of the optimal
strategy described above. That is, we assume that an initial input Gi ≥ g0 is given and
then, once g evolves to some neighborhood of g0, kicks of size δ(g0) are repeatedly
applied until the remaining input falls below δ(g0). We now estimate the numbers of
spikes 	 fired for each strategy of this type. Let 	1 denote the number of spikes fired
during the initial time period when g drops toward g0, let 	2 denote the number of
spikes fired during the final time period after the available input is depleted, and let
	3 denote the number of spikes fired during the intervening period when repeated
kicks of size δ(g0) are given. Clearly,

	3 ≈ G − Gi

δ(g0)
(13)

and 	 = 	1 + 	2 + 	3, so it remains to estimate 	1 and 	2.
Because of the shape of the function δ(g), the largest δ(g) during the initial time

period will be associated with the first spike fired, while the largest during the final
period will be associated with the last spike fired. We can estimate the drop δ(Gi)

in g up to the firing of the first spike from equation (10). To make this estimate
relevant to other spikes early in the spike train, we take v(0) = 0 rather than v(0) = I .
Approximating the level of g in equation (10) by gi := Gi − δ(Gi)/2, we obtain

δ(Gi) ≈ δi := − βgi

1+ gi

ln
I − 1+ (E − 1)gi

I + Egi

. (14)

Next, we estimate δ(g) for the final spike fired, which we call δf . To do this, we
assume that when the final spike is fired, the trajectory reaches the lower bound on
the g values that can yield a spike, namely the point of intersection of the v-nullcline
and {v = 1}, at which g = g+

0 = (1− I )/(E − 1). We also use the intermediate value
of g across the trajectory �0(v), namely (1 − I )/(E − 1) + δf /2, as the value of g

for equation (10), which yields

δf = − β[δf /2+ (1− I )/(E − 1)]
1+ δf /2+ (1− I )/(E − 1)

× ln
I − 1+ (E − 1)[δf /2+ (1− I )/(E − 1)]

I + E[δf /2+ (1− I )/(E − 1)] .

(15)

Now, to obtain an estimated spike count as g decays from Gi to g0, we approxi-
mate δ(g) over each spike by the average of its two extreme values, (δ(g0) + δi)/2.
This approximation yields

	̃1 ≈ Gi − (g0 − δ(g0)/2)

(δ(g0) + δi)/2
. (16)
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Similarly, once the input is used up, spikes continue to be fired as g decays from g0
to approximately (1− I )/(E − 1), and the number of additional spikes that result is
estimated by

	̃2 ≈ g0 + δ(g0)/2− (1− I )/(E − 1)

(δ(g0) + δf )/2
. (17)

In the above equations, we have taken into account that the trajectory may not be
reset precisely at g0 but rather somewhere within an interval approximated by (g0 −
δ(g0)/2, g0 + δ(g0)/2). Because this may lead to an overestimation by one or two
spikes, we set 	1 + 	2 = 	̃1 + 	̃2 − 1. The total number of spikes fired is finally
estimated by

	 = 	1 + 	2 + 	3 (18)

using equations (13)-(17).
The calculation can be easily generalized for input patterns that push g above and

below g0 multiple times, although they will be non-optimal by our earlier arguments.
Similarly, for an initial kick Gi < g0 and g < g0 for all time, the smallest δ(g) avail-
able is δ(Gi) and we can estimate the number of spikes resulting from partitioning
the input into kicks of size δ(Gi) by the equation

	 = G − Gi

δi

+ Gi − (1− I )/(E − 1)

(δi + δf )/2
. (19)

If E + I − 2EI ≥ 0, then the same calculations still apply. The big kick strategy
is optimal here, yielding a number of spikes estimated by

	 = G − (1− I )/(E − 1)

(δ(G) + δf )/2
. (20)

Generalizing, a strategy of giving an initial input Gi , followed by repeated kicks of
size δi until the input is depleted, yields a number of spikes estimated by

	 = G − Gi

δi

+ Gi − (1− I )/(E − 1)

(δi + δf )/2
. (21)

Figure 4 shows comparisons of our spike estimates from equations (18) and (21) with
numerical computed counts of spikes, illustrating that our estimates can be reason-
able.

In fact, in the case of E + I − 2EI ≥ 0, we underestimate the number of spikes
fired for large G and Gi . This underestimation results because we average δ(G) or
δi with δf in the denominator of equation (20) or (21), whereas most spikes yield
decreases in g that are much smaller than δf . Improved estimates in such cases be
obtained by weighting this denominator more toward δ(G) or δi , which will decrease
the denominator and thus will always yield predictions of additional spikes for larger
kicks, relative to the formulas in equations (20), (21). An example resulting from
extreme weighting, replacing the average of δi and δf with δi alone, is also shown in
Figure 4, as is a similar example for the case of E + I − 2EI < 0.
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Fig. 4 Number of spikes fired as a function of Gi for G = 100. The blue points show results from di-
rect numerical simulations of (2), (3) while the red and black points show the predictions from equa-
tions. Specifically, the red points are derived from (a) equation (21) with E = 1.2, I = 0.7 such that
E + I −2EI > 0 and (b) equation (18) with E = 2, I = 0.7 such that E + I −2EI < 0. The same param-
eter values were used for the black points but the average (δ(gi ) + δf )/2 is replaced by δ(gi ) in equation
(21) in (a) and the average (δ(g0) + δ(gi ))/2 is replaced by δ(g0) in equation (16) in (b).

In summary, equations of the form (18)-(21), each requiring calculation of only
a small number of quantities, can be used on a case by case basis to estimate the
numbers of spikes that will result from a given strategy and therefore to compare
strategies. These formulas provide for an informed comparison between the two types
of big kick strategies determined to be optimal for the two distinct cases of E +
I − 2EI ≥ 0 and E + I − 2EI < 0, respectively, and the critical kicks strategy.
Furthermore, now that we have defined δ(g), we can give a more precise variation
on the calculation of equation (9) made in the subsection on phase plane structures
and basic strategies to show that truly optimal strategies (other than the critical kick
strategy based on γ̃c) provide kicks with v = I , so each strategy should include a
time shift so that kicks are given when this condition is met, rather than with v = 0
or v = 1. Specifically, if g1 > g2, then for v0 ∈ [0,1],

δ(g1, v0) − δ(g2, v0) =
∫ v0

0

βg1

I − v − g1(v − E)
dv

−
∫ v0

0

βg2

I − v − g2(v − E)
dv.

Calculating the derivative of the above equation with respect to v0 yields

d(δ(g1, v0) − δ(g2, v0))

dv0
= β(I − v0)(g1 − g2)

(I − v0 − g1v0 + g1E)(I − v0 − g2v0 + g2E)
,

a quantity that is positive for v0 < I and negative for v0 > I . Hence, the additional
input needed to cross bands is minimal for kicks given at v0 = I , in agreement with
Proposition 1. Finally, it is not difficult to see from examination of the above spike
counts and equation (10) that, with other parameters fixed, increases in β yield fewer
spikes, as expected from the corresponding faster decay of g, while increases in E

and I yield more spikes, as expected from the increased rate of change of v.
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3 Theta model with synaptic kicks

Model

We next consider a theta model neuron receiving positive synaptic excitatory kicks,
governed by the equations

θ ′ = 1− cos θ + (b + g)(1+ cos θ),

g′ = −βg,
(22)

where b < 0 is a parameter. We consider θ ∈ [−π,π]mod2π , and the neuron is
said to fire when θ increases through π and is effectively reset to −π . With g = 0,
corresponding to the absence of excitatory inputs, and b < 0, which is the case we
consider, the theta model (22) has two critical points, namely a stable fixed point at
θS = − arccos 1+b

1−b
< 0 and an unstable fixed point at θU = arccos 1+b

1−b
> 0. Moreover,

we assume that the arrival of, and constraints on, synaptic excitation are identical to
those for the LIF model, given by (5), (6), with G > 0 fixed. Note that, as in the LIF
case, everything that we do in this section would still apply if we chose b sufficiently
large that the model fired spikes in the absence of input, but we stick with the b < 0
case to include the additional effects associated with the requirement of a minimal
input for spiking to occur.

Existence of an optimal g

We proceed by approximating the amount by which g decreases as a trajectory
evolves from (−π,gi) to (π,gf ), analogously to our calculations in Section 2. Fixing
g at some value between gi and gf , we have

δ(g) =
∫ −π

π

−βg

1− cos θ + (b + g)(1+ cos θ)
dθ

= βgπ/
√

b + g.

(23)

A straightforward calculation yields the following result.

Proposition 3 The function δ(g) defined in (23) has a unique local minimum at g =
−2b.

Proof We calculate

dδ(g)

dg
= β√

b + g
π − βg

2(b + g)2/3
π

= β(2b + g)

2(b + g)2/3
π.

So dδ(g)/dg < 0 when g < −2b, and dδ(g)/dg > 0 when g > −2b. Clearly, δ(g)

has the minimum value 2βπ
√−b at g = −2b. �
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Fig. 5 The red lines represent δ(g) for the theta model from equation (23), while the blue lines give the
size of the change in g observed from direct simulation of system (22) for (a) b = −2, β = 0.05, G = 10
and (b) b = −20, β = 0.3, G = 100.

In Figure 5, we validate the approximation of holding g constant in equation (23)
by showing that such a minimum exists in direct simulations of the theta model.

Optimal strategies and spike counts

We will now estimate the number of spikes that will result from a given input alloca-
tion strategy. To make effective estimates, it is helpful to estimate the minimal value,
call it ĝ, such that a trajectory starting from (−π,g) will result in a spike if and only
if g > ĝ. To do this analytically, we seek ĝ such that the trajectory from (−π, ĝ)

reaches (0,−b) and thus crosses the θ -nullcline and converges to θS ; see Figure 6.
Although there are other trajectories with initial g values above this ĝ that also con-
verge to θS , instead of spiking, by crossing the θ -nullcline at points with θ > 0 and
g < −b, this approach nonetheless gives a reasonable approximation to the true value
of ĝ.

We again approximate g as a constant over the trajectory of interest, namely ḡ =
(ĝ − b)/2, which is the average of the initial value of g and the value of g at θ = 0

Fig. 6 Schematic illustration of
the (θ, g) phase plane including
our approximation to ĝ and ḡ.
The shaded region indicates the
set where θ ′ < 0. δ2 is the
change in g as θ evolves from
−π to π for the firing of the
neuron’s final spike.
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(Figure 6). This approximation yields

ĝ + b =
∫ 0

π

−βḡ

1− cos θ + (b + ḡ)(1+ cos θ)
dθ,

and thus

ĝ + b = πβ(ĝ − b)

4
√

(ĝ + b)/2
,

which provides an implicit estimate for ĝ.
Now, if ĝ ≥ −2b, then all inputs that yield spikes must push the trajectory to g

values for which dδ(g)/dg > 0 holds. Thus, pushing g to progressively larger values
yields fewer spikes, and a critical kicks strategy, with initial kick size ĝ and subse-
quent kick sizes δ(ĝ), is optimal, yielding approximately

	 = G − ĝ

δ(ĝ)
(24)

spikes.
If ĝ < −2b, then there is a tradeoff: investing more input initially, up to about size

−2b, will push the trajectory to a region where δ(g) is minimal. On the other hand, if
less input is initially invested, then there is more input remaining to give subsequent
kicks. We ignore strategies in which an initial input Gi > ĝ is given, some nonzero
number of spikes is fired, and then an additional large input spanning multiple spiking
bands is given, since these can be seen always to be non-optimal. Suppose first that
the initial input has a size Gi < −2b. Given the shape of δ(g), the optimal strategy is
to expend the remaining input on

G − Gi

δ(Gi)
(25)

kicks of size δ(Gi), analogously to the strategy behind equation (24). Which Gi <

−2b is optimal depends on the sizes of ĝ, b, and δ(g).
Alternatively, the other possible optimal strategy, if G > −2b, is to take Gi ≥ −2b

and to try to maintain g values close to g = −2b. For an initial input Gi > −2b, we
estimate the number of spikes for such a strategy using a similar approach to that used
in Section 2.4, breaking up the estimate into an initial period of decay of g, a period
of kicks to keep g near −2b, and a final period of spiking until g drops below ĝ. Once
the initial input is given, δ(g) for the first spike is approximated by a solution to the
equation

δ1 = β(Gi − δ1/2)√
b + Gi − δ1/2

π.

We will also use an estimate of the δ(g) for the last spike fired (Figure 6), obtained
from the equation

δ2 = β(δ2/2+ ĝ)√
b + δ2/2+ ĝ

π.
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Now, for ĝ < −2b, recall that dδ(g)/dg < 0 when g < −2b and dδ(g)/dg > 0
when g > −2b. Thus, during the period when g > −2b, the largest δ(g) is given by
δ1, and while g < −2b, the largest δ(g) is δ2. The smallest δ(g) is of course δ(−2b).
Following our earlier strategy of estimating δ(g) by the average of its largest and
smallest values, and approximating g over one spike interval by the initial value mi-
nus half of the drop in g that occurs during that interval, we obtain our estimated spike
counts. Specifically, during the initial period of input decay from Gi to approximately
−2b, our estimate is

	1 = Gi − δ(−2b)/2+ 2b

(δ(−2b) + δ1)/2
.

During the final period of input decay from approximately −2b to approximately ĝ,
our estimate is

	2 = −2b + δ(−2b)/2− ĝ

(δ(−2b) + δ2)/2
.

Finally, the number of repeated spikes from the critical kicks of size δ(−2b) given
until the remaining available input G − Gi is depleted is about

	3 = G − Gi

δ(−2b)
.

Given that 	1 and 	2 could each overestimate the number of spikes by one, we
estimate the total number of spikes with input G as

	 = 	1 + 	2 + 	3 − 1. (26)

A similar estimate can be obtained from other patterns of inputs.
In summary, we have two candidate optimal strategies when ĝ < −2b. Depend-

ing on the relative sizes of ĝ and −2b and the shape of δ(g), it may be optimal to
choose initial input Gi < −2b and give repeated kicks of size δ(Gi) or it may be
optimal to choose Gi ≈ −2b + δ(−2b)/2 and provide repeated kicks of size δ(−2b),
in both cases repeating the kicks until the input is depleted. Figure 7 shows examples
illustrating that the optimal Gi is indeed very close to −2b.

We can extend this analysis one step further by determining the best value of θ at
which to deliver the input kicks.

Proposition 4 Given an initial condition (−π,g) and an input of a fixed size, the
maximal number of spikes subsequent to input delivery is attained when these inputs
are given with θ = arccos 1+b

1−b
.

Proof Suppose g1 > g2. We have

δ(g1, θ0) − δ(g2, θ0)

=
∫ θ0

−π

[
βg1

1− cos θ − (b + g1)(1+ cos θ)
− βg2

1− cos θ − (b + g2)(1+ cos θ)

]
dθ.
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Fig. 7 Spike counts for the theta model (22). The red curve denotes the number of spikes estimated from
equations (25), (26), while the blue lines show numbers of spikes observed in direct simulations of the
theta model with G = 100 and (a) b = −5, β = 0.2; (b) b = −20, β = 0.1. For the simulations, an initial
kick of size Gi was given. If Gi ≥ −2b, then the trajectory was allowed to decay until g ≈ −2b − δ(−2b)

and then the remaining input was expended on kicks of size δ(−2b). If Gi < −2b, then after an initial
spike was fired, the remaining input was expended on kicks of size δ(Gi). These same strategies were
assumed for the analytical estimation.

Calculating the derivative of the above equation with respect to θ0, we have

d(δ(g1, θ0) − δ(g2, θ0))

dθ0

= β(1+ b + (b − 1) cos θ0)(g1 − g2)

[1− cos θ0 − (b + g1)(1+ cos θ0)][1− cos θ0 − (b + g2)(1+ cos θ0)] .

As d(δ(g1, θ0) − δ(g2, θ0))/dθ0 > 0 for θ0 ∈ [−π,− arccos 1+b
1−b

) ∪ (arccos 1+b
1−b

,π]
and d(δ(g1, v0) − δ(g2, v0))/dv0 < 0 for θ0 ∈ (− arccos 1+b

1−b
, arccos 1+b

1−b
), the dif-

ference δ(g1, θ0) − δ(g2, θ0) will be maximal at θ0 = − arccos 1+b
1−b

and minimal at

θ0 = arccos 1+b
1−b

. Hence, a maximal number of spikes is attained from an input given

with θ = arccos 1+b
1−b

. �

4 Theta model with continuous input

In the analysis we have done so far, the input to the neuron arrives as a series of
discrete kicks. An excitatory postsynaptic potential evoked by an individual input
may have a more gradual rise, however. We now switch gears and consider how such
an individual input, arriving with a continuous time course, can be optimally tailored
to evoke a maximal response. This analysis is also relevant to a situation in which
a neuron receives input from a very large presynaptic population that fires in near
synchrony, but with some spread in recruitment times.

The theta model with a continuous input can be described by the equations

θ ′ = 1− cos θ + (
b + γ (t)

)
(1+ cos θ), (27)
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with

γ (t) = Aβ2t exp−βt , (28)

where b < 0 and A,β > 0 are parameters. The form of γ (t) in equation (28) is often
used computationally and has been specifically selected to ensure that its integral over
the positive time axis is fixed at A for all values of β . Unlike the case where the θ

model received synaptic kicks, we now consider θ ∈ R, with a spike fired whenever
θ increases through nπ for an integer n.

The question that we now address is, given a fixed set of intrinsic parameters b

and A and fixed P > 0, how should β be selected to yield the maximum number of
spikes within the time interval [0,P ]? Note that when θ = nπ , θ ′ > 0, so it suffices
to find β to maximize θ(P ).

Boundary value problem

We will find optimal values of β by numerically solving a boundary value problem.
For numerical purposes, it is convenient to map t ∈ [0,P ] to s ∈ [0,1] using s = t/P .
Correspondingly, let˙denote d/ds, such that equation (27) becomes

θ̇ = P
(
1− cos θ + (

b + γ (s)
)
(1+ cos θ)

)
. (29)

Next, differentiate θ̇ with respect to β to obtain

θ̇β = P
(
θβ sin θ − θβ sin θ

(
b + γ (s)

) + γβ(s)(1+ cos θ)
)
, (30)

where γβ(s) = ∂
∂β

γ (s) is given by

γβ(s) = AβPs exp−βP s(2− βP s). (31)

To the θ and θβ equations, we append the additional equations

β̇ = 0, (32)

ṫ = P. (33)

Given the system of four equations (29), (30), (32), (33), we need a set of four
boundary conditions. First, we set θ(0) = θS = − arccos((1 + b)/(1 − b)), so that
the model neuron is at a stable rest state when input starts to arrive. Since this spec-
ification is independent of β , we have θβ(0) = 0. To find an extreme (with respect
to β) value of θ(P ), we set θβ(P ) = 0 as well. Finally, we take t (0) = 0. We solve
this boundary value problem (BVP) numerically, using XPPAUT [15], to obtain the
optimum β for any fixed P , A, b.

Results

If A and P are fixed, then varying β yields different shaped input functions γ (t),
as illustrated in Figure 8. For fixed A, if β is sufficiently large, then the input is
sufficiently concentrated in time that P becomes irrelevant for the number of spikes
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Fig. 8 γ (t) for A = 7, P = 2,
and β = 1 (solid), 2.316
(dashed), and 4 (dotted).

fired. Alternatively, for smaller β , input arrives more gradually and P becomes rele-
vant. These relationships are evident in Figure 9A, which shows a curve of solutions
to the optimization BVP described in the previous subsection, plotted in β versus P

space. Direct numerical simulations show that in fact the same θ(P ) arises for other
large β as occurs for the β value along the upper branch of the curve in Figure 9A,
as long as P is sufficiently large that this curve is flat (Figure 10). Along the rest of
the curve, the β values shown truly represent local extrema. In particular, the lower
branch of the curve represents local maxima for θ(P ). For P values such that the
upper branch is flat, the lower branch appears to actually consist of global maxima
(Figure 10), while the upper branch represents local minima for sufficiently small P

that this this branch has curvature (for example, P near 2), and for these P , there may
be additional maxima for θ(P ) at large β , not shown in Figure 9A.

For other values of A, the situation is similar to Figure 9A; however, some sub-
tleties do emerge. As shown in Figure 9B, additional local extrema of θ(P ) may
arise at small β , yielding an interval of P values with three such extrema at small
β , bracketed by two fold bifurcations. For example, for A = 8 and P = 10, there are
a local maximum near β = 0.31, a local minimum near β = 0.57, and another local

Fig. 9 Optimal β versus P for (A) A = 7 and (B) A = 8.
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Fig. 10 Time course of θ for
A = 7, P = 4, and various β

values as labeled. Based on
maximizing the value of θ(4),
the extremal β for A = 7 and
P = 4, as plotted in Figure 9A,
are β ≈ 0.95 (lower branch) and
β ≈ 7.28 (upper branch);
however, θ(4) appears to be
identical (θ ≈ 5.04) for all β
sufficiently large.

maximum near β = 0.72, with corresponding θ(t) shown in Figure 11. Note that, as
with A = 7 as well as other values of A, θ(P ) saturates for sufficiently large β . The
folding structure in Figure 9B arises only for a small interval of A values that is diffi-
cult to pin down precisely. It is also illustrative to view what happens to the families
of BVP solutions as A is varied with P fixed. Of course, the multiple extrema show
up here as well, as evidenced in Figure 12, along with some additional nontrivial de-
pendence of the optimal β on A. By comparing these bifurcation curves for different
P , we see that the interval of multiple extrema moves to larger A as P increases (and
vice versa). Furthermore, as A increases for fixed P , θ(P ) at optimal β can undergo
abrupt increases, associated with the firing of an additional spike (Figure 13); the
interesting structure of the BVP solution curves appears to be related to these events.

5 LIF model with continuous input

With the continuous input γ (t) given in equation (28), we used variational methods to
find β values that yielded extremal values of θ(P ) for the θ model (27), given a final
time P > 0. Such methods are not available for the LIF model due to the discontinuity

Fig. 11 Time course of θ for
A = 8, P = 10, and various β

values as labeled, which yield
extremal values of θ(10).
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Fig. 12 θ(P ) versus A for
P = 10.5 (solid) and P = 13
(dashed), along curves of
extrema obtained by solving the
BVP. The two curves coincide
on the low, horizontal branch
near θ(P ) = 5. For each P , note
the existence of multiple
extrema for a small interval of A

values as well as the occasional
abrupt increases in θ ,
corresponding to spike addition.

imposed by its reset condition. Nonetheless, we can perform some direct analysis of
the dependence of firing in the LIF model on the parameter β . In particular, although
we will not specify an optimal β , we will analytically establish some results about
how spike times depend on β , including the fact that the number of spikes saturates
as β grows, which is consistent with [13] and contrasts with the non-monotone de-
pendence of θ(P ) on β seen in the previous section. Similar methods can be applied
to attain analytical results for the theta model, and these are briefly discussed in the
Appendix; in particular, these show that spiking is lost when β becomes sufficiently
large.

To perform this analysis for the LIF model, we make a fairly strong approximation.
If a spike is fired at time Ta and the next spike occurs at time Tb , then on the time
interval (Ta, Tb], we approximate γ (t) by the time average

γ̄ := 1

Tb − Ta

∫ Tb

Ta

Aβ2te−βt dt

=AβTae
−βTa + Ae−βTa − AβTbe

−βTb − Ae−βTb

Tb − Ta

,

(34)

Fig. 13 Time courses of θ for
optimal values of β found for
P = 10.5 and various A values
as labeled. Note that θ(10.5)
increases by slightly more than
2π as A increases from 4.5, with
θ(4.5) ≈ 5.052, to 10.5, with
θ(10.5) ≈ 11.771, and from 10.5
to 16.5, with θ(16.5) ≈ 18.123,
corresponding to the abrupt
jumps in Figure 12.
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with

v′ = I − v − γ̄ (v − E), t ∈ (Ta, Tb]. (35)

Note that by definition, v(T +
a ) = 0 and v(Tb) = 1, such that

Tb − Ta =
∫ 1

0

dv

I − v − γ̄ (v − E)

= 1

1+ γ̄
ln

I + γ̄ E

I + γ̄ E − 1− γ̄
.

(36)

If we assume that v(0) = 0 and fix a positive integer n, then we can try to solve
equations (34) and (36) with Ta = 0 for a pair of positive numbers that we label
(T1, γ̄1), such that the solution of equation (35) satisfies v(T1) = 1. Similarly, we can
set Ta = T1 and solve for (T2 > T1, γ̄2), and inductively, given (Tj , γ̄j ), we can solve
for (Tj+1, γ̄j+1) until we find Tn+1 > P for some n. At that point, we would propose
that T1, . . . , Tn are our approximate spike times in the interval [0,P ]. In practice,
to constrain the solution set of this system of equations, we assume that Tn = P ,
since numerical explorations show that, for fixed A and P , if β is tuned to maximize
the number of spikes generated on t ∈ [0,P ] by the LIF model with input given by
equation (28), the final spike time is indeed generally close to P . Thus, for fixed A,
β , P , instead of solving iteratively, we attain candidate approximate spike times by
simultaneously solving n copies of equation (34) and n copies of equation (36) for
unknowns {T1, . . . , Tn−1, γ̄1, . . . , γ̄n} with a final spike time Tn = P .

We next study constraints on these approximate spike times {T1, . . . , Tn}. Specifi-
cally, we have the following result.

Proposition 5 For fixed A,P , there exists β1 > 0 such that if β < β1, then there
are no spikes (as defined above). If β > β1, then there exist 0 < t(β) < t̄(β) such
that all spikes lie in [t(β), t̄(β)]. The function t(β) is monotone decreasing in β

and is bounded above by 1/β . There also exists β2 > β1 such that the function t̄ (β)

is monotone increasing for β ∈ (β1, β2), achieves its maximum at β = β2, and is
monotone decreasing with βt̄(β) ≥ 2 for β > β2. The value of β2 is given by the
minimal positive solution of βt̄(β) = 2.

Proof First, note that spikes can only occur if Aβ2te−βt ≥ 1−I
E−1 . Clearly, the equation

Aβ2te−βt = 1− I

E − 1
(37)

has (β1, t1) = (
e(1−I )
A(E−1) ,

A(E−1)
e(1−I )

), on the line βt = 1, as one solution. A brief calcula-
tion verifies that equation (37) has no solutions for β < β1, while for β > β1, there
are two solutions, (β, t(β)) in {βt < 1} and (β, t̄(β)) in {βt > 1}. For fixed β , all
spikes must lie in the time interval [t(β), t̄(β)]; note that, in particular, T1 is bounded
below by t(β), while our assumption that Tn ≈ P would limit us to parameter choices
such that t̄ (β) ≥ P , although this inequality need not be satisfied for this proposition
to hold.
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Now, consider a solution t (β) of equation (37). Differentiation of (37) yields

dt

dβ
= t (βt − 2)

β(1− βt)
, (38)

while equation (38) itself yields

d(βt)

dβ
= βt ′(β) + t (β) = −t

1− βt
. (39)

Equations (38), (39) imply that t(β), βt(β) are monotone decreasing, since

βt(β) < 1 (40)

for all β for which it is defined. Initially, equation (38) also implies that t̄ (β) is
increasing, since the curve (β, t̄(β)) lies in 1 < βt < 2 for β near β1. However,
βt̄(β) also increases, by equation (39), until t̄ achieves a maximum at β2 such that
β2 t̄ (β2) = 2. For β > β2, t̄ (β) decreases, by equation (38), but βt̄(β) ≥ 2 for all
β > β2, since the curve βt = 2 has a negative slope in the (β, t) plane and dt̄/dβ = 0
at βt = 2. �

An example of the solution curves to equation (37), illustrating the results of
Proposition 5, appears in Figure 14. The curves of possible spike times Ti(β) lie
between t(β) and t̄ (β) described above. Of course, if P is small, the spiking that
can occur in time [0,P ] will be limited. With large P , so that the full collection of
predicted spike times is realized, direct simulations suggest that the number of spikes
increases with β (for example, Figure 15). While we will not prove that result, we
can establish some properties of spike times in the model in the limit of large β:

Fig. 14 Plot of the solutions to
equation (37) for A = 10,
E = 1.2, I = 0.7. The curves
shown are t = 2/β (red),
t = 1/β (blue), t = t̄ (β) (dashed
black), and t = t(β) (large
dotted black). Note that
t(β) < 1/β and that t̄ (β) rises
up from t = 1/β to its maximum
at t = 2/β and then decays, in
agreement with Proposition 5.
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Fig. 15 Number of spikes generated by the LIF model with A = 100, p = 10 and (a) E = 1.2, I = 0.7;
(b) E = 2, I = 0.3. The blue curves show results of direct simulations of the LIF model with continuous
input γ (t) while the red lines are at A/ ln(E/(E − 1)).

Proposition 6 As β → ∞,

t(β) → 0,

t̄(β) → 0,

βt̄(β) → ∞, and

n → A
/
ln

(
E

E − 1

)
,

where n is the total number of spikes fired.

Proof The first limit is an immediate consequence of the bound (40). The second
limit follows from equation (37). Specifically, some algebra yields

A(E − 1)β2 t̄2

(1− I )eβt̄
= t̄ ,

with the left hand side clearly converging to 0 as β → ∞. Moreover, the inequality

Aβ2 t̄ ≥ Aβ2 t̄ e−βt̄ = 1− I

E − 1

yields

βt̄ ≥ ln

(
Aβ(E − 1)

1− I

)
,

so βt̄ → ∞ as β → ∞.
It remains to establish the fact that number of spikes converges as β becomes

sufficiently large, as stated in the Proposition and seen in Figure 15. First, note that
the difference between successive spike times goes to 0 as β → ∞, since t̄ → 0 in
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this limit. Thus, the left hand side of equation (36) tends to 0 as β → ∞. Maintenance
of the equality in equation (36) therefore requires that

γ̄ → ∞ as β → ∞, (41)

which is consistent with the fact that the maximum of γ (t) blows up with β .
Combining equations (34) and (36) yields the equality

A
[
βTae

−βTa + e−βTa − βTbe
−βTb − e−βTb

] = γ̄

1+ γ̄
ln

I + γ̄ E

I + γ̄ E − 1− γ̄
,

and equation (41) implies that the limit of the right hand side equals ln(E/(E − 1)).
Hence, we define a constant C1 satisfying

A
[
1− C1e

−C1 − e−C1
] = ln

E

E − 1
. (42)

A solution of equations (34), (36), with T0 = 0, is T1 = C1/β , γ̄1 = (A−AC1e
−C1 −

Ae−C1)β/C1. Next, define a constant C2 satisfying

A
[
C1e

−C1 + e−C1 − (C1 + C2)e
−C1−C2 − e−C1−C2

] = ln
E

E − 1
. (43)

Addition of equations (42), (43), after rearrangement, yields

A
[
(C1 + C2)e

−C1−C2 + e−C1−C2
] = A − 2 ln

E

E − 1
,

and T1 = C1/β,T2 = (C1 + C2)/β ,

γ̄2 = [
C1e

−C1 + e−C1 − (C1 + C2)e
−C1−C2 − e−C1−C2

]
Aβ/C2

is another solution of equations (34), (36).
Repeating this process, we can find a series of solutions to these equations (see

Figure 16), such that for the j th spike, Tj−1 = (
∑j−1

i=1 Ci)/β,Tj = (
∑j

i=1 Ci)/β ,

γ̄ =
[

j−1∑
i=1

Cie
−∑j−1

i=1 Ci + e−∑j−1
i=1 Ci

−
(

j∑
i=1

Ci

)
e−∑j

i=1 Ci − e−∑j
i=1 Ci

]
Aβ/Cj

and

A

[(
j∑

i=1

Ci

)
e−∑j

i=1 Ci + e−∑j
i=1 Ci

]
= A − j ln

E

E − 1
. (44)
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Fig. 16 Times between spikes
fired by the LIF model with
A = 100, p = 10, β = 5,
E = 1.2, I = 0.7. The blue
symbols show the results of
direct simulations of the LIF
model with continuous input
γ (t) while the red circles show
solutions of equations (34), (36)
obtained using the serial
procedure described in the text.

We denote the total number of spikes by n(β) and estimate the final spike time
Tn(β) for any fixed β by t̄ (β), which gives

∑n(β)

i=1 Ci = βt̄(β) → ∞ as β → ∞. Thus,
from equation (44), it follows that limβ→∞ A−n(β) ln(E/(E−1)) = 0, which yields

n(β) → A/ ln

(
E

E − 1

)
as β → ∞,

as desired (Figure 15). �

6 Discussion

Summary and modeling issues

We have considered how certain constrained, positive inputs should be timed to yield
maximal numbers of spikes in the LIF and theta models for neurons. In both models,
we have considered parameter regimes in which inputs must be above a threshold to
elicit a spike. Thus, when each model is subjected to a train of discrete inputs of a
fixed total magnitude, it is possible that maximal firing is attained by a critical kick
strategy of giving just enough input to push the model trajectory above this threshold
and then giving the minimal kick after each spike that achieves threshold clearance
again. Aside from this possibility, we have analytically identified which other strate-
gies could possibly be optimal for each model. Defining δ(g) as the magnitude of the
change in input from the level g at the firing of one spike to the level g − δ(g) at
the firing of the next spike, we found for the LIF model that our analytical approxi-
mation to δ(g) could be monotone decreasing in g or not, depending on the sign of
E + I − 2EI . In each case, we present an optimal strategy. If E + I − 2EI ≥ 0, the
optimum is a big kick strategy in which all available input is provided immediately.
If E + I − 2EI < 0, if the minimum of δ(g) occurs at g = g0, and if the amount of
input available exceeds g0, then the optimum consists of an initial kick of size ≈ g0,
followed by kicks of size ≈ δ(g0) after each spike, until the input is depleted. This di-
chotomy of possible outcomes may be unexpected in light of standard intuition about
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the LIF model, which emphasizes the power of big, synchronized input kicks to in-
duce firing. Furthermore, the definition and analysis of δ(g) is itself novel, and its
non-monotonicity in g means that there is a different effective dissipation of inputs at
different input strengths, defined relative to the time it takes to progress from repolar-
ization after a spike to firing of the next spike. This idea, that the power of a synaptic
input depends on more than the individual input’s amplitude, decay rate, and arrival
phase, is often neglected in neuroscience studies and is an important observation of
our work.

Unlike the LIF model, our approximation to δ(g) always has a unique local mini-
mum for the theta model, and we can compute its location directly. Assuming that this
minimum corresponds to an initial condition that really does result in a spike, there
is a clear optimal strategy of providing critical kicks to keep g near the minimum of
δ(g), as in the LIF case with E + I − 2EI < 0. The existence of this minimum likely
is related to the presence of an internal peak in the phase response curve (PRC) for
the theta model, which past authors have suggested would represent an optimal phase
for input timing [16], although PRC theory applies to oscillators receiving weak in-
puts, while we consider strong inputs in the excitable regime. Heuristically, this min-
imum may arise because of the shape of the θ -nullcline in the (θ, g) plane. If g is on
the small end of the spiking range, then the progress of θ towards spike threshold is
slowed by the proximity of the trajectory to the θ -nullcline, allowing g to drop signifi-
cantly from one spike to the next. If this idea is correct, then we expect non-monotone
δ(g) to occur for models where voltage can be significantly slowed between spikes,
without preventing the firing of the next spike, when g is on the lower end of the
spiking range. In summary, for both the LIF and theta models with discrete inputs,
the maximal number of spikes is attained for one of two strategies, either a critical
kick strategy based on a minimal input threshold or a second big kick or critical kick
strategy that we have identified from analysis of δ(g). The latter applies equally well
in the case when the models are intrinsically oscillatory in the absence of inputs.

We also show how to estimate analytically the number of spikes resulting from
any input time course in both models, obtaining results that compare well with direct
numerical simulations. Further, we establish an optimum value for the dependent
variable of each model, v and θ respectively, where each input should be delivered
in a critical kick strategy to achieve maximal subsequent spike output. In both cases,
this value is a stable critical point for the intrinsic dynamics of the model.

When the input to each model is continuous, the optimization problemwe consider
is how to adjust the shape of the input, using a parameter β that does not affect the
input’s overall magnitude, to achieve maximal spiking in a fixed time interval [0,P ].
Derivation and solution of a BVP yields values of β eliciting extremal numbers of
spikes for the theta model, and numerical simulations show whether these extrema
are maxima or minima. We find that the number of spikes fired increases and then
decreases again as β increases, corresponding to faster rise and decay of the input
function and a larger maximal input. The existence of an interior local optimum for
β is consistent with the non-monotonicity of δ(g) for the theta model in the discrete
input case, with both observations pointing out that delivery of input in a stronger,
faster way may reduce the resulting number of spikes for the theta model. Eventually,
the number of spikes saturates, remaining invariant under additional increases in β .
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The LIF model with a continuous input shares this saturation property, as we prove
in Proposition 6. For the LIF model, however, unlike the theta model, the number of
spikes increases monotonically with β , and hence with the degree to which the input
is concentrated in time, based on numerical simulations. This finding is consistent
with previous analysis [12, 13] showing that synchronous input to the LIF model
yields more spiking than inputs that are spread out. Indeed, in light of this set of re-
sults, it is interesting that we do not always find this behavior for the LIF model with
discrete input kicks, in the case where E + I − 2EI < 0. This disparity in results for
the LIF model points out that details of how synaptic inputs are modeled can influ-
ence model dynamics in significant ways. The specific differences between optimal
input patterns for the LIF and theta models that we highlight represent novel find-
ings about the relationship between these models, while other differences have been
demonstrated in earlier work [12]. Both of these models have Type I behavior [10,
17], including the ability to fire spikes at arbitrarily low frequencies, yet clearly there
are differences in their dynamic properties, including their responses to inputs. Such
subtleties point out that classifications of models and neurons into gross categories,
such as integrators and resonators, often need additional refinements to capture the
diversity of neuron dynamics.

Analytically, we found an interval of times during which all spikes must occur for
the LIF model with continuous inputs, and we characterized the interesting depen-
dence of the endpoints of this interval on β . The results of applying similar methods
to the theta model are also discussed in the Appendix. As β increases, all spike times
converge to 0, yet the input becomes strong enough to elicit increasingly more spikes
(up to some level). We were not able to exploit our approach to prove that the number
of spikes increases monotonically with β , however. More specifically, we identified a
minimal value β1 such that β > β1 is necessary for spikes to occur. One idea for prov-
ing monotonicity would be to seek a sequence of values β1 < β2 < β3 < · · · such that
β > βn is required for the firing n spikes (note that this β2 differs from the β2 used in
Section 5). However, we were able to derive an equation for β1 because we have an
analytical formula for a minimal level of input needed for at least one spike to occur,
and we do not have such an expression for subsequent spikes. Nonetheless, it is pos-
sible that the band structure established in Section 2 could be exploited to abstractly
establish results in this direction that might lead to a proof of monotonicity.

The overall utility of the techniques presented in this paper depends in part on
their generalizability. Note that the models we consider have relatively few parame-
ters, and our results do not depend on particular parameter choices as long as they
render the neuron excitable. For our numerical examples, we have chosen various
parameter combinations to try to illustrate different parameter regimes. In some dis-
crete input cases, we did choose β values that appear to be too small to represent fast
AMPA-mediated synaptic excitation, because certain differences in outcomes across
strategies are most clearly evident with small β . It is important to keep in mind, how-
ever, that our models are dimensionless, that there are also slower NMDA-mediated
excitatory synaptic currents, and that what we have represented as a slow synaptic
decay could also arise from a long membrane time constant in a postsynaptic neuron
or from the gradual arrival of many inputs from a presynaptic neuron population with
a slowly down-ramping firing rate. Aside from parameter variations, our methods for
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estimating numbers of spikes are also quite general across different discrete input
patterns, for the models we consider. For these models, our methods could likely be
adapted to other optimization problems, such as tuning inputs to achieve regularity of
interspike intervals, spiking within some range of rates, or spiking at particular times
[7] or finding minimal inputs to generate particular spike patterns [8]. In each of these
problems, we would obtain predictions about which features of the timing and size
of inputs within a discrete input train yield which spiking patterns.

We have assumed that the neurons receiving inputs are silent in the absent of in-
puts. As noted above, our techniques for the discrete input case would generalize to
models with nonzero intrinsic firing rates, and in particular the band structure par-
titioning phase space into initial conditions corresponding to different numbers of
spikes fired before inputs are depleted would carry over analogously. Indeed, the ex-
istence of a minimal level of input needed for spiking becomes irrelevant during time
periods in our analysis when the input is well above that level, such as during the
application of critical kicks based on a local minimum of δ(g). The presence of in-
trinsic oscillations complicates the case of continuous inputs, because the impact of
an input will depend on the phase at which it starts, as in recent phase resetting anal-
ysis for bursting models [18, 19]. Furthermore, our results about constraints on input
times during which spiking can occur in the LIF model with continuous inputs clearly
depend on the absence of intrinsic firing.

Unlike the models that we have considered, many other neuronal models have
two- or higher-dimensional intrinsic dynamics. Reductions into fast and slow subsys-
tems (for example, [20, 21]) or other reductions [22] offer the possibility of extract-
ing subsystems from these models on which a similar analysis to ours, including the
partitioning of an appropriate phase space into bands associated with certain spike
numbers in the discrete case, could be performed. It is also possible that results could
be obtained after reduction to a firing time map (for example, [23]). Moreover, ana-
lytical techniques can be used to reduce general oscillator models of arbitrary dimen-
sion, subject to weak inputs of a prescribed time course, down to forced scalar phase
equations [24]. Optimization techniques could be applied to tailor the forcing terms
in such equations, within certain constraints, but of course this option is only avail-
able if the intrinsic neuronal dynamics is oscillatory and the inputs are weak. Direct
simulations can also be done to begin to examine how δ(g) varies with g for par-
ticular higher-dimension models. Some preliminary simulations yielded a monotone
δ(g) for a few conductance-based models (for example, [25–27]) in certain param-
eter regimes, as well as a non-monotone δ(g) for a particular scaling of a reduced
Hodgkin-Huxley model ([27], Type B−), but a thorough exploration of such models
remains for future work.

Neuronal relevance and related issues

Given that we can identify an optimal input structure, it is important to ask whether
the similarity of actual input streams to the proposed optimum can be checked experi-
mentally and whether such an optimal input could actually be realized by a network of
neurons. As for the former question, membrane potential dynamics can be recorded,
including identification of changes in potential associated with synaptic inputs, and
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associated synaptic input features can be estimated [28], so it appears that the relevant
experimental techniques are indeed available.

As for the latter, at least certain features of the optimal inputs we have identified do
appear to be achievable. In the discrete input case, consider first a pool of presynaptic
neurons providing inputs with the same decay rates, with some distribution of input
amplitudes. This pool could be large or small, depending on the brain area involved.
The overall input to a postsynaptic cell could be tailored by adjusting the relative fir-
ing times of these presynaptic cells. For example, a critical kicks strategy not based
on a minimal input threshold could be achieved if a large initial input was given, fol-
lowed by a sequence of appropriately timed smaller inputs. This input pattern could
be realized either through a synchronized input from a group of neurons followed
by later inputs from a subset of these neurons or from a distinct group of neurons,
perhaps made active by the initial large input as well. Short-term synaptic depression
could play a role in this tapering of inputs within the input train. The presence of
short-term plasticity would alter the set of input patterns that could be provided, but
for a fixed form of postsynaptic dynamics, only certain input patterns would be near-
optimal, and if short-term plasticity promoted these, then the loss of the capability
to produce non-optimal patterns would be irrelevant. Similarly, neuromodulators also
can modulate synaptic dynamics, in a way that differs across different cell types [29–
31]. Although we have neglected short-term plasticity and neuromodulation here,
considering their effects on optimal input strategies could be an interesting direction
for future work. Moreover, if a given presynaptic neuron repeatedly fires in a certain
timing relationship with a postsynaptic neuron under an optimal input pattern, then
spike timing dependent plasticity (STDP) could also become relevant. Generally, the
properties of the inputs received by a given postsynaptic neuron, or the membrane
potential variations in that neuron that are induced by inputs, can vary across differ-
ent situations in real neuronal networks; indeed, these inputs need not come from the
same presynaptic source in different states [32]. This observation is consistent with
the idea that input patterns could be tailored to achieve different functions.

Given these arguments in favor of the idea that inputs to neurons can indeed be var-
ied in biologically reasonable ways, our work leads to several biological conclusions
and predictions. First, the pattern of inputs needed to maximize firing will depend
on a neuron’s intrinsic dynamics. This point has been discussed in previous theo-
retical work in the weak or noisy input limit (for example, [27, 33, 34]) as well as
in some past experimental work [35, 36], and we expect this principle to hold quite
generally. Second, there may exist an optimal timing following a spike at which the
input strength needed to elicit an additional spike is minimized. Again, although we
consider excitable neurons receiving strong inputs, this idea is related to past work
on PRCs for oscillators receiving weak inputs; this idea differs from the concept of
resonance, however, in that the optimal timing would not be solely determined by a
postsynaptic neuronal intrinsic frequency. Related to this idea of optimal timing, we
might predict that neurons’ afterhyperpolarization time courses would differ across
brain areas that receive input streams with different characteristics (cf. [37]); that
is, the intrinsic dynamics of afterhyperpolarization and network input characteristics
could have co-evolved to achieve some form of optimality. Third, we would specu-
late that perhaps background input levels could be tailored to keep neurons in active
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brain regions in a regime where δ(g) is small and hence the barrier to spiking is low-
est; attention could even be related to the selection of such a state. Past results have
shown that input fluctuations can establish a regime of high spike-time reliability
[38, 39] or high sensitivity of firing frequency to input current strength [37, 40, 41],
and tuning background input levels to facilitate or suppress postsynaptic activity is at
least biologically plausible. Finally, we would also predict that excitatory postsynap-
tic potential time courses themselves would differ in different neuron types, activity
states, developmental stages, and brain areas, as has been seen in experimental work
[30, 42], in a way that is interrelated with the dynamic properties of the postsynaptic
neurons involved.

Admittedly, the precise optimal input patterns that we have found in the discrete
case do depend on certain aspects of the postsynaptic neuronal dynamics that might
render them hard to achieve. For example, for the LIF model, we found that optimal
inputs arise when v = I , but it is not clear how this information would be available to
the input source. Clearly, we are considering a situation where the input source is not
directly impacted by the firing of the postsynaptic neuron receiving the inputs; recur-
rently connected networks are outside the scope of this work. Moreover, stochastic
effects could alter the details of any target spike train and synaptic release pattern.
It is reasonable to expect that stochastically perturbed versions of the optimal input
patterns identified for deterministic models would provide the optimal response dis-
tribution in the presence of weak noise, but careful investigation of this issue remains
for future work.

Appendix

Similar methods to those applied to the LIF model with continuous input can be
used for the theta model with continuous input. Here we concisely summarize the
approach and the main results. Again, we replace γ (t), given in equation (28), with
its time average, and thus we consider the equation

θ ′ = 1− cos θ + (b + γ̄ )(1+ cos θ)

with

γ̄ = 1

Tb − Ta

∫ Tb

Ta

Aβ2te−βt dt

= AβTae
−βTa + Ae−βTa − AβTbe

−βTb − Ae−βTb

Tb − Ta

on the time interval (Ta, Tb) from one spike to the next. As θ(Ta) = −π and
θ(Tb) = π , ∫ π

−π

dθ

1− cos θ + (b + γ̄ )(1+ cos θ)

= π√
b + γ̄

= Tb − Ta.
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Combining these equations yields

A
[
βTae

−βTa + e−βTa − βTbe
−βTb − e−βTb

]
= π2

Tb − Ta

− b(Tb − Ta),
(45)

and spike times Ti and associated values γ̄i are found by solving these equations
repeatedly.

Lower and upper bounds t(β), t̄ (β) on firing times are estimated from the solu-
tions of

Aβ2te−βt = −b,

since γ (t) > −b > 0 is required for spiking to start. Technically, a single final spike
can be fired if γ rises above −b and then falls below it, however, so the upper bound
here is not precise.

As with the LIF model, constraints on spike times and changes in spike times with
β can be explored with these ideas. As one example, consider time T1(β) when the
first spike is fired. It can be shown that t̄ (β) → 0 as β → ∞, and hence T1(β) → 0
as β → ∞ as well, if it exists. This result yields

lim
β→∞

(
π2

T1
− bT1

)
= ∞,

but for Ta = T0, Tb = T1, the left hand side of equation (45) becomes A −
AβT1e

−βT1 − Ae−βT1 < 2A, a contradiction. Hence, no first spike can occur, and
we conclude that spiking in the theta model with input (28) is lost as β → ∞.
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